JP4590940B2 - Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer - Google Patents

Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer Download PDF

Info

Publication number
JP4590940B2
JP4590940B2 JP2004160876A JP2004160876A JP4590940B2 JP 4590940 B2 JP4590940 B2 JP 4590940B2 JP 2004160876 A JP2004160876 A JP 2004160876A JP 2004160876 A JP2004160876 A JP 2004160876A JP 4590940 B2 JP4590940 B2 JP 4590940B2
Authority
JP
Japan
Prior art keywords
inclination angle
carbide
hard coating
degrees
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004160876A
Other languages
Japanese (ja)
Other versions
JP2005335042A (en
Inventor
暁裕 近藤
裕介 田中
泰司 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004160876A priority Critical patent/JP4590940B2/en
Publication of JP2005335042A publication Critical patent/JP2005335042A/en
Application granted granted Critical
Publication of JP4590940B2 publication Critical patent/JP4590940B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

この発明は、特に鋼や鋳鉄などの切削加工に際して、硬質被覆層が一段とすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。   The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool) in which a hard coating layer exhibits excellent wear resistance, particularly when cutting steel or cast iron.

一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに切刃が断続切削加工形態をとる面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, coated carbide tools are used for slow-away inserts that are detachably attached to the tip of a cutting tool for drilling and cutting of various materials such as steel and cast iron, and for flat cutting. There are drills, miniature drills, solid type end mills that are used for chamfering, grooving, shoulder processing, etc. where the cutting blade takes an intermittent cutting form, and the solid type with the above throwaway tip attached detachably A slow-away end mill tool that performs a cutting process in the same manner as an end mill is known.

また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、
組成式:(Ti1-(X+Z) AlX Si)N(ただし、原子比で、Xは0.45〜0.70、Zは0.01〜0.15を示す)、
を満足するTiとAlとSiの複合窒化物[以下、(Ti,Al,Si)Nで示す]層からなる硬質被覆層を1〜15μmの平均層厚で蒸着形成してなる被覆超硬工具が知られており、前記(Ti,Al,Si)N層が、構成成分であるAlによって高温硬さと耐熱性、同Tiによって高温強度を具備し、さらに同Siによる一段の耐熱性向上効果と相俟って、これを各種の鋼や鋳鉄などの連続切削や断続切削加工を高速切削条件で用いた場合にすぐれた切削性能を発揮することも知られている。
Further, as a coated carbide tool, on the surface of a carbide substrate composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet,
Composition formula: (Ti 1- (X + Z) Al X Si Z ) N (wherein, X is 0.45 to 0.70, Z is 0.01 to 0.15 in atomic ratio),
Coated carbide tool formed by vapor-depositing a hard coating layer composed of a composite nitride of Ti, Al, and Si (hereinafter referred to as (Ti, Al, Si) N) satisfying the above conditions with an average layer thickness of 1 to 15 μm The (Ti, Al, Si) N layer has high-temperature hardness and heat resistance due to Al as a constituent component, high-temperature strength due to Ti, and further improved heat resistance due to Si. In combination, it is also known to exhibit excellent cutting performance when continuous cutting and intermittent cutting of various steels and cast iron are used under high-speed cutting conditions.

さらに、上記の被覆超硬工具が、例えば図5に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装着し、
装置内雰囲気:0.1Pa以下の真空、
装置内加熱温度:300〜500℃、
超硬基体に印加する直流バイアス電圧:−600〜−1000V、
カソード電極:金属チタン(Ti)、
上記カソード電極とアノード電極間のアーク放電電流:60〜100A
処理時間:1〜10分、
の条件で、超硬基体の表面をTiボンバード洗浄処理した状態で、ヒータで装置内を、例えば500℃の温度に加熱保持しながら、硬質被覆層である(Ti,Al,Si)N層形成用カソード電極(蒸発源)として装着された所定組成を有するTi−Al−Si合金とアノード電極との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Ti,Al,Si)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特許第2793773号明細書
Furthermore, the above-mentioned coated carbide tool is equipped with, for example, the above-mentioned carbide substrate in an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG.
In-apparatus atmosphere: vacuum of 0.1 Pa or less,
In-apparatus heating temperature: 300-500 ° C
DC bias voltage applied to the carbide substrate: −600 to −1000 V,
Cathode electrode: metal titanium (Ti),
Arc discharge current between the cathode electrode and the anode electrode: 60 to 100 A
Processing time: 1-10 minutes,
(Ti, Al, Si) N layer formation as a hard coating layer while maintaining the inside of the apparatus heated to a temperature of, for example, 500 ° C. with a heater in a state where the surface of the carbide substrate is subjected to a Ti bombard cleaning process under the conditions of For example, an arc discharge is generated between the Ti—Al—Si alloy having a predetermined composition mounted as a cathode electrode (evaporation source) and the anode electrode under the condition of current: 90 A, and at the same time, nitrogen as a reaction gas in the apparatus A gas is introduced to form a reaction atmosphere of, for example, 2 Pa. On the other hand, on the surface of the cemented carbide substrate, a bias voltage of, for example, −100 V is applied to the surface of the cemented carbide substrate. It is also known to be produced by vapor-depositing a hard coating layer consisting of layers.
Japanese Patent No. 2793773

近年の切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、被覆超硬工具にはより一段の長寿命化が求められる傾向にあるが、上記の従来被覆超硬工具においては、硬質被覆層である(Ti,Al,Si)N層の摩耗進行が相対的に速く、この結果比較的短時間で使用寿命に至るのが現状である。   In recent years, there has been a strong demand for labor saving, energy saving, and cost reduction for cutting, and along with this, coated carbide tools tend to require a much longer life. In the tool, the progress of wear of the (Ti, Al, Si) N layer which is a hard coating layer is relatively fast, and as a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の従来被覆超硬工具の硬質被覆層に着目し、これの一段の耐摩耗性向上をはかるべく研究を行った結果、
(a)図4に示されるアークイオンプレーティング装置を用い、上記の従来の超硬基体表面に対するTiボンバード洗浄処理に代って、
装置内雰囲気:0.1Pa以下の真空、
装置内加熱温度:550〜700℃、
超硬基体に印加する直流バイアス電圧:−600〜−1000V、
カソード電極:金属クロム(Cr)、
上記カソード電極とアノード電極間のアーク放電電流:60〜100A、
処理時間:1〜10分、
の条件で、超硬基体表面をCrボンバード処理する基体表面改質処理を施した状態で、通常の条件で、硬質被覆層として上記の組成式:(Ti1-(X+Z) AlX Si)N(ただし、原子比で、Xは0.45〜0.70、Zは0.01〜0.15を示す)、を満足する(Ti,Al,Si)N層を形成すると、この結果形成された(Ti,Al,Si)N層は、鋼や鋳鉄などを高速切削加工した場合にも長期に亘ってすぐれた耐摩耗性を発揮するようになること。
Therefore, the present inventors, from the above viewpoint, paying attention to the hard coating layer of the above conventional coated carbide tool, as a result of conducting research to improve this one-stage wear resistance,
(A) Using the arc ion plating apparatus shown in FIG. 4, instead of the above-described conventional Ti bombard cleaning treatment for the carbide substrate surface,
In-apparatus atmosphere: vacuum of 0.1 Pa or less,
In-apparatus heating temperature: 550 to 700 ° C.
DC bias voltage applied to the carbide substrate: -600 to -1000 V,
Cathode electrode: chromium metal (Cr),
Arc discharge current between the cathode electrode and the anode electrode: 60 to 100 A,
Processing time: 1-10 minutes,
Under the conditions described above, the above-described composition formula: (Ti 1- (X + Z) Al x Si Z ) When a (Ti, Al, Si) N layer satisfying N (wherein, X is 0.45 to 0.70 and Z is 0.01 to 0.15 in terms of atomic ratio) is formed as a result The (Ti, Al, Si) N layer should exhibit excellent wear resistance over a long period even when steel or cast iron is cut at high speed.

(b)上記(a)の(Ti,Al,Si)N層と上記の従来(Ti,Al,Si)N層について、電界放出型走査電子顕微鏡を用い、図1に概略説明図で示される通り、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来(Ti,Al,Si)N層は、図3に例示される通り、{100}面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記(a)の(Ti,Al,Si)N層の傾斜角度数分布グラフは、図2に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、このシャープな最高ピークは超硬基体表面をCrでボンバード処理する表面改質処理に際して、カソード電極である金属Crとアノード電極間のアーク放電電流を変化させることによりグラフ横軸の傾斜角区分に現れる位置が変ること。 (B) The (Ti, Al, Si) N layer of (a) and the above-described conventional (Ti, Al, Si) N layer are schematically illustrated in FIG. 1 using a field emission scanning electron microscope. As described above, each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and using an electron backscatter diffraction image apparatus, a predetermined region is spaced at an interval of 0.1 μm / step . The inclination angle formed by the normal line of the {100} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line of the surface polished surface, and is within the range of 0 to 45 degrees of the measurement inclination angle. When the measurement inclination angle is divided for each pitch of 0.25 degrees and the inclination angle number distribution graph is formed by counting the frequencies existing in each division, the conventional (Ti, Al, Si) N layer is As illustrated in FIG. 3, the distribution of measured inclination angles on the {100} plane is in the range of 0 to 45 degrees. In FIG. 2, the inclination angle number distribution graph of the (Ti, Al, Si) N layer in (a) is shown in FIG. A sharp maximum peak appears at a specific position, and this sharp maximum peak changes the arc discharge current between the cathode metal Cr and the anode electrode during the surface modification treatment in which the carbide substrate surface is bombarded with Cr. As a result, the position that appears in the tilt angle section of the horizontal axis of the graph changes.

(c)多くの試験結果によれば、上記カソード電極とアノード電極間のアーク放電電流を上記の通り60〜100Aの範囲内で変化させると、上記シャープな最高ピークが傾斜角区分の8〜20度の範囲内に現れると共に、前記8〜20度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占める傾斜角度数分布グラフを示すようになり、こような傾斜角度数分布グラフを示す(Ti,Al,Si)N層を硬質被覆層として形成してなる被覆超硬工具は高速切削加工ですぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) According to many test results, when the arc discharge current between the cathode electrode and the anode electrode is changed within the range of 60 to 100 A as described above, the sharp maximum peak is 8 to 20 of the inclination angle section. As shown in the slope angle distribution graph, which appears in the range of degrees and the total of the frequencies existing in the range of 8 to 20 degrees occupies a ratio of 45 to 65% of the whole degrees in the slope angle distribution graph. The coated carbide tool formed by forming the (Ti, Al, Si) N layer as a hard coating layer, which shows such an inclination angle number distribution graph, exhibits excellent wear resistance over a long period of time by high-speed cutting. To come to do.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、アークイオンプレティング装置を用い、WC基超硬合金またはTiCN基サーメットで構成された超硬基体の表面に、Crボンバード処理(表面改質処理)した状態で
組成式:(Ti1-(X+Z) AlX Si)N(ただし、原子比で、Xは0.45〜0.70、Zは0.01〜0.15を示す)を満足し、かつ、1〜15μmの平均層厚で物理蒸着形成してなる(Ti,Al,Si)Nで硬質被覆層を構成し
上記の硬質被覆層を構成する(Ti,Al,Si)Nは、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、8〜20度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記8〜20度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占める傾斜角度数分布グラフを示す、被覆超硬工具に特徴を有するものである。
The present invention has been made based on the above research results, and using an arc ion plating apparatus, the surface of a cemented carbide substrate made of a WC-based cemented carbide or TiCN-based cermet is treated with a Cr bombardment treatment ( In a state of surface modification treatment)
Compositional formula: (Ti 1− (X + Z) Al X Si Z ) N (wherein X is 0.45 to 0.70 and Z is 0.01 to 0.15 in atomic ratio), and The hard coating layer is composed of (Ti, Al, Si) N formed by physical vapor deposition with an average layer thickness of 1 to 15 μm ,
The (Ti, Al, Si) N constituting the hard coating layer is obtained by using a field emission scanning electron microscope and applying an electron beam to each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface. Irradiate and use the electron backscatter diffraction image apparatus, and the method of the {100} plane that is the crystal plane of the crystal grain with respect to the normal line of the surface-polished surface at a predetermined region at an interval of 0.1 μm / step Measure the tilt angle formed by the line, and divide the measured tilt angles within the range of 0 to 45 degrees out of the measured tilt angles by pitch of 0.25 degrees, and count the frequencies existing in each section In the inclination angle distribution graph, the highest peak is present in the inclination angle section within the range of 8 to 20 degrees, and the sum of the frequencies existing within the range of 8 to 20 degrees is the inclination angle number distribution graph. Tilt angle occupying 45-65% of total frequency It is characterized by a coated carbide tool showing a frequency distribution graph.

なお、上記の通り、この発明の被覆超硬工具の硬質被覆層を構成する(Ti,Al,Si)N層におけるAl成分には高温硬さと耐熱性を向上させ、一方同Ti成分には高温強度を向上させ、さらに同Si成分にはAlとの共存において一段と耐熱性を向上させる作用があるが、Alの割合を示すX値がTiとSiとの合量に占める割合(原子比、以下同じ)で0.45未満になると、相対的にTiの割合が多くなり過ぎて、すぐれた高温硬さと耐熱性を確保することができず、摩耗進行が急激に促進するようになり、一方Alの割合を示すX値が同0.70を越えると、相対的にTiの割合が少なくなり過ぎて、高温強度が急激に低下し、チッピングが発生し易くなることから、X値を0.45〜0.70と定めた。
また、Siの割合を示すZ値がTiとAlの合量に占める割合で、0.01未満では、所望の耐熱性向上効果が得られず、一方同Z値が0.15を超えると、高温強度が低下するようになることから、Z値を0.01〜0.15と定めた。
さらに、その平均層厚が1μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方その平均層厚が15μmを越えると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
As described above, the Al component in the (Ti, Al, Si) N layer constituting the hard coating layer of the coated carbide tool of the present invention improves the high temperature hardness and heat resistance, while the Ti component has a high temperature. The Si component has the effect of further improving the heat resistance in the coexistence with Al, but the ratio of the Al value to the total amount of Ti and Si (atomic ratio, below) If the ratio is less than 0.45, the proportion of Ti is excessively increased, and excellent high-temperature hardness and heat resistance cannot be secured, and the progress of wear is rapidly promoted. If the X value indicating the ratio exceeds 0.70, the Ti ratio becomes relatively small, the high-temperature strength rapidly decreases, and chipping is likely to occur. It was set to -0.70.
Moreover, if the Z value indicating the proportion of Si is a proportion of the total amount of Ti and Al, and less than 0.01, the desired heat resistance improvement effect cannot be obtained, while if the Z value exceeds 0.15, Since the high-temperature strength is lowered, the Z value is determined to be 0.01 to 0.15.
Furthermore, if the average layer thickness is less than 1 μm, it is insufficient to exhibit its excellent wear resistance over a long period of time, whereas if the average layer thickness exceeds 15 μm, chipping is likely to occur. Therefore, the average layer thickness was determined to be 1 to 15 μm.

また、上記の通り、(Ti,Al,Si)N層の傾斜角度数分布グラフにおける測定傾斜角の最高ピーク位置は、超硬基体表面をCrボンバード処理する基体表面改質処理に際して、金属Crのカソード電極とアノード電極間のアーク放電電流を変化させることによって変化するが、多くの試験の結果、前記アーク放電電流を60〜100Aとした場合に、最高ピークが8〜20度の範囲内の傾斜角区分に現れると共に、前記8〜20度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占める傾斜角度数分布グラフが得られるようになる、という結論に達したものであり、したがって、前記アーク放電電流が60A未満でも、100Aを越えても、測定傾斜角の最高ピーク位置は8〜20度の範囲から外れてしまい、このような場合には所望のすぐれた耐摩耗性を発揮することができないものである。   In addition, as described above, the highest peak position of the measured inclination angle in the inclination angle number distribution graph of the (Ti, Al, Si) N layer is the same as that of the metal Cr during the substrate surface modification treatment in which the carbide substrate surface is Cr bombarded. It changes by changing the arc discharge current between the cathode electrode and the anode electrode. As a result of many tests, when the arc discharge current is 60 to 100 A, the maximum peak is in the range of 8 to 20 degrees. In addition to appearing in the angle section, an inclination angle number distribution graph is obtained in which the total number of frequencies existing in the range of 8 to 20 degrees occupies a proportion of 45 to 65% of the entire frequency in the inclination angle frequency distribution graph. Therefore, even if the arc discharge current is less than 60 A or more than 100 A, the maximum peak position of the measured inclination angle is 8 to 20 degrees. Deviates from the range, in this case are those unable to exert the desired excellent wear resistance.

この発明の被覆超硬工具は、特に鋼や鋳鉄などの高速切削加工に際して、硬質被覆層が一段とすぐれた耐摩耗性を発揮し、使用寿命の延命化に寄与するものである。   In the coated carbide tool of the present invention, particularly in high-speed cutting processing of steel, cast iron and the like, the hard coating layer exhibits much higher wear resistance and contributes to the extension of the service life.

つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。   Next, the coated carbide tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A1〜A10を形成した。 As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. And then wet-mixed with a ball mill for 72 hours, dried, and press-molded into a green compact at a pressure of 100 MPa. The green compact was vacuumed at 6 Pa at a temperature of 1400 ° C. for 1 hour. Sintered under the holding conditions, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03, and the carbide bases A1 to A10 made of WC-based cemented carbide having ISO / CNMG120408 chip shape Formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の超硬基体B1〜B6を形成した。 In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. The carbide substrates B1 to B6 made of TiCN base cermet having the following chip shape were formed.

ついで、上記の超硬基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図4に示されるアークイオンプレーティング装置に装着し、カソード電極(蒸発源)として、種々の成分組成をもったTi−Al−Si合金および超硬基体表面改質処理用金属Crを装着し、まず、
装置内雰囲気:0.1Pa以下の真空、
装置内加熱温度:600℃、
超硬基体に印加する直流バイアス電圧:−800V、
カソード電極:金属Cr、
アーク放電電流:60〜100Aの範囲内の所定の電流、
処理時間:5分、
の条件で、上記カソード電極の前記金属Crとアノード電極との間にアーク放電を発生させて、上記超硬基体表面をCrボンバード処理する超硬基体表面改質処理を行い、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記超硬基体に−100Vの直流バイアス電圧を印加し、前記カソード電極であるTi−Al−Si合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、表3に示される目標組成および目標層厚の(Ti,Al,Si)N層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
Next, each of the above-mentioned carbide substrates A1 to A10 and B1 to B6 was ultrasonically cleaned in acetone and dried, and mounted on the arc ion plating apparatus shown in FIG. ), A Ti—Al—Si alloy having various component compositions and a metal Cr for carbide substrate surface modification treatment were mounted,
In-apparatus atmosphere: vacuum of 0.1 Pa or less,
In-apparatus heating temperature: 600 ° C.
DC bias voltage applied to the carbide substrate: -800V,
Cathode electrode: metal Cr,
Arc discharge current: a predetermined current in the range of 60-100A,
Processing time: 5 minutes
Under these conditions, arc discharge is generated between the metal Cr and the anode electrode of the cathode electrode, and the carbide substrate surface is reformed by Cr bombarding the surface of the carbide substrate. Nitrogen gas is introduced as a gas to form a reaction atmosphere of 2 Pa, a DC bias voltage of −100 V is applied to the cemented carbide substrate, and 100 A is provided between the cathode electrode Ti—Al—Si alloy and the anode electrode. The current coating is applied to generate arc discharge, and the (Ti, Al, Si) N layer having the target composition and target layer thickness shown in Table 3 is deposited on the surface of the cemented carbide substrate. The present invention surface-coated cemented carbide throwaway tips (hereinafter referred to as the present invention coated carbide tips) 1 to 16 as carbide tools were produced, respectively.

また、比較の目的で、図5のアークイオンプレーティング装置を用い、上記の超硬基体表面を、上記のCrボンバード処理による超硬表面改質処理に代って、
装置内雰囲気:0.1Pa以下の真空、
装置内加熱温度:500℃、
超硬基体に印加する直流バイアス電圧:−800V、
カソード電極:金属Ti、
アーク放電電流:60〜100Aの範囲内の所定の電流、
処理時間:5分、
の条件で、上記超硬基体の表面をTiボンバード洗浄処理する以外は同一の条件で(Ti,Al,Si)N層を蒸着することにより、表4に示される通りの従来被覆超硬工具としての従来表面被覆超硬合金製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜16をそれぞれ製造した。
Further, for the purpose of comparison, using the arc ion plating apparatus of FIG. 5, the above-mentioned carbide substrate surface is replaced with the above-described carbide surface modification treatment by Cr bombardment treatment,
In-apparatus atmosphere: vacuum of 0.1 Pa or less,
In-apparatus heating temperature: 500 ° C
DC bias voltage applied to the carbide substrate: -800V,
Cathode electrode: Ti metal,
Arc discharge current: a predetermined current in the range of 60-100A,
Processing time: 5 minutes
The conventional coated carbide tool as shown in Table 4 is formed by vapor-depositing a (Ti, Al, Si) N layer under the same conditions except that the surface of the carbide substrate is subjected to a Ti bombard cleaning process under the conditions of Conventional surface-coated cemented carbide throwaway tips (hereinafter referred to as conventional coated cemented carbide tips) 1 to 16 were produced.

つぎに、上記本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SNCM439の丸棒、
切削速度:350m/min.、
切り込み:1.4mm、
送り:0.3mm/rev.、
切削時間:10分、
の条件(切削条件Aという)での合金鋼の乾式連続高速切削加工試験(通常の切削速度は200m/min.)、
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:360m/min.、
切り込み:1.0mm、
送り:0.24mm/rev.、
切削時間:10分、
の条件(切削条件Bという)での炭素鋼の乾式断続高速切削加工試験(通常の切削速度は200m/min.)、さらに、
被削材:JIS・FC300の丸棒、
切削速度:360m/min.、
切り込み:1.2mm、
送り:0.25mm/rev.、
切削時間:10分、
の条件(切削条件Cという)での鋳鉄の乾式連続高速切削加工試験(通常の切削速度は200m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
Next, with the present invention coated carbide tips 1-16 and conventional coated carbide tips 1-16, in a state where this is screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / SNCM439 round bar,
Cutting speed: 350 m / min. ,
Cutting depth: 1.4mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed cutting test of alloy steel under the conditions (cutting condition A) (normal cutting speed is 200 m / min.),
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 360 m / min. ,
Cutting depth: 1.0 mm,
Feed: 0.24 mm / rev. ,
Cutting time: 10 minutes,
Dry intermittent high-speed cutting test of carbon steel under the conditions (referred to as cutting condition B) (normal cutting speed is 200 m / min.),
Work material: JIS / FC300 round bar,
Cutting speed: 360 m / min. ,
Cutting depth: 1.2mm,
Feed: 0.25 mm / rev. ,
Cutting time: 10 minutes,
The dry continuous high-speed cutting test (normal cutting speed is 200 m / min.) Of cast iron under the above conditions (referred to as cutting condition C) was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 5.

Figure 0004590940
Figure 0004590940

Figure 0004590940
Figure 0004590940

Figure 0004590940
Figure 0004590940

Figure 0004590940
Figure 0004590940

Figure 0004590940
Figure 0004590940

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表6に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表6に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角:30度の4枚刃スクエアの形状をもった超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。
また、別途、上記超硬基体(エンドミル)C−1〜C−8とそれぞれ同じ組成をもち、かついずれも平面:12mm×12mm、厚さ:6mmの寸法をもった電界放出型走査電子顕微鏡による傾斜角度数分布グラフ作成用試験片を用意した。
As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [50/50 by mass ratio] powder, and 1.8 μm Co Prepare powders, mix each of these raw material powders with the composition shown in Table 6, add wax, ball mill mix in acetone for 24 hours, dry under reduced pressure, and then press various pressures of a predetermined shape at a pressure of 100 MPa. The powder compact is press-molded, and these green compacts are heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 7 ° C./min in a vacuum atmosphere of 6 Pa, and this temperature is maintained for 1 hour. After holding, sintering under furnace cooling conditions, the diameter is 8m , 13 mm, and 26 mm round bar sintered bodies for forming a cemented carbide substrate were formed, and the above three types of round bar sintered bodies were cut into the combinations shown in Table 6 by grinding. Carbide substrate (end mill) C- having a shape of a four-blade square with a blade portion diameter × length of 6 mm × 13 mm, 10 mm × 22 mm, and 20 mm × 45 mm, respectively, and a twist angle of 30 degrees. 1 to C-8 were produced.
Separately, by a field emission scanning electron microscope having the same composition as the above-mentioned carbide substrates (end mills) C-1 to C-8, and each having dimensions of plane: 12 mm × 12 mm, thickness: 6 mm. A test piece for preparing an inclination angle number distribution graph was prepared.

ついで、これらの超硬基体(エンドミル)C−1〜C−8および試験片を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図4に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、超硬基体表面改質処理を行い、かつ表7に示される目標組成および目標層厚の(Ti,Al,Si)N層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。   Then, these carbide substrates (end mills) C-1 to C-8 and test pieces were ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. By performing a carbide substrate surface modification treatment under the same conditions as in Example 1 above, and depositing a (Ti, Al, Si) N layer having the target composition and target layer thickness shown in Table 7, End mills made of the present invention surface coated cemented carbide alloy (hereinafter referred to as the present invention coated carbide end mill) 1 to 8 as invention coated carbide tools were produced, respectively.

また、比較の目的で、上記実施例1と同一の条件で、上記の超硬基体の表面を、上記のWボンバード処理による超硬基体表面改質処理に代って、Tiボンバード洗浄処理する以外は同一の条件で(Al,Ti)N層を蒸着することにより、同じく表7に示される通りの(従来被覆超硬工具としての従来表面被覆超硬合金製エンドミル(以下、従来被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。   For the purpose of comparison, the surface of the above-mentioned carbide substrate is subjected to Ti bombard cleaning treatment in place of the above-described carbide substrate surface modification treatment by W bombardment treatment under the same conditions as in Example 1. (Al, Ti) N layer is deposited under the same conditions, as shown in Table 7 (the conventional surface-coated cemented carbide end mill (hereinafter referred to as the conventional coated carbide end mill as a conventional coated carbide tool). 1) to 8 were produced.

つぎに、上記本発明被覆超硬エンドミル1〜8および従来被覆超硬エンドミル1〜8のうち、本発明被覆超硬エンドミル1〜3および従来被覆超硬エンドミル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61の板材、
切削速度:80m/min.、
溝深さ(切り込み):0.22mm、
テーブル送り:320mm/分、
の条件での工具鋼の乾式高速溝切削加工試験(通常の切削速度は45m/min.)、本発明被覆超硬エンドミル4〜6および従来被覆超硬エンドミル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S55Cの板材、
切削速度:180m/min.、
溝深さ(切り込み):2.4mm、
テーブル送り:800mm/分、
の条件での炭素鋼の乾式高速溝切削加工試験(通常の切削速度は100m/min.)、本発明被覆超硬エンドミル7,8および従来被覆超硬エンドミル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM440の板材、
切削速度:200m/min.、
溝深さ(切り込み):4.5mm、
テーブル送り:450mm/分、
の条件での合金鋼の乾式高速溝切削加工試験(通常の切削速度は100m/min.)をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表7にそれぞれ示した。
Next, of the present invention coated carbide end mills 1-8 and conventional coated carbide end mills 1-8, the present invention coated carbide end mills 1-3 and conventional coated carbide end mills 1-3 are as follows:
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SKD61 plate material,
Cutting speed: 80 m / min. ,
Groove depth (cut): 0.22 mm,
Table feed: 320 mm / min,
The dry high-speed grooving test of the tool steel under the conditions (normal cutting speed is 45 m / min.), The coated carbide end mills 4 to 6 of the present invention and the conventional coated carbide end mills 4 to 6
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / S55C plate material,
Cutting speed: 180 m / min. ,
Groove depth (cut): 2.4 mm,
Table feed: 800mm / min,
The dry high-speed grooving test of carbon steel under the conditions (normal cutting speed is 100 m / min.), The coated carbide end mills 7 and 8 of the present invention and the conventional coated carbide end mills 7 and 8 are as follows:
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SCM440 plate material,
Cutting speed: 200 m / min. ,
Groove depth (cut): 4.5 mm,
Table feed: 450mm / min,
The dry high-speed grooving test of alloy steel under the conditions (normal cutting speed is 100 m / min.) Is performed, and the flank wear width of the outer peripheral edge of the cutting edge is the service life in any grooving test. The cutting groove length up to 0.1 mm as a standard was measured. The measurement results are shown in Table 7, respectively.

Figure 0004590940
Figure 0004590940

Figure 0004590940
Figure 0004590940

上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角:30度の2枚刃形状をもった超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。
また、同じく上記超硬基体(ドリル)D−1〜D−8とそれぞれ同じ組成を有し、かついずれも平面:12mm×12mm、厚さ:6mmの寸法をもった電界放出型走査電子顕微鏡による傾斜角度数分布グラフ作成用試験片も用意した。
The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding), respectively. Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 having a two-blade shape with a twist angle of 30 degrees were produced.
Similarly, by using a field emission scanning electron microscope having the same composition as the above-mentioned carbide substrates (drills) D-1 to D-8 and having dimensions of plane: 12 mm × 12 mm and thickness: 6 mm. A specimen for preparing an inclination angle number distribution graph was also prepared.

ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、上記の試験片と共に、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、超硬基体表面改質処理を行い、かつ表8に示される目標組成および目標層厚の(Ti,Al,Si)N層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8をそれぞれ製造した。   Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are honed, and ultrasonically washed in acetone together with the above test pieces, and then dried, as shown in FIG. The carbide substrate surface modification treatment was performed under the same conditions as in Example 1, and the target composition and target layer thickness (Ti, Al, Si) shown in Table 8 were charged. ) By drilling the N layer, drills made of the surface-coated cemented carbide of the present invention (hereinafter referred to as the present coated carbide drill) 1 to 8 as the coated carbide tool of the present invention were produced.

また、比較の目的で、上記実施例1と同一の条件で、上記の超硬基体の表面を、上記のWボンバード処理による超硬基体表面改質処理に代って、Tiボンバード洗浄処理する以外は同一の条件で(Ti,Al,Si)N層を蒸着することにより、表8に示される通りの従来被覆超硬工具としての従来表面被覆超硬合金製ドリル(以下、従来被覆超硬ドリルと云う)1〜8をそれぞれ製造した。   For the purpose of comparison, the surface of the above-mentioned carbide substrate is subjected to Ti bombard cleaning treatment in place of the above-described carbide substrate surface modification treatment by W bombardment treatment under the same conditions as in Example 1. Is a conventional surface-coated cemented carbide drill (hereinafter referred to as a conventional coated carbide drill) as a conventional coated carbide tool as shown in Table 8 by depositing a (Ti, Al, Si) N layer under the same conditions. 1) to 8 were produced.

つぎに、上記本発明被覆超硬ドリル1〜8および従来被覆超硬ドリル1〜8のうち、本発明被覆超硬ドリル1〜3および従来被覆超硬ドリル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61の板材、
切削速度:60m/min.、
送り:0.1mm/rev.、
穴深さ:8mm
の条件での工具鋼の湿式高速穴あけ切削加工試験(通常の切削速度は30m/min.)、本発明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・FC200の板材、
切削速度:110m/min.、
送り:0.24mm/rev、
穴深さ:16mm
の条件での鋳鉄の湿式高速穴あけ切削加工試験(通常の切削速度は60m/min.)、本発明被覆超硬ドリル7,8および従来被覆超硬ドリル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM435の板材、
切削速度:80m/min.、
送り:0.18mm/rev、
穴深さ:32mm
の条件での合金鋼の湿式高速穴あけ切削加工試験(通常の切削速度は40m/min.)、をそれぞれ行い、いずれの湿式穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表8に示した。
Next, of the present invention coated carbide drills 1-8 and conventional coated carbide drills 1-8, the present invention coated carbide drills 1-3 and conventional coated carbide drills 1-3,
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SKD61 plate material,
Cutting speed: 60 m / min. ,
Feed: 0.1 mm / rev. ,
Hole depth: 8mm
With respect to the tool steel wet high-speed drilling cutting test under the conditions (normal cutting speed is 30 m / min.), The present invention coated carbide drills 4-6 and conventional coated carbide drills 4-6,
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / FC200 plate material,
Cutting speed: 110 m / min. ,
Feed: 0.24mm / rev,
Hole depth: 16mm
With regard to the cast iron wet high speed drilling cutting test under the conditions (normal cutting speed is 60 m / min.), The present coated carbide drills 7 and 8 and the conventional coated carbide drills 7 and 8,
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCM435 plate material,
Cutting speed: 80 m / min. ,
Feed: 0.18mm / rev,
Hole depth: 32mm
Wet high-speed drilling test (normal cutting speed is 40 m / min.) Of alloy steel under the above conditions, respectively, and any wet drilling test (using water-soluble cutting oil) escapes the tip cutting edge surface The number of drilling processes until the surface wear width reached 0.3 mm was measured. The measurement results are shown in Table 8.

Figure 0004590940
Figure 0004590940

この結果得られた本発明被覆超硬工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8、および本発明被覆超硬ドリル1〜8、並びに従来被覆超硬工具としての従来被覆超硬チップ1〜16、従来被覆超硬エンドミル1〜8、および従来被覆超硬ドリル1〜8の(Ti,Al,Si)N層の組成をオージェ分光分析装置を用いて測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
また、これらの本発明被覆超硬工具および従来被覆超硬工具の(Ti,Al,Si)N層の厚さを、走査型電子顕微鏡を用いて断面測定したところ、いずれも目標値と実質的に同じ平均層厚(5点測定の平均値)を示した。
As a result, the coated carbide tips 1 to 16 of the present invention, the coated carbide end mills 1 to 8 of the present invention, the coated carbide drills 1 to 8 of the present invention, and the conventionally coated carbide tools of the present invention. The composition of the (Ti, Al, Si) N layer of the conventional coated carbide tips 1 to 16, the conventional coated carbide end mills 1 to 8, and the conventional coated carbide drills 1 to 8 was measured using an Auger spectrometer. As a result, each showed substantially the same composition as the target composition.
Moreover, when the thickness of the (Ti, Al, Si) N layer of these coated carbide tools of the present invention and the conventional coated carbide tools was measured by a cross-section using a scanning electron microscope, both were substantially the target value. The same average layer thickness (average value of 5-point measurement) was shown.

さらに、上記の本発明被覆超硬工具と従来被覆超硬工具の(Ti,Al,Si)N層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の(Ti,Al,Si)N層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射し、電子後方散乱回折像装置を用いて、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
Further, a gradient angle distribution graph was prepared for each of the (Ti, Al, Si) N layers of the above-described coated carbide tool of the present invention and the conventional coated carbide tool using a field emission scanning electron microscope.
That is, the tilt angle number distribution graph is set in a lens barrel of a field emission scanning electron microscope in a state where the surface of the (Ti, Al, Si) N layer is a polished surface, and 70 is applied to the polished surface. An electron backscatter diffraction image apparatus is irradiated by irradiating an electron beam with an acceleration voltage of 15 kV at an incident angle of 15 degrees with an irradiation current of 1 nA on each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface. Using a 30 × 50 μm region at an interval of 0.1 μm / step, the inclination angle formed by the normal of the {100} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the surface polished surface Based on the measurement results, the measurement inclination angles within the range of 0 to 45 degrees out of the measurement inclination angles are divided for each pitch of 0.25 degrees, and the frequencies existing in each division are tabulated. Created by.

この結果得られた各種の(Ti,Al,Si)N層の傾斜角度数分布グラフにおいて、本発明被覆超硬工具の(Ti,Al,Si)N層は、表3、表7、および表8にそれぞれ示される通り、いずれも{100}面の測定傾斜角の分布が8〜20度の範囲内の傾斜角区分に最高ピークが現れる傾斜角度数分布グラフを示すのに対して、従来被覆超硬工具の(Ti,Al,Si)N層は、表4、表7、および表8にそれぞれ示される通り、いずれも{100}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示すものであった。
また表3、表4、表7、および表8には、上記の本発明被覆超硬工具および従来被覆超硬工具の(Ti,Al,Si)N層の傾斜角度数分布グラフにおいて、8〜20度の範囲内の傾斜角区分に存在する傾斜角度数のグラフ全体の傾斜角度数に占める割合を示した。
なお、図2は、本発明被覆超硬チップ1の(Ti,Al,Si)N層の傾斜角度数分布グラフ、図3は、従来被覆超硬チップ1の(Ti,Al,Si)N層の傾斜角度数分布グラフをそれぞれ示すものである。
In the gradient angle distribution graphs of various (Ti, Al, Si) N layers obtained as a result, the (Ti, Al, Si) N layers of the coated carbide tool of the present invention are shown in Tables 3, 7, and As shown in FIG. 8, each of the {100} planes shows a slope angle distribution graph in which the highest peak appears in the slope section where the measured slope angle distribution is in the range of 8 to 20 degrees. As shown in Table 4, Table 7, and Table 8, the (Ti, Al, Si) N layer of the carbide tool has a measured inclination angle distribution on the {100} plane within the range of 0 to 45 degrees. It shows an inclination angle distribution graph that is unbiased and has no highest peak.
In Table 3, Table 4, Table 7, and Table 8, the inclination angle number distribution graph of the (Ti, Al, Si) N layer of the above-described coated carbide tool of the present invention and the conventional coated carbide tool is 8 to The ratio of the inclination angle number existing in the inclination angle section within the range of 20 degrees to the inclination angle number of the entire graph is shown.
2 is an inclination angle number distribution graph of the (Ti, Al, Si) N layer of the coated carbide tip 1 of the present invention, and FIG. 3 is a (Ti, Al, Si) N layer of the conventional coated carbide tip 1. The inclination angle number distribution graphs are respectively shown.

表3〜8に示される結果から、本発明被覆超硬工具は、いずれも硬質被覆層を構成する(Ti,Al,Si)N層の{100}面が傾斜角度数分布グラフで8〜20度の範囲内の傾斜角区分で最高ピークを示し、すぐれた耐摩耗性を示すのに対して、硬質被覆が、{100}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す(Ti,Al,Si)N層で構成された従来被覆超硬工具においては、相対的に摩耗進行が速く、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 3-8, in the coated carbide tools of the present invention, the {100} plane of the (Ti, Al, Si) N layer constituting the hard coating layer is 8-20 in the inclination angle number distribution graph. In contrast to the highest peak in the tilt angle section within the range of degrees and excellent wear resistance, the hard coating is unbiased in the measured tilt angle distribution of the {100} plane within the range of 0 to 45 degrees. In conventional coated carbide tools composed of (Ti, Al, Si) N layers, which show a distribution graph of the tilt angle without the highest peak, the wear progresses relatively quickly and can be used in a relatively short time. It is clear that it reaches the end of its life.

上述のように、この発明の被覆超硬工具は、各種鋼や鋳鉄などの連続切削や断続切削を高速切削条件で行った場合にもすぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated carbide tool of the present invention exhibits excellent wear resistance even when continuous cutting and intermittent cutting of various steels and cast irons are performed under high-speed cutting conditions, and excellent cutting over a long period of time. Since it demonstrates its performance, it can respond satisfactorily to labor saving, energy saving, and cost reduction in cutting.

硬質被覆層を構成する各種(Ti,Al,Si)N層における結晶粒の結晶面である{100}面の法線が表面研磨面の法線に対する傾斜角の測定範囲を示す概略説明図である。It is a schematic explanatory diagram showing the measurement range of the tilt angle with respect to the normal of the surface polished surface where the normal of the {100} plane which is the crystal plane of the crystal grains in the various (Ti, Al, Si) N layers constituting the hard coating layer is there. 本発明被覆超硬チップ1の硬質被覆層を構成する(Ti,Al,Si)N層の{100}面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the {100} plane of the (Ti, Al, Si) N layer constituting the hard coating layer of the coated carbide chip 1 of the present invention. 従来被覆超硬チップ1の硬質被覆層を構成する(Ti,Al,Si)N層の{100}面の傾斜角度数分布グラフである。It is a gradient angle number distribution graph of the {100} plane of the (Ti, Al, Si) N layer constituting the hard coating layer of the conventional coated carbide chip 1. 本発明被覆超硬工具の硬質被覆層を構成する(Ti,Al,Si)N層の形成に用いたアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the arc ion plating apparatus used for formation of the (Ti, Al, Si) N layer which comprises the hard coating layer of this invention coated carbide tool. 従来被覆超硬工具の硬質被覆層を構成する(Ti,Al,Si)N層の形成に用いたアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the arc ion plating apparatus used for formation of the (Ti, Al, Si) N layer which comprises the hard coating layer of the conventional coated carbide tool.

Claims (1)

アークイオンプレティング装置を用い、炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された基体の表面に、Crボンバード処理(表面改質処理)した状態で
組成式:(Ti1-(X+Z) AlX Si)N(ただし、原子比で、Xは0.45〜0.70、Zは0.01〜0.15を示す)を満足し、かつ、1〜15μmの平均層厚で物理蒸着形成してなるTiとAlとSiの複合窒化物層で硬質被覆層を構成し
上記の硬質被覆層を構成するTiとAlとSiの複合窒化物層は、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、8〜20度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記8〜20度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占める傾斜角度数分布グラフを示すこと、
を特徴とする硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬合金製切削工具
Using an arc ion plating device, the surface of the substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet was subjected to Cr bombardment treatment (surface modification treatment) ,
Compositional formula: (Ti 1− (X + Z) Al X Si Z ) N (wherein X is 0.45 to 0.70 and Z is 0.01 to 0.15 in atomic ratio), and The hard coating layer is composed of a composite nitride layer of Ti, Al and Si formed by physical vapor deposition with an average layer thickness of 1 to 15 μm ,
The composite nitride layer of Ti, Al, and Si that constitutes the hard coating layer described above uses a field emission scanning electron microscope, and each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface has electrons. A {100} plane which is a crystal plane of the crystal grain with respect to the normal line of the surface polished surface at an interval of 0.1 μm / step using an electron backscatter diffraction image apparatus The inclination angle formed by the normal line is measured, and among the measurement inclination angles, the measurement inclination angle within the range of 0 to 45 degrees is divided for each pitch of 0.25 degrees, and the frequency existing in each division In the inclination angle distribution graph obtained by summing up, the highest peak exists in the inclination angle section within the range of 8 to 20 degrees, and the total of the frequencies existing within the range of 8 to 20 degrees is the inclination angle number. Occupies 45-65% of the total frequency in the distribution graph Showing an inclination angle number distribution graph,
A coated cemented carbide cutting tool with a hard coating layer featuring excellent wear resistance.
JP2004160876A 2004-05-31 2004-05-31 Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer Expired - Lifetime JP4590940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004160876A JP4590940B2 (en) 2004-05-31 2004-05-31 Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004160876A JP4590940B2 (en) 2004-05-31 2004-05-31 Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2005335042A JP2005335042A (en) 2005-12-08
JP4590940B2 true JP4590940B2 (en) 2010-12-01

Family

ID=35489137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004160876A Expired - Lifetime JP4590940B2 (en) 2004-05-31 2004-05-31 Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP4590940B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018768A1 (en) 2011-08-01 2013-02-07 日立ツール株式会社 Surface-modified wc-based cemented carbide member, hard film-coated wc-based cemented carbide member, method for producing surface-modified wc-based cemented carbide member, and method for producing hard film-coated wc-based cemented carbide member

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6284034B2 (en) * 2014-09-25 2018-02-28 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6709526B2 (en) * 2014-10-28 2020-06-17 三菱マテリアル株式会社 Surface coated cutting tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209336A (en) * 1995-01-31 1996-08-13 Hitachi Tool Eng Ltd Coated hard alloy
JP2793773B2 (en) * 1994-05-13 1998-09-03 神鋼コベルコツール株式会社 Hard coating, hard coating tool and hard coating member excellent in wear resistance
JP2001293602A (en) * 2000-04-11 2001-10-23 Sumitomo Electric Ind Ltd Cutting tool, and manufacturing method and device for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2793773B2 (en) * 1994-05-13 1998-09-03 神鋼コベルコツール株式会社 Hard coating, hard coating tool and hard coating member excellent in wear resistance
JPH08209336A (en) * 1995-01-31 1996-08-13 Hitachi Tool Eng Ltd Coated hard alloy
JP2001293602A (en) * 2000-04-11 2001-10-23 Sumitomo Electric Ind Ltd Cutting tool, and manufacturing method and device for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018768A1 (en) 2011-08-01 2013-02-07 日立ツール株式会社 Surface-modified wc-based cemented carbide member, hard film-coated wc-based cemented carbide member, method for producing surface-modified wc-based cemented carbide member, and method for producing hard film-coated wc-based cemented carbide member
US9492872B2 (en) 2011-08-01 2016-11-15 Hitachi Tool Engineering, Ltd. Surface-modified, WC-based cemented carbide member, hard-coated, WC-based cemented carbide member, and their production methods

Also Published As

Publication number Publication date
JP2005335042A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP4747268B2 (en) Surface coated cemented carbide cutting tool with high temperature strength with excellent hard coating layer
JP3969230B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions
JP5035956B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP3931326B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4618411B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to lubrication coating layer
JP5287126B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP2009125832A (en) Surface-coated cutting tool
JP3931325B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4725773B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting
JP4389152B2 (en) Surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance under heavy cutting conditions.
JP4590940B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer
JP2006334740A (en) Surface coated cemented carbide cutting tool with hard coated layer exhibiting excellent abrasive resistance in high speed cutting of highly reactive cut material
JP4645820B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4375527B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP4367032B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
JP2003136303A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP2003136302A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP3985227B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4609631B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer
JP2009090396A (en) Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting
JP3982301B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4244379B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4590940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150