JP4613895B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP4613895B2
JP4613895B2 JP2006212541A JP2006212541A JP4613895B2 JP 4613895 B2 JP4613895 B2 JP 4613895B2 JP 2006212541 A JP2006212541 A JP 2006212541A JP 2006212541 A JP2006212541 A JP 2006212541A JP 4613895 B2 JP4613895 B2 JP 4613895B2
Authority
JP
Japan
Prior art keywords
exhaust
flow rate
filter
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006212541A
Other languages
Japanese (ja)
Other versions
JP2008038709A (en
Inventor
聡 中澤
道博 畠
徳幸 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2006212541A priority Critical patent/JP4613895B2/en
Publication of JP2008038709A publication Critical patent/JP2008038709A/en
Application granted granted Critical
Publication of JP4613895B2 publication Critical patent/JP4613895B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、排ガス中の粒子状物質(スート)を捕集するフィルタを備えた内燃機関、特にディーゼル機関の制御装置に関するものである。   The present invention relates to a control device for an internal combustion engine, particularly a diesel engine, provided with a filter that collects particulate matter (soot) in exhaust gas.

従来より、ディーゼルエンジンの排気通路中にDPF(ディーゼルパティキュレートフィルタ;diesel particulate filter、以下単にフィルタとも言う)を設け、排ガス中に含まれる粒子状物質(スート又はPM)をフィルタで捕集するとともにフィルタに堆積したスートを燃焼させてフィルタを再生するようにした技術が知られている。
一方、やはり従来よりエンジンの排気通路と吸気通路とを連通し、排ガスの一部を吸気通路に還流させることでNOxを低減するようにしたEGR装置が広く知られている。このようなEGR装置では主に部分負荷運転領域で排ガスを還流させるようにしており、排ガスの還流量は主にEGR通路上に介装された開閉弁(EGRバルブ)の開度を調整することにより制御される。
Conventionally, a DPF (diesel particulate filter; hereinafter simply referred to as a filter) is provided in an exhaust passage of a diesel engine, and particulate matter (soot or PM) contained in exhaust gas is collected by the filter. A technique is known in which soot accumulated on a filter is burned to regenerate the filter.
On the other hand, EGR devices that reduce NOx by communicating an exhaust passage and an intake passage of an engine and returning a part of exhaust gas to the intake passage have been widely known. In such an EGR device, the exhaust gas is recirculated mainly in the partial load operation region, and the recirculation amount of the exhaust gas mainly adjusts the opening degree of the on-off valve (EGR valve) interposed on the EGR passage. Controlled by

EGR装置の制御手法としては、いわゆるλ(ラムダ)制御が知られている。ここでλ制御とは、エンジンの体積効率ηと、筒内の未燃空気量(新気とEGRガス残留との合計)や燃料噴射量とから筒内燃焼場における推定空気過剰率λ(理論空燃比に対する比)を算出するとともに、エンジン運転状態に基づいて目標空気過剰率λT を求め、推定空気過剰率λが目標空気過剰率λT となるようにEGRバルブ開度,スロットルバルブ開度及び燃料噴射量等を制御するものである。 As a control method of the EGR apparatus, so-called λ (lambda) control is known. Here, the λ control is the estimated excess air ratio λ (theoretical) in the in-cylinder combustion field from the volumetric efficiency η of the engine, the amount of unburned air in the cylinder (sum of fresh air and EGR gas residual) and the fuel injection amount. The ratio of air / fuel ratio) is calculated, and the target excess air ratio λ T is calculated based on the engine operating state, and the EGR valve opening and the throttle valve opening are adjusted so that the estimated excess air ratio λ becomes the target excess air ratio λ T. In addition, the fuel injection amount and the like are controlled.

ところで、上述したようなフィルタを装着した車両では、フィルタでスートの堆積と燃焼(再生)とを繰り返すため、エンジンの排圧が常に変化することになる。このため、排圧変化に応じて実際の体積効率ηが変化することになるが、従来のEGR制御(λ制御)ではフィルタの存在を想定していないため、フィルタにスートが堆積して排圧が上昇した場合であっても何ら補正を実施していない。   By the way, in a vehicle equipped with a filter as described above, soot accumulation and combustion (regeneration) are repeated by the filter, so that the exhaust pressure of the engine always changes. For this reason, the actual volumetric efficiency η changes in accordance with the change in the exhaust pressure. However, since conventional EGR control (λ control) does not assume the presence of a filter, soot accumulates on the filter and the exhaust pressure is increased. No correction is made even if the price rises.

このため、従来のλ制御では、排圧が変化した場合であっても排圧変化分を反映させた最適な推定空気過剰率λを設定することができず、NOx排出量が増大してしまう。スートを主成分とするスモークはフィルタにより低減できるがNOxはフィルタのような後処理装置では低減できないため排ガス性能の向上を図るには排圧上昇時にNOxが増加しないようにλ制御を補正する必要がある。   For this reason, in the conventional λ control, even when the exhaust pressure changes, the optimum estimated excess air ratio λ reflecting the change in the exhaust pressure cannot be set, and the NOx emission amount increases. . Smoke containing soot as a main component can be reduced by a filter, but NOx cannot be reduced by a post-processing device such as a filter. Therefore, in order to improve exhaust gas performance, it is necessary to correct λ control so that NOx does not increase when exhaust pressure increases. There is.

なお、例えば下記の特許文献1には、DPF上流側の排気管内圧力を検出するセンサを設け、この圧力センサで検出される排気管内圧力からDPF捕集量(スートの堆積量)を算出し、このDPF捕集量に対応する噴射圧力補正量を基準噴射圧力に加算して実噴射圧力を決定する技術が開示されている。
特許第324433号公報
For example, in the following Patent Document 1, a sensor for detecting the pressure inside the exhaust pipe on the upstream side of the DPF is provided, and the amount of collected DPF (soot accumulation amount) is calculated from the pressure inside the exhaust pipe detected by this pressure sensor, A technique is disclosed in which an actual injection pressure is determined by adding an injection pressure correction amount corresponding to the DPF collection amount to a reference injection pressure.
Japanese Patent No. 324433

しかしながら、特許文献1の技術では、スートの堆積量に応じて燃料噴射量補正することはできるものの、排圧変化に応じて体積効率を補正するような技術ではなく、排圧変化時にEGR制御(λ制御)の精度を高めることはできないという課題がある。
本発明は、このような課題に鑑み創案されたもので、排圧変化に応じてエンジンの体積効率を精度よく補正できるようにした、内燃機関の制御装置を提供することを目的とする。
However, although the technique of Patent Document 1 can correct the fuel injection amount according to the soot accumulation amount, it is not a technique that corrects the volumetric efficiency according to the change in exhaust pressure, but EGR control ( There is a problem that the accuracy of (λ control) cannot be increased.
The present invention has been made in view of such problems, and an object of the present invention is to provide a control device for an internal combustion engine that can accurately correct the volumetric efficiency of the engine in accordance with a change in exhaust pressure.

