JP2000053500A - METHOD AND DEVICE FOR GROWING SINGLE CRYSTAL SiC - Google Patents

METHOD AND DEVICE FOR GROWING SINGLE CRYSTAL SiC

Info

Publication number
JP2000053500A
JP2000053500A JP10223301A JP22330198A JP2000053500A JP 2000053500 A JP2000053500 A JP 2000053500A JP 10223301 A JP10223301 A JP 10223301A JP 22330198 A JP22330198 A JP 22330198A JP 2000053500 A JP2000053500 A JP 2000053500A
Authority
JP
Japan
Prior art keywords
sic
single crystal
atoms
substrate
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10223301A
Other languages
Japanese (ja)
Other versions
JP2936479B1 (en
Inventor
Masuzo Yamada
益三 山田
Kichiya Yano
吉弥 谷野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP10223301A priority Critical patent/JP2936479B1/en
Application granted granted Critical
Publication of JP2936479B1 publication Critical patent/JP2936479B1/en
Publication of JP2000053500A publication Critical patent/JP2000053500A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To grow a very high quality, every high performance and large-size SiC single crystal with good productivity without causing crystal defects, micropipe defects or the like due to the influence of a contamination by impuri ties and thermal strain in the growth process. SOLUTION: This method comprises: subjecting a composite body 3 consisting of an α-SiC single crystal substrate 1 and a β-SiC polycrystal plate 2 formed on the substrate 1 as a film with a thermal CVD(chemical vapor deposition) method to heat treatment in an inert gas atmosphere saturated with SiC vapor while individually controlling the heating temp. of a pair of hot platens 4 and 5 which are capable of clamping and holding the composite body 3 between them, through high-frequency induction heating coils 6 and 7; and thereby subjecting Si and C atoms in the form of SiC of the β-SiC polycrystal plate 2 to decomposition and diffusion and also subjecting these atoms to rearrangement on the surface of the α-SiC single crystal substrate 1 to grow an SiC single crystal having crystal orientation following that of the single crystal substrate 1, integrally with the substrate 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、単結晶SiCの育
成方法及びその装置に関するもので、詳しくは、発光ダ
イオードやX線光学素子、高温半導体電子素子の基板ウ
エハなどとして用いられる単結晶SiCの育成方法及び
育成装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for growing single crystal SiC, and more particularly, to a method for growing single crystal SiC used as a substrate wafer for a light emitting diode, an X-ray optical element, a high-temperature semiconductor electronic element, or the like. The present invention relates to a breeding method and a breeding apparatus.

【0002】[0002]

【従来の技術】SiC(炭化珪素)は、耐熱性および機
械的強度に優れているだけでなく、放射線にも強く、さ
らに不純物の添加によって電子や正孔の価電子制御が容
易である上、広い禁制帯幅を持つ(因みに、6H型のS
iC単結晶で約3.0eV、4H型のSiC単結晶で
3.26eV)ために、Si(シリコン)やGaAs
(ガリウムヒ素)などの既存の半導体材料では実現する
ことができない高温、高周波、耐電圧、耐環境性を実現
することが可能で、次世代のパワーデバイス用半導体材
料として注目され、かつ期待されている。
2. Description of the Related Art SiC (silicon carbide) is not only excellent in heat resistance and mechanical strength, but also resistant to radiation. In addition, it is easy to control valence electrons and holes by adding impurities. Has a wide forbidden band (By the way, 6H type S
about 3.0 eV for an iC single crystal and 3.26 eV for a 4H type SiC single crystal), such as Si (silicon) or GaAs.
(Gallium arsenide) and other high-temperature, high-frequency, withstand voltage, and environmental resistance that cannot be realized with existing semiconductor materials. I have.

