JP4593099B2 - Liquid crystal epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used therefor - Google Patents

Liquid crystal epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used therefor Download PDF

Info

Publication number
JP4593099B2
JP4593099B2 JP2003333255A JP2003333255A JP4593099B2 JP 4593099 B2 JP4593099 B2 JP 4593099B2 JP 2003333255 A JP2003333255 A JP 2003333255A JP 2003333255 A JP2003333255 A JP 2003333255A JP 4593099 B2 JP4593099 B2 JP 4593099B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon carbide
sic
epitaxial growth
crystal silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003333255A
Other languages
Japanese (ja)
Other versions
JP2004292305A (en
Inventor
康 浅岡
忠昭 金子
直克 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kwansei Gakuin Educational Foundation
Ecotron Co Ltd
Original Assignee
Kwansei Gakuin Educational Foundation
Ecotron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kwansei Gakuin Educational Foundation, Ecotron Co Ltd filed Critical Kwansei Gakuin Educational Foundation
Priority to JP2003333255A priority Critical patent/JP4593099B2/en
Priority to PCT/JP2004/003152 priority patent/WO2004088734A1/en
Publication of JP2004292305A publication Critical patent/JP2004292305A/en
Application granted granted Critical
Publication of JP4593099B2 publication Critical patent/JP4593099B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、単結晶炭化ケイ素の液相エピタキシャル成長法及びそれに用いられる熱処理装置に関するものである。   The present invention relates to a liquid phase epitaxial growth method of single crystal silicon carbide and a heat treatment apparatus used therefor.

炭化ケイ素(以下、SiCという。)は、耐熱性及び機械的強度に優れているだけでなく、放射線にも強く、さらに不純物の添加によって電子や正孔の価電子制御が容易である上、広い禁制帯幅を持つ(因みに、6H型のSiC単結晶で約3.0eV、4H型のSiC単結晶で3.3eV)ために、シリコン(以下、Siという。)やガリウムヒ素(以下、GaAsという。)などの既存の半導体材料では実現することができない高温、高周波、耐電圧・耐環境性を実現することが可能で、次世代のパワーデバイス、高周波デバイス用半導体材料として注目され、かつ期待されている。また、六方晶SiCは、窒化ガリウム(以下、GaNという。)と格子定数が近く、GaNの基板として期待されている。   Silicon carbide (hereinafter referred to as SiC) is not only excellent in heat resistance and mechanical strength, but is also resistant to radiation, and it is easy to control the valence electrons of electrons and holes by addition of impurities. Since it has a forbidden band width (by the way, it is about 3.0 eV for a 6H type SiC single crystal and 3.3 eV for a 4H type SiC single crystal), silicon (hereinafter referred to as Si) or gallium arsenide (hereinafter referred to as GaAs). It is possible to realize high temperature, high frequency, withstand voltage / environment resistance that cannot be realized with existing semiconductor materials such as.), And has attracted attention and is expected as a semiconductor material for next generation power devices and high frequency devices. ing. Hexagonal SiC has a lattice constant close to that of gallium nitride (hereinafter referred to as GaN), and is expected as a GaN substrate.

この種の単結晶SiCは、例えば、特許文献1に記載されているように、ルツボ内の低温側に種結晶を固定配置し、高温側に原料となるSiを含む粉末を配置してルツボを不活性雰囲気中で1450〜2400℃の高温に加熱することによって、Siを含む粉末を昇華させて低温側の種結晶の表面上で再結晶させて単結晶の育成を行なう昇華再結晶法(改良レーリー法)によって形成されているものがある。   For example, as described in Patent Document 1, this type of single-crystal SiC has a seed crystal fixedly disposed on the low temperature side of the crucible, and a powder containing Si as a raw material is disposed on the high temperature side, and the crucible is A sublimation recrystallization method (improvement) in which a single crystal is grown by sublimating a powder containing Si by heating to a high temperature of 1450 to 2400 ° C. in an inert atmosphere and recrystallizing on the surface of the seed crystal on the low temperature side. Some are formed by the Rayleigh method.

また、例えば、特許文献2に記載されているように、SiC単結晶基板とSi原子及びC原子により構成された板材とを微小隙間を隔てて互いに平行に対峙させた状態で大気圧以下の不活性ガス雰囲気、且つ、SiC飽和蒸気雰囲気下でSiC単結晶基板側が板材よりも低温となるように温度傾斜を持たせて熱処理することにより、微小隙間内でSi原子及びC原子を昇華再結晶させてSiC単結晶基板上に単結晶を析出させるものもある。   Further, for example, as described in Patent Document 2, a SiC single crystal substrate and a plate material composed of Si atoms and C atoms are opposed to each other in a state where they are opposed to each other in parallel with a minute gap therebetween. Si atoms and C atoms are sublimated and recrystallized in minute gaps by heat treatment in an active gas atmosphere and a SiC saturated vapor atmosphere with a temperature gradient so that the SiC single crystal substrate side is at a lower temperature than the plate material. In some cases, a single crystal is deposited on a SiC single crystal substrate.

また、例えば、特許文献3に記載されているように、液相エピタキシャル成長法によってSiC単結晶上に第1のエピタキシャル層を形成した後に、CVD法によって表面に第2のエピタキシャル層を形成して、マイクロパイプ欠陥を除去するものもある。   For example, as described in Patent Document 3, after forming the first epitaxial layer on the SiC single crystal by the liquid phase epitaxial growth method, the second epitaxial layer is formed on the surface by the CVD method, Some remove micropipe defects.

特開2001−158695号公報JP 2001-158695 A 特開平11−315000号公報JP 11-315000 A 特表平10−509943号公報Japanese National Patent Publication No. 10-509943

しかしながら、これら単結晶SiCの形成方法のうち、例えば、特許文献1や特許文献2に記載の昇華再結晶法の場合は、成長速度が数100μm/hrと非常に早い反面、昇華の際にSiC粉末がいったんSi、SiC、SiCに分解されて気化し、さらにルツボの一部と反応する。このために、温度変化によって種結晶の表面に到達するガスの種類が異なり、これらの分圧を化学量論的に正確に制御することが技術的に非常に困難である。また、不純物も混入しやすく、その混入した不純物や熱に起因する歪みの影響で結晶欠陥やマイクロパイプ欠陥等を発生しやすく、また、多くの核生成に起因する結晶粒界の発生など、性能的、品質的に安定した単結晶SiCが得られないという問題がある。 However, among the methods for forming single crystal SiC, for example, in the case of the sublimation recrystallization method described in Patent Document 1 or Patent Document 2, the growth rate is very fast, such as several hundred μm / hr. The powder is once decomposed and vaporized into Si, SiC 2 and Si 2 C, and further reacts with a part of the crucible. For this reason, the types of gases that reach the surface of the seed crystal differ depending on the temperature change, and it is technically very difficult to control these partial pressures stoichiometrically accurately. Impurities are also likely to be mixed in, and crystal defects and micropipe defects are likely to occur due to the influence of the mixed impurities and strain caused by heat. In addition, performance such as generation of crystal grain boundaries due to many nucleation There is a problem that single crystal SiC stable in quality and quality cannot be obtained.

一方、特許文献3に記載のLPE法の場合は、昇華再結晶法で見られるようなマイクロパイプ欠陥や結晶欠陥などの発生が少なく、昇華再結晶法で製造されるものに比べて品質的に優れた単結晶SiCが得られる。その反面、成長過程が、Si融液中へのCの溶解度によって律速されるために、成長速度が10μm/hr以下と非常に遅くて単結晶SiCの生産性が低く、製造装置内の液相を精密に温度制御しなくてはならない。また、工程が複雑となり、単結晶SiCの製造コストが非常に高価なものになる。   On the other hand, in the case of the LPE method described in Patent Document 3, the occurrence of micropipe defects and crystal defects as seen in the sublimation recrystallization method is small, and the quality is higher than that produced by the sublimation recrystallization method. Excellent single crystal SiC is obtained. On the other hand, since the growth process is rate-determined by the solubility of C in the Si melt, the growth rate is very slow, 10 μm / hr or less, and the productivity of single crystal SiC is low. The temperature must be precisely controlled. Further, the process becomes complicated, and the manufacturing cost of single crystal SiC becomes very expensive.

本発明は前記問題に鑑みてなされたもので、マイクロパイプ欠陥や界面欠陥等の発生が少ないとともに、幅広なテラスを有し表面の平坦度の高い、高品質、高性能な単結晶SiCの液相エピタキシャル成長法及びそれに用いられる熱処理装置を提供することを目的とする。   The present invention has been made in view of the above problems, and has a high quality, high performance single crystal SiC liquid that has a wide terrace and a high surface flatness while generating few micropipe defects and interface defects. An object is to provide a phase epitaxial growth method and a heat treatment apparatus used therefor.

前記課題を解決するための本発明に係る単結晶SiCの液相エピタキシャル成長法は、種結晶となる単結晶炭化ケイ素基板と多結晶炭化ケイ素基板とを重ね、密閉容器内に設置して、高温熱処理を行なうことによって、前記単結晶炭化ケイ素基板と前記多結晶炭化ケイ素基板との間に、熱処理中に極薄金属シリコン融液を介在させ、前記単結晶炭化ケイ素基板上に単結晶炭化ケイ素を液相エピタキシャル成長させる単結晶炭化ケイ素の液相エピタキシャル成長法であって、前記単結晶炭化ケイ素基板と多結晶炭化ケイ素基板との間で温度差を設けずに、前記単結晶炭化ケイ素基板と多結晶炭化ケイ素基板とを1400℃〜2300℃に加熱して微結晶粒界の存在しない、表面のマイクロパイプ欠陥密度が1/cm2以下である単結晶炭化ケイ素を製造するものである。 The liquid crystal epitaxial growth method of single crystal SiC according to the present invention for solving the above-mentioned problem is a high temperature heat treatment in which a single crystal silicon carbide substrate to be a seed crystal and a polycrystalline silicon carbide substrate are stacked and placed in a sealed container. By performing an ultrathin metal silicon melt between the single crystal silicon carbide substrate and the polycrystalline silicon carbide substrate during the heat treatment, and the single crystal silicon carbide liquid is placed on the single crystal silicon carbide substrate. A liquid phase epitaxial growth method of single crystal silicon carbide for phase epitaxial growth, wherein the single crystal silicon carbide substrate and the polycrystalline silicon carbide are formed without providing a temperature difference between the single crystal silicon carbide substrate and the polycrystalline silicon carbide substrate. the substrate is heated to 1 400 ° C. to 2300 ° C. no fine grain boundaries, micropipe defect density of the surface is 1 / cm 2 or less single-crystal silicon carbide It is intended to produce a.

長結晶内部に微結晶粒界が存在せず、表面のマイクロパイプ欠陥の密度が1/cm2以下の単結晶SiCとできるため、各種半導体デバイスとしての適用が可能となる。ここで、マイクロパイプ欠陥とは、ピンホールとも呼ばれ、結晶の成長方向に沿って存在する数μm以下の直径の管状の空隙のことである。また、使用する種結晶となる単結晶SiC基板は、4H−SiC、6H−SiCの全ての結晶面で可能であるが,好ましくは(0001)Si面を使用することが好ましい。また、多結晶SiC基板には、平均粒子径が5μm〜10μmの粒子径で、粒子径が略均一なものが好ましい。このため、多結晶SiCの結晶構造には特に限定はなく、3C−SiC、4H−SiC、6H−SiCのいずれをも使用することができるが、好ましくは3C−SiCであることが好ましい。 Growth absent fine grain boundary crystal therein, the density of micropipe defects on the surface can be a 1 / cm 2 or less of the single crystal SiC, the application of the various semiconductor devices becomes possible. Here, the micropipe defect is also called a pinhole, and is a tubular void having a diameter of several μm or less that exists along the crystal growth direction. The single crystal SiC substrate used as a seed crystal can be formed on all crystal planes of 4H—SiC and 6H—SiC, but preferably a (0001) Si plane is used. The polycrystalline SiC substrate preferably has an average particle size of 5 μm to 10 μm and a substantially uniform particle size. For this reason, there is no particular limitation on the crystal structure of polycrystalline SiC, and any of 3C—SiC, 4H—SiC, and 6H—SiC can be used, but 3C—SiC is preferred.

また、本発明によると、熱処理時に単結晶SiC基板と多結晶SiC基板との間にSiが毛細管現象により界面のすみずみに濡れが浸透して極薄の金属Si融液層を形成する。多結晶SiC基板から流れ出したC原子はSi融液層を通して単結晶SiC基板に供給されて、その単結晶SiC基板上に単結晶SiCとして液相エピタキシャル成長する。このため、成長初期から終了まで欠陥の誘発を抑制できる。また、従来のように、溶融Si中に浸漬して処理する必要がないため、熱処理後に、種結晶となる単結晶SiC基板及び多結晶SiC基板に溶着するSiを除去する量が極めて少なくなる。また、単結晶SiC基板と多結晶SiC基板との間に、熱処理中に極薄金属Si融液を介在させるため、単結晶SiCのエピタキシャル成長に必要な金属Siのみを単結晶SiCの液相エピタキシャル成長に使用できる。このため、熱処理時に薄いSi層では外部との接触面積が最小となり、したがって不純物の進入確率が減り、高純度な単結晶SiCを形成することができる。   In addition, according to the present invention, during the heat treatment, Si permeates into every corner of the interface between the single crystal SiC substrate and the polycrystalline SiC substrate, thereby forming an extremely thin metal Si melt layer. The C atoms flowing out of the polycrystalline SiC substrate are supplied to the single crystal SiC substrate through the Si melt layer, and liquid phase epitaxially grows as single crystal SiC on the single crystal SiC substrate. For this reason, it is possible to suppress the induction of defects from the initial stage to the end of growth. In addition, since it is not necessary to immerse and process in molten Si as in the prior art, the amount of Si deposited on the single-crystal SiC substrate and polycrystalline SiC substrate that becomes the seed crystal after heat treatment is extremely reduced. Moreover, since an ultrathin metal Si melt is interposed between the single crystal SiC substrate and the polycrystalline SiC substrate during the heat treatment, only the metal Si necessary for the epitaxial growth of the single crystal SiC is used for the liquid phase epitaxial growth of the single crystal SiC. Can be used. For this reason, the contact area with the outside is minimized in the thin Si layer at the time of the heat treatment, so that the probability of entry of impurities is reduced, and high-purity single crystal SiC can be formed.

結晶SiC基板と多結晶SiC基板との間に温度差が形成されないため、熱平衡状態で熱処理することが可能となり、また金属Si融液が薄いため熱対流が抑制される。このため、成長初期から終了まで欠陥の誘発を抑制できる。さらに、熱処理時に核生成が抑制されるため、形成される単結晶SiCの微小結晶粒界の生成が抑制できる。結果として、マイクロパイプ欠陥密度を1/cm2以下の単結晶SiCを形成することができる。また、簡易な熱処理装置を用いることができるとともに、加熱時の厳密な温度制御が必要ないことから製造コストの大幅な低減化が可能となる。 Since no temperature difference is formed between the single crystal SiC substrate and the polycrystalline SiC substrate, heat treatment can be performed in a thermal equilibrium state, and thermal convection is suppressed because the metal Si melt is thin. For this reason, it is possible to suppress the induction of defects from the initial stage to the end of growth. Furthermore, since nucleation is suppressed during the heat treatment, generation of fine crystal grain boundaries of the formed single crystal SiC can be suppressed . As a result, it is possible to form a 1 / cm 2 or less of the single crystal SiC micropipe defect density. In addition, a simple heat treatment apparatus can be used, and since strict temperature control during heating is not necessary, the manufacturing cost can be greatly reduced.

また、本発明に係る単結晶SiCの液相エピタキシャル成長法は、前述の発明において、前記密閉容器が、タンタル又は炭化タンタルのいずれかで形成されているものである。   The single-phase SiC liquid phase epitaxial growth method according to the present invention is the above-described invention in which the sealed container is formed of either tantalum or tantalum carbide.

密閉容器がタンタル又は炭化タンタルで形成されているため、密閉容器のSiC化を抑制するとともに、加熱室内を確実に圧力10-2Pa以下とすることができる。 Since the sealed container is formed of tantalum or tantalum carbide, it is possible to suppress the formation of SiC in the sealed container and to reliably set the pressure in the heating chamber to 10 −2 Pa or less.

また、本発明に係る単結晶SiCの液相エピタキシャル成長法は、前述の発明において、前記密閉容器が上容器及び下容器で形成され、前記上容器及び前記下容器の嵌合部からシリコン蒸気が漏れ出す程度に前記密閉容器内の圧力が前記加熱室内の圧力よりも高くなるように制御し、前記密閉容器内に不純物が混入するのを抑制するものである。   Further, in the liquid crystal epitaxial growth method of single crystal SiC according to the present invention, in the above-described invention, the sealed container is formed of an upper container and a lower container, and silicon vapor leaks from a fitting portion of the upper container and the lower container. The pressure in the sealed container is controlled to be higher than the pressure in the heating chamber to the extent that it is discharged, and impurities are prevented from being mixed into the sealed container.

密閉容器をこのような構造とすることによって、密閉容器内への不純物の混入を抑制することができる。これによって、バッググランド5×1015/cm3以下の純度とできる。 By adopting such a structure for the sealed container, it is possible to suppress contamination of impurities into the sealed container. Thereby, the purity of the bag ground can be 5 × 10 15 / cm 3 or less.

また、本発明に係る単結晶SiCの液相エピタキシャル成長法は、前述の発明において、前記単結晶SiCの表面が、3分子層を最小単位とした原子オーダーステップと、幅広のテラスと、を有し、前記テラスの幅が10μm以上であるものである。   Further, the liquid crystal epitaxial growth method of single crystal SiC according to the present invention includes the atomic order step in which the surface of the single crystal SiC has a trimolecular layer as a minimum unit and a wide terrace. The terrace has a width of 10 μm or more.

テラス幅が10μm以上であるため、成長表面は、単結晶SiC形成後に、機械加工等による表面処理をする必要がない。このため、加工工程を経ずとも製品とすることが可能となる。   Since the terrace width is 10 μm or more, the growth surface does not need to be surface-treated by machining or the like after the single crystal SiC is formed. For this reason, it becomes possible to make a product without going through a processing step.

また、本発明に係る単結晶SiCの液相エピタキシャル成長法は、前述の発明において、前記表面が、(0001)Si面であるものである。   Moreover, the liquid phase epitaxial growth method of the single crystal SiC according to the present invention is such that, in the above-described invention, the surface is a (0001) Si plane.

表面の面方位が(0001)Si面であるため、他の結晶面と比較して、表面エネルギーが低く、従って成長中の核形成エネルギーが高くなり、核形成しにくい。以上の理由から、液相成長後テラス幅の広い単結晶SiCとできる。なお、表面の面方位は、(0001)Si面に限定されるものではなく、4H−SiC、6H−SiCの全ての結晶面を使用することが可能である。   Since the plane orientation of the surface is the (0001) Si plane, the surface energy is lower than that of other crystal planes. Therefore, the nucleation energy during growth is increased and nucleation is difficult. For the above reasons, single crystal SiC having a wide terrace width after liquid phase growth can be obtained. Note that the plane orientation of the surface is not limited to the (0001) Si plane, and all crystal planes of 4H—SiC and 6H—SiC can be used.

また、本発明に係る単結晶SiCの液相エピタキシャル成長法は、前述の発明において、前記極薄金属Si融液が、50μm以下の厚みであるものである。   Moreover, the liquid crystal epitaxial growth method of single crystal SiC according to the present invention is the above-described invention, wherein the ultrathin metal Si melt has a thickness of 50 μm or less.

熱処理中に単結晶SiC基板と多結晶SiC基板との間に介在される極薄金属Si融液が50μm以下、好ましくは30μm以下であるため、多結晶SiC基板から溶解したCが単結晶SiC基板表面へ拡散により輸送され、単結晶SiCの成長が促進される。前記極薄金属シリコン融液が50μm以上の厚みになると、金属シリコン融液が不安定になり、またCの輸送が阻害され、本発明に係る単結晶SiCの育成に適さない。   Since the ultra-thin metal Si melt interposed between the single crystal SiC substrate and the polycrystalline SiC substrate during the heat treatment is 50 μm or less, preferably 30 μm or less, C dissolved from the polycrystalline SiC substrate is a single crystal SiC substrate. It is transported to the surface by diffusion, and the growth of single crystal SiC is promoted. When the ultrathin metal silicon melt has a thickness of 50 μm or more, the metal silicon melt becomes unstable and the transport of C is hindered, which is not suitable for growing single crystal SiC according to the present invention.

本発明によれば、従来の昇華法等の高温熱処理環境と同一環境で局所的な液相エピタキシャル成長を高温で行なうことができるため、種結晶に含まれるマイクロパイプ欠陥を引き継がず、マイクロパイプ欠陥の閉塞を行なうことができる。また、成長表面が常にSi融液と接するため、Si過剰の状態が形成され、Siの不足に起因する欠陥の発生が抑制されるとともに、使用しているSi融液の外部との接触面積が微小なため、成長表面への不純物の混入が抑制でき、高純度で結晶性に優れた高品質高性能の単結晶SiCを育成することができる。しかも従来のLPE法に比べて、本成長法は非常に高温での成長が可能であるために、従来のLPE法に比べて成長速度を著しく速くすることができ、高品質単結晶SiCの育成効率を非常に高くすることができる。さらに、単結晶育成時に厳密な温度勾配制御をする必要性がなく、簡易な装置によることが可能となる。これらのことから、SiやGaAsなどの既存の半導体材科に比べて高温、高周波、耐電圧、耐環境性に優れパワーデバイス、高周波デバイス用半導体材科として期待されている単結晶SiCの実用化を促進することができる。 According to the present invention, since local liquid phase epitaxial growth can be performed at a high temperature in the same environment as a high temperature heat treatment environment such as a conventional sublimation method, the micropipe defects contained in the seed crystal are not inherited, and the micropipe defects are not inherited. Occlusion can be performed. In addition, since the growth surface is always in contact with the Si melt, an excessive Si state is formed, the generation of defects due to the lack of Si is suppressed, and the contact area with the outside of the Si melt being used is increased. Since it is minute, it is possible to suppress the mixing of impurities on the growth surface, and it is possible to grow a high-quality, high-performance single-crystal SiC having high purity and excellent crystallinity. In addition, compared with the conventional LPE method, this growth method can grow at a very high temperature. Therefore, the growth rate can be remarkably increased as compared with the conventional LPE method, and the growth of high-quality single crystal SiC can be achieved. The efficiency can be very high. Furthermore, there is no need to strictly control the temperature gradient during single crystal growth, and a simple apparatus can be used. Therefore, practical application of single crystal SiC, which is superior in high temperature, high frequency, withstand voltage, and environmental resistance compared to existing semiconductor materials such as Si and GaAs, is expected as a semiconductor material for power devices and high frequency devices. Can be promoted.

以下、図面を参照しつつ、本発明に係る単結晶SiCの液相成長法の一実施形態例について説明する。   Hereinafter, an embodiment of a liquid phase growth method for single crystal SiC according to the present invention will be described with reference to the drawings.

図1は、本発明に係る単結晶SiCの液相エピタキシャル成長法に用いられる熱処理炉の実施形態の一例を示す断面概略図である。図1において、熱処理炉1は、加熱室2と、予備加熱室3と、予備加熱室3から加熱室2に続く前室4とで構成されている。そして、単結晶SiC及び種結晶SiC等が収容されている密閉容器5が予備加熱室3から前室4、加熱室2へと順次移動することで、単結晶SiCを育成するように構成されている。   FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of a heat treatment furnace used in the liquid phase epitaxial growth method of single crystal SiC according to the present invention. In FIG. 1, the heat treatment furnace 1 includes a heating chamber 2, a preheating chamber 3, and a front chamber 4 that extends from the preheating chamber 3 to the heating chamber 2. The sealed container 5 containing single crystal SiC, seed crystal SiC, and the like is configured to grow single crystal SiC by sequentially moving from the preheating chamber 3 to the front chamber 4 and the heating chamber 2. Yes.

図1に示すように、熱処理炉1は、加熱室2、予備加熱室3、前室4が連通している。このため、各室を予め所定の圧力下に制御することが可能となる。また、各室毎にゲートバルブ7等を設けることによって、各室毎に圧力調整をすることも可能である。これによって密閉容器5の移動時においても、外気に触れることなく、所定圧力下の炉内を図示しない移動手段によって移動させることができるため、不純物の混入等を抑制することができる。   As shown in FIG. 1, the heat treatment furnace 1 is connected to a heating chamber 2, a preheating chamber 3, and a front chamber 4. For this reason, it becomes possible to control each chamber under a predetermined pressure in advance. Further, it is possible to adjust the pressure for each chamber by providing a gate valve 7 or the like for each chamber. As a result, even when the sealed container 5 is moved, the inside of the furnace under a predetermined pressure can be moved by a moving means (not shown) without touching the outside air, so that contamination of impurities and the like can be suppressed.

予備加熱室3は、ランプ又はロッドヒータ等の加熱手段(本実施形態においては、ランプを用いている態様を示している。)6が設けられ、急速に800〜1000℃程度にまで加熱が可能な加熱炉になっている。また、予備加熱室3と前室4との接続部分には、ゲートバルブ7が設けらており、予備加熱室3及び前室4の圧力制御を容易なものとしている。密閉容器5は、この予備加熱室3で、テーブル8に載置された状態で800℃以上に予め加熱された後、予備加熱室3と前室4との圧力調整が済み次第、前室4に設けられている昇降式のサセプタ9に設置するように移動させられる。   The preheating chamber 3 is provided with heating means 6 such as a lamp or a rod heater (in this embodiment, a mode using a lamp is shown) 6 and can be rapidly heated to about 800 to 1000 ° C. It is a simple heating furnace. In addition, a gate valve 7 is provided at a connection portion between the preheating chamber 3 and the front chamber 4 to facilitate pressure control of the preheating chamber 3 and the front chamber 4. The airtight container 5 is preheated to 800 ° C. or higher in the state of being placed on the table 8 in the preheating chamber 3, and the pressure in the preheating chamber 3 and the front chamber 4 is adjusted as soon as pressure adjustment is completed. It is moved so that it may install in the raising / lowering type susceptor 9 provided in this.

前室4に移動させられた密閉容器5は、一部図示している昇降式の移動手段10によって前室4から加熱室2に移動させられる。このとき、加熱室2内は、図示しない真空ポンプで予め所定の圧力である10-1Pa以下、好ましくは10-2Pa以下の真空、更に好ましくは、10-5Pa以下の真空、又は予め圧力10-5Pa以下の高真空に到達した後に若干の不活性ガスを導入し、10-1Pa以下、好ましくは10-2Pa以下の希薄ガス雰囲気下にし、加熱ヒータ11によって1400℃〜2300℃に設定されていることが好ましい。加熱室2内の状態をこのように設定しておくことで、密閉容器5を前室4から加熱室2内に移動することによって、密閉容器5を1400℃〜2300℃に急速に加熱することができる。また、加熱室2には、加熱ヒータ11の周囲に反射鏡12が配置されており、加熱ヒータ11の熱を反射して加熱ヒータ11の内部に位置する密閉容器5側に集中するようにしている。 The sealed container 5 moved to the front chamber 4 is moved from the front chamber 4 to the heating chamber 2 by a lifting / lowering moving means 10 partially illustrated. At this time, the heating chamber 2, following 10 -1 Pa in advance predetermined pressure by a vacuum pump (not shown), preferably 10 -2 Pa or less of vacuum, more preferably, 10 -5 Pa or less of vacuum, or After reaching a high vacuum of 10 −5 Pa or less in advance, a slight inert gas is introduced to make a rare gas atmosphere of 10 −1 Pa or less, preferably 10 −2 Pa or less. it is preferably set to 23 00 ° C.. A state in the heating chamber 2 By setting in this way, by moving in the heating chamber 2 a closed container 5 from the front compartment 4, rapidly heats the sealed container 5 to 1400 ℃ ~ 23 00 ℃ be able to. In addition, in the heating chamber 2, a reflecting mirror 12 is disposed around the heater 11 so that the heat of the heater 11 is reflected and concentrated on the side of the sealed container 5 located inside the heater 11. Yes.

また、加熱室2内の加熱ヒータ11の内側には、密閉容器5内から漏出するSi蒸気を、加熱ヒータ11と接触しないように除去する汚染物除去機構20が設けられている。これによって、加熱ヒータ11がSi蒸気と反応し劣化することを抑制できる。この、汚染物除去機構20は、密閉容器5内から漏出するシリコン蒸気を除去するものであれば、特に限定されるものではない。   Further, a contaminant removal mechanism 20 for removing Si vapor leaking from the sealed container 5 so as not to come into contact with the heater 11 is provided inside the heater 11 in the heating chamber 2. Thereby, it can suppress that the heater 11 reacts with Si vapor | steam and deteriorates. The contaminant removal mechanism 20 is not particularly limited as long as it removes silicon vapor leaking from the sealed container 5.

加熱ヒータ11は、タンタル等の金属製の抵抗加熱ヒータであり、サセプタ9に設置されているベースヒータ11aと、側部及び上部が一体に筒状に形成された上部ヒータ11bとで構成されている。このように、密閉容器5を覆うように加熱ヒータ11が配置されているため、密閉容器5を均等に加熱することが可能となる。なお、加熱室2の加熱方式は、本実施形態例に示す抵抗加熱ヒータに限定されるものではなく、例えば、高周波誘導加熱式であっても構わない。   The heater 11 is a resistance heater made of metal such as tantalum, and includes a base heater 11a installed on the susceptor 9 and an upper heater 11b in which a side portion and an upper portion are integrally formed in a cylindrical shape. Yes. Thus, since the heater 11 is arrange | positioned so that the airtight container 5 may be covered, it becomes possible to heat the airtight container 5 equally. Note that the heating method of the heating chamber 2 is not limited to the resistance heater shown in the present embodiment, and may be a high frequency induction heating method, for example.

密閉容器5は、図2に示すように、上容器5aと、下容器5bとで構成され、それぞれタンタル又は炭化タンタルのいずれかで形成されている。そして、上容器5aと下容器5bとの嵌め合わせ時の嵌合部の遊びは2mm以下であることが好ましい。これによって、密閉容器5内への不純物の混入を抑制することができる。また、遊びを2mm以下とすることによって、密閉容器5内のSi分圧を10Pa以下とならないように制御することもできる。このため、密閉容器5内のSiC分圧及びSi分圧を高め、単結晶SiC基板16及び多結晶SiC基板14,15、極薄金属Si融液17の昇華の防止に寄与するようになる。なお、この上容器5aと下容器5bとの嵌め合い時の嵌合部の遊びが2mmよりも大きい場合は、密閉容器5内のSi分圧を所定圧に制御することが困難になるばかりでなく、不純物がこの嵌合部を介して密閉容器5内に侵入することもあるため、好ましくない。この密閉容器5は、図2に示すように、形状が四角のものに限らず、円形のものであっても良い。   As shown in FIG. 2, the sealed container 5 includes an upper container 5a and a lower container 5b, and each is formed of either tantalum or tantalum carbide. And it is preferable that the play of the fitting part at the time of fitting with the upper container 5a and the lower container 5b is 2 mm or less. Thereby, mixing of impurities into the hermetic container 5 can be suppressed. Further, by setting the play to 2 mm or less, the Si partial pressure in the sealed container 5 can be controlled so as not to be 10 Pa or less. For this reason, the SiC partial pressure and the Si partial pressure in the sealed container 5 are increased, thereby contributing to prevention of sublimation of the single crystal SiC substrate 16, the polycrystalline SiC substrates 14 and 15, and the ultrathin metal Si melt 17. If the play of the fitting portion when the upper container 5a and the lower container 5b are fitted is larger than 2 mm, it is difficult to control the Si partial pressure in the sealed container 5 to a predetermined pressure. In addition, impurities may enter the sealed container 5 through the fitting portion, which is not preferable. As shown in FIG. 2, the sealed container 5 is not limited to a square shape but may be a circular shape.

また、下容器5bには、図3及び図4に示すように、3本の支持部13が設けられている。この支持部13によって、後述する種結晶となる多結晶SiC基板14を支持している。なお、支持部13は、本実施形態例に示すようなピン状のものである必要はなく、例えば、SiC等で形成されているリング状のものであってもよい。   Moreover, as shown in FIG.3 and FIG.4, the three support parts 13 are provided in the lower container 5b. This support portion 13 supports a polycrystalline SiC substrate 14 that becomes a seed crystal to be described later. In addition, the support part 13 does not need to be a pin-shaped thing as shown in this embodiment, For example, the ring-shaped thing formed with SiC etc. may be sufficient.

図3は上容器5aと下容器5bとが嵌合した状態の密閉容器5内に設置されている種結晶となる6H型の単結晶SiC基板16と、この単結晶SiC基板16を挟み込む多結晶SiC基板15と、これらの間に形成される極薄金属Si融液17の状態を示している。なお、極薄金属Si融液17は熱処理時に形成されるものであり、この極薄金属Si融液17のSi源となるのは、種結晶となる単結晶SiC基板16の表面に予め金属SiをCVD等によって10μmから50μmとなるよう膜を形成するか、Si粉末を置く等その方法は特に限定されない。   FIG. 3 shows a 6H-type single crystal SiC substrate 16 serving as a seed crystal installed in the sealed container 5 in a state where the upper container 5a and the lower container 5b are fitted, and a polycrystal sandwiching the single crystal SiC substrate 16 therebetween. The state of the SiC substrate 15 and the ultrathin metal Si melt 17 formed therebetween is shown. The ultrathin metal Si melt 17 is formed at the time of heat treatment, and the Si source of the ultrathin metal Si melt 17 is preliminarily formed on the surface of the single crystal SiC substrate 16 to be a seed crystal on the surface of the metal Si. The method is not particularly limited, such as forming a film to 10 μm to 50 μm by CVD or placing Si powder.

図3に示すように、これら単結晶SiC基板16、多結晶SiC基板14,15及び極薄金属Si融液17は、密閉容器5を構成する下容器5bに設けられている支持部13に載置されて、密閉容器5内に収納されている。ここで、単結晶SiC基板16は、昇華法で作製された単結晶6H−SiCのウェハーより所望の大きさ(10×10〜20×20mm)に切り出されたものである。また、多結晶SiC基板14,15は、CVD法で作製されたSi半導体製造工程でダミーウェハーとして使用されるSiCから所望の大きさに切り出されたものを使用することができる。これら各基板16,14,15は表面が鏡面に研磨加工され、表面に付着した油類、酸化膜、金属等が洗浄等によって除去されている。ここで、下部側に位置する多結晶SiC基板14は単結晶SiC基板16の密閉容器5からの侵食を防止するもので、単結晶SiC基板16上に液相エピタキシャル成長する単結晶SiCの品質向上に寄与するものである。   As shown in FIG. 3, the single crystal SiC substrate 16, the polycrystalline SiC substrates 14 and 15, and the ultrathin metal Si melt 17 are placed on the support portion 13 provided in the lower container 5 b constituting the sealed container 5. Placed in a sealed container 5. Here, the single crystal SiC substrate 16 is cut out to a desired size (10 × 10 to 20 × 20 mm) from a single crystal 6H—SiC wafer manufactured by a sublimation method. Further, the polycrystalline SiC substrates 14 and 15 can be made by cutting to a desired size from SiC used as a dummy wafer in the Si semiconductor manufacturing process manufactured by the CVD method. The surface of each of the substrates 16, 14, 15 is polished into a mirror surface, and oils, oxide films, metals, etc. adhering to the surface are removed by washing or the like. Here, the polycrystalline SiC substrate 14 located on the lower side prevents erosion of the single crystal SiC substrate 16 from the sealed container 5, and improves the quality of single crystal SiC that is liquid phase epitaxially grown on the single crystal SiC substrate 16. It contributes.

また、この密閉容器5内には、熱処理時におけるSiCの昇華、Siの蒸発を制御するためのSi片と共に設置することもできる。Si片を同時に設置することによって、熱処理時に昇華して密閉容器5内のSiC分圧及びSi分圧を高め、単結晶SiC基板16及び多結晶SiC基板14,15、極薄金属Si融液17の昇華の防止に寄与するようになる。また、密閉容器5内の圧力を加熱室2内の圧力よりも高くなるように調整でき、これによって、上容器5aと下容器5bとの嵌合部から常にSi蒸気を放出でき、不純物の密閉容器5内への侵入を防止できる。   Moreover, it can also install in this airtight container 5 with the Si piece for controlling the sublimation of SiC at the time of heat processing, and evaporation of Si. By simultaneously installing the Si pieces, the SiC partial pressure and the Si partial pressure in the hermetic container 5 are sublimated during the heat treatment to increase the single crystal SiC substrate 16, the polycrystalline SiC substrates 14 and 15, and the ultrathin metal Si melt 17. Contributes to the prevention of sublimation. Further, the pressure in the sealed container 5 can be adjusted to be higher than the pressure in the heating chamber 2, whereby Si vapor can always be released from the fitting portion between the upper container 5 a and the lower container 5 b, and the impurity is sealed. Intrusion into the container 5 can be prevented.

このように構成された密閉容器5は、予備加熱室3内に設置された後、10-5Pa以下に設定され、予備加熱室3に設けられているランプ及び又はロッドヒ−ター等の加熱手段6によって800℃以上、好ましくは1000℃以上に加熱される。この際、加熱室2内も同様に、10-2Pa以下に設定された後、1400℃〜2300℃に加熱しておくことが好ましい。 After the airtight container 5 configured in this way is installed in the preheating chamber 3, it is set to 10 −5 Pa or less, and heating means such as a lamp and / or a rod heater provided in the preheating chamber 3 is provided. 6 is heated to 800 ° C. or higher, preferably 1000 ° C. or higher. In this case, as well inside the heating chamber 2, after being set below 10 -2 Pa, it is preferable to heat the 1400 ℃ ~ 23 00 ℃.

予備加熱室3内で予備加熱された密閉容器5は、ゲートバルブ7を開き、前室4のサセプタ9に移動して、昇降手段10によって、1400℃〜2300℃に加熱されている加熱室2内に移動される。これによって、密閉容器5は、30分以内の短時間で急速に1400℃〜2300℃に加熱される。加熱室2での熱処理温度は、密閉容器5内に同時に設置している金属Si片が溶融する温度であれば良いが、1400℃〜2300℃にする。処理温度を高温で行なうほど、溶融SiとSiCとの濡れ性が上昇し、溶融Siが毛細管現象によって、単結晶SiC基板16と多結晶SiC基板14,15との間に浸透しやすくなる。これによって、単結晶SiC基板16と多結晶SiC基板14,15との間に厚み50μm以下の極薄金属Si融液17を介在させることができる。 Closed container 5, which is preheated in the preheating chamber 3, the gate valve 7, by moving the susceptor 9 of the front chamber 4, by the lifting means 10, the heating chamber which is heated to 1400 ℃ ~ 23 00 ℃ 2 is moved. Thus, the closed container 5 is heated rapidly to 1400 ℃ ~ 23 00 ℃ in a short time within 30 minutes. The heat treatment temperature in the heating chamber 2, the metal Si pieces are installed at the same time in the closed container 5 may be a temperature which melts, to 1400 ℃ ~ 23 00 ℃. As the processing temperature is increased, the wettability between molten Si and SiC increases, and the molten Si easily penetrates between the single crystal SiC substrate 16 and the polycrystalline SiC substrates 14 and 15 by capillary action. Thereby, an ultrathin metal Si melt 17 having a thickness of 50 μm or less can be interposed between the single crystal SiC substrate 16 and the polycrystalline SiC substrates 14 and 15.

また、この際に、できるだけ、短時間で1400℃〜2300℃とすることによって、結晶成長を短時間で終了することが可能となり結晶成長の効率化が可能となる。 Further, in this case, as far as possible, by a short time 1400 ℃ ~ 23 00 ℃, it is possible to terminate in a short time crystal growth is possible to streamline the crystal growth.

また、熱処理時間は、生成される単結晶SiCが所望の厚みとなるように適宜選択することが可能である。ここで、Si源となる金属Siは、量が多くなると、熱処理時に溶融する量が多くなり、極薄金属Si融液が50μm以上の厚みになると、金属Si融液が不安定になり、またCの輸送が阻害され、本発明に係る単結晶SiCの育成に適さず、また単結晶SiCの形成に必要でないSiが、溶融し密閉容器5の底部に溜まり、単結晶SiC形成後に再度固化した金属Siを除去する必要が生じる。このため、金属Siの大きさ及び厚さについては、形成する単結晶SiCの大きさに合わせ適宜選択する。   Further, the heat treatment time can be appropriately selected so that the single crystal SiC to be produced has a desired thickness. Here, when the amount of the metal Si serving as the Si source increases, the amount melted during the heat treatment increases, and when the ultrathin metal Si melt has a thickness of 50 μm or more, the metal Si melt becomes unstable. The transport of C is hindered, and is not suitable for growing single crystal SiC according to the present invention, and Si that is not necessary for the formation of single crystal SiC melts and accumulates at the bottom of the hermetic vessel 5, and solidifies again after the single crystal SiC is formed. Metal Si needs to be removed. For this reason, the size and thickness of the metal Si are appropriately selected according to the size of the single crystal SiC to be formed.

ところで、単結晶SiCの成長メカニズムについて簡単に説明すると、熱処理に伴い単結晶SiC基板16と上部の多結晶SiC基板15との間に溶融したSiが侵入して、両基板16,15の界面に厚さ約30μm〜50μmの金属Si融液層17を形成する。この金属Si融液層17は、熱処理温度が高温になるにしたがって、薄くなり、30μm程度となる。そして、多結晶SiC基板2から流れ出したC原子はSi融液層を通して単結晶SiC基板16に供給され、この単結晶SiC基板1上に6H−SiC単結晶として液相エピタキシャル成長(以下、LPEという。)する。このように、種結晶となる単結晶SiC基板16と多結晶SiC基板14との間が小さいため、熱処理時に熱対流が生成しない。このため、形成される単結晶SiCと、種結晶となる単結晶SiC基板16と界面が非常に滑らかとなり、この界面に歪み等が形成されない。したがって、非常に平滑な単結晶SiCが形成される。また、熱処理時にSiCの核生成が抑制されるため、形成される単結晶SiCの微小結晶粒界の生成を抑制することができる。本実施形態に係る単結晶SiCの育成方法においては、溶融したSiが単結晶SiC基板16と多結晶SiC基板15との間にのみ侵入することから、他の不純物が成長する単結晶SiC中に侵入することがないため、バッググランド5×1015/cm3以下の高純度の単結晶SiCを生成することが可能となる。 By the way, the growth mechanism of single crystal SiC will be briefly described. As a result of the heat treatment, molten Si enters between the single crystal SiC substrate 16 and the upper polycrystalline SiC substrate 15 and enters the interface between the substrates 16 and 15. A metal Si melt layer 17 having a thickness of about 30 μm to 50 μm is formed. The metal Si melt layer 17 becomes thinner as the heat treatment temperature becomes higher, and becomes about 30 μm. The C atoms flowing out of the polycrystalline SiC substrate 2 are supplied to the single crystal SiC substrate 16 through the Si melt layer, and liquid phase epitaxial growth (hereinafter referred to as LPE) as 6H—SiC single crystal on the single crystal SiC substrate 1. ) Thus, since the space between the single-crystal SiC substrate 16 serving as the seed crystal and the polycrystalline SiC substrate 14 is small, thermal convection is not generated during the heat treatment. Therefore, the interface between the formed single crystal SiC and the single crystal SiC substrate 16 serving as a seed crystal becomes very smooth, and no distortion or the like is formed at the interface. Therefore, very smooth single crystal SiC is formed. Moreover, since the nucleation of SiC is suppressed during the heat treatment, the generation of the fine crystal grain boundaries of the formed single crystal SiC can be suppressed. In the method for growing single crystal SiC according to the present embodiment, melted Si enters only between the single crystal SiC substrate 16 and the polycrystalline SiC substrate 15, and therefore, in the single crystal SiC where other impurities grow. Since it does not enter, high-purity single crystal SiC having a background of 5 × 10 15 / cm 3 or less can be produced.

5は、前述の方法によって成長した単結晶SiCの表面状態を示す顕微鏡写真を示す図である。図5において、(a)は表面モフォロジー、(b)はその断面を示すものである。図5に示すように、LPE法による結晶の成長表面は、非常に平坦なテラスとステップ構造が観察できる。 FIG. 5 is a view showing a micrograph showing the surface state of single crystal SiC grown by the above-described method. In FIG. 5, (a) shows the surface morphology, and (b) shows the cross section. As shown in FIG. 5, a very flat terrace and step structure can be observed on the growth surface of the crystal by the LPE method.

図6は、この表面を原子間力顕微鏡(以下、AFMという。)によって観察した結果を示す図である。図6から観察できるように、ステップの高さはそれぞれ4.0nm、8.4nmであることがわかる。これは、SiC分子(SiC1分子層の高さは0.25nm)の3分子層を基本とした整数倍の高さである。このように、非常に平坦な表面となっていることがわかる。   FIG. 6 is a diagram showing the results of observing this surface with an atomic force microscope (hereinafter referred to as AFM). As can be observed from FIG. 6, the step heights are 4.0 nm and 8.4 nm, respectively. This is an integer multiple height based on a trimolecular layer of SiC molecules (SiC 1 molecular layer has a height of 0.25 nm). Thus, it can be seen that the surface is very flat.

また、図5の表面形態の顕微鏡写真からもわかるように、表面にマイクロパイプ欠陥が観察されない。これらのことから、本発明による単結晶SiCは、表面に形成されるマイクロパイプ欠陥の密度が1/cm2以下と非常に少なくなり、表面に形成されるテラスの幅も10μm以上と広く、平坦で欠陥の少ないものであることがわかる。 Further, as can be seen from the micrograph of the surface form of FIG. 5, no micropipe defects are observed on the surface. Therefore, the single crystal SiC according to the present invention has a very small density of micropipe defects formed on the surface of 1 / cm 2 or less, and the width of the terrace formed on the surface is as wide as 10 μm or more and is flat. It turns out that it is a thing with few defects.

一般に、結晶のエピタキシャル成長は、1分子層ごとに行なわれる。ところが、本実施形態に係る単結晶SiCでは、表面に10μm以上の幅広のテラスと3分子層を最小単位とした高さのステップで構成されている。このことから、結晶成長の過程で、ステップバンチングが起きたと考えられる。このステップバンチング機構は、結晶成長中の表面自由エネルギーの効果によって説明することができる。本実施形態例に係る単結晶6H−SiCは、単位積層周期の中にABCと、ACBという2種類の積層周期の方向がある。そこで、積層方向の折れ曲がる層から番号を1、2、3と付けることにより、図7に示すように3種類の表面が規定できる。そして、各面のエネルギーは以下のように求められている(T.Kimoto, et al.,J.Appl.Phys.81(1997)3494−3500)。
6H1=1.33meV
6H2=6.56meV
6H3=2.34meV
この様に面によってエネルギーが異なるため、テラスの広がる速度が異なる。すなわち、テラスは、各面の表面自由エネルギーの高いものほど成長速度が速く、図7(a)(b)(c)に示すように、3周期おきにステップハンチングが起きる。また、本実施形態例では、積層周期の違い(ABC又はACB)により、ステップ面からでている未結合手の数が1段おきに異なり、このステップ端から出ている未結合手の数の違いにより、3分子単位でさらにステップバンチングが起きると考えられる。1ステップの前進速度は、ステップから出ている未結合手が1本の所では遅く、2本の所では速いと考えられる。この様にして、6H−SiCでは格子定数の半整数倍の高さ単位でステップバンチングが進み、成長後、単結晶SiCの表面は3分子層を最小単位とした高さのステップと、平坦なテラスとで覆われると考えられる。
In general, the epitaxial growth of crystals is performed for each molecular layer. However, the single crystal SiC according to the present embodiment is configured with a step having a height of 10 μm or more on a surface and a trimolecular layer as a minimum unit. This suggests that step bunching occurred during the crystal growth process. This step bunching mechanism can be explained by the effect of surface free energy during crystal growth. The single crystal 6H-SiC according to the present embodiment has two types of stacking cycle directions, ABC and ACB, in the unit stacking cycle. Therefore, by assigning numbers 1, 2, and 3 from the folding layers in the stacking direction, three types of surfaces can be defined as shown in FIG. And the energy of each surface is calculated | required as follows (T.Kimoto, et al., J.Appl.Phys.81 (1997) 3494-3500).
6H1 = 1.33 meV
6H2 = 6.56 meV
6H3 = 2.34 meV
Since the energy varies depending on the surface in this way, the spreading speed of the terrace varies. That is, the terrace has a higher growth rate as the surface free energy of each surface is higher, and step hunting occurs every three periods as shown in FIGS. 7 (a), 7 (b), and 7 (c). In this embodiment, the number of unbonded hands coming out of the step surface differs every other stage due to the difference in stacking cycle (ABC or ACB). Due to the difference, it is considered that further step bunching occurs in units of 3 molecules. The forward speed of one step is considered to be slow when the number of unbonded hands coming out of the step is one, and fast at two places. In this way, in 6H-SiC, step bunching proceeds in units of half integer multiples of the lattice constant, and after growth, the surface of the single crystal SiC is flat with a step having a height of three molecular layers as a minimum unit. It is thought to be covered with a terrace.

なお、以上説明したように、本発明に係る単結晶SiCは、ステップバンチングによってそのテラスが形成されている。そのため、ステップは、単結晶SiCの端部付近に集中して形成されるようになる。前述した図5及び図6は、ステップ部分を観察するために単結晶SiCの端部部分を観察したものである。   As described above, the single crystal SiC according to the present invention has its terrace formed by step bunching. Therefore, the steps are formed in a concentrated manner near the end portion of the single crystal SiC. 5 and 6 described above are obtained by observing the end portion of the single crystal SiC in order to observe the step portion.

また、本実施形態例における単結晶SiCは、その成長温度が1400℃〜2300℃と従来の単結晶SiCの液相成長温度に比べて非常に高く、また、短時間で1400℃〜2300℃に加熱出来る。成長温度が上がると、種結晶となる単結晶SiCと多結晶SiCとの間に形成されるSi融液中へのCの溶解濃度が増加する。また温度の上昇とともにSi融液中でのCの拡散が大きくなると考えられる。このように、Cの供給源と種結晶とが非常に近接しているため、500μm/hrという速い成長速度とする事も条件次第で可能になる。 The single crystal SiC in this embodiment, the growth temperature is very high as compared with the liquid phase growth temperature of 1400 ℃ ~ 23 00 ℃ and conventional single crystal SiC, also briefly at 1400 ° C. ~ 23 00 Can be heated to ℃. As the growth temperature rises, the dissolution concentration of C in the Si melt formed between the single crystal SiC that becomes the seed crystal and the polycrystalline SiC increases. Further, it is considered that the diffusion of C in the Si melt increases as the temperature rises. Thus, since the C supply source and the seed crystal are very close to each other, a high growth rate of 500 μm / hr can be achieved depending on conditions.

このように、本実施形態例に係る単結晶SiCは、表面のマイクロパイプ欠陥の密度が1/cm2以下であり、10μm以上の幅広のテラスが形成されることから、単結晶SiC形成後に、機械加工等の表面処理が不要となる。また、結晶欠陥等が少ないために、発光ダイオードや、各種半導体ダイオードとして使用することが可能となる。加えて、結晶の成長が温度に依存せず、種結晶及びCの供給源の結晶の表面エネルギーに依存することから、処理炉内の厳密な温度制御の必要性がなくなることから、製造コストの大幅な低減化が可能となる。さらに、種結晶となる単結晶SiC及びCの供給源である多結晶SiCとの間隔が非常に小さことから、熱処理時の熱対流を抑制することができる。また種結晶となる単結晶SiC及びCの供給源である多結晶SiCとの間に温度差が形成されにくいことから、熱平衡状態で熱処理することができる。 Thus, the single crystal SiC according to the present embodiment example has a density of micropipe defects on the surface of 1 / cm 2 or less and a wide terrace of 10 μm or more is formed. No surface treatment such as machining is required. Moreover, since there are few crystal defects etc., it can be used as a light emitting diode or various semiconductor diodes. In addition, since the crystal growth does not depend on the temperature and depends on the surface energy of the seed crystal and the crystal of the source of C, the need for strict temperature control in the processing furnace is eliminated, thereby reducing the manufacturing cost. Significant reduction is possible. Furthermore, since the distance between the single crystal SiC as the seed crystal and the polycrystalline SiC that is the supply source of C is very small, thermal convection during heat treatment can be suppressed. In addition, since a temperature difference is unlikely to be formed between single crystal SiC as a seed crystal and polycrystalline SiC which is a supply source of C, heat treatment can be performed in a thermal equilibrium state.

なお、本実施形態例では、種結晶として、6H−SiCを用いたが、4H−SiCを使
用することも可能である。
In this embodiment, 6H—SiC is used as a seed crystal, but 4H—SiC can also be used.

なお、本実施形態例では、種結晶として、(0001)Siを用いたが、(11−20)などのその他の面方位のものを使用することも可能である。   In this embodiment, (0001) Si is used as the seed crystal, but other surface orientations such as (11-20) can also be used.

また、本発明に係る単結晶SiCは、種結晶となる単結晶SiC及びCの供給源となる多結晶SiC基板の大きさを適宜選択することによって形成される単結晶SiCの大きさを制御することができる。また、形成される単結晶SiCと種結晶との間に歪みが形成されることもないため、非常に平滑な表面の単結晶SiCとできることから、表面の改質膜として適用することも可能である。   In addition, the single crystal SiC according to the present invention controls the size of the single crystal SiC formed by appropriately selecting the size of the single crystal SiC serving as the seed crystal and the size of the polycrystalline SiC substrate serving as the supply source of C. be able to. In addition, since no distortion is formed between the single crystal SiC to be formed and the seed crystal, single crystal SiC with a very smooth surface can be obtained, so that it can be applied as a surface modification film. is there.

さらに、種結晶となる単結晶SiCとCの供給源である多結晶SiCを交互に積層、または横に並べて前述の方法によって、熱処理することによって、同時に多量の単結晶SiCを製造することも可能である。   Furthermore, it is also possible to produce a large amount of single crystal SiC at the same time by alternately laminating single crystal SiC as a seed crystal and polycrystalline SiC, which is a supply source of C, or arranging them side by side and heat-treating them by the method described above. It is.

また本発明に係る単結晶SiCの製造方法では、多結晶SiC基板及び金属Si中にあらかじめAlまたはB等のIII族金属の不純物を添加しておくか、さらには成長中の雰囲気中に窒素、AlまたはB等のSiCの伝導型を制御する元素を含むガスを送り込むことにより、成長結晶のp型、n型の伝導型を任意に制御することが可能である。   Further, in the method for producing single-crystal SiC according to the present invention, impurities of a group III metal such as Al or B are added to the polycrystalline SiC substrate and the metal Si in advance, or further, nitrogen, By feeding a gas containing an element that controls the conductivity type of SiC such as Al or B, it is possible to arbitrarily control the p-type and n-type conductivity types of the grown crystal.

本発明に係る単結晶SiCの液相エピタキシャル成長法に用いられる熱処理装置の一実施形態例の概略断面図である。It is a schematic sectional drawing of one embodiment of the heat processing apparatus used for the liquid phase epitaxial growth method of the single crystal SiC which concerns on this invention. 密閉容器5の一実施形態例の概略図である。FIG. 3 is a schematic view of an embodiment of the sealed container 5. 上容器と下容器とが嵌合した状態の密閉容器内に設置されている種結晶となる6H型の単結晶SiC基板と、この単結晶SiC基板を挟み込む多結晶SiC基板と、これらの間に形成される極薄金属Si融液の状態を示す図である。A 6H type single crystal SiC substrate serving as a seed crystal installed in a sealed container in which the upper container and the lower container are fitted, a polycrystalline SiC substrate sandwiching the single crystal SiC substrate, and a gap between them It is a figure which shows the state of the ultra-thin metal Si melt formed. 下容器に基板を設置した状態を示す図である。It is a figure which shows the state which installed the board | substrate in the lower container. 本実施形態例に係る単結晶SiCの成長層の表面の顕微鏡写真を示す図である。(a)は表面モフォロジー、(b)はその断面を示す顕微鏡写真を示す図である。It is a figure which shows the microscope picture of the surface of the growth layer of the single crystal SiC which concerns on the example of this embodiment. (A) is a surface morphology, (b) is a figure which shows the microscope picture which shows the cross section. 図5に示す単結晶SiCの表面のAFM像を示す図である。(a)は、表面モフォロジー、(b)はその断面を示すAFM像を示す図である。It is a figure which shows the AFM image of the surface of the single crystal SiC shown in FIG. (A) is a surface morphology, (b) is a figure which shows the AFM image which shows the cross section. 本実施形態例に係る単結晶SiCの成長過程におけるステップバンチング機構を説明するための図である。It is a figure for demonstrating the step bunching mechanism in the growth process of the single crystal SiC which concerns on the example of this embodiment.

符号の説明Explanation of symbols

1 熱処理炉
2 加熱室
3 予備加熱室
4 前室
5 密閉容器
5a 上容器
5b 下容器
6 加熱手段
7 ゲートバルブ
8 テーブル
9 サセプタ
10 移動手段
11 加熱ヒータ
12 反射鏡
DESCRIPTION OF SYMBOLS 1 Heat processing furnace 2 Heating chamber 3 Preheating chamber 4 Front chamber 5 Sealed container 5a Upper container 5b Lower container 6 Heating means 7 Gate valve 8 Table 9 Susceptor 10 Moving means 11 Heating heater 12 Reflective mirror

Claims (6)

種結晶となる単結晶炭化ケイ素基板と多結晶炭化ケイ素基板とを重ね、密閉容器内に設置して、高温熱処理を行なうことによって、前記単結晶炭化ケイ素基板と前記多結晶炭化ケイ素基板との間に、熱処理中に極薄金属シリコン融液を介在させ、前記単結晶炭化ケイ素基板上に単結晶炭化ケイ素を液相エピタキシャル成長させる単結晶炭化ケイ素の液相エピタキシャル成長法であって、
前記単結晶炭化ケイ素基板と多結晶炭化ケイ素基板との間で温度差を設けずに、前記単結晶炭化ケイ素基板と多結晶炭化ケイ素基板とを1400℃〜2300℃に加熱して微結晶粒界の存在しない、表面のマイクロパイプ欠陥密度が1/cm2以下である単結晶炭化ケイ素を製造する単結晶炭化ケイ素の液相エピタキシャル成長法。
A single crystal silicon carbide substrate to be a seed crystal and a polycrystalline silicon carbide substrate are stacked, placed in a sealed container, and subjected to high-temperature heat treatment, so that the single crystal silicon carbide substrate and the polycrystalline silicon carbide substrate are placed between each other. In addition, a liquid crystal epitaxial growth method of single crystal silicon carbide in which an ultrathin metal silicon melt is interposed during the heat treatment, and single crystal silicon carbide is liquid phase epitaxially grown on the single crystal silicon carbide substrate,
Said without providing a temperature difference between the single crystal silicon carbide substrate and the polycrystalline silicon carbide substrate, wherein the heating the monocrystalline silicon carbide substrate and the polycrystalline silicon carbide substrate 1 400 ° C. to 2300 ° C. microcrystal grains A liquid-phase epitaxial growth method of single-crystal silicon carbide for producing single-crystal silicon carbide having a surface with a micropipe defect density of 1 / cm 2 or less.
前記密閉容器が、タンタル又は炭化タンタルのいずれかで形成されている請求項1に記載の単結晶炭化ケイ素の液相エピタキシャル成長法。 The liquid crystal epitaxial growth method of single crystal silicon carbide according to claim 1, wherein the sealed container is formed of either tantalum or tantalum carbide. 前記密閉容器が上容器及び下容器で形成され、前記上容器及び前記下容器の嵌合部からシリコン蒸気が漏れ出す程度に前記密閉容器内の圧力が前記加熱室内の圧力よりも高くなるように制御し、前記密閉容器内に不純物が混入するのを抑制する請求項1又は2に記載の単結晶炭化ケイ素の液相エピタキシャル成長法。 The sealed container is formed of an upper container and a lower container, and the pressure in the sealed container is higher than the pressure in the heating chamber to the extent that silicon vapor leaks from the fitting portion of the upper container and the lower container. The liquid phase epitaxial growth method of the single crystal silicon carbide according to claim 1 or 2 , wherein the liquid crystal epitaxial growth method is controlled to suppress impurities from being mixed into the sealed container. 前記単結晶炭化ケイ素の表面が、3分子層を最小単位とした原子オーダーステップと、幅広のテラスと、を有し、前記テラスの幅が10μm以上である請求項1乃至のいずれかに記載の単結晶炭化ケイ素の液相エピタキシャル成長法。 Surface of the monocrystalline silicon carbide, a 3 molecular layer as the minimum unit to the atomic order step was has a wide terrace and, according to one of claims 1 to 3 the width of the terraces is 10μm or more Liquid phase epitaxial growth of single crystal silicon carbide. 前記表面が、(0001)Si面である請求項に記載の単結晶炭化ケイ素の液相エピタキシャル成長法。 The liquid crystal epitaxial growth method of single crystal silicon carbide according to claim 4 , wherein the surface is a (0001) Si plane. 前記極薄金属シリコン融液が、50μm以下の厚みである請求項1乃至のいずれかに記載の単結晶炭化ケイ素の液相エピタキシャル成長法。 It said ultrathin metal silicon melt, the liquid phase epitaxial growth method of a single crystal silicon carbide according to any one of claims 1 to 5 or less in thickness 50 [mu] m.
JP2003333255A 2003-03-10 2003-09-25 Liquid crystal epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used therefor Expired - Lifetime JP4593099B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003333255A JP4593099B2 (en) 2003-03-10 2003-09-25 Liquid crystal epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used therefor
PCT/JP2004/003152 WO2004088734A1 (en) 2003-03-10 2004-03-10 Method of heat treatment and heat treatment apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003063324 2003-03-10
JP2003333255A JP4593099B2 (en) 2003-03-10 2003-09-25 Liquid crystal epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used therefor

Publications (2)

Publication Number Publication Date
JP2004292305A JP2004292305A (en) 2004-10-21
JP4593099B2 true JP4593099B2 (en) 2010-12-08

Family

ID=33421481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003333255A Expired - Lifetime JP4593099B2 (en) 2003-03-10 2003-09-25 Liquid crystal epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used therefor

Country Status (1)

Country Link
JP (1) JP4593099B2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5224256B2 (en) * 2005-06-02 2013-07-03 学校法人関西学院 Single crystal silicon carbide substrate processing method, semiconductor device manufacturing method
JP4293165B2 (en) * 2005-06-23 2009-07-08 住友電気工業株式会社 Surface reconstruction method for silicon carbide substrate
JP2007197231A (en) * 2006-01-24 2007-08-09 Toyota Motor Corp METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
JP5152887B2 (en) * 2006-07-07 2013-02-27 学校法人関西学院 Surface modification method for single crystal silicon carbide substrate, method for forming single crystal silicon carbide thin film, ion implantation annealing method, single crystal silicon carbide substrate, single crystal silicon carbide semiconductor substrate
JP5213096B2 (en) * 2007-03-23 2013-06-19 学校法人関西学院 Single phase silicon carbide liquid phase epitaxial growth method, single crystal silicon carbide substrate manufacturing method, and single crystal silicon carbide substrate
JP2009170457A (en) * 2008-01-10 2009-07-30 Sumitomo Electric Ind Ltd Surface treatment method for silicon carbide substrate and semiconductor device
WO2009107188A1 (en) * 2008-02-25 2009-09-03 財団法人地球環境産業技術研究機構 METHOD FOR GROWING SINGLE CRYSTAL SiC
WO2010055569A1 (en) * 2008-11-13 2010-05-20 株式会社エコトロン Mosfet and method for manufacturing same
JP2010228937A (en) * 2009-03-26 2010-10-14 Mitsui Eng & Shipbuild Co Ltd Raw material for manufacturing single crystal silicon carbide
JP5464544B2 (en) * 2009-05-12 2014-04-09 学校法人関西学院 Single crystal SiC substrate with epitaxial growth layer, carbon supply feed substrate, and SiC substrate with carbon nanomaterial
JP4820897B2 (en) * 2009-09-04 2011-11-24 東洋炭素株式会社 screw
JP5540349B2 (en) * 2009-12-02 2014-07-02 学校法人関西学院 Manufacturing method of semiconductor wafer
JP5565070B2 (en) 2010-04-26 2014-08-06 住友電気工業株式会社 Silicon carbide crystal and method for producing silicon carbide crystal
JP5561676B2 (en) * 2010-07-21 2014-07-30 学校法人関西学院 SiC semiconductor wafer heat treatment equipment
US8981384B2 (en) 2010-08-03 2015-03-17 Sumitomo Electric Industries, Ltd. Semiconductor device and method for manufacturing same
JP5699878B2 (en) 2011-09-14 2015-04-15 住友電気工業株式会社 Silicon carbide semiconductor device and manufacturing method thereof
JP2013069964A (en) 2011-09-26 2013-04-18 Sumitomo Electric Ind Ltd Silicon carbide semiconductor device
JP5764046B2 (en) 2011-11-21 2015-08-12 住友電気工業株式会社 Method for manufacturing silicon carbide semiconductor device
US8860040B2 (en) 2012-09-11 2014-10-14 Dow Corning Corporation High voltage power semiconductor devices on SiC
US9018639B2 (en) 2012-10-26 2015-04-28 Dow Corning Corporation Flat SiC semiconductor substrate
US9017804B2 (en) 2013-02-05 2015-04-28 Dow Corning Corporation Method to reduce dislocations in SiC crystal growth
US9738991B2 (en) 2013-02-05 2017-08-22 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion
US9797064B2 (en) 2013-02-05 2017-10-24 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion
US8940614B2 (en) 2013-03-15 2015-01-27 Dow Corning Corporation SiC substrate with SiC epitaxial film
JP5688780B2 (en) * 2013-05-07 2015-03-25 学校法人関西学院 SiC substrate, carbon supply feed substrate, and SiC substrate with carbon nanomaterial
US9279192B2 (en) 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
WO2021060365A1 (en) * 2019-09-27 2021-04-01 学校法人関西学院 Method for producing semiconductor substrates and device for producing semiconductor substrates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000053500A (en) * 1998-08-06 2000-02-22 Nippon Pillar Packing Co Ltd METHOD AND DEVICE FOR GROWING SINGLE CRYSTAL SiC
JP2000302599A (en) * 1999-04-23 2000-10-31 New Japan Radio Co Ltd Epitaxial growth method of silicon carbide
JP2002047100A (en) * 2000-07-31 2002-02-12 Nippon Pillar Packing Co Ltd METHOD FOR GROWING SINGLE CRYSTAL SiC

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300666A (en) * 1994-04-27 1995-11-14 Nissin Electric Co Ltd Production of molecular beam source for silicon evaporation and crucible used for the same
JP4110601B2 (en) * 1998-01-13 2008-07-02 昭和電工株式会社 Method for producing silicon carbide single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000053500A (en) * 1998-08-06 2000-02-22 Nippon Pillar Packing Co Ltd METHOD AND DEVICE FOR GROWING SINGLE CRYSTAL SiC
JP2000302599A (en) * 1999-04-23 2000-10-31 New Japan Radio Co Ltd Epitaxial growth method of silicon carbide
JP2002047100A (en) * 2000-07-31 2002-02-12 Nippon Pillar Packing Co Ltd METHOD FOR GROWING SINGLE CRYSTAL SiC

Also Published As

Publication number Publication date
JP2004292305A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP4593099B2 (en) Liquid crystal epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used therefor
JP4848495B2 (en) Single crystal silicon carbide and method for producing the same
JP6830658B2 (en) Nitride semiconductor substrate manufacturing method and manufacturing equipment
US7678195B2 (en) Seeded growth process for preparing aluminum nitride single crystals
JP5562641B2 (en) Micropipe-free silicon carbide and method for producing the same
JP4853449B2 (en) SiC single crystal manufacturing method, SiC single crystal wafer, and SiC semiconductor device
US20150079329A1 (en) Method and apparatus for producing large, single-crystals of aluminum nitride
US20060249073A1 (en) Method of heat treatment and heat treatment apparatus
KR100845946B1 (en) Method for forming sic single crystal
JP4431647B2 (en) Method for improving surface of single crystal silicon carbide substrate and method for growing single crystal silicon carbide
JP5418385B2 (en) Method for producing silicon carbide single crystal ingot
JP4431643B2 (en) Single crystal silicon carbide growth method
JP3741283B2 (en) Heat treatment apparatus and heat treatment method using the same
JP2006298722A (en) Method for manufacturing single crystal silicon carbide substrate
JP2013043822A (en) Method for producing semiconductor wafer, and semiconductor wafer
JP4482642B2 (en) Single crystal silicon carbide growth method
JP2009102187A (en) Crucible for growth of silicon carbide single crystal, method of manufacturing silicon carbide single crystal using the same, and silicon carbide single crystal ingot
JP5164121B2 (en) Single crystal silicon carbide growth method
JP4418879B2 (en) Heat treatment apparatus and heat treatment method
JP2009234824A (en) METHOD FOR MANUFACTURING SELF-SUPPORTING WAFER OF Mg CONTAINING ZnO MIXED SINGLE CRYSTAL AND Mg CONTAINING ZnO MIXED SINGLE CRYSTAL USED FOR IT
WO2004088734A1 (en) Method of heat treatment and heat treatment apparatus
JP2006041544A5 (en)
Powell et al. Method for the growth of large low-defect single crystals
JP2007254232A (en) Carbide single crystal and its producing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050829

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060817

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4593099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250