このため、本発明の内燃機関の制御装置は、排気通路中に介装され、排ガス中の粒子状物質を捕集するフィルタを備えた内燃機関の制御装置であって、該フィルタを通過する排気流量(Q)を算出する排気流量算出手段と、該フィルタの前後差圧(ΔP)を検出する前後差圧検出手段と、該排気流量算出手段で算出された排気流量(Q)と該前後差圧検出手段で検出された前後差圧(ΔP)とに基づき排圧指標(SootDP)を算出する排圧指標算出手段と、該排気流量算出手段で算出された排気流量(Q)と該排圧指標算出手段で算出された排圧指標(SootDP)とに基づき補正係数(k〔=f(SootDP,Q)〕)を算出する補正係数算出手段と、該内燃機関の体積効率(η)を算出する体積効率算出手段と、該補正係数算出手段で算出された補正係数(k)と該体積効率算出手段で算出された体積効率(η)に基づき補正体積効率(ηc)を算出する補正体積効率算出手段と、該補正体積効率算出手段で算出された補正体積効率(ηc)を用いて該内燃機関の制御を行う制御手段とを備えることを特徴としている。 For this reason, the control device for an internal combustion engine of the present invention is a control device for an internal combustion engine provided with a filter interposed in the exhaust passage and collecting particulate matter in the exhaust gas, and the exhaust gas passing through the filter Exhaust flow rate calculation means for calculating the flow rate (Q), front / rear differential pressure detection means for detecting the front / rear differential pressure (ΔP) of the filter, exhaust flow rate (Q) calculated by the exhaust flow rate calculation means, and the front / rear difference Exhaust pressure index calculating means for calculating the exhaust pressure index (Soot DP ) based on the differential pressure (ΔP) detected by the pressure detecting means, the exhaust flow rate (Q) calculated by the exhaust flow rate calculating means, and the exhaust pressure Correction coefficient calculating means for calculating a correction coefficient (k [= f (Soot DP , Q)]) based on the exhaust pressure index (Soot DP ) calculated by the pressure index calculating means, and volume efficiency (η ) And a correction factor calculated by the correction coefficient calculation unit. (K) and said volume efficiency and correction volumetric efficiency calculating means for calculating the calculated volumetric efficiency (eta) and based on the correction volumetric efficiency ([eta] c) In calculation means, correction volumetric efficiency calculated by the correction volumetric efficiency calculating means And a control means for controlling the internal combustion engine using (ηc).

なお、該補正体積効率算出手段で算出した補正体積効率(ηc)を用い、該内燃機関の推定空気過剰率(λ)を設定する推定空気過剰率設定手段をさらに備え、該制御手段が、該推定空気過剰率設定手段で設定された推定空気過剰率(λ)を用いて該内燃機関を制御するのが好ましい。
また、該内燃機関の排気通路と吸気通路とを連通し、該排気通路内の排気を該吸気通路内に還流させるEGR装置をさらに備え、該制御手段が、該推定空気過剰率設定手段で設定された推定空気過剰率(λ)に基づき該EGR装置の排気還流量を制御するのが好ましい。
Incidentally, using the correction volumetric efficiency calculated in該補identity product efficiency calculating means ([eta] c), further comprising an estimation excess air ratio setting means for setting the estimated excess air ratio of the internal combustion engine (lambda), is the control means, The internal combustion engine is preferably controlled using the estimated excess air ratio (λ) set by the estimated excess air ratio setting means.
And an EGR device that communicates the exhaust passage and the intake passage of the internal combustion engine and recirculates the exhaust gas in the exhaust passage into the intake passage, and the control means is set by the estimated excess air ratio setting means. It is preferable to control the exhaust gas recirculation amount of the EGR device based on the estimated excess air ratio (λ).

さらには、該フィルタの上流側絶対圧(P)を検出する絶対圧検出センサと、該フィルタの後温度(T)を検出する温度検出センサと、該絶対圧検出センサで検出されたフィルタ上流側絶対圧(P)と該温度検出センサで検出されたフィルタ後温度から推定されるフィルタ推定温度(Tp)とを用い、該排気流量算出手段で算出した排気流量を補正する排気流量補正手段とをさらに備え、該排圧指標算出手段が、該前後差圧検出手段で検出された該フィルタの前後差圧(ΔP)と、該排気流量補正手段で補正された補正排気流量(Qc)とに基づいて排圧指標を算出し、該補正係数算出手段が、該排圧指標算出手段で算出した排圧指標(SootDP)と該排気流量補正手段で補正された補正排気流量(Qc)とに基づき補正係数(k)を算出するのが好ましい。 Further, an absolute pressure detection sensor for detecting the upstream absolute pressure (P) of the filter, a temperature detection sensor for detecting the rear temperature (T) of the filter, and an upstream side of the filter detected by the absolute pressure detection sensor Using the absolute pressure (P) and the estimated filter temperature (Tp) estimated from the post-filter temperature ( T ) detected by the temperature detection sensor, the exhaust flow rate ( Q ) calculated by the exhaust flow rate calculation means is corrected. And an exhaust flow rate correcting means, wherein the exhaust pressure index calculating means detects the differential pressure before and after the filter (ΔP) detected by the front and rear differential pressure detecting means and the corrected exhaust flow rate corrected by the exhaust flow rate correcting means. The exhaust pressure index is calculated based on (Qc), and the correction coefficient calculation means corrects the exhaust pressure index (Soot DP ) calculated by the exhaust pressure index calculation means and the corrected exhaust flow rate corrected by the exhaust flow rate correction means. (Qc) and a correction coefficient ( ) Is preferable to calculate the.

本発明の内燃機関の制御装置によれば、排圧変化時の補正を施した、より正確な値の体積効率を算出することができ、この補正後の体積効率を用いて内燃機関の種々の制御をより正確に行うことができる(請求項1)。
また、この補正後の体積効率を用いて精度の高い推定空気過剰率を求めることができ、この推定空気過剰率を用いて内燃機関の種々の制御をより正確に行うことができる(請求項2)。
According to the control device for an internal combustion engine of the present invention, it is possible to calculate a more accurate value of the volume efficiency that is corrected when the exhaust pressure changes, and using the volume efficiency after the correction, Control can be performed more accurately (claim 1).
Further, it is possible to obtain a highly accurate estimated excess air ratio using the volume efficiency after correction, and to perform various controls of the internal combustion engine more accurately using the estimated excess air ratio. ).

また、排圧変化時の補正を施した体積効率を用いた推定空気過剰率に基づきEGR制御(λ制御)を実行することで、排気中のスモークの増加を抑えつつ、NOxの発生を低減することができる(請求項3)。
また、補正排気流量を用いて排圧指標を算出することで、補正後体積効率の値をより一層正確に求めることができ、体積効率を用いた種々の制御の精度をさらに高めることができる(請求項4)。
In addition, by executing EGR control (λ control) based on the estimated excess air ratio using volumetric efficiency that has been corrected when exhaust pressure changes, the generation of NOx is reduced while suppressing the increase of smoke in the exhaust. (Claim 3).
Further, by calculating the exhaust pressure index using the corrected exhaust flow rate, the corrected volumetric efficiency value can be obtained more accurately, and the accuracy of various controls using volumetric efficiency can be further enhanced ( Claim 4).

以下、図面により、本発明の一実施形態に係る内燃機関の制御装置について説明すると、図1はその全体構成を示す模式図、図2はその要部構成を示す模式的なブロック図である。
さて、図中1はエンジン(内燃機関)であって、本実施形態では軽油を主燃料とするディーゼルエンジンが適用されている。また、このエンジン1には吸気マニホールド3を介して吸気通路2が接続され、同様に、排気マニホールド4を介して排気通路5が接続されている。
Hereinafter, a control apparatus for an internal combustion engine according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing an overall configuration thereof, and FIG. 2 is a schematic block diagram showing a main configuration thereof.
In the figure, reference numeral 1 denotes an engine (internal combustion engine). In this embodiment, a diesel engine using light oil as a main fuel is applied. Further, an intake passage 2 is connected to the engine 1 via an intake manifold 3, and similarly, an exhaust passage 5 is connected via an exhaust manifold 4.

また、この排気通路5上には、公知のDPF(フィルタ)10が介装されている。詳細は図示しないが、フィルタ10は全体が多孔質材で形成されており、上流側が開口し下流側が閉塞された第1通路と、上流側が閉塞され下流側が開口した第2通路とが交互に隣接して配設されている。これにより、フィルタ10に供給された排ガスは、多孔質の壁部を介して第1通路から第2通路に流入し、このときに排ガス中のスート或いはPM(カーボンCを主体とする粒子状物質)が壁部において捕集されるようになっている。   A known DPF (filter) 10 is interposed on the exhaust passage 5. Although details are not shown, the filter 10 is entirely made of a porous material, and the first passages that are open on the upstream side and closed on the downstream side are alternately adjacent to the second passages that are closed on the upstream side and open on the downstream side. Arranged. As a result, the exhaust gas supplied to the filter 10 flows from the first passage into the second passage through the porous wall, and at this time, soot or PM (particulate matter mainly composed of carbon C) in the exhaust gas. ) Is collected at the wall.

また、エンジン1には吸気を過給するターボチャージャ(過給機)7が付設されている。このターボチャージャ7は主に排気通路5に介装されたタービン8と、吸気通路2に介装されたコンプレッサ9とから構成されており、排ガスのエネルギによりタービン8及びコンプレッサ9が駆動されて吸気が過給されるようになっている。なお、本発明においてはターボチャージャ(過給機)7は必須の構成要件ではなく、ターボチャージャ7は設けられていなくても良い。   Further, the engine 1 is provided with a turbocharger (supercharger) 7 for supercharging intake air. The turbocharger 7 is mainly composed of a turbine 8 interposed in the exhaust passage 5 and a compressor 9 interposed in the intake passage 2. The turbine 8 and the compressor 9 are driven by the energy of the exhaust gas and the intake air is introduced. Is to be supercharged. In the present invention, the turbocharger (supercharger) 7 is not an essential component, and the turbocharger 7 may not be provided.

また、エンジン1にはEGR装置11が付設されている。ここで、EGR装置11はエンジン1の排気通路5と吸気通路2とを連通するEGR通路(連通路)12と、このEGR通路12中に介装されたEGRバルブ13とを備えて構成されている。
そして、EGRバルブ13の開度を制御することで、排気通路5の排ガスの一部を吸気通路2に還流させてNOxの低減を図るようになっている。また、EGRバルブ13はエンジン運転状態に応じて後述のコントローラ(ECU)31で設定される制御信号に基づき開閉駆動されるようになっている。
Further, the engine 1 is provided with an EGR device 11. Here, the EGR device 11 includes an EGR passage (communication passage) 12 that connects the exhaust passage 5 and the intake passage 2 of the engine 1, and an EGR valve 13 that is interposed in the EGR passage 12. Yes.
Then, by controlling the opening degree of the EGR valve 13, a part of the exhaust gas in the exhaust passage 5 is recirculated to the intake passage 2 to reduce NOx. The EGR valve 13 is driven to open and close based on a control signal set by a controller (ECU) 31 to be described later according to the engine operating state.

次に、エンジン1の制御系の構成について説明すると、吸気通路2には、エンジン1の吸入空気量qを検出するエアフローセンサ(AFS)21及びインテークマニホールド圧を検出するセンサ26が設けられている。また、排気通路5には、フィルタ10の前後差圧ΔPを検出する差圧センサ22(前後差圧検出手段)と、フィルタ10の下流側の温度Tを検出する温度センサ(温度検出センサ)23と、フィルタ10の上流側の圧力(絶対圧)Pを検出する圧力センサ(絶対圧検出センサ)24とが設けられている。また、エンジン1には、エンジン回転数Neを検出するエンジン回転数センサ25も設けられている。なお、図示はしないが、エンジン1には、これらのセンサ以外にもエンジン1の水温を検出する水温センサや、大気圧を検出大気圧センサ等の種々のセンサ類が設けられている。   Next, the configuration of the control system of the engine 1 will be described. The intake passage 2 is provided with an air flow sensor (AFS) 21 that detects the intake air amount q of the engine 1 and a sensor 26 that detects the intake manifold pressure. . Further, in the exhaust passage 5, a differential pressure sensor 22 (front / rear differential pressure detection means) that detects a differential pressure ΔP across the filter 10 and a temperature sensor (temperature detection sensor) 23 that detects a temperature T downstream of the filter 10. And a pressure sensor (absolute pressure detection sensor) 24 for detecting the pressure (absolute pressure) P on the upstream side of the filter 10 is provided. The engine 1 is also provided with an engine speed sensor 25 that detects the engine speed Ne. Although not shown, the engine 1 is provided with various sensors such as a water temperature sensor that detects the water temperature of the engine 1 and an atmospheric pressure sensor that detects the atmospheric pressure, in addition to these sensors.

また、図2に示すように、これらの各センサ21〜2は、いずれもエンジン1の作動を制御する制御手段としてのコントローラ(ECU)31の入力ポートに接続されている。
また、コントローラ31の出力ポートにはエンジン1のシリンダ内に燃料を噴射するインジェクタ14及びEGR量を調整するためのEGRバルブ13が接続されており、コントローラ31で設定された制御信号に基づき燃料噴射量及び燃料噴射タイミング並びにEGRバルブ13の開度が制御されるようになっている。なお、図示はしないがコントローラ31の出力ポートには上述以外の種々の機器やアクチュエータが接続されている。
As shown in FIG. 2, each of these sensors 21 to 26 is connected to an input port of a controller (ECU) 31 as a control unit that controls the operation of the engine 1.
Further, the output port of the controller 31 is connected to the EGR valve 13 for adjusting the injector 14 and the EGR quantity to inject fuel into the engine 1 cylinder, the fuel injection based on the control signal set by the controller 31 The amount, fuel injection timing, and the opening degree of the EGR valve 13 are controlled. Although not shown, various devices and actuators other than those described above are connected to the output port of the controller 31 .

次に、本装置の要部構成について説明すると、図2に示すように、コントローラ31には、フィルタ10を通過する排気流量Qを算出する排気流量算出手段32,上記排気流量算出手段32で算出された排気流量Qを補正する排気流量補正手段33,フィルタ10のスート堆積量に相関する排圧指標SootDPを算出する排圧指標算出手段34,上記排圧指標Soot DP から体積効率ηを補正する補正係数kを求める補正係数算出段35,エンジン1の体積効率ηを算出する体積効率算出手段36,補正係数算出手段35で算出された補正係数k〔=f(SootDP,Q)〕を用いて体積効率を補正する補正体積効率算出手段37及び補正体積効率ηcを用いてエンジン1の推定空気過剰率λを設定する推定空気過剰率設定手段38が設けられている。 Next, the configuration of the main part of the present apparatus will be described. As shown in FIG. 2, the controller 31 is calculated by the exhaust flow rate calculating means 32 for calculating the exhaust flow rate Q passing through the filter 10 and the exhaust flow rate calculating means 32. Exhaust flow rate correction means 33 for correcting the exhaust flow rate Q, exhaust pressure index calculation means 34 for calculating the exhaust pressure index Soot DP correlated with the soot accumulation amount of the filter 10, and volume efficiency η is corrected from the exhaust pressure index Soot DP correction coefficient calculating hand stage 35 to determine the correction coefficient k which, volumetric efficiency calculating means 36 for calculating the volumetric efficiency η of the engine 1, the correction coefficient calculated by the correction coefficient calculating unit 35 k [= f (Soot DP, Q)] A corrected volumetric efficiency calculating unit 37 that corrects the volumetric efficiency using, and an estimated excess air ratio setting unit 38 that sets the estimated excess air ratio λ of the engine 1 using the corrected volumetric efficiency ηc are provided.

このうち、排気流量算出手段32では、エアフローセンサ21で検出された吸気流量qに基づいて下式(1)により排気流量Q[L/min]を算出するようになっている。
Q=(A+B×α)×V×60・・・・・(1)
但し、式(1)において、
A;吸入空気量q[g/sec]÷空気分子量[g/mol]、
B;燃料噴射量[g/sec]÷燃料分子量[g/mol]、
α;燃焼によって増加するモル数(燃料の性状に応じて適当な値が設定される)、
V;標準状態での体積[L/mol]である。
Among these, the exhaust flow rate calculation means 32 calculates the exhaust flow rate Q [L / min] by the following equation (1) based on the intake flow rate q detected by the air flow sensor 21.
Q = (A + B × α) × V × 60 (1)
However, in Formula (1),
A: Intake air amount q [g / sec] ÷ air molecular weight [g / mol],
B; fuel injection amount [g / sec] ÷ fuel molecular weight [g / mol],
α: Number of moles increased by combustion (appropriate value is set according to fuel properties),
V: Volume [L / mol] in the standard state.

また、式(1)の“60”は、排気流量Qの単位を1分あたりの流量に換算するための係数である。
また、排気流量補正手段33では、上記排気流量算出手段32で算出された排気流量Qを圧力センサ24で得られたフィルタ上流圧力P及び温度センサで得られたフィルタ下流温度Tに基づいて下式(2)を用いて補正し、これにより補正排気流量Qcを算出するようになっている。
Qc=Q×(Pc/Tc)・・・・・(2)
但し、式(2)において、
Pc;絶対圧P[kPa]÷(絶対圧P[kPa]+排気管の圧力損失PL [kPa])
Tc;273[K]÷(273[K]+DPF下流温度T[℃])である。
Further, “60” in the equation (1) is a coefficient for converting the unit of the exhaust flow rate Q into the flow rate per minute.
Further, in the exhaust flow rate correction means 33, the exhaust flow rate Q calculated by the exhaust flow rate calculation means 32 is expressed by the following equation based on the filter upstream pressure P obtained by the pressure sensor 24 and the filter downstream temperature T obtained by the temperature sensor. (2) is used for correction, whereby the corrected exhaust flow rate Qc is calculated.
Qc = Q × (Pc / Tc) (2)
However, in Formula (2),
Pc: absolute pressure P [kPa] / (absolute pressure P [kPa] + exhaust pipe pressure loss P L [kPa])
Tc: 273 [K] ÷ (273 [K] + DPF downstream temperature T [° C.]).

なお、式(2)はいわゆるボイル・シャルルの法則を適用したものである。また、排気管の圧力損失PLは予め記憶させた所定値を適用しても良いし、エンジン回転数をパラメータとする所定のマップから読み込んでも良い。
また、DPF下流温度Tに代えてフィルタ10の推定温度Tpを用いても良い。具体的には、フィルタ後温度Tに基づいてフィルタ10の内部の温度を推定するフィルタ温度推定手段(図示省略)を設け、このフィルタ温度推定手段で算出されたフィルタ推定温度Tpを用いてTcを求めてもよい。この場合、Tcは下式(2′)で算出される。
Tc=273[K]÷(273[K]+DPF推定温度Tp[℃])・・・・・(2′)
次に、このようにして求めた補正排気流量Qcと、差圧センサ22で得られたフィルタ10の差圧ΔPに基づいて、排圧指標算出手段34において排圧指標Soot DPが求められるようになっている。ここで、排圧指標Soot DPはフィルタ10の主に表層における目詰まり状態、又はスートの堆積状態、又はこれらに起因する排圧の上昇度合いを表す指標であり、本実施形態においてはスート堆積量自体が排圧指標Soot DPとして適用されている。
Equation (2) applies the so-called Boyle-Charles law. Further, a predetermined value stored in advance may be applied to the pressure loss P L of the exhaust pipe, or it may be read from a predetermined map using the engine speed as a parameter.
Further, the estimated temperature Tp of the filter 10 may be used instead of the DPF downstream temperature T. Specifically, filter temperature estimation means (not shown) for estimating the internal temperature of the filter 10 based on the post-filter temperature T is provided, and Tc is calculated using the filter estimated temperature Tp calculated by the filter temperature estimation means. You may ask for it. In this case, Tc is calculated by the following equation (2 ′).
Tc = 273 [K] ÷ (273 [K] + DPF estimated temperature Tp [° C.]) (2 ′)
Next, on the basis of the corrected exhaust gas flow rate Qc thus obtained and the differential pressure ΔP of the filter 10 obtained by the differential pressure sensor 22, the exhaust pressure index calculation means 34 determines the exhaust pressure index Soot DP. It has become. Here, the exhaust pressure index Soot DP is an index representing the clogged state of the filter 10 mainly in the surface layer, the soot accumulation state, or the degree of increase in the exhaust pressure caused by these, and in this embodiment, the soot accumulation. The quantity itself is applied as the exhaust pressure index Soot DP .

また、図示はしないが、排圧指標算出手段34には差圧ΔP及び補正排気流量Qcをパラメータとしてスート堆積量を読み出すマップが予め記憶されており、このマップから排圧指標Soot DPとしてのスート堆積量が得られるようになっている。
また、排圧指標Soot DPが得られると、補正係数算出手段35において上記排圧指標SootDPからエンジン1の体積効率ηを補正するための補正係数k〔=f(SootDP,Qc)〕が算出されるようになっている。
Although not shown, the exhaust pressure index calculation means 34 stores in advance a map for reading out the soot accumulation amount using the differential pressure ΔP and the corrected exhaust gas flow rate Qc as parameters, and from this map, the exhaust pressure index Soot DP is stored . Soot accumulation amount can be obtained.
When the exhaust pressure index Soot DP is obtained, the correction coefficient k [= f (Soot DP , Qc)] for correcting the volume efficiency η of the engine 1 from the exhaust pressure index Soot DP in the correction coefficient calculation means 35. Is calculated.

ここで、図3は補正係数kの特性の一例を示すグラフであり、横軸が排圧指標SootDP(スート堆積量)であり、縦軸が補正係数kである。このグラフは、補正係数kと排圧指標SootDPとの関係を示すものであり、各特性線はそれぞれ補正排気流量Qcを変更したデータである。
このグラフに示すように、補正係数kは排圧指標SootDPと補正排気流量Qcをパラメータとした関数で近似することができる。
Here, FIG. 3 is a graph showing an example of the characteristic of the correction coefficient k, the horizontal axis is the exhaust pressure index Soot DP (soot accumulation amount), and the vertical axis is the correction coefficient k. This graph shows the relationship between the correction coefficient k and the exhaust pressure index Soot DP , and each characteristic line is data obtained by changing the corrected exhaust flow rate Qc.
As shown in this graph, the correction coefficient k can be approximated by a function using the exhaust pressure index Soot DP and the corrected exhaust flow rate Qc as parameters.

一方、体積効率算出手段36では、負圧センサ26で得られるインテークマニホールド内圧(インマニ圧)及びエンジン回転数センサ25で得られた回転数Neに基づいてエンジン1の体積効率ηが算出される。
そして、補正体積効率算出手段37では、補正係数算出手段35で算出された補正係数kを体積効率算出手段36で算出された体積効率ηに乗じることにより補正体積効率ηcが算出される〔下式(3)参照〕。
ηc=k・η・・・・・(3)
また、推定空気過剰率設定手段38では体積効率ηに代えて補正体積効率ηcを用いて推定空気過剰率λが設定される。なお、この推定空気過剰率λの設定手法自体は従来より公知であるので、詳しい説明は省略するが、従来は単に体積効率ηを用いていたのに対して、本実施形態においては、排圧指標Soot DPを反映させた補正体積効率ηcを用いて推定空気過剰率λが設定されるのである。これにより、推定空気過剰率設定手段38で設定される推定空気過剰率λは、排圧の変化を考慮した(或いは、フィルタ10のスート堆積を反映した)空気過剰率となる。
On the other hand, the volumetric efficiency calculating means 36 calculates the volumetric efficiency η of the engine 1 based on the intake manifold internal pressure (intake manifold pressure) obtained by the negative pressure sensor 26 and the rotational speed Ne obtained by the engine rotational speed sensor 25 .
The corrected volumetric efficiency calculating unit 37 calculates the corrected volumetric efficiency ηc by multiplying the volumetric efficiency η calculated by the volumetric efficiency calculating unit 36 by the correction coefficient k calculated by the correction coefficient calculating unit 35 [the following formula: (See (3)).
ηc = k · η (3)
The estimated excess air ratio setting means 38 sets the estimated excess air ratio λ using the corrected volumetric efficiency ηc instead of the volumetric efficiency η. Since the setting method of the estimated excess air ratio λ has been known per se, detailed description thereof will be omitted. However, in the present embodiment, the exhaust pressure is simply used in the present embodiment, whereas the volume efficiency η is conventionally used. The estimated excess air ratio λ is set using the corrected volumetric efficiency ηc reflecting the index Soot DP . As a result, the estimated excess air ratio λ set by the estimated excess air ratio setting means 38 becomes an excess air ratio considering the change in exhaust pressure (or reflecting soot accumulation of the filter 10).

また、推定空気過剰率λが設定されると、この推定空気過剰率λが目標空気過剰率λTとなるようにインジェクタ14及びEGRバルブ13に制御信号が出力されて、この制御信号に基づいてインジェクタ14及びEGRバルブ13の作動が制御されるようになっている。
つまり、図示はしないが、コントローラ31には、現在の運転状態に基づき目標空気過剰率λTを算出する目標空気過剰率算出手段が設けられており、上述した推定目標空気過剰率λと目標空気過剰率λTとの偏差がなくなるようにフィードバック制御が実行されるようになっている。
When the estimated excess air ratio λ is set, a control signal is output to the injector 14 and the EGR valve 13 so that the estimated excess air ratio λ becomes the target excess air ratio λT, and the injector is based on this control signal. 14 and the operation of the EGR valve 13 are controlled.
That is, although not shown, the controller 31 is provided with a target excess air ratio calculating means for calculating the target excess air ratio λ T based on the current operating state. The feedback control is executed so that the deviation from the excess rate λ T is eliminated.

本発明の一実施形態に係る内燃機関の制御装置は上述のように構成されているので、その作用を説明すると以下のようになる。
図4は、所定の排ガスモードでの走行時における車速,補正係数k及びNOx排出量を示す図であって、線aはフィルタ10にスートの堆積がない場合の特性を、線bはフィルタ10に所定量のスートが堆積した状態であって、且つ体積効率ηを補正しなかった場合の特性、線cはフィルタ10に所定量のスートが堆積した状態であって、且つ体積効率ηを補正した場合の特性をそれぞれ示している。
Since the control apparatus for an internal combustion engine according to one embodiment of the present invention is configured as described above, its operation will be described as follows.
FIG. 4 is a diagram showing the vehicle speed, the correction coefficient k, and the NOx emission amount when traveling in a predetermined exhaust gas mode. The line a shows the characteristics when no soot is deposited on the filter 10, and the line b shows the filter 10. A characteristic in the case where a predetermined amount of soot is deposited on the filter 10 and the volumetric efficiency η is not corrected. A line c is a state where a predetermined amount of soot is deposited on the filter 10 and the volumetric efficiency η is corrected. Each characteristic is shown.

補正係数kについては、線a及び線の場合はいずれも補正しない場合であり、一定値となる。これに対して、本実施形態のように体積効率ηを補正した場合には、線に示すように、主に加速時に補正係数が上昇する。これは加速に伴いフィルタ10に堆積するスートが増大するためである。
この補正により体積効率ηがフィルタ10に堆積したスートを反映した値となり、EGR制御(λ制御)を実施した場合における推定空気過剰率λをより正確な値に設定することができ、結果的にNOxの増加を抑制することができるという利点がある。
The correction coefficient k is a case where neither the line a nor the line b is corrected, and is a constant value. On the other hand, when the volumetric efficiency η is corrected as in the present embodiment, the correction coefficient increases mainly during acceleration as shown by the line c . This is because the soot deposited on the filter 10 increases with acceleration.
By this correction, the volumetric efficiency η becomes a value reflecting the soot accumulated on the filter 10, and the estimated excess air ratio λ when the EGR control (λ control) is performed can be set to a more accurate value. There is an advantage that an increase in NOx can be suppressed.

特に、線cで示すように、本実施形態のように体積効率ηを補正した場合には線aで示すスート未堆積時と同等のNOx排出量に抑制することができる。なお、線bで示すように、従来の制御ではスート堆積時にはNOx排出量が増大してしまっている。
図5はフィルタ入口圧力(即ち、排圧)に対するスモーク排出量,NOx排出量及び体積効率ηに対する補正係数の変化の特性を体積効率の補正の有無とで分けてそれぞれ示す図であって、線a1〜a3は補正有りの場合の特性を、また線b1〜b3は補正無しの場合の特性を示している。
In particular, as shown by the line c, when the volumetric efficiency η is corrected as in the present embodiment, it is possible to suppress the NOx emission amount equivalent to that when soot is not deposited as shown by the line a. As indicated by line b, in the conventional control, the amount of NOx emission increases during soot deposition.
FIG. 5 is a diagram showing the characteristics of changes in the correction coefficient for the smoke discharge amount, the NOx discharge amount, and the volume efficiency η with respect to the filter inlet pressure (that is, the exhaust pressure), separately with and without the volume efficiency correction. a1 to a3 indicate characteristics with correction, and lines b1 to b3 indicate characteristics without correction.

図示するように、排圧が上昇(スートの堆積量が増大)すると、補正を実施しない場合は当然ながら線b1に示すように体積効率ηの補正係数は変化しないが、本実施形態のような補正を行うことにより線a1に示すように補正係数が増大する。
これにより、補正を実行しない場合は、線b2に示すように排圧上昇に伴いNOx排出量が増大してしまうが、本制御を実施した場合には線a2に示すように、NOx排出をスート未堆積時と同等まで抑制することができた。また、線a3,b3に示すように、このときのスモークの排出量の増大も僅かであり、スモークとNOxの両方の排出を抑制することができる。なお、スモークが増大したとしても、スモーク自体は煤,スートが主成分であり、フィルタ10等の後処理装置で比較的容易に低減可能であるため、本実施形態のようにスモークの僅かな増大はほとんど問題とならない。
As shown in the figure, when the exhaust pressure rises (soot accumulation amount increases), the correction coefficient of the volumetric efficiency η does not change as shown by the line b1 when the correction is not performed. By performing the correction, the correction coefficient increases as shown by the line a1.
As a result, when correction is not executed, the NOx emission amount increases as the exhaust pressure increases as shown by the line b2, but when this control is performed, the NOx emission is sooted as shown by the line a2. It was possible to suppress it to the same level as when it was not deposited. In addition, as shown by lines a3 and b3, the increase in the amount of smoke discharged at this time is also slight, and the discharge of both smoke and NOx can be suppressed. Even if the smoke increases, the smoke itself is mainly composed of soot and soot, and can be reduced relatively easily by a post-processing device such as the filter 10, so that the smoke increases slightly as in this embodiment. Is hardly a problem.

以上詳述したように、本発明の一実施形態に係る内燃機関の制御装置によれば、排気流量算出手段32で算出した排気流量Qと排圧指標算出手段3で算出した排圧指標SootDPとに基づきエンジン1の体積効率ηを補正するので、排圧の変化を反映した適切な体積効率を算出することができる。さらに、この補正後の体積効率ηcを用いて精度の高い推定空気過剰率λを求めることができる利点がある。 As described above in detail, according to the control apparatus for an internal combustion engine according to an embodiment of the present invention, the exhaust pressure indicator Soot calculated exhaust flow rate Q and exhaust index calculation means 3 4 calculated by the exhaust flow rate calculation means 32 Since the volumetric efficiency η of the engine 1 is corrected based on the DP , an appropriate volumetric efficiency reflecting the change in exhaust pressure can be calculated. Further, there is an advantage that the estimated excess air ratio λ can be obtained with high accuracy using the volume efficiency ηc after correction.

また、このような推定空気過剰率λに基づきEGR装置の排気還流量を制御することにより、排気中のスモークの増加を抑えつつ、NOxの発生を低減することができるという利点がある。
また、排圧指標算出手段34において、フィルタの前後差圧ΔPと補正排気流量Qcとに基づいて排圧指標SootDPが算出されるとともに、補正係数算出手段35において、排圧指標算出手段34で算出された排圧指標SootDPと補正排気流量Qcとに基づき補正係数kが算出されるので、この補正係数kを用いて補正体積効率ηcの値の精度をさらに高めることができ、EGR装置11の制御等、体積効率を用いた種々の制御の精度をさらに高めることができるという利点がある。
Further, by controlling the exhaust gas recirculation amount of the EGR device based on the estimated excess air ratio λ, there is an advantage that the generation of NOx can be reduced while suppressing the increase of smoke in the exhaust gas.
Further, the exhaust pressure index calculation means 34 calculates the exhaust pressure index Soot DP based on the differential pressure ΔP before and after the filter and the corrected exhaust flow rate Qc, and the correction coefficient calculation means 35 determines the exhaust pressure index calculation means 34. since the correction coefficient k based on the calculated exhaust pressure indicator Soot DP and corrected exhaust flow rate Qc is calculated, it is possible to further increase the precision of the auxiliary identity product efficiency ηc using the correction coefficient k, EGR device There is an advantage that the accuracy of various controls using volumetric efficiency such as the control of 11 can be further increased.

なお、本発明は上述の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変形例が可能である。例えば上述の実施形態では排圧指標Soot DPをフィルタ前後差圧ΔPと補正排気流量Qcとから求めているが、フィルタ前後差圧ΔPと排気流量Qとから求めてもよい。また、上述の実施形態では、補正係数kを排圧指標SootDPと補正排気流量Qcとに基づいて求めているが、排気流量Qと排圧指標SootDPとに基づいて補正係数kを求めても良い。 The present invention is not limited to the above-described embodiment, and various modifications are possible without departing from the spirit of the present invention. For example, in the above-described embodiment, the exhaust pressure index Soot DP is obtained from the filter front-rear differential pressure ΔP and the corrected exhaust flow rate Qc, but may be obtained from the filter front-rear differential pressure ΔP and the exhaust flow rate Q. Further, in the above-described embodiment, the correction coefficient k is obtained based on the exhaust pressure index Soot DP and the corrected exhaust flow rate Qc. However, the correction coefficient k is obtained based on the exhaust flow rate Q and the exhaust pressure index Soot DP. Also good.

また、本実施形態では、補正体積効率算出手段37で得られた補正体積効率ηcを目標空気過剰率を算出するために用いるとともに、この目標空気過剰率を用いてEGR装置11の制御を実施しているが、補正体積効率ηcはこのような制御にのみ適用されるものではなく、体積効率をパラメータとする種々の制御に適用可能であるのはいうまでもない。具体的にはディーゼルエンジン以外の内燃機関や、EGR装置(外部EGR)を備えない内燃機関に対する制御等に適用することができる。 In the present embodiment, the corrected volumetric efficiency η c obtained by the corrected volumetric efficiency calculating means 37 is used for calculating the target excess air ratio, and the EGR device 11 is controlled using this target excess air ratio. However, it is needless to say that the corrected volumetric efficiency η c is not applied only to such control, but can be applied to various controls using volumetric efficiency as a parameter. Specifically, the present invention can be applied to control of an internal combustion engine other than a diesel engine or an internal combustion engine that does not include an EGR device (external EGR).

本発明の一実施形態に係る内燃機関の制御装置の全体構成を示す模式図である。1 is a schematic diagram showing an overall configuration of a control device for an internal combustion engine according to an embodiment of the present invention. 本発明の一実施形態に係る内燃機関の制御装置の要部構成を示す模式的なブロック図である。It is a typical block diagram which shows the principal part structure of the control apparatus of the internal combustion engine which concerns on one Embodiment of this invention. 本発明の一実施形態に係る内燃機関の制御装置の要部構成を示す図であって補正係数の特性を示す図である。It is a figure which shows the principal part structure of the control apparatus of the internal combustion engine which concerns on one Embodiment of this invention, Comprising: It is a figure which shows the characteristic of a correction coefficient. 本発明の一実施形態に係る内燃機関の制御装置の作用を説明するための図である。It is a figure for demonstrating the effect | action of the control apparatus of the internal combustion engine which concerns on one Embodiment of this invention. 本発明の一実施形態に係る内燃機関の制御装置の作用を説明するための図である。It is a figure for demonstrating the effect | action of the control apparatus of the internal combustion engine which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

1 ディーゼルエンジン(内燃機関)
2 吸気通路
5 排気通路
10 フィルタ(DPF)
11 EGR装置
12 EGR通路
13 EGRバルブ
22 前後差圧センサ
23 温度検出センサ
24 絶対圧検出センサ
25 回転数センサ
31 コントローラ(制御手段)
32 排気流量算出手段
33 排気流量補正手段
34 排圧指標算出手段
35 補正係数算出手段
36 体積効率算出手段
37 補正体積効率算出手段
38 目標空気過剰率設定手段
1 Diesel engine (internal combustion engine)
2 Intake passage 5 Exhaust passage 10 Filter (DPF)
DESCRIPTION OF SYMBOLS 11 EGR apparatus 12 EGR channel | path 13 EGR valve 22 Front-back differential pressure sensor 23 Temperature detection sensor 24 Absolute pressure detection sensor 25 Rotation speed sensor 31 Controller (control means)
32 Exhaust flow rate calculating means 33 Exhaust flow rate correcting means 34 Exhaust pressure index calculating means 35 Correction coefficient calculating means 36 Volume efficiency calculating means 37 Corrected volume efficiency calculating means 38 Target excess air ratio setting means

Claims (4)

排気通路中に介装され、排ガス中の粒子状物質を捕集するフィルタを備えた内燃機関の制御装置であって、
該フィルタを通過する排気流量を算出する排気流量算出手段と、
該フィルタの前後差圧を検出する前後差圧検出手段と、
該排気流量算出手段で算出された排気流量と該前後差圧検出手段で検出された前後差圧とに基づき排圧指標を算出する排圧指標算出手段と、
該排気流量算出手段で算出された排気流量と該排圧指標算出手段で算出された排圧指標とに基づき補正係数を算出する補正係数算出手段と、
該内燃機関の体積効率を算出する体積効率算出手段と、
該補正係数算出手段で算出された補正係数と該体積効率算出手段で算出された体積効率に基づき補正体積効率を算出する補正体積効率算出手段と、
該補正体積効率算出手段で算出された補正体積効率を用いて該内燃機関の制御を行う制御手段とを備える
ことを特徴とする、内燃機関の制御装置。
A control device for an internal combustion engine provided with a filter that is interposed in an exhaust passage and collects particulate matter in exhaust gas,
Exhaust flow rate calculating means for calculating an exhaust flow rate passing through the filter;
A front-rear differential pressure detecting means for detecting a front-rear differential pressure of the filter;
Exhaust pressure index calculation means for calculating an exhaust pressure index based on the exhaust flow rate calculated by the exhaust flow rate calculation means and the front-rear differential pressure detected by the front-rear differential pressure detection means;
Correction coefficient calculating means for calculating a correction coefficient based on the exhaust flow rate calculated by the exhaust flow rate calculating means and the exhaust pressure index calculated by the exhaust pressure index calculating means;
Volume efficiency calculating means for calculating the volume efficiency of the internal combustion engine;
And correcting the volumetric efficiency calculating means for calculating a correction volumetric efficiency based on the calculated volumetric efficiency in the correction coefficient calculation correction coefficient calculated by the means and said volume efficiency calculating unit,
A control device for an internal combustion engine, comprising: control means for controlling the internal combustion engine using the corrected volumetric efficiency calculated by the corrected volumetric efficiency calculating means.
該補正体積効率算出手段で算出した補正体積効率を用い、該内燃機関の推定空気過剰率を設定する推定空気過剰率設定手段をさらに備え、
該制御手段が、該推定空気過剰率設定手段で設定された推定空気過剰率を用いて該内燃機関を制御する
ことを特徴とする、請求項1記載の内燃機関の制御装置。
Using the correction volumetric efficiency calculated in該補identity product efficiency calculating means further includes an estimation excess air ratio setting means for setting an estimated excess air ratio of the internal combustion engine,
2. The control apparatus for an internal combustion engine according to claim 1, wherein the control means controls the internal combustion engine using the estimated excess air ratio set by the estimated excess air ratio setting means.
該内燃機関の排気通路と吸気通路とを連通し、該排気通路内の排気を該吸気通路内に還流させるEGR装置をさらに備え、
該制御手段が、該推定空気過剰率設定手段で設定された推定空気過剰率に基づき該EGR装置の排気還流量を制御する
ことを特徴とする、請求項2記載の内燃機関の制御装置。
An EGR device that communicates the exhaust passage and the intake passage of the internal combustion engine and recirculates the exhaust in the exhaust passage into the intake passage;
3. The control apparatus for an internal combustion engine according to claim 2, wherein the control means controls the exhaust gas recirculation amount of the EGR device based on the estimated excess air ratio set by the estimated excess air ratio setting means.
該フィルタの上流側絶対圧を検出する絶対圧検出センサと、
該フィルタの後温度を検出する温度検出センサと、
該絶対圧検出センサで検出されたフィルタ上流側絶対圧と該温度検出センサで検出されたフィルタ後温度から推定されるフィルタ推定温度とを用い、該排気流量算出手段で算出した排気流量を補正する排気流量補正手段と、
をさらに備え、
該排圧指標算出手段が、該前後差圧検出手段で検出された該フィルタの前後差圧と、該排気流量補正手段で補正された補正排気流量とに基づいて排圧指標を算出し、
該補正係数算出手段が、該排圧指標算出手段で算出した排圧指標と該排気流量補正手段で補正された補正排気流量とに基づき補正係数を算出する
ことを特徴とする、請求項1〜3のいずれか1項記載の内燃機関の制御装置。
An absolute pressure detection sensor for detecting the absolute pressure upstream of the filter;
A temperature detection sensor for detecting a rear temperature of the filter;
Using the filter upstream absolute pressure detected by the absolute pressure detection sensor and the estimated filter temperature estimated from the post-filter temperature detected by the temperature detection sensor, the exhaust flow rate calculated by the exhaust flow rate calculation means is corrected. Exhaust flow correction means;
Further comprising
The exhaust pressure index calculating means calculates an exhaust pressure index based on the differential pressure across the filter detected by the front-rear differential pressure detecting means and the corrected exhaust flow rate corrected by the exhaust flow rate correcting means,
The correction coefficient calculation means calculates a correction coefficient based on the exhaust pressure index calculated by the exhaust pressure index calculation means and the corrected exhaust flow rate corrected by the exhaust flow rate correction means. The control device for an internal combustion engine according to any one of claims 3 to 4.
JP2006212541A 2006-08-03 2006-08-03 Control device for internal combustion engine Expired - Fee Related JP4613895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006212541A JP4613895B2 (en) 2006-08-03 2006-08-03 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006212541A JP4613895B2 (en) 2006-08-03 2006-08-03 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008038709A JP2008038709A (en) 2008-02-21
JP4613895B2 true JP4613895B2 (en) 2011-01-19

Family

ID=39174039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006212541A Expired - Fee Related JP4613895B2 (en) 2006-08-03 2006-08-03 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4613895B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5060378B2 (en) * 2008-04-23 2012-10-31 大阪瓦斯株式会社 Gas analysis method and gas analyzer
WO2014068657A1 (en) * 2012-10-30 2014-05-08 三菱重工業株式会社 Control device and control method for internal combustion engine
JP6631786B2 (en) * 2015-12-28 2020-01-15 三菱自動車工業株式会社 Exhaust aftertreatment system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220532A (en) * 1999-01-27 2000-08-08 Fuji Heavy Ind Ltd Egr controller for engine
JP2003065033A (en) * 2001-08-23 2003-03-05 Mitsubishi Motors Corp Device for deciding regeneration time of particulate filter
JP2003083034A (en) * 2001-09-14 2003-03-19 Mitsubishi Motors Corp Exhaust emission control device
JP2004011625A (en) * 2002-06-12 2004-01-15 Nissan Motor Co Ltd Air-fuel ratio control device for internal combustion engine
JP2004068806A (en) * 2002-06-14 2004-03-04 Denso Corp Exhaust emission control device of internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220532A (en) * 1999-01-27 2000-08-08 Fuji Heavy Ind Ltd Egr controller for engine
JP2003065033A (en) * 2001-08-23 2003-03-05 Mitsubishi Motors Corp Device for deciding regeneration time of particulate filter
JP2003083034A (en) * 2001-09-14 2003-03-19 Mitsubishi Motors Corp Exhaust emission control device
JP2004011625A (en) * 2002-06-12 2004-01-15 Nissan Motor Co Ltd Air-fuel ratio control device for internal combustion engine
JP2004068806A (en) * 2002-06-14 2004-03-04 Denso Corp Exhaust emission control device of internal combustion engine

Also Published As

Publication number Publication date
JP2008038709A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP3801135B2 (en) Engine exhaust gas purification device
US7155334B1 (en) Use of sensors in a state observer for a diesel engine
JP4111094B2 (en) Control device and control method for supercharged engine with exhaust aftertreatment device
US7607295B2 (en) Particulate accumulation amount estimating system
JP4120524B2 (en) Engine control device
WO2009099077A1 (en) Dpf sedimentation amount estimation device
JP4270175B2 (en) Particulate deposition amount estimation device
JP2016136011A (en) Control device of internal combustion engine
JP2006316744A (en) Exhaust gas processing system of internal combustion engine
JP4613895B2 (en) Control device for internal combustion engine
JP2005240719A (en) Regeneration time detecting device for filter and regeneration control device for filter
JP2004197722A (en) Reproducing apparatus of particulate filter and engine waste gas purifying facility
JP4572762B2 (en) Engine exhaust purification system
JP4542489B2 (en) Exhaust manifold internal temperature estimation device for internal combustion engine
JP5434685B2 (en) Air-fuel ratio detection device
JP2006316743A (en) Exhaust gas processing system of internal combustion engine
JP5004036B2 (en) Exhaust gas purification device for internal combustion engine
US7707827B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP4737159B2 (en) Exhaust purification device for internal combustion engine and particulate matter emission estimation method
JP4415739B2 (en) Engine exhaust particulate collection detection device
JP5365264B2 (en) Control device for internal combustion engine
JP2008157187A (en) Egr control device for engine
JP2006257996A (en) Particulate matter oxidative rate calculation device, particulate matter accumulation amount calculation device, and exhaust emission control device for internal combustion engine
JP3629752B2 (en) Intake and exhaust system pressure estimation device for internal combustion engine
JP5849685B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101004

R151 Written notification of patent or utility model registration

Ref document number: 4613895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees