JP4591738B2 - Silicon nitride sintered body - Google Patents

Silicon nitride sintered body Download PDF

Info

Publication number
JP4591738B2
JP4591738B2 JP2001096497A JP2001096497A JP4591738B2 JP 4591738 B2 JP4591738 B2 JP 4591738B2 JP 2001096497 A JP2001096497 A JP 2001096497A JP 2001096497 A JP2001096497 A JP 2001096497A JP 4591738 B2 JP4591738 B2 JP 4591738B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
nitride sintered
room temperature
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001096497A
Other languages
Japanese (ja)
Other versions
JP2002293641A (en
Inventor
繁幸 濱吉
寿之 今村
昌久 祖父江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001096497A priority Critical patent/JP4591738B2/en
Publication of JP2002293641A publication Critical patent/JP2002293641A/en
Application granted granted Critical
Publication of JP4591738B2 publication Critical patent/JP4591738B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、窒化ケイ素を主成分する窒化ケイ素質焼結体に係り、特に高密度、高強度、高熱伝導率で絶縁基板および回路基板として用いるのに好適な窒化ケイ素質焼結体に関する。
【0002】
【従来の技術】
窒化ケイ素質焼結体は、強度や靭性に優れるため各種機械部品に用いられるほか、高い絶縁性を利用して電気絶縁材料にも適用されている。従来の電気絶縁セラミックスとして、酸化アルミニウム、窒化アルミニウムなどがある。酸化アルミニウムは熱伝導率が低いため、近年特に発展の著しいパワー半導体などへの適用に対して放熱性が不足する問題がある。また、窒化アルミニウムは熱伝導率が高く放熱性に優れるが、機械的強度や破壊靭性が低いため、モジュールの組み立て工程での締め付け工程で割れを生じたり、半導体素子を実装した回路基板では半導体素子との熱膨張差に起因して熱サイクルによりクラックや割れを生じ実装信頼性が低下する問題がある。
【0003】
そこで、電気絶縁セラミックスとして強度および靭性に優れる窒化ケイ素を利用した種々の提案がある。例えば、特開平4−175268号には焼結体密度が3.15g/cm3以上で、熱伝導率が40W/(m・K)以上の窒化ケイ素質焼結体が記載されている。また、特開平11−100276号には破壊靭性が6MPa√m以上、熱伝導率が60W/(m・K)の窒化ケイ素質焼結体が記載されている。
【0004】
【発明が解決しようとする課題】
しかしながら、これら従来の窒化ケイ素質焼結体は近年益々発熱量が増大する半導体モジュールに対しては熱伝導率が不足しがちであり、特に動作中の高温域まで放熱性を安定に確保することがより一層望まれている。本発明はかかる事情に鑑み、高密度、高強度、高熱伝導の窒化ケイ素質焼結体を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の窒化ケイ素質焼結体は、窒化ケイ素粉末に焼結助剤として酸化物、窒化物または酸窒化物の1種以上を6wt%以下添加して得られた窒化ケイ素質焼結体であって、焼結助剤として酸化マグネシウムおよび酸化イットリウムを4〜6wt%添加し、その添加量が重量比で酸化マグネシウム/酸化イットリウム≦3.0を満足し、相対密度が97%以上であり、窒化ケイ素質焼結体の切断面を観察したとき、柱状のβ型窒化ケイ素粒子の内、長軸の長さが10μmを超えるものが、1mm 当たりに20000個以下であり、熱伝導率が室温において75W/(m・K)以上、室温から200℃までにおいて45W/(m・K)以上であり、3点曲げ強度が室温において800MPa以上であることを特徴とする。
【0009】
【作用】
窒化ケイ素質焼結体は、その内部に存在する異なるイオンによるフォノン散乱により熱伝導率が低下する。また、窒化ケイ素質焼結体は、窒化ケイ素粒子相とその粒界相とから構成され、この粒界相量が増えるにしたがい熱伝導率が低下する。また、窒化ケイ素質焼結体内に残存する気孔は熱伝導率を低下させるので緻密な焼結体であることが必要である。このため、窒化ケイ素質焼結体が室温において75W/(m・K)以上、室温から200℃までにおいて45W/(m・K)以上の高熱伝導率を得るためには、窒化ケイ素粉末に焼結助剤として酸化物、窒化物または酸窒化物の1種以上を6wt%以下、焼結助剤として酸化マグネシウムおよび酸化イットリウムを4wt%以上、6wt%以下でその添加量が重量比で、酸化マグネシウム/酸化イットリウム≦3.0を満足するように添加した後、相対密度が97%以上の焼結体にする。
【0010】
また、窒化ケイ素質焼結体中の窒化ケイ素粒子の性状を最適化することにより曲げ強度を高めることができる。本発明の窒化ケイ素質焼結体のミクロ組織は、マトリックスに良熱伝導体である粒子の長軸長さが10μm以上である柱状のβ型窒化ケイ素粒子を含んでいる。走査型電子顕微鏡等で窒化ケイ素質焼結体の切断面を観察したとき、柱状のβ型窒化ケイ素粒子の内、長軸の長さが10μmを超えるものが、1mm2当たりに20000個を超える場合、組織中に導入されたこの粗大粒子が破壊の起点として作用するために破壊靭性が大きく低下し、室温における3点曲げ強度が800MPa未満となり不十分である。
【0011】
【発明の実施の形態】
第1の実施例
焼結助剤として平均粒子径0.2μmの酸化マグネシウム(MgO)粉末、平均粒子径0.3μmの酸化イットリウム(Y23)粉末を用意した。ついで、平均粒子径0.5μmの窒化ケイ素(Si34)粉末に前記焼結助剤を所定量添加し、エタノール中でボールミルなどを用いて粉砕、混合を行った。そして、真空乾燥後、篩いを通して造粒し、得られた混合粉末をCIP成形またはシート成形により成形し成形体を得た。さらに、得られた成形体を1700〜2000℃、9〜2000気圧の窒素ガス雰囲気中で焼結し、数種類の窒化ケイ素質焼結体を作製した。
【0012】
得られた窒化ケイ素質焼結体から、直径10mm×厚さ3mmの熱伝導率および密度測定用の試験片、縦3mm×横4mm×長さ40mmの3点曲げ試験片を採取した。熱伝導率はレーザーフラッシュ法により室温で測定した。密度はアルキメデス法により窒化ケイ素質焼結体の真密度を配合組成から求め、測定値を真密度で除することにより相対密度を求めた。3点曲げ強度は室温で3点抗折試験を行い測定した。
【0013】
また、SEMを用いて倍率500倍にて、窒化ケイ素質焼結体の切断面の1mm2の領域を任意に3箇所観察し、その領域中に存在する長軸の長さが10μmを超える柱状のβ型窒化ケイ素粒子の個数を調べ、その平均値を求めた。
【0014】
その測定結果を表1および表2に示す。表1および表2において、試料No.1〜7は本発明例であり、試料No.11〜16は比較例であり、室温での曲げ強度とは3点曲げ強度、粗大粒子個数とは窒化ケイ素質焼結体の切断面の1mm2の領域において、粒子の長軸の長さが10μmを超えるβ型窒化ケイ素粒子の個数を表わす。
【0015】
【表1】

Figure 0004591738
【0016】
【表2】
Figure 0004591738
【0017】
表1および表2の結果から、本発明例は、焼結助剤の酸化マグネシウムおよび酸化イットリウムの合計添加量が4wt%以上、6wt%以下で、その添加量が重量比で、酸化マグネシウム/酸化イットリウム≦3.0を満足する。さらに、窒化ケイ素質焼結体内の長軸の長さが10μmを超える柱状のβ型窒化ケイ素粒子が1mm2当たりに20000個以下含まれ、相対密度が97%以上であるため、室温において熱伝導率が75W/(m・K)以上、3点曲げ強度が800MPa以上を得ることができた。
【0018】
また、図1は本発明例(試料No.6)の窒化ケイ素質焼結体における室温から200℃までの熱伝導率の変化を示す。本発明例では、熱伝導率が室温において83W/(m・K)、100℃において74W/(m・K)、200℃において62W/(m・K)であり、絶縁基板などで通常使用される約200℃の温度域まで高い熱伝導率を確保し、安定した放熱性を発揮できる。本発明の窒化ケイ素質焼結体は、室温から200℃までにおいて熱伝導率が45W/(m・K)以上であることが好ましい。より好ましくは、室温から200℃までにおいて熱伝導率が50W/(m・K)以上である。
【0019】
第2の実施例
窒化ケイ素粉末に所定量の焼結助剤を添加した混合粉末を、アミン系の分散剤を所定量添加したトルエン・ブタノール溶液中に挿入し、樹脂製ポットならびに窒化ケイ素製ボールを加え24時間湿式混合した後、結合剤および可塑剤を加え更に24時間混合して成形用スラリーを得た。この成形用スラリーを粘度調整した後、ドクターブレード法によりグリーンシートを作製した。次に、得られたグリーンシートを空気中、400〜600℃で1〜2時間加熱し、予め添加していた有機バインダー成分を除去した。そして、このシートを所定の条件で焼成し、本発明の特徴を有する窒化ケイ素質焼結体を得た。この窒化ケイ素質焼結体を機械加工し、寸法50mm×50mm×厚さ0.8mmの半導体装置用絶縁基板を製造した。
【0020】
この窒化ケイ素質焼結体製絶縁基板を用いて、図2に示すような回路基板を作製した。図2において、本発明例の回路基板1は窒化ケイ素質焼結体製絶縁基板2の表面に銅回路板3を裏面に銅板4をろう材5により接合して構成される。
【0021】
得られた本発明の回路基板に対して耐熱サイクル試験を行った。耐熱サイクル試験は、−40℃での冷却を20分、室温での保持を10分及び180℃における加熱を20分とする昇温・降温サイクルを1サイクルとし、これを繰り返し付与し、基板部に亀裂などが発生するまでのサイクル数を測定した。その結果、1000サイクル経過後においても、窒化ケイ素質焼結体製基板に亀裂など発生せず、耐久性に優れることが確認できた。
【0022】
【発明の効果】
本発明の窒化ケイ素質焼結体は、高強度・高靭性に加え高い熱伝導率が付与されるため、半導体素子用絶縁基板として用いた場合、耐久性に優れた基板材料となる。また、高強度と高熱伝導率を両立できるため、耐熱衝撃性が必要とされる機械構造部品にも適用できる。
【図面の簡単な説明】
【図1】本発明例の窒化ケイ素質焼結体の室温から200℃までの熱伝導率の変化を示す。
【図2】本発明例の窒化ケイ素質焼結体製回路基板の断面図を示す。
【符号の説明】
1 回路基板 、2 基板、3 銅回路板、4 銅板、 5 ろう材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silicon nitride sintered body containing silicon nitride as a main component, and more particularly to a silicon nitride sintered body suitable for use as an insulating substrate and a circuit board with high density, high strength, and high thermal conductivity.
[0002]
[Prior art]
The silicon nitride sintered body is used for various machine parts because of its excellent strength and toughness, and is also applied to an electrical insulating material by utilizing high insulation. Conventional electrical insulating ceramics include aluminum oxide and aluminum nitride. Since aluminum oxide has a low thermal conductivity, there is a problem that heat dissipation is insufficient for application to power semiconductors and the like that have been particularly developed in recent years. Aluminum nitride has high thermal conductivity and excellent heat dissipation, but its mechanical strength and fracture toughness are low. Therefore, cracking occurs in the tightening process in the module assembly process, and in the circuit board on which the semiconductor element is mounted, the semiconductor element There is a problem that the mounting reliability is lowered due to cracks and cracks caused by the thermal cycle due to the difference in thermal expansion.
[0003]
Therefore, there are various proposals using silicon nitride having excellent strength and toughness as the electrically insulating ceramic. For example, JP-A-4-175268 describes a silicon nitride sintered body having a sintered body density of 3.15 g / cm 3 or more and a thermal conductivity of 40 W / (m · K) or more. JP-A-11-100300 describes a silicon nitride sintered body having a fracture toughness of 6 MPa√m or more and a thermal conductivity of 60 W / (m · K).
[0004]
[Problems to be solved by the invention]
However, these conventional silicon nitride-based sintered bodies tend to have insufficient thermal conductivity for semiconductor modules that have been increasing in calorific value in recent years, and in particular, ensure stable heat dissipation even at high temperatures during operation. Is even more desirable. In view of such circumstances, an object of the present invention is to provide a silicon nitride sintered body having high density, high strength, and high thermal conductivity.
[0005]
[Means for Solving the Problems]
The silicon nitride sintered body of the present invention is a silicon nitride sintered body obtained by adding 6 wt% or less of one or more of oxide, nitride or oxynitride as a sintering aid to silicon nitride powder. In addition, 4 to 6 wt% of magnesium oxide and yttrium oxide are added as sintering aids, the addition amount satisfies magnesium oxide / yttrium oxide ≦ 3.0 by weight ratio, and the relative density is 97% or more, When the cut surface of the silicon nitride sintered body is observed, among the β-type silicon nitride particles in the columnar shape, the number of major axes exceeding 10 μm is 20000 or less per 1 mm 2 , and the thermal conductivity is 75 W / (m · K) or more at room temperature, 45 W / (m · K) or more from room temperature to 200 ° C., and three-point bending strength is 800 MPa or more at room temperature .
[0009]
[Action]
The thermal conductivity of the silicon nitride sintered body is lowered due to phonon scattering caused by different ions existing in the silicon nitride sintered body. Further, the silicon nitride sintered body is composed of a silicon nitride particle phase and its grain boundary phase, and the thermal conductivity decreases as the amount of the grain boundary phase increases. Moreover, since the pores remaining in the silicon nitride sintered body lower the thermal conductivity, it is necessary to be a dense sintered body. Therefore, in order to obtain a high thermal conductivity of a silicon nitride sintered body of 75 W / (m · K) or more at room temperature and 45 W / (m · K) or more from room temperature to 200 ° C., the silicon nitride powder is sintered to a silicon nitride powder. oxide as sintering aid, 6 wt% or less under at least one of nitride or oxynitride, magnesium oxide and oxidation yttrium 4 wt% or more as a sintering aid, the amount added is by weight or less 6 wt% After adding so as to satisfy the ratio of magnesium oxide / yttrium oxide ≦ 3.0, a sintered body having a relative density of 97% or more is obtained.
[0010]
Further, the bending strength can be increased by optimizing the properties of the silicon nitride particles in the silicon nitride sintered body. The microstructure of the silicon nitride sintered body of the present invention includes columnar β-type silicon nitride particles in which the major axis length of the particles that are good heat conductors is 10 μm or more in the matrix. When the cut surface of the silicon nitride sintered body is observed with a scanning electron microscope or the like, the number of columnar β-type silicon nitride particles whose major axis exceeds 10 μm exceeds 20000 per 1 mm 2. In this case, since the coarse particles introduced into the structure act as a starting point of fracture, fracture toughness is greatly reduced, and the three-point bending strength at room temperature is less than 800 MPa, which is insufficient.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
First Example Magnesium oxide (MgO) powder having an average particle size of 0.2 μm and yttrium oxide (Y 2 O 3 ) powder having an average particle size of 0.3 μm were prepared as sintering aids. Next, a predetermined amount of the sintering aid was added to silicon nitride (Si 3 N 4 ) powder having an average particle diameter of 0.5 μm, and pulverized and mixed in ethanol using a ball mill or the like. And after vacuum-drying, it granulated through a sieve and the obtained mixed powder was shape | molded by CIP shaping | molding or sheet shaping | molding, and the molded object was obtained. Furthermore, the obtained molded body was sintered in a nitrogen gas atmosphere at 1700 to 2000 ° C. and 9 to 2000 atmospheres to prepare several types of silicon nitride sintered bodies.
[0012]
From the obtained silicon nitride sintered body, a test piece for measuring thermal conductivity and density having a diameter of 10 mm × thickness of 3 mm and a three-point bending test piece having a length of 3 mm × width of 4 mm × length of 40 mm were collected. The thermal conductivity was measured at room temperature by the laser flash method. For the density, the true density of the silicon nitride sintered body was obtained from the blend composition by the Archimedes method, and the relative density was obtained by dividing the measured value by the true density. The three-point bending strength was measured by performing a three-point bending test at room temperature.
[0013]
In addition, using a SEM, at a magnification of 500 times, arbitrarily observe three 1 mm 2 regions of the cut surface of the silicon nitride sintered body, and the length of the long axis existing in the region exceeds 10 μm. The number of β-type silicon nitride particles was determined, and the average value was determined.
[0014]
The measurement results are shown in Tables 1 and 2. In Table 1 and Table 2, Sample No. 1 to 7 are examples of the present invention. Reference numerals 11 to 16 are comparative examples. The bending strength at room temperature is a three-point bending strength, and the number of coarse particles is the length of the major axis of the particle in the 1 mm 2 region of the cut surface of the silicon nitride sintered body. This represents the number of β-type silicon nitride particles exceeding 10 μm.
[0015]
[Table 1]
Figure 0004591738
[0016]
[Table 2]
Figure 0004591738
[0017]
From the results of Tables 1 and 2, the present invention example shows that the total addition amount of the sintering auxiliary magnesium oxide and yttrium oxide is 4 wt% or more and 6 wt% or less, and the addition amount is in the weight ratio, magnesium oxide / oxidation. Yttrium ≦ 3.0 is satisfied. Further, since 20000 or less columnar β-type silicon nitride particles having a long axis exceeding 10 μm in the sintered body of silicon nitride are contained per 1 mm 2 and the relative density is 97% or more, heat conduction is performed at room temperature. The rate was 75 W / (m · K) or more, and the three-point bending strength was 800 MPa or more.
[0018]
1 shows a change in thermal conductivity from room temperature to 200 ° C. in the silicon nitride sintered body of the present invention example (sample No. 6). In the example of the present invention, the thermal conductivity is 83 W / (m · K) at room temperature, 74 W / (m · K) at 100 ° C., and 62 W / (m · K) at 200 ° C., which is usually used for insulating substrates. High thermal conductivity can be secured up to a temperature range of about 200 ° C., and stable heat dissipation can be exhibited. The silicon nitride sintered body of the present invention preferably has a thermal conductivity of 45 W / (m · K) or more from room temperature to 200 ° C. More preferably, the thermal conductivity is 50 W / (m · K) or more from room temperature to 200 ° C.
[0019]
Second Embodiment A mixed powder obtained by adding a predetermined amount of a sintering aid to silicon nitride powder is inserted into a toluene / butanol solution containing a predetermined amount of an amine-based dispersant, and a resin pot and a silicon nitride ball Was added and wet mixed for 24 hours, and then a binder and a plasticizer were added and further mixed for 24 hours to obtain a molding slurry. After adjusting the viscosity of this molding slurry, a green sheet was prepared by the doctor blade method. Next, the obtained green sheet was heated in air at 400 to 600 ° C. for 1 to 2 hours to remove the organic binder component added in advance. And this sheet | seat was baked on predetermined conditions, and the silicon nitride sintered body which has the characteristics of this invention was obtained. This silicon nitride sintered body was machined to produce an insulating substrate for a semiconductor device having dimensions of 50 mm × 50 mm × thickness 0.8 mm.
[0020]
A circuit board as shown in FIG. 2 was produced using this insulating substrate made of a silicon nitride sintered body. In FIG. 2, a circuit board 1 according to an example of the present invention is configured by bonding a copper circuit board 3 to the surface of an insulating substrate 2 made of a silicon nitride sintered body and a copper plate 4 to the back surface by a brazing material 5.
[0021]
The heat resistance cycle test was done with respect to the obtained circuit board of this invention. In the heat cycle test, a temperature increase / decrease cycle in which cooling at −40 ° C. is 20 minutes, holding at room temperature is 10 minutes, and heating at 180 ° C. is 20 minutes is one cycle. The number of cycles until cracks and the like were generated was measured. As a result, even after 1000 cycles, it was confirmed that the silicon nitride sintered body substrate did not crack and was excellent in durability.
[0022]
【The invention's effect】
Since the silicon nitride sintered body of the present invention is provided with high thermal conductivity in addition to high strength and high toughness, when used as an insulating substrate for semiconductor elements, it becomes a substrate material with excellent durability. Moreover, since both high strength and high thermal conductivity can be achieved, it can also be applied to mechanical structural parts that require thermal shock resistance.
[Brief description of the drawings]
FIG. 1 shows a change in thermal conductivity from room temperature to 200 ° C. of a silicon nitride sintered body of an example of the present invention.
FIG. 2 is a cross-sectional view of a circuit board made of a sintered silicon nitride material according to an example of the present invention.
[Explanation of symbols]
1 circuit board 2 board 3 copper circuit board 4 copper board 5 brazing material

Claims (2)

窒化ケイ素粉末に焼結助剤として酸化物、窒化物または酸窒化物の1種以上を6wt%以下添加して得られた窒化ケイ素質焼結体であって、A silicon nitride sintered body obtained by adding 6 wt% or less of one or more of oxide, nitride or oxynitride as a sintering aid to silicon nitride powder,
焼結助剤として酸化マグネシウムおよび酸化イットリウムを4〜6wt%添加し、その添加量が重量比で酸化マグネシウム/酸化イットリウム≦3.0を満足し、相対密度が97%以上であり、4-6 wt% of magnesium oxide and yttrium oxide are added as sintering aids, the addition amount satisfies magnesium oxide / yttrium oxide ≦ 3.0 by weight ratio, and the relative density is 97% or more,
窒化ケイ素質焼結体の切断面を観察したとき、柱状のβ型窒化ケイ素粒子の内、長軸の長さが10μmを超えるものが、1mmWhen the cut surface of the silicon nitride-based sintered body is observed, among the columnar β-type silicon nitride particles, the one whose major axis exceeds 10 μm is 1 mm. 2 当たりに20000個以下であり、Per 20,000 or less,
熱伝導率が室温において75W/(m・K)以上、室温から200℃までにおいて45W/(m・K)以上であり、The thermal conductivity is 75 W / (m · K) or more at room temperature, 45 W / (m · K) or more from room temperature to 200 ° C.,
3点曲げ強度が室温において800MPa以上であることを特徴とする窒化ケイ素質焼結体。A silicon nitride-based sintered body having a three-point bending strength of 800 MPa or more at room temperature.
請求項に記載の窒化ケイ素質焼結体を用いたことを特徴とする絶縁基板および回路基板。An insulating substrate and a circuit board using the silicon nitride sintered body according to claim 1 .
JP2001096497A 2001-03-29 2001-03-29 Silicon nitride sintered body Expired - Lifetime JP4591738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001096497A JP4591738B2 (en) 2001-03-29 2001-03-29 Silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001096497A JP4591738B2 (en) 2001-03-29 2001-03-29 Silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JP2002293641A JP2002293641A (en) 2002-10-09
JP4591738B2 true JP4591738B2 (en) 2010-12-01

Family

ID=18950404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001096497A Expired - Lifetime JP4591738B2 (en) 2001-03-29 2001-03-29 Silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP4591738B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6909120B2 (en) * 2017-09-19 2021-07-28 株式会社Maruwa Silicon Nitride Sintered Substrate, Electronic Equipment, and Silicon Nitride Sintered Substrate Manufacturing Method
JPWO2020203683A1 (en) * 2019-03-29 2020-10-08
CN112811922B (en) * 2021-01-20 2021-11-02 中国科学院上海硅酸盐研究所 Silicon nitride ceramic substrate of copper-clad plate and preparation method thereof
JP7408884B1 (en) 2022-03-10 2024-01-05 デンカ株式会社 Silicon nitride sintered body and sintering aid powder
JP7401718B1 (en) 2022-03-10 2023-12-19 デンカ株式会社 Silicon nitride sintered body and sintering aid powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128052A (en) * 1992-10-19 1994-05-10 Honda Motor Co Ltd Sintered compact of silicon nitride and its production
JPH0930866A (en) * 1995-07-21 1997-02-04 Nissan Motor Co Ltd Siliceous nitride sintered compact having high thermal conductivity, its production and insulating base made of siliceous nitride sintered compact

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128052A (en) * 1992-10-19 1994-05-10 Honda Motor Co Ltd Sintered compact of silicon nitride and its production
JPH0930866A (en) * 1995-07-21 1997-02-04 Nissan Motor Co Ltd Siliceous nitride sintered compact having high thermal conductivity, its production and insulating base made of siliceous nitride sintered compact

Also Published As

Publication number Publication date
JP2002293641A (en) 2002-10-09

Similar Documents

Publication Publication Date Title
JP5850031B2 (en) Silicon nitride sintered body, silicon nitride circuit board, and semiconductor module
JP5673106B2 (en) Method for manufacturing silicon nitride substrate, silicon nitride substrate, silicon nitride circuit substrate, and semiconductor module
KR102139194B1 (en) Production method of nitride ceramics active metal brazing substrate
JP2008063187A (en) Silicon nitride sintered compact, ceramic substrate for heat dissipation and insulation, circuit board for heat dissipation and insulation and module for heat dissipation and insulation
JP6496092B1 (en) Aluminum nitride sintered body and semiconductor holding device
CN111902383B (en) Composite sintered body, semiconductor manufacturing apparatus component, and method for manufacturing composite sintered body
JPWO2019235593A1 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JPWO2019235594A1 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
KR20170101782A (en) Ceramic structure, method for manufacturing the same, and member for semiconductor manufacturing apparatus
JP4571728B2 (en) Silicon nitride sintered body and manufacturing method thereof
JP5667045B2 (en) Aluminum nitride substrate, aluminum nitride circuit substrate, and semiconductor device
JP4591738B2 (en) Silicon nitride sintered body
JP4529102B2 (en) High thermal conductivity silicon nitride sintered body and manufacturing method thereof
JP2003313079A (en) Silicon nitride-based sintered compact, method of producing the same, and circuit board using the sintered compact
KR102565344B1 (en) Aluminium nitride ceramics composition and manufacturing method thereof
WO2020203683A1 (en) Silicon nitride sintered body, method for producing same, multilayer body and power module
JP4859267B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JPH11100274A (en) Silicon nitride sintered compact, its production and circuit board
JP2002029851A (en) Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JP4348659B2 (en) High thermal conductivity silicon nitride sintered body, substrate using the same, circuit board for semiconductor device
KR102047662B1 (en) Method of manufacturing new silicon nitride powder
JP4761617B2 (en) Aluminum nitride sintered body, method for producing the same, and electronic component using the same
JP5073135B2 (en) Aluminum nitride sintered body, production method and use thereof
JP3683067B2 (en) Aluminum nitride sintered body
JP4332828B2 (en) High thermal conductivity silicon nitride sintered body, substrate using the same, circuit board for semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4591738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term