【0003】この種の単結晶SiCの育成方法として、
従来、黒鉛るつぼ内の低温側に種結晶を固定配置し、高
温側に原料となるSiC粉体を挿入配置して黒鉛るつぼ
内を不活性雰囲気中で2100〜2400℃まで加熱す
ることによって、上記SiC粉体から昇華したSiCガ
スを閉鎖空間内で拡散輸送させて低温に設定されている
種結晶の表面上で再結晶させて単結晶の育成を行なうを
る昇華再結晶法(改良レーリー法)や、アチソン法ある
いは昇華法によって得られたSiC基板上に、1850
℃以上の基板温度で化学気相成長法(CVD法)を用い
てエピタキシャル成長させることにより立方晶のSiC
単結晶(β−SiC)を育成させる高温CVDエピタキ
シャル法等が知られている。
As a method for growing this kind of single crystal SiC,
Conventionally, a seed crystal is fixedly arranged on the low-temperature side in a graphite crucible, and SiC powder as a raw material is inserted and arranged on the high-temperature side, and the inside of the graphite crucible is heated to 2100 to 2400 ° C. in an inert atmosphere, whereby Sublimation recrystallization method (improved Rayleigh method) in which SiC gas sublimated from SiC powder is diffused and transported in a closed space and recrystallized on the surface of a seed crystal set at a low temperature to grow a single crystal. Or 1850 on a SiC substrate obtained by the Acheson method or the sublimation method.
Cubic SiC by epitaxial growth using a chemical vapor deposition (CVD) method at a substrate temperature of at least
A high-temperature CVD epitaxial method for growing a single crystal (β-SiC) is known.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来の製造方法のうち、昇華再結晶法(改良レーリー
法)にあっては、単結晶の大形化に困難を伴うばかりで
なく、結晶成長の過程で黒鉛るつぼ内の種結晶周辺の環
境が変化するために、不純物等が混入しやすくて高純度
雰囲気及び種結晶側と原料のSiC粉体側との所定の温
度差を保つことが困難であり、混入した不純物や熱に起
因する歪みの影響で結晶欠陥やマイクロパイプ欠陥等が
発生しやすく、性能的にも品質的にも安定した単結晶が
得られないという問題がある。また、高温CVDエピタ
キシャル法は、基板温度が高いために再蒸発量も多く、
高純度の還元性雰囲気を作ることも必要で設備的に非常
に困難であり、さらに、エピタキシャル成長のため結晶
成長速度にも自ずと限界があって、単結晶SiCの生産
性が低く、生産コストが非常に高価なものになるという
問題があり、このことが既述のようにSiやGaAsな
どの既存の半導体材料に比べて多くの優れた特徴を有し
ながらも、その実用化を阻止する要因になっている。
However, of the above-mentioned conventional production methods, the sublimation recrystallization method (improved Rayleigh method) involves not only difficulty in increasing the size of a single crystal, but also crystal growth. The environment around the seed crystal in the graphite crucible changes during the process, and it is difficult to maintain a high-purity atmosphere and a predetermined temperature difference between the seed crystal side and the raw material SiC powder side because impurities and the like are easily mixed. However, there is a problem that crystal defects, micropipe defects, and the like are likely to occur due to the influence of impurities and heat-induced distortion, and that a single crystal with stable performance and quality cannot be obtained. In the high-temperature CVD epitaxial method, the amount of re-evaporation is large because the substrate temperature is high.
It is also necessary to create a high-purity reducing atmosphere, which makes it extremely difficult in terms of equipment. In addition, the crystal growth rate is naturally limited due to the epitaxial growth, so that the productivity of single-crystal SiC is low and the production cost is extremely low. However, as described above, it has many excellent features as compared with existing semiconductor materials such as Si and GaAs, but is a factor that hinders its practical use. Has become.

【0005】本発明は上記実情に鑑みてなされたもの
で、成長過程での不純物の混入及び熱歪みの影響による
結晶欠陥やマイクロパイプ欠陥等の発生がなく、非常に
高品質高性能で、かつ、大型の単結晶SiCを生産性よ
く育成することができ、半導体材料としての実用化を促
進できる単結晶SiCの育成方法及びその装置を提供す
ることを目的としている。
The present invention has been made in view of the above circumstances, and has no crystal defects or micropipe defects due to the contamination of impurities and the influence of thermal distortion during the growth process, and has very high quality and high performance. It is an object of the present invention to provide a single crystal SiC growing method and apparatus capable of growing large single crystal SiC with high productivity and promoting practical use as a semiconductor material.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の発明に係る単結晶SiCの育成方
法は、一対の熱盤間に、SiC単結晶基板とSi原子及
びC原子により構成された多結晶板とを積層してなる複
合体を挟み込み保持させるとともに、不活性ガス雰囲気
中で、かつ、SiC飽和蒸気雰囲気下で上記一対の熱盤
の加熱温度を上記多結晶板側が高温、SiC単結晶基板
側が低温となるように各別に制御することにより、上記
多結晶板のSi原子及びC原子を上記SiC単結晶基板
の表面で再配列させてSiC単結晶基板の結晶方位に倣
った単結晶を一体に育成させることを特徴とするもので
あり、また、請求項4に記載の発明に係る単結晶SiC
の育成装置は、SiC単結晶基板とSi原子及びC原子
により構成された多結晶板とを積層してなる複合体を挟
み込み保持可能な一対の熱盤と、これら一対の熱盤の加
熱温度を各別に制御可能な高周波誘導加熱コイルとを備
え、上記一対の熱盤間に複合体を挟み込み保持させると
ともに、不活性ガス雰囲気中で、かつ、SiC飽和蒸気
雰囲気下で、高周波誘導加熱コイルを介して一対の熱盤
の加熱温度を多結晶板側が高温、SiC単結晶基板側が
低温となるように制御することによって上記多結晶板の
Si原子及びC原子を上記SiC単結晶基板の表面で再
配列させてSiC単結晶基板の結晶方位に倣った単結晶
を一体に育成可能に構成したことを特徴とするものであ
る。
According to a first aspect of the present invention, there is provided a method for growing a single crystal SiC, comprising the steps of: A composite formed by laminating a polycrystalline plate composed of atoms is sandwiched and held, and the heating temperature of the pair of hot plates is increased in an inert gas atmosphere and in a SiC saturated vapor atmosphere by the polycrystalline plate. By individually controlling the temperature of the SiC single crystal substrate side to be high and the temperature of the SiC single crystal substrate side to be low, the Si atoms and C atoms of the polycrystalline plate are rearranged on the surface of the SiC single crystal substrate, and the crystal orientation of the SiC single crystal substrate is controlled. A single crystal according to the invention according to claim 4, characterized in that a single crystal following the pattern is grown integrally.
Is a pair of hot plates capable of sandwiching and holding a composite formed by laminating a SiC single crystal substrate and a polycrystalline plate composed of Si atoms and C atoms, and a heating temperature of the pair of hot plates. A high-frequency induction heating coil which can be controlled separately. The composite is sandwiched and held between the pair of hot plates, and is passed through the high-frequency induction heating coil in an inert gas atmosphere and in a SiC saturated steam atmosphere. By controlling the heating temperature of the pair of hot plates so that the polycrystalline plate side has a high temperature and the SiC single crystal substrate side has a low temperature, Si atoms and C atoms of the polycrystalline plate are rearranged on the surface of the SiC single crystal substrate. Thus, a single crystal following the crystal orientation of the SiC single crystal substrate can be integrally grown.

【0007】上記のような構成要件を有する請求項1及
び請求項4に記載の発明によれば、SiC単結晶基板と
Si原子及びC原子により構成された多結晶板とを積層
してなる複合体を挟み込み保持する一対の熱盤の加熱温
度を各別に制御することによって、基板側と多結晶板側
との間で必要な温度差の確保や結晶成長過程で周辺環境
温度が変化したときの温度コントロールなど所定の単結
晶育成にとって最も重要不可欠な要素となる温度条件を
容易に、かつ、微細に調整し保持することが可能であ
り、これによって、周辺環境温度の変化や多結晶板及び
SiC単結晶基板の性状のばらつきにかかわらず、両者
の界面をSi原子及びC原子の分解拡散並びにそれら原
子のSiC単結晶基板表面での再配列による単結晶化に
適した温度状態に維持して熱変化に起因する歪みの影響
でマイクロパイプ欠陥が生じることを防止できる。ま
た、SiC飽和蒸気雰囲気下での熱処理によって、Si
の外部放出によるやせ細り及び周辺雰囲気から界面への
不純物の混入も防止して不純物の混入に起因する結晶欠
陥等の発生もなくすることができ、これによって、高純
度、高品質で、かつ、量的にも大型の単結晶を安定よく
育成させることが可能である。
[0007] According to the first and fourth aspects of the present invention having the above constitutional requirements, a composite formed by laminating a SiC single crystal substrate and a polycrystalline plate composed of Si atoms and C atoms. By separately controlling the heating temperature of a pair of hot plates that sandwich and hold the body, it is possible to secure the necessary temperature difference between the substrate side and the polycrystalline plate side, and when the surrounding environmental temperature changes during the crystal growth process. It is possible to easily and finely adjust and maintain temperature conditions, which are the most important elements for growing a given single crystal, such as temperature control, thereby changing the surrounding environmental temperature, polycrystalline plate and SiC. Irrespective of the variation in the properties of the single crystal substrate, the interface between them is maintained at a temperature suitable for the decomposition and diffusion of Si atoms and C atoms and the rearrangement of these atoms on the surface of the SiC single crystal substrate for single crystallization. It is possible to prevent the micropipe defects caused by the effect of the distortion due to thermal changes to. In addition, heat treatment in a SiC saturated steam
Thinning due to external release of the metal and the intrusion of impurities from the surrounding atmosphere into the interface can be prevented, and the occurrence of crystal defects and the like due to the incorporation of impurities can be prevented. Particularly, a large single crystal can be stably grown.

【0008】上記請求項1に記載の発明に係る単結晶S
iCの育成方法において、多結晶板としては、請求項2
に記載のように、SiC多結晶板、SiCアモルファス
もしくは高純度SiC焼結体のいずれを使用してもよい
が、そのうち特に、請求項3に記載のように、SiC単
結晶基板表面への熱化学的蒸着法(以下、熱CVD法と
称する)により板状に成膜されたものを使用する場合
は、多結晶板自体が不純物の少ない高純度なものである
ことから、界面に結晶粒界などが形成されず、より高純
度、高品質な単結晶SiCを得ることができる。
[0008] The single crystal S according to the first aspect of the present invention.
In the method of growing iC, the polycrystalline plate may be a polycrystalline plate.
As described in the above, any one of a SiC polycrystalline plate, a SiC amorphous or a high-purity SiC sintered body may be used, and particularly, as described in claim 3, the heat applied to the surface of the SiC single crystal substrate. In the case of using a film formed in a plate shape by a chemical vapor deposition method (hereinafter, referred to as a thermal CVD method), since the polycrystalline plate itself has high purity with few impurities, a crystal grain boundary is formed at an interface. Thus, single crystal SiC of higher purity and higher quality can be obtained.

【0009】また、上記請求項4に記載の発明に係る単
結晶SiCの育成装置において、一対の熱盤の構成材料
としては、単結晶化のための加熱温度(2100〜23
00℃)に十分に耐える耐熱温度の高い材料、例えば焼
結カーボンやセラミックスなどが考えられるが、特に、
請求項5に記載のように、焼結カーボンから構成する場
合は、材料コストが安い上に製作も容易で、装置全体の
低廉化が図れる。
In the apparatus for growing single crystal SiC according to the fourth aspect of the present invention, as a constituent material of the pair of hot plates, a heating temperature (2100-23) for single crystallization is used.
(00 ° C.), a material having a high heat resistance enough to withstand such as sintered carbon and ceramics can be considered.
According to the fifth aspect of the present invention, when made of sintered carbon, the material cost is low, the production is easy, and the entire apparatus can be reduced in cost.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図面
にもとづいて説明する。図1は本発明に係る単結晶Si
Cの育成に際して使用される複合体3の説明図であり、
この実施の形態では、SiC単結晶基板として、アチソ
ン法により作られたα−SiC単結晶塊(図示省略)か
ら切り出された平板状の六方晶系(6H型)のα−Si
C単結晶基板1を使用し、このα−SiC単結晶基板1
のC軸方向の(0001)面1a上に、熱CVD法によ
り約1mm厚さのβ−SiC多結晶板2を成膜し、その
β−SiC多結晶板2の表面2aを表面粗度3S程度に
平らに研削したものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a single crystal Si according to the present invention.
FIG. 3 is an explanatory diagram of a composite 3 used for growing C;
In this embodiment, a flat hexagonal (6H type) α-Si cut out from an α-SiC single crystal mass (not shown) formed by the Acheson method is used as a SiC single crystal substrate.
Using the C-single-crystal substrate 1, the α-SiC single-crystal substrate 1
A β-SiC polycrystalline plate 2 having a thickness of about 1 mm is formed on the (0001) plane 1a in the C-axis direction by a thermal CVD method, and the surface 2a of the β-SiC polycrystalline plate 2 has a surface roughness of 3S. It has been ground flat to a degree.

【0011】図2は本発明に係る単結晶SiCの育成装
置を示す概略構成図であり、この育成装置10は、上記
図1に示すような複合体3を挟み込み保持可能で、その
挟み込み状態でβ−SiC多結晶板2の平らな表面(上
面)2a及びα−SiC単結晶基板1の裏面(下面)1
bに密着可能な平滑面4a,5a及び外方へ突出する円
柱状部4b,5bを有する上下一対の熱盤4,5と、こ
れら一対の熱盤4,5における突出円柱状部4b,5b
の外周面に螺旋状に巻回され高周波電源11,12に接
続されて高周波電力の通電量調整によって一対の熱盤
4,5の加熱温度を各別に制御可能とされた高周波誘導
加熱コイル6,7とを備えている。
FIG. 2 is a schematic diagram showing a single crystal SiC growing apparatus according to the present invention. The growing apparatus 10 can sandwich and hold the composite 3 as shown in FIG. Flat surface (upper surface) 2a of β-SiC polycrystalline plate 2 and back surface (lower surface) 1 of α-SiC single crystal substrate 1
b, and a pair of upper and lower heating plates 4 and 5 having smooth surfaces 4a and 5a that can be in close contact with b and cylindrical portions 4b and 5b protruding outward, and projecting cylindrical portions 4b and 5b of the pair of heating plates 4 and 5.
The high-frequency induction heating coils 6, which are helically wound around the outer peripheral surfaces of the pair and connected to the high-frequency power supplies 11 and 12 so that the heating temperatures of the pair of heating plates 4 and 5 can be individually controlled by adjusting the amount of high-frequency power supplied. 7 is provided.

【0012】上記構成の単結晶SiC育成装置10にお
ける一対の熱盤4,5間に、上記複合体3の複数個(図
2では2個の複合体3で示すが、単数であっても、3個
以上であってもよい)を、α−SiC単結晶基板1が下
部の熱盤5側に位置するように挟み込み保持させるとと
もに、複合体3の周囲に小豆ぐらいの大きさのSiC塊
8…を取り囲み配置する。なお、上記一対の熱盤4,5
間の外周部はSiC等の耐熱性の壁材9で囲繞されてお
り、この壁材9と一対の熱盤4,5とにより単結晶育成
空間Sが構成されている。
In the single crystal SiC growing apparatus 10 having the above structure, a plurality of the composites 3 (two composites 3 are shown in FIG. Three or more) may be sandwiched and held so that the α-SiC single-crystal substrate 1 is positioned on the lower hot platen 5 side, and the SiC mass 8 about the size of red beans is surrounded around the complex 3. ... is arranged. In addition, the pair of hot plates 4,5
The outer peripheral portion therebetween is surrounded by a heat-resistant wall material 9 such as SiC, and the wall material 9 and a pair of heating plates 4 and 5 form a single crystal growing space S.

【0013】この状態で、Arなどの不活性ガス気流を
育成空間S内に注入するとともに、高周波誘導加熱コイ
ル6,7への高周波電力の通電に伴う高周波誘導加熱に
よって上部の熱盤4が2200℃、下部の熱盤5が21
50℃で、α−SiC単結晶基板1とβ−SiC多結晶
板2との間に約50℃の温度差がつくように1時間かけ
て平均速度で昇温させ、かつ、その加熱温度で2時間程
度保持させた後、放冷させるといったように、不活性ガ
ス雰囲気中で、かつ、SiC飽和蒸気雰囲気下で熱処理
を施すことにより、β−SiC多結晶板2からSi原子
及びC原子を分解拡散させるとともに、それら拡散した
Si原子及びC原子を低温側のα−SiC単結晶基板1
の表面で該α−SiC単結晶基板1の結晶方位に倣って
再配列させて図3に示すように、β−SiC多結晶板2
の存在箇所にα−SiC単結晶基板1の単結晶部分1´
と一体化されたα−6H−SiC単結晶部分2´を育成
し、所定の単結晶SiC(製品)13を得ることができ
る。
In this state, a flow of an inert gas such as Ar is injected into the growth space S, and the upper heating platen 4200 is formed by high-frequency induction heating accompanying the supply of high-frequency power to the high-frequency induction heating coils 6 and 7. ℃, the lower heating plate 5 is 21
At 50 ° C., the temperature is raised at an average rate over one hour so that a temperature difference of about 50 ° C. is obtained between the α-SiC single crystal substrate 1 and the β-SiC polycrystalline plate 2. After holding for about 2 hours, by performing a heat treatment in an inert gas atmosphere and in a SiC saturated vapor atmosphere such as cooling, Si atoms and C atoms are removed from the β-SiC polycrystalline plate 2. While decomposing and diffusing, the diffused Si and C atoms are converted to the low temperature side α-SiC single crystal substrate 1.
On the surface of the substrate, the β-SiC polycrystalline plate 2 is rearranged in accordance with the crystal orientation of the α-SiC single crystal substrate 1 as shown in FIG.
In the single crystal part 1 ′ of the α-SiC single crystal substrate 1
A single crystal SiC (product) 13 can be obtained by growing the α-6H—SiC single crystal portion 2 ′ integrated with the above.

【0014】上記のように、高周波誘導加熱コイル6,
7への高周波電力の通電量調整に伴い複合体3を挟み込
み保持する一対の熱盤4,5の加熱温度を各別に制御す
ることによって、α−SiC単結晶基板1とβ−SiC
多結晶板2との間に約50℃程度の温度差を確保し、か
つ、結晶成長過程で周辺環境温度が変化したときも同様
にそれぞれの加熱温度を各別にコントロールすることに
よって、周辺環境温度の変化やβ−SiC多結晶板2及
びα−SiC単結晶基板1の性状のばらつきにかかわら
ず、両者の界面をSi原子及びC原子の分解拡散並びに
それら原子のα−SiC単結晶基板1表面での再配列に
適した温度状態に維持することが可能である。また、複
合体3の周囲に小豆ぐらいの大きさのSiC塊8…を取
り囲み配置してSiCの飽和蒸気雰囲気下で熱処理する
ことにより、α−SiC単結晶基板1及びβ−SiC多
結晶板3からのSiの放出が抑制されて、α−SiC単
結晶基板1及びβ−SiC多結晶板3のやせ細りが防止
されると共に、雰囲気から界面への不純物の混入も防止
されるので、結晶成長の途中で、その中に取り込まれる
不純物や熱に起因する歪みによってマイクロパイプ欠陥
や格子欠陥等が発生することもなくなり、高純度、高品
質で、かつ、量的にも安定した大型の単結晶を効率よく
育成することが可能である。
As described above, the high-frequency induction heating coils 6
By controlling the heating temperature of the pair of heating plates 4 and 5 for sandwiching and holding the complex 3 in accordance with the adjustment of the amount of high-frequency power supplied to the α-SiC single crystal substrate 1 and the β-SiC
By maintaining a temperature difference of about 50 ° C. between the polycrystalline plate 2 and the surrounding environment temperature during the crystal growth process, similarly controlling each heating temperature separately, Irrespective of the variation of the properties of the β-SiC polycrystalline plate 2 and the α-SiC single crystal substrate 1, the decomposition and diffusion of Si atoms and C atoms and the surface of the α-SiC single crystal substrate 1 It is possible to maintain a temperature state suitable for rearrangement in the above. .. Around the composite 3 and heat-treated in a saturated steam atmosphere of SiC to obtain the α-SiC single crystal substrate 1 and the β-SiC polycrystal plate 3. Release of Si from the substrate and the thinning of the α-SiC single crystal substrate 1 and the β-SiC polycrystalline plate 3 are prevented, and the intrusion of impurities from the atmosphere to the interface is also prevented. In the middle, micropipe defects and lattice defects do not occur due to distortions caused by impurities or heat introduced therein, and high-purity, high-quality, and quantitatively stable large single crystals are produced. It is possible to grow efficiently.

【0015】特に、上記実施の形態のように、一対の熱
盤4,5間に複数個の複合体3を挟み込み保持させて複
数の単結晶育成を同時に行なうことによって、所定の単
結晶育成による単結晶SiC(製品)の生産性向上を図
ることができる。
In particular, as in the above embodiment, a plurality of composites 3 are sandwiched and held between a pair of hot plates 4 and 5, and a plurality of single crystals are grown at the same time. The productivity of single crystal SiC (product) can be improved.

【0016】なお、上記実施の形態では、上記α−Si
C単結晶基板1として6H型のものを用いたが、4H型
のものを使用してもよい。
In the above embodiment, the α-Si
Although a 6H type substrate is used as the C single crystal substrate 1, a 4H type substrate may be used.

【0017】また、上記実施の形態では、Si原子及び
C原子により構成される多結晶板として、熱CVD法に
より成膜されるβ−SiC多結晶板3を用いたもので説
明したが、これに代えて、高純度(1014atm /cm3
以下)のSiCアモルファス板、高純度SiC焼結体を
熱CVD法による成膜手段でなく、単なる積層手段で使
用しても、上記と同様な高純度、高品質の単結晶SiC
を得ることが可能である。
In the above-described embodiment, the description has been given of the case where the β-SiC polycrystalline plate 3 formed by the thermal CVD method is used as the polycrystalline plate composed of Si atoms and C atoms. Instead of high purity (10 14 atm / cm 3
The following high purity and high quality single-crystal SiC can be obtained by using the SiC amorphous plate and the high-purity SiC sintered body described above in a simple laminating means instead of a film forming means by a thermal CVD method.
It is possible to obtain

【0018】[0018]

【発明の効果】以上のように、請求項1及び請求項4に
記載の発明によれば、SiC単結晶基板と多結晶板とを
積層してなる複合体を挟み込み保持する一対の熱盤の加
熱温度を各別に制御することにより、基板側と多結晶板
側との間で必要な温度差を確保できるとともに、結晶成
長過程で周辺環境温度が変化したときも自在に温度コン
トロールすることができるといったように、所定の単結
晶育成にとって最も重要不可欠な要素となる温度条件を
容易に、かつ、微細に調整し保持することができる。そ
の上、SiC飽和蒸気雰囲気下での熱処理によって、S
iの外部放出によるやせ細り及び周辺雰囲気から界面へ
の不純物の混入も防止することができる。したがって、
周辺環境温度の変化や多結晶板及びSiC単結晶基板の
性状のばらつきにかかわらず、両者の界面をSi原子及
びC原子の分解拡散並びにそれら原子のSiC単結晶基
板表面での再配列による単結晶化に適した温度状態に維
持して熱変化や不純物の混入に起因する歪みの影響でマ
イクロパイプ欠陥や結晶欠陥等を生じることもなく、高
純度、高品質で、かつ、量的にも大型の単結晶を生産性
よく育成させることができ、これによって、Si(シリ
コン)やGaAs(ガリウムヒ素)などの既存の半導体
材料に比べて高温、高周波、耐電圧、耐環境性に優れパ
ワーデバイス用半導体材料として期待されている単結晶
SiCの実用化を促進することができるという効果を奏
する。
As described above, according to the first and fourth aspects of the present invention, a pair of hot plates for sandwiching and holding a composite formed by laminating a SiC single crystal substrate and a polycrystalline plate are held. By controlling the heating temperature separately, the necessary temperature difference between the substrate side and the polycrystalline plate side can be secured, and the temperature can be freely controlled even when the surrounding environment temperature changes during the crystal growth process. As described above, it is possible to easily and finely adjust and hold the temperature condition which is the most important element for growing a predetermined single crystal. In addition, heat treatment in a SiC saturated steam atmosphere allows
It is also possible to prevent thinning due to external release of i and the entry of impurities from the surrounding atmosphere to the interface. Therefore,
Irrespective of changes in the ambient temperature and variations in the properties of the polycrystalline plate and the SiC single-crystal substrate, the interface between the two is decomposed and diffused by Si and C atoms, and the single crystal is formed by rearrangement of these atoms on the surface of the SiC single-crystal substrate. High temperature, high purity, high quality, and large in terms of quantity without generating micropipe defects or crystal defects due to thermal changes or distortion caused by impurity contamination. Single crystal can be grown with high productivity, and as a result, it is excellent in high temperature, high frequency, withstand voltage and environmental resistance compared to existing semiconductor materials such as Si (silicon) and GaAs (gallium arsenide) for power devices. This has the effect of promoting the practical use of single crystal SiC, which is expected as a semiconductor material.

【0019】特に、多結晶板として、SiC単結晶基板
表面への熱CVD法により板状に成膜されたものを使用
する場合は、多結晶板自体が不純物の少ない高純度なも
のであることから、界面に結晶粒界などが形成されず、
単結晶SiCの純度及び品質を一層向上することができ
る。
In particular, when a polycrystalline plate is used which is formed in a plate shape by a thermal CVD method on the surface of a SiC single crystal substrate, the polycrystalline plate itself should be of high purity with few impurities. Therefore, no grain boundaries are formed at the interface,
The purity and quality of single crystal SiC can be further improved.

【0020】また、単結晶SiCの育成装置における一
対の熱盤の構成材料として、焼結カーボンを使用する場
合は、材料コストが安い上に熱盤の製作も容易で、装置
全体の低廉化が図ることができる。
When sintered carbon is used as a constituent material of the pair of hot plates in the single crystal SiC growing device, the material cost is low, the hot plate can be easily manufactured, and the entire device can be reduced in cost. Can be planned.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る単結晶SiCの育成方法に使用さ
れる複合体の説明図である。
FIG. 1 is an explanatory view of a composite used in a method for growing single-crystal SiC according to the present invention.

【図2】本発明に係る単結晶SiCの育成装置の概略構
成図である。
FIG. 2 is a schematic configuration diagram of a single crystal SiC growing apparatus according to the present invention.

【図3】本発明に係る単結晶SiCの育成方法によって
育成された単結晶SiCを示す模式図である。
FIG. 3 is a schematic view showing single crystal SiC grown by the method for growing single crystal SiC according to the present invention.

【符号の説明】[Explanation of symbols]

1 α−SiC単結晶基板 2 β−SiC多結晶板(Si原子とC原子により構成
される板材の一例) 3 複合体 4,5 熱盤 6,7 高周波誘導加熱コイル 10 単結晶SiCの育成装置
REFERENCE SIGNS LIST 1 α-SiC single crystal substrate 2 β-SiC polycrystalline plate (an example of a plate material composed of Si atoms and C atoms) 3 composite 4,5 hot platen 6,7 high frequency induction heating coil 10 single crystal SiC growing device

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G050 AA03 4G077 AA02 AB02 BE08 DA01 ED06 EG15 5F053 AA50 BB58 DD02 FF04 GG01 HH04 LL02 LL10 RR03 RR05 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G050 AA03 4G077 AA02 AB02 BE08 DA01 ED06 EG15 5F053 AA50 BB58 DD02 FF04 GG01 HH04 LL02 LL10 RR03 RR05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一対の熱盤間に、SiC単結晶基板とS
i原子及びC原子により構成された多結晶板とを積層し
てなる複合体を挟み込み保持させるとともに、不活性ガ
ス雰囲気中で、かつ、SiC飽和蒸気雰囲気下で上記一
対の熱盤の加熱温度を上記多結晶板側が高温、SiC単
結晶基板側が低温となるように各別に制御することによ
り、上記多結晶板のSi原子及びC原子を上記SiC単
結晶基板の表面で再配列させてSiC単結晶基板の結晶
方位に倣った単結晶を一体に育成させることを特徴とす
る単結晶SiCの育成方法。
An SIC single crystal substrate and a S plate are interposed between a pair of hot plates.
While holding a composite formed by laminating a polycrystalline plate composed of i-atoms and C-atoms, the heating temperature of the pair of hot plates is increased in an inert gas atmosphere and in a SiC saturated steam atmosphere. The SiC single crystal is rearranged on the surface of the SiC single crystal substrate by individually controlling the polycrystal plate side to be at a high temperature and the SiC single crystal substrate side at a low temperature. A method for growing single crystal SiC, wherein a single crystal following the crystal orientation of a substrate is grown integrally.
【請求項2】 上記多結晶板として、SiC多結晶板、
SiCアモルファスもしくは高純度SiC焼結体の中か
ら選択された一種を使用する請求項1に記載の単結晶S
iCの育成方法。
2. The method according to claim 1, wherein the polycrystalline plate is a SiC polycrystalline plate.
The single crystal S according to claim 1, wherein one kind selected from SiC amorphous or high-purity SiC sintered body is used.
How to grow iC.
【請求項3】 上記SiC多結晶板が、SiC単結晶基
板表面への熱化学的蒸着法により板状に成膜されたもの
である請求項2に記載の単結晶SiCの育成方法。
3. The method of growing a single-crystal SiC according to claim 2, wherein the SiC polycrystalline plate is formed in a plate shape by a thermochemical vapor deposition method on a surface of a SiC single-crystal substrate.
【請求項4】 SiC単結晶基板とSi原子及びC原子
により構成された多結晶板とを積層してなる複合体を挟
み込み保持可能な一対の熱盤と、 これら一対の熱盤の加熱温度を各別に制御可能な高周波
誘導加熱コイルとを備え、 上記一対の熱盤間に複合体を挟み込み保持させるととも
に、不活性ガス雰囲気中で、かつ、SiC飽和蒸気雰囲
気下で、高周波誘導加熱コイルを介して一対の熱盤の加
熱温度を多結晶板側が高温、SiC単結晶基板側が低温
となるように制御することによって上記多結晶板のSi
原子及びC原子を上記SiC単結晶基板の表面で再配列
させてSiC単結晶基板の結晶方位に倣った単結晶を一
体に育成可能に構成したことを特徴とする単結晶SiC
の育成装置。
4. A pair of hot plates capable of sandwiching and holding a composite formed by laminating a SiC single crystal substrate and a polycrystalline plate composed of Si atoms and C atoms, and a heating temperature of the pair of hot plates. A high-frequency induction heating coil that can be controlled separately. The composite is sandwiched and held between the pair of hot plates, and is passed through the high-frequency induction heating coil in an inert gas atmosphere and in a SiC saturated steam atmosphere. By controlling the heating temperature of the pair of hot plates so that the temperature of the polycrystalline plate is high and the temperature of the SiC single crystal substrate is low,
A single crystal SiC characterized in that atoms and C atoms are rearranged on the surface of the SiC single crystal substrate so that a single crystal following the crystal orientation of the SiC single crystal substrate can be integrally grown.
Breeding equipment.
【請求項5】 上記一対の熱盤が、焼結カーボンから構
成されている請求項4に記載の単結晶SiCの育成装
置。
5. The single crystal SiC growing apparatus according to claim 4, wherein said pair of hot plates are made of sintered carbon.
JP10223301A 1998-08-06 1998-08-06 Method and apparatus for growing single crystal SiC Expired - Fee Related JP2936479B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10223301A JP2936479B1 (en) 1998-08-06 1998-08-06 Method and apparatus for growing single crystal SiC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10223301A JP2936479B1 (en) 1998-08-06 1998-08-06 Method and apparatus for growing single crystal SiC

Publications (2)

Publication Number Publication Date
JP2936479B1 JP2936479B1 (en) 1999-08-23
JP2000053500A true JP2000053500A (en) 2000-02-22

Family

ID=16796011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10223301A Expired - Fee Related JP2936479B1 (en) 1998-08-06 1998-08-06 Method and apparatus for growing single crystal SiC

Country Status (1)

Country Link
JP (1) JP2936479B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088734A1 (en) * 2003-03-10 2004-10-14 Kwansei Gakuin Educational Foundation Method of heat treatment and heat treatment apparatus
JP2004297034A (en) * 2003-03-10 2004-10-21 Kwansei Gakuin Thermal treatment equipment and thermal treatment method using the same
JP2004292305A (en) * 2003-03-10 2004-10-21 New Industry Research Organization Liquid phase epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used for the method
JP2006041544A (en) * 2003-03-10 2006-02-09 Kwansei Gakuin Heat treatment method and heat treatment device
WO2020195196A1 (en) * 2019-03-27 2020-10-01 日本碍子株式会社 Sic composite substrate and composite substrate for semiconductor device
WO2020195197A1 (en) * 2019-03-27 2020-10-01 日本碍子株式会社 Sic composite substrate and composite substrate for semiconductor device
WO2021100564A1 (en) * 2019-11-20 2021-05-27 日本碍子株式会社 Sic substrate and method for manufacturing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088734A1 (en) * 2003-03-10 2004-10-14 Kwansei Gakuin Educational Foundation Method of heat treatment and heat treatment apparatus
JP2004297034A (en) * 2003-03-10 2004-10-21 Kwansei Gakuin Thermal treatment equipment and thermal treatment method using the same
JP2004292305A (en) * 2003-03-10 2004-10-21 New Industry Research Organization Liquid phase epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used for the method
JP2006041544A (en) * 2003-03-10 2006-02-09 Kwansei Gakuin Heat treatment method and heat treatment device
JP4593099B2 (en) * 2003-03-10 2010-12-08 学校法人関西学院 Liquid crystal epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used therefor
WO2020195196A1 (en) * 2019-03-27 2020-10-01 日本碍子株式会社 Sic composite substrate and composite substrate for semiconductor device
WO2020195197A1 (en) * 2019-03-27 2020-10-01 日本碍子株式会社 Sic composite substrate and composite substrate for semiconductor device
JPWO2020195196A1 (en) * 2019-03-27 2021-10-28 日本碍子株式会社 SiC composite substrate and composite substrate for semiconductor devices
JPWO2020195197A1 (en) * 2019-03-27 2021-10-28 日本碍子株式会社 SiC composite substrate and composite substrate for semiconductor devices
JP7177248B2 (en) 2019-03-27 2022-11-22 日本碍子株式会社 SiC composite substrate and composite substrate for semiconductor devices
JP7372312B2 (en) 2019-03-27 2023-10-31 日本碍子株式会社 SiC composite substrate and composite substrate for semiconductor devices
WO2021100564A1 (en) * 2019-11-20 2021-05-27 日本碍子株式会社 Sic substrate and method for manufacturing same

Also Published As

Publication number Publication date
JP2936479B1 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
KR100287792B1 (en) SINGLE CRYSTAL SiC AND PROCESS FOR PREPARING THE SAME
US5746827A (en) Method of producing large diameter silicon carbide crystals
JP3043689B2 (en) Single crystal SiC and method for producing the same
JP2008509872A (en) Seed crystal and seed crystal holder for high quality growth of large silicon carbide single crystals
JP3254559B2 (en) Single crystal SiC and method for producing the same
JP2884085B1 (en) Single crystal SiC and method for producing the same
JPH0791153B2 (en) Method for producing α-SiC single crystal
WO1998053125A1 (en) Single crystal silicon carbide and process for preparing the same
JP2936479B1 (en) Method and apparatus for growing single crystal SiC
JP4052678B2 (en) Large silicon carbide single crystal growth equipment
JP3248071B2 (en) Single crystal SiC
US6436186B1 (en) Material for raising single crystal SiC and method of preparing single crystal SiC
US6143267A (en) Single crystal SiC and a method of producing the same
JP3254557B2 (en) Single crystal SiC and method for producing the same
JP2917143B1 (en) Single crystal SiC and method for producing the same
JP2896667B1 (en) Single crystal SiC and method for producing the same
JP2936481B1 (en) Single crystal SiC and method for producing the same
JP2946418B1 (en) Single crystal SiC and method for producing the same
JP2680617B2 (en) Method for growing silicon carbide single crystal
JP3087030B2 (en) SiC composite, method for producing the same, and single crystal SiC
JP2964080B1 (en) Single crystal SiC and method for producing the same
JP2939615B2 (en) Single crystal SiC and method for producing the same
JP3043687B2 (en) Single crystal SiC and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees