JP2008063187A - Silicon nitride sintered compact, ceramic substrate for heat dissipation and insulation, circuit board for heat dissipation and insulation and module for heat dissipation and insulation - Google Patents

Silicon nitride sintered compact, ceramic substrate for heat dissipation and insulation, circuit board for heat dissipation and insulation and module for heat dissipation and insulation Download PDF

Info

Publication number
JP2008063187A
JP2008063187A JP2006242809A JP2006242809A JP2008063187A JP 2008063187 A JP2008063187 A JP 2008063187A JP 2006242809 A JP2006242809 A JP 2006242809A JP 2006242809 A JP2006242809 A JP 2006242809A JP 2008063187 A JP2008063187 A JP 2008063187A
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride sintered
sintered body
insulation
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006242809A
Other languages
Japanese (ja)
Inventor
Sadahiro Yamamoto
禎広 山元
Yasushi Hara
康 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2006242809A priority Critical patent/JP2008063187A/en
Publication of JP2008063187A publication Critical patent/JP2008063187A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silicon nitride sintered compact which has high sinterability, high compactness and high thermal conductivity without adjusting the firing environment, and a ceramic substrate for heat dissipation and insulation, a ceramic circuit board for heat dissipation and insulation and a module for heat dissipation and insulation which are obtained using the silicon nitride sintered compact and have high heat dissipation properties. <P>SOLUTION: The silicon nitride sintered compact contains Si<SB>3</SB>N<SB>4</SB>at 85-90 mol%, a light rare-earth element at 1-5 mol% in terms of an oxide, a heavy rare-earth element and/or Y at 1-5 mol% in terms of an oxide and Sr at 3-13 mol% in terms of an oxide, provided that its peak intensity ratio S1/S2 is <0.1 when the peak intensity of silicon at a frequency of 521±2 cm<SP>-1</SP>in Raman spectroscopic analysis is defined as S1 and the peak intensity of silicon nitride near a frequency of 206±2 cm<SP>-1</SP>is defined as S2. The ceramic substrate for heat dissipation and insulation, the ceramic circuit board for heat dissipation and insulation and the module for heat dissipation and insulation using the silicon nitride sintered compact are also provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、窒化珪素焼結体、放熱絶縁用セラミックス基板、放熱絶縁用回路基板、及び放熱絶縁用モジュールに関し、更に詳しくは、焼成雰囲気調整を行う必要もなく高い焼結性を有して製造されることのできる、高い緻密性及び大きな熱伝導性を有する窒化珪素焼結体、並びにそのような窒化珪素焼結体を用いることにより放熱性の大きな放熱絶縁用セラミックス基板、放熱絶縁用回路基板及び放熱絶縁用モジュールに関する。   The present invention relates to a silicon nitride sintered body, a ceramic substrate for heat radiation insulation, a circuit board for heat radiation insulation, and a module for heat radiation insulation, and more specifically, manufactured with high sinterability without the need for adjusting the firing atmosphere. Silicon nitride sintered body having high density and large thermal conductivity, and ceramic substrate for heat dissipation insulation, circuit substrate for heat dissipation insulation by using such silicon nitride sintered body And a module for heat insulation.

一般的に、窒化珪素材料は難焼結性であるが、IUPAC1990年勧告による周期律表における第3族元素酸化物を焼結助剤として添加することにより低温焼成が可能になった。また、窒化珪素材料に、さらにアルカリ土類元素、SiO、Al、及びその他の金属酸化物を焼結助剤として配合することにより良好な焼結性が得られる。したがって、従来の多くの窒化珪素焼結体はこれらの助剤を含有することを基本としている。 In general, silicon nitride materials are difficult to sinter, but by adding a Group 3 element oxide in the periodic table according to the IUPAC 1990 recommendation as a sintering aid, low temperature firing has become possible. In addition, good sinterability can be obtained by further adding alkaline earth elements, SiO 2 , Al 2 O 3 , and other metal oxides as sintering aids to the silicon nitride material. Therefore, many conventional silicon nitride sintered bodies are based on containing these auxiliaries.

一方、窒化珪素の緻密化には、焼結助剤の他に様々な焼成条件が影響を及ぼすことはよく知られている。焼成体の揮発量に影響を与える焼成雰囲気は、窒化珪素の緻密化に影響を与える条件の1つである。   On the other hand, it is well known that various sintering conditions influence the densification of silicon nitride in addition to the sintering aid. The firing atmosphere that affects the volatilization amount of the fired body is one of the conditions that affects the densification of silicon nitride.

窒化珪素材料は焼成の過程で、焼成雰囲気の影響により、窒化珪素又は焼結助剤等の揮発を伴うことがある。前記揮発が生じると、その揮発量によっては焼結初期の段階でポーラスな揮発層が形成され、収縮が阻害されて緻密な窒化珪素焼結体が形成されないことがある。特に10気圧以下といった低圧の窒素雰囲気下における焼成では、ホットプレス及びHIP等に比較して、揮発による緻密化阻害はより顕著になる。   The silicon nitride material may be accompanied by volatilization of silicon nitride or a sintering aid due to the influence of the firing atmosphere during the firing process. When the volatilization occurs, depending on the volatilization amount, a porous volatile layer may be formed at the initial stage of sintering, and the shrinkage may be inhibited, so that a dense silicon nitride sintered body may not be formed. In particular, in firing in a low-pressure nitrogen atmosphere of 10 atm or less, densification inhibition due to volatilization becomes more prominent than hot pressing, HIP, or the like.

一方、高熱伝導性を有する窒化珪素焼結体を得るには、熱伝導率を向上させる為にフォノン伝達を阻害する粒界層の生成量をできる限り低減させる必要がある。ところが粒界相の生成量を低減させても、僅かの揮発が焼結性を著しく低下させている。   On the other hand, in order to obtain a silicon nitride sintered body having high thermal conductivity, it is necessary to reduce as much as possible the amount of grain boundary layers that inhibit phonon transmission in order to improve thermal conductivity. However, even if the amount of grain boundary phase produced is reduced, slight volatilization significantly reduces the sinterability.

この揮発による焼結性低下を防ぐ為に、揮発量を制御する方法として、被焼成材料と同様の組成よりなる窒化珪素製焼成容器内にて被焼成材料を焼成する方法、及びBN等と被焼成材料と同様のSi又は助剤とを加えて成る焼成雰囲気用の詰粉に被焼成材料を埋没させて焼成を行う方法等が一般的に採用されている。これらの他にも、詰粉と同様の効果を持つ雰囲気調整方法として、被焼成体表面に詰粉と同様な成分を含むコーティング材を塗布する方法もある。 In order to prevent this deterioration of sinterability due to volatilization, as a method of controlling the volatilization amount, a method of firing a material to be fired in a silicon nitride firing container having the same composition as the material to be fired, A method is generally employed in which a material to be fired is buried in a filling powder for a firing atmosphere formed by adding Si 3 N 4 or an auxiliary agent similar to the fired material, and the like. In addition to these, there is also a method of applying a coating material containing components similar to the filling powder on the surface of the object to be fired as an atmosphere adjustment method having the same effect as the filling powder.

しかしながら、前記窒化珪素製焼成容器は、焼成を繰り返すことにより前記窒化珪素製焼成容器からそれを形成する成分が揮発するなどによる劣化で、焼成雰囲気制御機能が低下する。したがって、前記窒化珪素製焼成容器の使用では焼成雰囲気を常に一定にすることが困難な上に、前記窒化珪素製焼成容器自体が高価であり、しかも耐久性が低いので、高熱伝導性を有する窒化珪素焼結体の製造コストが著しく増大していた。   However, the firing condition control function of the silicon nitride firing container is deteriorated due to deterioration due to volatilization of components forming the silicon nitride firing container due to repeated firing. Therefore, it is difficult to always make the firing atmosphere constant by using the silicon nitride firing container, and the silicon nitride firing container itself is expensive and has low durability, so that it has high thermal conductivity. The manufacturing cost of the silicon sintered body has been remarkably increased.

焼成雰囲気用の詰粉を使用することによる焼成雰囲気制御においても、焼成毎に詰粉の詰め替えが必要であり、製造コストもかかる上に、被焼成物の形状の自由度が制限されてしまう。コーティング材を塗布することによる雰囲気調整にしても、同様に製造コストが増加する。   Even in the firing atmosphere control by using the filling powder for the firing atmosphere, it is necessary to refill the filling powder every time firing is performed, and the manufacturing cost is increased, and the degree of freedom of the shape of the object to be fired is limited. Even if the atmosphere is adjusted by applying the coating material, the manufacturing cost is similarly increased.

一方、本願発明者らは、特許文献1により「熱伝導性及び機械的強度に優れ、且つ低コストの窒化珪素焼結体及びそれを用いてなる回路基板」を提案している。特許文献1に記載の窒化ケイ素焼結体は、「Mg及びSrの少なくとも一方を酸化物換算で合計0.1〜10質量%、Al、Ca及びFeのうちの少なくとも1種を酸化物換算で合計0.05〜1質量%、並びに希土類元素のうちの少なくとも1種を酸化物換算で合計3〜10質量%含有し、且つラマン分光分析における波数521cm−1付近の珪素のピーク強度をS1、206cm−1付近の窒化珪素のピーク強度をS2とした場合に、S1/S2で表されるピーク強度比が0.1以上であることを特徴とする窒化珪素焼結体」(特許文献1の請求項1参照)であり、この窒化珪素焼結体は「上記希土類元素として、軽希土類元素のうちの少なくとも1種を酸化物換算で合計1質量%以上、並びに重希土類元素及びYから選ばれる少なくとも1種を酸化物換算で合計1質量%以上含有する」(特許文献1の請求項2参照)。 On the other hand, the inventors of the present application have proposed “a silicon nitride sintered body excellent in thermal conductivity and mechanical strength and low cost and a circuit board using the same” according to Patent Document 1. The silicon nitride sintered body described in Patent Document 1 is “at least one of Mg and Sr in terms of oxide in total of 0.1 to 10% by mass, and at least one of Al, Ca and Fe in terms of oxide. 0.05 to 1% by mass in total, and at least one kind of rare earth elements in total in the range of 3 to 10% by mass in terms of oxide, and the peak intensity of silicon in the vicinity of wave number 521 cm −1 in Raman spectroscopic analysis is S1, A silicon nitride sintered body characterized in that the peak intensity ratio represented by S1 / S2 is 0.1 or more when the peak intensity of silicon nitride in the vicinity of 206 cm −1 is S2 ”(Patent Document 1) The silicon nitride sintered body is “selected as the rare earth element from at least one light rare earth element in total of 1% by mass or more in terms of oxide, heavy rare earth element and Y”. Small Both one containing a total of 1 mass% or more in terms of oxide "(see claim 2 of Patent Document 1).

特開2003−95747号公報JP 2003-95747 A

特許文献1に記載された窒化珪素焼結体は、「特定の成分を特定量含有させることにより、低コストで、且つ熱伝導性及び機械的強度に優れた性質を有する焼結体とすることができる」との優れた技術的効果を奏するのであるが、本願発明者らは、同様に優れた技術的効果を奏するさらなる窒化珪素焼結体の開発に努力を重ねた。   The silicon nitride sintered body described in Patent Document 1 is “to make a sintered body having properties excellent in thermal conductivity and mechanical strength at low cost by containing a specific amount of a specific component. The present inventors have made efforts to develop a further silicon nitride sintered body having the same excellent technical effect.

この発明はこの問題を解決するためになされた。この発明は、窒化珪素製焼成容器の使用、又は焼成雰囲気用の詰粉の使用等の、特別な焼成雰囲気調整を行うことなく高い焼結性を維持し、内部から焼き肌面まで緻密に形成された窒化珪素焼結体を提供することを課題とする。また、この発明は、放熱性に優れた放熱絶縁用セラミックス基板、放熱絶縁用回路基板及び放熱絶縁用モジュールを提供することを、課題とする。   The present invention has been made to solve this problem. This invention maintains high sinterability without special firing atmosphere adjustment, such as the use of a silicon nitride firing container or a filling powder for a firing atmosphere, and it is densely formed from the inside to the grilled skin surface. It is an object of the present invention to provide a silicon nitride sintered body. Moreover, this invention makes it a subject to provide the ceramic substrate for heat radiation insulation excellent in heat dissipation, the circuit board for heat radiation insulation, and the module for heat radiation insulation.

前記課題を解決する手段として、
請求項1は、
Siと、IUPAC1990年勧告による周期律表におけるランタノイドのうちLa、Ce、Pr、Nd、Pm、及びSmより成る群から選択される少なくとも1種の軽希土類元素と、IUPAC1990年勧告による周期律表におけるランタノイドのうちEu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuより成る群から選択される少なくとも1種の重希土類元素及び/又はYと、Srとを含有する窒化珪素焼結体であって、
Siと、前記軽希土類元素の酸化物と、前記重希土類元素及び/又はYの酸化物と、Srの酸化物との合計が100モル%となるように、Siの含有割合が85〜90モル%の範囲内にあり、前記軽希土類元素の含有割合が酸化物換算で1〜5モル%の範囲内にあり、前記重希土類元素及び/又はYの含有割合が酸化物換算で1〜5モル%の範囲内にあり、Srの含有割合が酸化物換算で3〜13モル%の範囲内にあり、
ラマン分光分析における波数521±2cm−1の珪素ピーク強度をS1、206±2cm−1の窒化珪素のピーク強度をS2とした場合に、S1/S2で表されるピーク強度比が0.1未満であることを特徴とする窒化珪素焼結体であり、
請求項2は、
Alを酸化物換算で、Siと、前記軽希土類元素の酸化物と、前記重希土類元素及び/又はYの酸化物と、Srの酸化物との合計を100モル%とするときに、0.4モル%以下の含有割合で含有して成る前記請求項1に記載の窒化珪素焼結体であり、
請求項3は、
前記軽希土類が、La、Ce、Pr及びNdから選ばれる少なくとも1種である請求項1又は2に記載の窒化珪素焼結体であり、
請求項4は、
前記重希土類元素が、Ho、Er、Yb及びDyから選ばれる1種である請求項1〜3のいずれか一項に記載の窒化珪素であり、
請求項5は、
前記請求項1〜4のいずれかに記載の窒化珪素焼結体を用いた放熱絶縁用セラミックス基板であり、
請求項6は、
前記請求項1〜4のいずれかに記載の窒化珪素焼結体を用いた放熱絶縁用セラミックス回路基板であり、
請求項7は、
前記請求項1〜4のいずれかに記載の窒化珪素焼結体を用いた放熱絶縁用モジュールである。
As means for solving the above problems,
Claim 1
Si 3 N 4 and at least one light rare earth element selected from the group consisting of La, Ce, Pr, Nd, Pm, and Sm among the lanthanoids in the periodic table according to the IUPAC 1990 recommendation, and the cycle according to the IUPAC 1990 recommendation Nitrid containing at least one heavy rare earth element and / or Y selected from the group consisting of Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu among the lanthanoids in the table and Sr A silicon sintered body,
The content of Si 3 N 4 so that the total of Si 3 N 4 , the light rare earth element oxide, the heavy rare earth element and / or Y oxide, and the Sr oxide is 100 mol%. The ratio is in the range of 85 to 90 mol%, the light rare earth element content is in the range of 1 to 5 mol% in terms of oxide, and the heavy rare earth element and / or Y content is oxide. In the range of 1 to 5 mol% in terms of conversion, the content ratio of Sr is in the range of 3 to 13 mol% in terms of oxide,
The peak intensity ratio represented by S1 / S2 is less than 0.1 when the silicon peak intensity at wave number 521 ± 2 cm −1 in Raman spectroscopic analysis is S1, and the peak intensity of silicon nitride at 206 ± 2 cm −1 is S2. It is a silicon nitride sintered body characterized by being,
Claim 2
When the total of Si 3 N 4 , the light rare earth element oxide, the heavy rare earth element and / or Y oxide, and the Sr oxide is 100 mol% in terms of oxide of Al The silicon nitride sintered body according to claim 1, wherein the silicon nitride sintered body is contained at a content ratio of 0.4 mol% or less,
Claim 3
The silicon nitride sintered body according to claim 1 or 2, wherein the light rare earth is at least one selected from La, Ce, Pr, and Nd.
Claim 4
The silicon heavy nitride according to any one of claims 1 to 3, wherein the heavy rare earth element is one selected from Ho, Er, Yb, and Dy.
Claim 5
It is a ceramic substrate for heat dissipation insulation using the silicon nitride sintered body according to any one of claims 1 to 4.
Claim 6
A ceramic circuit board for heat dissipation insulation using the silicon nitride sintered body according to any one of claims 1 to 4,
Claim 7
It is a module for thermal insulation which used the silicon nitride sintered compact in any one of the said Claims 1-4.

この発明によると、焼成雰囲気を調整することなく、換言すると、焼成雰囲気の変化に拘わらずに内部から焼き肌表面まで緻密に焼成されて成り、しかも機械的強度が大きくて熱伝導率の大きな窒化珪素焼結体が提供される。この発明によるとこのように優れた特性を有する窒化珪素焼結体を用いることにより放熱性及び絶縁性の良好な放熱絶縁用セラミックス基板、放熱絶縁用回路基板、及び放熱絶縁用モジュールを提供することができる。   According to the present invention, without adjusting the firing atmosphere, in other words, it is densely fired from the inside to the surface of the burned skin regardless of the change in the firing atmosphere, and also has high mechanical strength and high thermal conductivity. A silicon sintered body is provided. According to the present invention, by using a silicon nitride sintered body having such excellent characteristics, a heat dissipation insulating ceramic substrate, a heat dissipation insulating circuit board, and a heat dissipation insulating module are provided. Can do.

この発明に係る窒化珪素焼結体は、Siと、IUPAC1990年勧告による周期律表におけるランタノイドのうちLa、Ce、Pr、Nd、Pm、及びSmより成る群から選択される少なくとも1種の軽希土類元素と、IUPAC1990年勧告による周期律表におけるランタノイドのうちEu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuより成る群から選択される少なくとも1種の重希土類元素及び/又はYと、Srとを含有する。この窒化珪素焼結体は、Si(以下において、「窒化珪素」と称することがある。)を、前記窒化珪素、前記軽希土類元素の酸化物、前記重希土類元素及び/又はYの酸化物及びSrの酸化物の合計が100モル%となるように85〜90モル%の範囲内で、好ましくは86〜89モル%の範囲内で含有する。この窒化珪素の含有割合が90モル%を超えると、焼結性が低下し、また85モル%未満であると窒化珪素自体が有する優れた機械的性質及び耐熱性等が十分ではなくなり、熱伝導性の低下した窒化珪素焼結体が得られてしまう。窒化珪素自体については特に制限がなく、α型窒化珪素及びβ型窒化珪素のいずれも使用することができる。この窒化珪素の好適な平均粒径は0.5〜1.6μmである。平均粒径が前記0.5μmよりも小さいと成形性を損なうと言った問題点を生じることがある。また、この窒化珪素がα型窒化珪素及びβ型窒化珪素の混合物であるときはそのα型窒化珪素の割合すなわちα率は70〜100%であるのが好ましい。α率が70%未満であると焼結体の粗大粒子減少による靭性低下などの機械的特性低下と言った不都合を生じることがある。また窒化珪素に含まれる不純物としての酸素含有量は、通常、0.8〜2質量%である。前記酸素含有量が少ないと焼結性低下、多いと耐熱性低下や熱伝導率低下といった不都合を生じることがある。 The silicon nitride sintered body according to the present invention is Si 3 N 4 and at least one selected from the group consisting of La, Ce, Pr, Nd, Pm, and Sm among lanthanoids in the periodic table according to the IUPAC 1990 recommendation. And at least one heavy rare earth element selected from the group consisting of Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu among the lanthanides in the periodic table according to the IUPAC 1990 recommendation, and / Or Y and Sr are contained. This silicon nitride sintered body is composed of Si 3 N 4 (hereinafter sometimes referred to as “silicon nitride”), silicon nitride, light rare earth element oxide, heavy rare earth element and / or Y It is contained in the range of 85 to 90 mol%, preferably in the range of 86 to 89 mol%, so that the total of the oxide and the oxide of Sr is 100 mol%. If the silicon nitride content exceeds 90 mol%, the sinterability decreases, and if it is less than 85 mol%, the excellent mechanical properties, heat resistance, etc. of silicon nitride itself are not sufficient, and heat conduction Thus, a silicon nitride sintered body with reduced properties is obtained. Silicon nitride itself is not particularly limited, and both α-type silicon nitride and β-type silicon nitride can be used. A suitable average particle diameter of this silicon nitride is 0.5 to 1.6 μm. If the average particle size is smaller than 0.5 μm, there may be a problem that moldability is impaired. When the silicon nitride is a mixture of α-type silicon nitride and β-type silicon nitride, the proportion of α-type silicon nitride, that is, the α rate is preferably 70 to 100%. If the α ratio is less than 70%, there may be inconveniences such as mechanical property deterioration such as toughness reduction due to the reduction of coarse particles in the sintered body. Moreover, the oxygen content as an impurity contained in silicon nitride is 0.8-2 mass% normally. If the oxygen content is small, there may be a problem that the sinterability decreases, and if it is large, the heat resistance and thermal conductivity decrease.

この発明に係る窒化珪素焼結体は、前記窒化珪素と前記軽希土類元素の酸化物と前記重希土類元素及び/又はYの酸化物及びSrの酸化物との合計が100モル%になるように軽希土類元素を酸化物換算で1〜5モル%、好ましくは1〜4モル%の範囲内で含有する。前記軽希土類元素としては、IUPAC1990年勧告による周期律表におけるランタノイドのうちLa、Ce、Pr、Nd、Pm、Sm、及びEuを挙げることができる。これらの中でもLa、Ce、Pr、及びNdが好ましい。これらの軽希土類に属する少なくとも一種の元素が窒化珪素焼結体中に酸化物換算の前記割合で配合されていると、焼成雰囲気の調整をすることなく緻密な焼結体に形成することができるとともに熱伝導率の大きな窒化珪素焼結体が実現される。軽希土類元素として特にLa、Ce、Pr、及びNdが含まれているとこれらはイオン半径が大きいので、焼結後の窒化珪素の粒子がこれら軽希土類元素のイオン半径に影響を受けて、焼成雰囲気の調整をすることなく緻密な窒化珪素焼結体が形成される。ともあれ、軽希土類元素が1モル%未満の割合で窒化珪素焼結体中に含まれていると、焼結性の低下した窒化珪素焼結体となり、また5モル%を越える割合で窒化珪素焼結体中に含まれていると、熱伝導性の低下した窒化珪素焼結体が得られてしまい、この発明の目的が達成されない。   In the silicon nitride sintered body according to the present invention, the total of the silicon nitride, the light rare earth element oxide, the heavy rare earth element and / or the Y oxide and the Sr oxide is 100 mol%. A light rare earth element is contained in the range of 1 to 5 mol%, preferably 1 to 4 mol% in terms of oxide. Examples of the light rare earth element include La, Ce, Pr, Nd, Pm, Sm, and Eu among lanthanoids in the periodic table according to the IUPAC 1990 recommendation. Among these, La, Ce, Pr, and Nd are preferable. When at least one element belonging to these light rare earths is blended in the silicon nitride sintered body at the above-mentioned ratio in terms of oxide, it can be formed into a dense sintered body without adjusting the firing atmosphere. At the same time, a silicon nitride sintered body having a high thermal conductivity is realized. When light rare earth elements include La, Ce, Pr, and Nd in particular, they have a large ionic radius, so that the sintered silicon nitride particles are affected by the ionic radius of these light rare earth elements and fired. A dense silicon nitride sintered body is formed without adjusting the atmosphere. Anyway, if the light rare earth element is contained in the silicon nitride sintered body in a proportion of less than 1 mol%, the silicon nitride sintered body has a reduced sinterability, and the silicon nitride sintered body in a proportion exceeding 5 mol%. If it is contained in the sintered body, a silicon nitride sintered body with reduced thermal conductivity is obtained, and the object of the present invention is not achieved.

この発明に係る窒化珪素焼結体は、前記窒化珪素と前記軽希土類元素の酸化物と前記重希土類元素及び/又はYの酸化物とSrの酸化物との合計が100モル%になるように、前記重希土類元素及びYから選ばれる少なくとも1種の元素を酸化物換算で1〜5モル%、好ましくは1〜4モル%含有する。前記重希土類元素及び/又はYの窒化珪素焼結体中の含有量が前記範囲の下限値未満であると、焼結性の低下した窒化珪素焼結体となり、前記重希土類元素及び/又はYの窒化珪素焼結体中の含有量が前記上限値を超えると、焼結中に揮発成分の揮発量が増加して焼結性が低下した窒化珪素焼結体となる。ここで、前記重希土類元素としては、IUPAC1990年勧告による周期律表におけるランタノイドのうちEu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuを挙げることができ、これらのうち特にHo、Er、Yb及びDyよりなる群から選択される少なくとも一種が好ましい。   In the silicon nitride sintered body according to the present invention, the total of the silicon nitride, the light rare earth element oxide, the heavy rare earth element and / or the Y oxide and the Sr oxide is 100 mol%. In addition, at least one element selected from the heavy rare earth elements and Y is contained in an amount of 1 to 5 mol%, preferably 1 to 4 mol% in terms of oxide. When the content of the heavy rare earth element and / or Y in the silicon nitride sintered body is less than the lower limit of the above range, a silicon nitride sintered body with reduced sinterability is obtained, and the heavy rare earth element and / or Y When the content in the silicon nitride sintered body exceeds the upper limit, the volatile component is increased in volatilization during the sintering, resulting in a silicon nitride sintered body having reduced sinterability. Here, examples of the heavy rare earth element include Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu among lanthanoids in the periodic table according to the IUPAC 1990 recommendation. , Er, Yb and Dy are preferred.

この発明に係る窒化珪素焼結体は、前記窒化珪素と前記軽希土類元素の酸化物と前記重希土類元素及び/又はYの酸化物とSrの酸化物との合計が100モル%になるように、Srを酸化物換算で3〜13モル%、好ましくは3〜8モル%の割合で含有する。Srの含有量が前記範囲の下限値を下回ると焼結性の低下した窒化珪素焼結体となり、また、Srの含有量が前記範囲の上限値を上回ると熱伝導性の低下した窒化珪素焼結体となってしまう、いずれもこの発明の目的を達成することができない。   In the silicon nitride sintered body according to the present invention, the total of the silicon nitride, the light rare earth element oxide, the heavy rare earth element and / or the Y oxide and the Sr oxide is 100 mol%. , Sr is contained in an amount of 3 to 13 mol%, preferably 3 to 8 mol% in terms of oxide. When the Sr content is below the lower limit of the above range, a silicon nitride sintered body with reduced sinterability is obtained, and when the Sr content exceeds the upper limit of the above range, the silicon nitride sintered product with reduced thermal conductivity is obtained. In any case, the object of the present invention cannot be achieved.

この発明に係る更に好適な窒化珪素焼結体は、前記窒化珪素と前記軽希土類元素の酸化物と前記重希土類元素及び/又はYの酸化物とSrの酸化物との合計が100モル%になるように、窒化珪素を86〜89モル%の範囲内で、前記軽希土類の元素を酸化物換算で1〜4モル%の範囲内で、前記重希土類元素及び/又はYを酸化物換算で1〜4モル%の範囲内で、Srを酸化物換算で3〜8モル%の範囲内で、含有する。このような含有割合で前記特定の成分を含有する窒化珪素焼結体は、焼結性及び熱伝導率のバランスがより優れている。   In a further preferred silicon nitride sintered body according to the present invention, the sum of the silicon nitride, the light rare earth element oxide, the heavy rare earth element and / or the Y oxide and the Sr oxide is 100 mol%. Thus, silicon nitride is in the range of 86 to 89 mol%, the light rare earth element is in the range of 1 to 4 mol% in terms of oxide, and the heavy rare earth element and / or Y is in terms of oxide. Sr is contained within a range of 3 to 8 mol% in terms of oxide within a range of 1 to 4 mol%. The silicon nitride sintered body containing the specific component in such a content ratio has a better balance between sinterability and thermal conductivity.

また、この窒化珪素焼結体はAlを含有するのが好ましい。窒化珪素焼結体に含まれるAlの含有割合は、前記窒化珪素、前記軽希土類元素の酸化物、前記重希土類元素及び/又はYの酸化物及びSrの酸化物の合計100モル%に対して、0.4モル%以下である。窒化珪素焼結体中に含まれるAlの含有量が0.4モル%を超えると、窒化珪素粒子へのAl固溶により、焼結体の熱伝導率が低下することがある。   The silicon nitride sintered body preferably contains Al. The content ratio of Al contained in the silicon nitride sintered body is 100 mol% in total of the silicon nitride, the light rare earth element oxide, the heavy rare earth element and / or the oxide of Y and the oxide of Sr. 0.4 mol% or less. When the content of Al contained in the silicon nitride sintered body exceeds 0.4 mol%, the thermal conductivity of the sintered body may be lowered due to Al solid solution in the silicon nitride particles.

この発明に係る窒化珪素焼結体は、ラマン分光分析における波数521±2cm−1の珪素ピーク強度をS1、206±2cm−1の窒化珪素のピーク強度をS2とした場合に、S1/S2で表されるピーク強度比が0.1未満であることが一つの特徴である。前記ピーク強度比が0.1以上であると、窒化珪素焼結体の耐電圧が低下することがある。珪素は比較的ラマン活性が強いので、ラマン分光分析では、例えばX線回折法では検出できない微量な珪素を検出することが可能である。なお、珪素のピークの波数を521±2cm−1、及び窒化珪素のピークの波数を206±2cm−1としたのは、各々の波数において、通常、±2cm−1以内のピークのズレがあるからである。 The silicon nitride sintered body according to the present invention has S1 / S2 when the silicon peak intensity of wave number 521 ± 2 cm −1 in Raman spectroscopic analysis is S1, and the peak intensity of silicon nitride of 206 ± 2 cm −1 is S2. One characteristic is that the expressed peak intensity ratio is less than 0.1. When the peak intensity ratio is 0.1 or more, the withstand voltage of the silicon nitride sintered body may decrease. Since silicon has a relatively strong Raman activity, it is possible to detect a small amount of silicon that cannot be detected by, for example, the X-ray diffraction method in the Raman spectroscopic analysis. The reason why the peak wave number of silicon is 521 ± 2 cm −1 and the peak wave number of silicon nitride is 206 ± 2 cm −1 is that there is usually a deviation of the peak within ± 2 cm −1 in each wave number. Because.

この発明に係る窒化珪素焼結体は、粒界がガラス相であることが好ましい。粒界が結晶化すると粒界と窒化珪素粒子との結合力が大きくなったり、粒界ガラス量が減少したりして、クラックが粒界を通り難くなってクラックディフラクション効果が低下して、靭性が低下することがある。粒界がガラス相であれば、このような原因で靭性が低下することはない。X線回折により粒界結晶相が検出されなければ、粒界はガラス相であると判断できる。   In the silicon nitride sintered body according to the present invention, the grain boundary is preferably a glass phase. When the grain boundary is crystallized, the bonding force between the grain boundary and the silicon nitride particle is increased, the amount of the grain boundary glass is reduced, cracks are difficult to pass through the grain boundary, and the crack diffusion effect is reduced, Toughness may decrease. If the grain boundary is a glass phase, the toughness is not lowered due to such a cause. If a grain boundary crystal phase is not detected by X-ray diffraction, it can be determined that the grain boundary is a glass phase.

この発明に係る窒化珪素焼結体は、その室温での強度が少なくとも500MPaであり、好ましくは600〜1500MPaであり、特に好ましくは700〜1500MPaであり、その靭性が5〜8MPam0.5であり、好ましくは5.5〜8.0MPam0.5であり、その熱伝導率が50〜150W/mKであり、好ましくは60〜150W/mKであり、特に好ましくは70〜150W/mKであるのが望ましい。なお、これらの上限値を越えるとこの発明の目的を達成することができないというわけではないが、一般的な上限値としての目安を示すに過ぎない。 The silicon nitride sintered body according to the present invention has a strength at room temperature of at least 500 MPa, preferably 600 to 1500 MPa, particularly preferably 700 to 1500 MPa, and a toughness of 5 to 8 MPam 0.5 . , Preferably 5.5 to 8.0 MPam 0.5 , and its thermal conductivity is 50 to 150 W / mK, preferably 60 to 150 W / mK, particularly preferably 70 to 150 W / mK. Is desirable. It should be noted that exceeding these upper limits does not mean that the object of the present invention cannot be achieved, but merely shows a guideline as a general upper limit.

この室温での強度は、三点曲げ強度測定法(JIS R1601)により測定される。靭性は破壊靭性とも称され、IF法(JIS R1607)により測定される。また、熱伝導率はJIS R1611 に規定される測定法により測定される。   The strength at room temperature is measured by a three-point bending strength measurement method (JIS R1601). Toughness is also called fracture toughness and is measured by IF method (JIS R1607). The thermal conductivity is measured by a measuring method specified in JIS R1611.

この窒化珪素焼結体の前記強度が前記500MPa以上であるとともに靭性が5MPa0.5以上であると、回路基板の耐熱サイクル性が良好であり、この窒化珪素焼結体を利用して放熱絶縁用セラミックス基板を好適に製造することができる。この窒化珪素焼結体の熱伝導率が50W/mK未満であると、このような熱伝導率を有する窒化珪素焼結体はアルミナ(一般的に40W/mK以下)よりも優れた放熱性を実現することができないことがある。 When the strength of the silicon nitride sintered body is 500 MPa or more and the toughness is 5 MPa 0.5 or more, the heat cycle performance of the circuit board is good. The ceramic substrate for use can be suitably manufactured. When the silicon nitride sintered body has a thermal conductivity of less than 50 W / mK, the silicon nitride sintered body having such a thermal conductivity has a heat dissipation property superior to that of alumina (generally 40 W / mK or less). Sometimes it cannot be realized.

この発明に係る窒化珪素焼結体は次のようにして製造することができる。   The silicon nitride sintered body according to the present invention can be manufactured as follows.

この発明に係る窒化珪素焼結体の原料として、Siと、軽希土類元素の化合物と、重希土類元素及びYよりなる群から選択される少なくとも一種の元素の化合物と、更にストロンチウム化合物とを、前記した含有量範囲から選択された割合で含有する粉末混合物を、先ず調製する。粉末混合物の調製にあたり、提供される原料の形態に応じて粉砕混合処理をする。この粉砕混合処理に使用される粉砕混合処理装置として、振動ミル、回転ミル、又はアトライターミル等が挙げられる。この粉砕混合処理は、水、又は有機溶媒例えばアルコール等を使用する湿式法、又は乾燥法で行われることができる。粉砕時間は、粉砕方式及び処理量等により異なり、粉砕後に得られる粉末の平均粒径が好ましくは0.5〜1μmになるように、適宜に調整するのがよい。湿式粉砕法により粉砕する時には、粉砕混合して得られた粉末を乾燥し、造粒する。得られた粒子を、通常の乾式プレス成形法、押出し成形法、スリップキャスト成形法、ドクターブレード成形法及び静水圧プレス法のいずれか又はこれらの組み合わせにより、所定の形状の成形体に成形する。この成形体が焼成される。焼成は、成形体を、通常、0.1〜1MPaのN圧力のもとで1850〜2000℃に3〜12時間加熱することにより、行われる。また、この発明においては、焼成に際して、成形体の焼成雰囲気を調整する必要がない。従来におけるように窒化珪素を主成分とする被焼成物を詰粉内に埋めて焼成するといった焼成操作をすることなく、この発明に係る窒化珪素焼結体を得ることができることは、この発明の特筆するべき有利な効果である。 As raw materials for the silicon nitride sintered body according to the present invention, Si 3 N 4 , a compound of a light rare earth element, a compound of at least one element selected from the group consisting of heavy rare earth elements and Y, and a strontium compound, Is first prepared at a ratio selected from the above-described content range. In preparation of the powder mixture, pulverization and mixing are performed according to the form of the raw material provided. Examples of the pulverizing and mixing apparatus used for the pulverizing and mixing process include a vibration mill, a rotary mill, and an attritor mill. This pulverization and mixing treatment can be performed by water, a wet method using an organic solvent such as alcohol, or a drying method. The pulverization time varies depending on the pulverization method, the amount of treatment, and the like, and is appropriately adjusted so that the average particle size of the powder obtained after pulverization is preferably 0.5 to 1 μm. When pulverizing by the wet pulverization method, the powder obtained by pulverization and mixing is dried and granulated. The obtained particles are formed into a molded body having a predetermined shape by any one of a normal dry press molding method, an extrusion molding method, a slip cast molding method, a doctor blade molding method and an isostatic pressing method, or a combination thereof. This molded body is fired. Firing is usually performed by heating the compact to 1850-2000 ° C. for 3-12 hours under a N 2 pressure of 0.1-1 MPa. In the present invention, it is not necessary to adjust the firing atmosphere of the molded body during firing. The silicon nitride sintered body according to the present invention can be obtained without performing a firing operation such as burying a fired material mainly composed of silicon nitride in a filling powder as in the prior art. This is an advantageous effect to be noted.

この発明に係る窒化珪素焼結体は、それ自体が優れた緻密性、大きな強度及び大きな熱伝導性を有するので、例えば半導体用絶縁基板等の半導体装置用及びOA機器等の各種部品に好適に採用されることができる。特に、この発明に係る窒化珪素焼結体のうち、室温強度が500MPa以上である共に靭性が5MPam0.5以上であり、熱伝導率が50W/mK以上である窒化珪素焼結体は、その優れた熱伝導率の故に、例えば放熱絶縁用セラミック基板、放熱絶縁用セラミックス回路基板及び放熱絶縁用モジュールに好適に採用されることができる。 Since the silicon nitride sintered body according to the present invention itself has excellent denseness, large strength, and large thermal conductivity, it is suitable for various parts such as semiconductor devices such as an insulating substrate for semiconductors and OA equipment. Can be adopted. In particular, among the silicon nitride sintered bodies according to the present invention, a silicon nitride sintered body having a room temperature strength of 500 MPa or more and a toughness of 5 MPam 0.5 or more and a thermal conductivity of 50 W / mK or more is Because of its excellent thermal conductivity, it can be suitably used for, for example, a ceramic substrate for heat radiation insulation, a ceramic circuit board for heat radiation insulation, and a module for heat radiation insulation.

この発明に係る放熱絶縁用セラミック基板はさらに放熱絶縁用セラミックス回路基板に利用可能である。この発明に係る放熱絶縁用セラミックス回路基板として、前記窒化珪素焼結体で形成された基板(以下において窒化珪素焼結体基板と称することがある。)と電気的回路(以下において単に回路と称することがある。)とを有する限り様々の放熱絶縁用セラミックス回路基板を挙げることができる。放熱絶縁用セラミックス回路基板として、例えば、図1に示されるように、この発明に係る窒化珪素焼結体からなる放熱絶縁用セラミック基板1の一方の面に回路金属2を、また他方の面に導電性物質たとえば金属、導電性ペースト等で形成された回路3を形成してなる放熱絶縁用セラミックス回路基板4を挙げることができる。   The ceramic substrate for heat radiation insulation according to the present invention can be further used as a ceramic circuit substrate for heat radiation insulation. As the ceramic circuit substrate for heat radiation insulation according to the present invention, a substrate formed of the silicon nitride sintered body (hereinafter sometimes referred to as a silicon nitride sintered substrate) and an electric circuit (hereinafter simply referred to as a circuit). And various ceramic circuit boards for heat insulation. As shown in FIG. 1, for example, as shown in FIG. 1, a circuit metal 2 is disposed on one surface of a ceramic substrate 1 for heat radiation insulation, and the other surface is disposed on the other surface. A ceramic circuit board 4 for heat radiation insulation formed by forming a circuit 3 made of a conductive material such as metal or conductive paste can be given.

また、図示はしないが、放熱絶縁用セラミックス回路基板として、窒化珪素焼結体からなる2枚の基板で銅放熱板を挟持し、更に一方の窒化珪素焼結体からなる基板の銅放熱板とは反対側の表面に導電層からなる回路を形成してなる放熱絶縁用セラミックス回路基板、及び
窒化珪素焼結体基板の表面に、銅箔及びアルミ箔等の金属箔又は金属の微粉末を使った導電ペースト材で電気回路を形成してなる放熱絶縁用セラミックス回路基板等を挙げることができる。
Although not shown, as a ceramic circuit board for heat radiation insulation, a copper heat sink is sandwiched between two substrates made of a silicon nitride sintered body, and the copper heat sink of the substrate made of one silicon nitride sintered body Use a metal foil such as copper foil and aluminum foil or fine metal powder on the surface of the ceramic circuit board for heat dissipation insulation formed by forming a circuit composed of a conductive layer on the opposite surface, and the silicon nitride sintered body substrate Examples thereof include a ceramic circuit board for heat insulation and formed by forming an electric circuit with a conductive paste material.

さらにまた、放熱回路用基板として、例えば、窒化珪素焼結体基板の一方の表面に、発熱性部品を搭載可能に形成された回路の配線パターンを有する樹脂系耐熱配線板を貼着して成る放熱絶縁用セラミックス回路基板、及び窒化珪素焼結体基板の一方の表面に絶縁層を形成し、その絶縁層の前記窒化珪素焼結体基板に向う表面とは反対側の表面に、導電物質例えば銀ペースト又は金属箔等で回路を形成してなる放熱絶縁用セラミックス回路基板等を挙げることができる。   Furthermore, as the heat dissipation circuit substrate, for example, a resin heat resistant wiring board having a circuit wiring pattern formed so as to be capable of mounting a heat-generating component is attached to one surface of a silicon nitride sintered substrate. An insulating layer is formed on one surface of the ceramic circuit board for heat dissipation insulation and the silicon nitride sintered body substrate, and a conductive material such as a surface of the insulating layer opposite to the surface facing the silicon nitride sintered body substrate is provided. Examples thereof include a ceramic circuit board for heat insulation and formed by forming a circuit with silver paste or metal foil.

この発明に係る放熱絶縁用セラミック基板は、例えば、ハイブリッド自動車、電気自動車、燃料電池自動車等に搭載されるインバータユニット用パワーモジュールに使用される回路基板に好適に使用されることができる。   The ceramic substrate for heat radiation insulation according to the present invention can be suitably used for a circuit board used for a power module for an inverter unit mounted on, for example, a hybrid vehicle, an electric vehicle, a fuel cell vehicle and the like.

この発明に係る窒化珪素焼結体を利用してこの発明に係る放熱絶縁用モジュールが形成される。   The module for heat radiation insulation according to the present invention is formed using the silicon nitride sintered body according to the present invention.

図2に示されるように、この発明に係る放熱絶縁用モジュールの一例としての放熱絶縁用モジュール5は、モジュールケース6と、そのモジュールケース6の底面に嵌着された、この発明の一例である放熱用セラミック基板である窒化珪素焼結体基板1を搭載した放熱板7と、その放熱板7の上面に搭載された放熱用セラミック基板1と、その基板1の上面に形成された半導体チップ9及び回路10と、モジュールケースの回路設置部8の上面に形成された回路11と、前記半導体チップ9と回路10とを電気的に結合するワイヤボンディング12及び前記回路10と回路11とを電気的に結合するワイヤボンディング12と、これらをモールドする樹脂封止部材13とを有して形成される。   As shown in FIG. 2, a heat dissipation / insulation module 5 as an example of a heat dissipation / insulation module according to the present invention is an example of the present invention fitted to a module case 6 and the bottom surface of the module case 6. A heat radiating plate 7 on which a silicon nitride sintered substrate 1 that is a heat radiating ceramic substrate is mounted, a heat radiating ceramic substrate 1 mounted on the upper surface of the heat radiating plate 7, and a semiconductor chip 9 formed on the upper surface of the substrate 1. And the circuit 10, the circuit 11 formed on the upper surface of the circuit installation portion 8 of the module case, the wire bonding 12 that electrically couples the semiconductor chip 9 and the circuit 10, and the circuit 10 and the circuit 11 are electrically connected. The wire bonding 12 is bonded to the resin, and the resin sealing member 13 for molding them is formed.

また、図示はしないが、この発明に係る放熱絶縁用モジュールとして、例えば、銅板又は銅合金板の表面に、アルミニウム板、窒化珪素基板及びパワーデバイスをこの順に積層してなるパワーモジュール、2枚の窒化珪素基板で銅放熱板を挟持し、更に一方の窒化珪素基板の銅放熱板とは反対側の表面に導電層からなる回路を形成し、更に前記回路にパワーデバイスを搭載してなるパワーモジュール、及び、P型半導体とN型半導体とを交互に配列すると共にこれらP型半導体とN型半導体とを電気的に直列に接続することにより直列接続体を形成し、この直列接続体を2枚の窒化珪素基板で挟んでなる、ペルチエ素子でもあるサーモモジュール等を挙げることができる。   Although not shown in the drawings, as the heat radiation insulating module according to the present invention, for example, a power module in which an aluminum plate, a silicon nitride substrate and a power device are laminated in this order on the surface of a copper plate or a copper alloy plate, A power module in which a copper heat sink is sandwiched between silicon nitride substrates, a circuit made of a conductive layer is formed on the surface of one silicon nitride substrate opposite to the copper heat sink, and a power device is mounted on the circuit. In addition, the P-type semiconductor and the N-type semiconductor are alternately arranged and the P-type semiconductor and the N-type semiconductor are electrically connected in series to form a series connection body. Two series connection bodies are formed. And a thermo module which is also a Peltier element sandwiched between two silicon nitride substrates.

(実施例1〜6及び比較例1〜12)
表1に示される配合割合の、平均粒径が0.5μmである窒化珪素原料粉末と、表1及び表2に示される配合割合の、表1及び表2に示される元素の酸化物とを配合し、得られる配合物をエタノール中にて粉砕混合した。次いで、エタノールを除去して乾燥することにより調合粉末を得、この調合粉末をプレス成形して直径20mm及び厚さ10mmの成形体に成形した。この成形体をさらに2トンの圧力でCIP処理をして加圧成形体を得た。この加圧成形体を炭化珪素で形成された焼成容器に収容し、1900℃で4時間焼成を行った。この焼成処理に際し、炭化珪素製焼成容器自体に焼成雰囲気処理をせず、また、焼成雰囲気として詰粉を使用せず、要するに焼成雰囲気調整を全く行わなかった。
(Examples 1-6 and Comparative Examples 1-12)
A silicon nitride raw material powder having an average particle size of 0.5 μm with a blending ratio shown in Table 1 and an oxide of an element shown in Table 1 and Table 2 with a blending ratio shown in Tables 1 and 2 The resulting blend was pulverized and mixed in ethanol. Subsequently, ethanol was removed and dried to obtain a blended powder. The blended powder was press-molded to form a molded body having a diameter of 20 mm and a thickness of 10 mm. This molded body was further subjected to CIP treatment at a pressure of 2 tons to obtain a pressure molded body. This press-molded body was accommodated in a firing container formed of silicon carbide and fired at 1900 ° C. for 4 hours. During this firing treatment, the firing atmosphere treatment was not performed on the silicon carbide firing container itself, and no filling powder was used as the firing atmosphere. In short, the firing atmosphere was not adjusted at all.

焼成後に得られた窒化珪素焼結体は、アルキメデス法によりその密度が測定された。理論密度との相関からこれらの窒化珪素焼結体の緻密度が評価された。   The density of the silicon nitride sintered body obtained after firing was measured by the Archimedes method. The density of these silicon nitride sintered bodies was evaluated from the correlation with the theoretical density.

また、これらの窒化珪素焼結体の熱伝導率は、これらの窒化珪素焼結体を直径10mm及び厚さ2mmのテストピースに加工し、このテストピースにつきレーザーフラッシュ法により、測定された。   Moreover, the thermal conductivity of these silicon nitride sintered bodies was measured by laser flashing the test pieces after processing these silicon nitride sintered bodies into test pieces having a diameter of 10 mm and a thickness of 2 mm.

これらの窒化珪素焼結体の強度及び靭性が強度はJIS R1601、靭性はJIS R1607に準拠して測定された。   The strength and toughness of these silicon nitride sintered bodies were measured according to JIS R1601 and toughness according to JIS R1607.

これらの窒化珪素焼結体の耐電圧は以下のようにして測定された。   The withstand voltage of these silicon nitride sintered bodies was measured as follows.

前記窒化珪素焼結体を0.3mmに研磨加工した後、JIS C2110「固体電気絶縁材料の絶縁耐力の試験方法」に基づく常態油中耐電圧測定を行うことにより求めた。ここで、絶縁破壊電圧測定の際に使用した電極形状を図3に示す。図3において、21で示すのは上部電極であり、22で示すのは試料である窒化珪素焼結体であり、23で示すのは下部電極である。尚、JIS規格での試料厚さは2mmあるいは3mmであるが、半導体用絶縁基板への適用においては、実際の基板厚さが約0.3mmで使用されることが多いために、本試験での試料厚さは0.3mmとした。   After the silicon nitride sintered body was polished to 0.3 mm, it was obtained by performing withstand voltage measurement in normal oil based on JIS C2110 “Test Method for Dielectric Strength of Solid Electrical Insulating Material”. Here, the electrode shape used in the measurement of the dielectric breakdown voltage is shown in FIG. In FIG. 3, reference numeral 21 denotes an upper electrode, reference numeral 22 denotes a silicon nitride sintered body as a sample, and reference numeral 23 denotes a lower electrode. Note that the sample thickness in the JIS standard is 2 mm or 3 mm, but in application to an insulating substrate for semiconductors, the actual substrate thickness is often used at about 0.3 mm. The sample thickness was 0.3 mm.

前記窒化珪素焼結体のラマンピーク強度比(S1/S2)は以下のようにして測定された。   The Raman peak intensity ratio (S1 / S2) of the silicon nitride sintered body was measured as follows.

下記の測定条件によるラマン分光分析における波数521±2cm−1の珪素のピーク強度(S1)及び206±2cm−1の窒化珪素のピーク強度(S2)によりピーク強度比(S1/S2)を求めた。 Peak intensity ratio (S1 / S2) was determined by the peak intensity of silicon nitride wave number 521 silicon peak intensity at ± 2cm -1 (S1) and 206 ± 2 cm -1 in the Raman spectroscopic analysis (S2) by the following measuring conditions .

測定条件:ラマン分光分析装置は、フランスISA社製「Labram Arレーザー(波長514.5mm)」を用いた。レーザー出力は20mW、レーザービームのスポット径は約10μm、レーザービームの試料に対する積算照射時間は約10秒、及び散乱光はCCDセンサーにより検出した。   Measurement conditions: The Raman spectroscopic analyzer used was a “Labram Ar laser (wavelength 514.5 mm)” manufactured by France ISA. The laser output was 20 mW, the laser beam spot diameter was about 10 μm, the integrated irradiation time of the laser beam sample was about 10 seconds, and the scattered light was detected by a CCD sensor.

これらの測定結果を表1に示した。   These measurement results are shown in Table 1.

Figure 2008063187
Figure 2008063187

Figure 2008063187
Figure 2008063187

結晶相は希土類のシリコンオキシナイトライド(RESiO2N)が主であった。 The crystal phase was mainly rare earth silicon oxynitride (RESiO 2 N).

図1はこの発明の放熱絶縁用回路基板の一例を示す断面説明図である。FIG. 1 is a cross-sectional explanatory view showing an example of a circuit board for heat radiation insulation of the present invention. 図2はこの発明の放熱絶縁用モジュールの一例を示す断面説明図である。FIG. 2 is an explanatory cross-sectional view showing an example of a module for heat radiation insulation of the present invention. 図3は絶縁破壊電圧測定の際に使用した電極形状を示す模式図である。FIG. 3 is a schematic diagram showing the electrode shape used in measuring the dielectric breakdown voltage.

符号の説明Explanation of symbols

1 放熱用セラミック基板
2 回路金属
3 回路金属
4 放熱絶縁用回路基板
5 放熱絶縁用モジュール
6 モジュールケース
7 放熱板
8 モジュールケースの回路設置部
9 半導体チップ
10 回路
11 回路
12 ワイヤボンディング
13 樹脂封止部材
21 上部電極
22 試料
23 下部電極
DESCRIPTION OF SYMBOLS 1 Ceramic substrate for heat radiation 2 Circuit metal 3 Circuit metal 4 Circuit board for heat radiation insulation 5 Module for heat radiation insulation 6 Module case 7 Heat sink 8 Circuit installation part 9 of a module case Semiconductor chip 10 Circuit 11 Circuit 12 Wire bonding 13 Resin sealing member 21 Upper electrode 22 Sample 23 Lower electrode

Claims (7)

Siと、IUPAC1990年勧告による周期律表におけるランタノイドのうちLa、Ce、Pr、Nd、Pm、及びSmより成る群から選択される少なくとも1種の軽希土類元素と、IUPAC1990年勧告による周期律表におけるランタノイドのうちEu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuより成る群から選択される少なくとも1種の重希土類元素及び/又はYと、Srとを含有する窒化珪素焼結体であって、
Siと、前記軽希土類元素の酸化物と、前記重希土類元素及び/又はYの酸化物と、Srの酸化物との合計が100モル%となるように、Siの含有割合が85〜90モル%の範囲内にあり、前記軽希土類元素の含有割合が酸化物換算で1〜5モル%の範囲内にあり、前記重希土類元素及び/又はYの含有割合が酸化物換算で1〜5モル%の範囲内にあり、Srの含有割合が酸化物換算で3〜13モル%の範囲内にあり、
ラマン分光分析における波数521±2cm−1の珪素ピーク強度をS1、206±2cm−1の窒化珪素のピーク強度をS2とした場合に、S1/S2で表されるピーク強度比が0.1未満であることを特徴とする窒化珪素焼結体。
Si 3 N 4 and at least one light rare earth element selected from the group consisting of La, Ce, Pr, Nd, Pm, and Sm among the lanthanoids in the periodic table according to the IUPAC 1990 recommendation, and the cycle according to the IUPAC 1990 recommendation Nitrid containing at least one heavy rare earth element and / or Y selected from the group consisting of Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu among the lanthanoids in the table and Sr A silicon sintered body,
The content of Si 3 N 4 so that the total of Si 3 N 4 , the light rare earth element oxide, the heavy rare earth element and / or Y oxide, and the Sr oxide is 100 mol%. The ratio is in the range of 85 to 90 mol%, the light rare earth element content is in the range of 1 to 5 mol% in terms of oxide, and the heavy rare earth element and / or Y content is oxide. In the range of 1 to 5 mol% in terms of conversion, the content ratio of Sr is in the range of 3 to 13 mol% in terms of oxide,
The peak intensity ratio represented by S1 / S2 is less than 0.1 when the silicon peak intensity at wave number 521 ± 2 cm −1 in Raman spectroscopic analysis is S1, and the peak intensity of silicon nitride at 206 ± 2 cm −1 is S2. A silicon nitride sintered body characterized by being:
Alを酸化物換算で、Siと、前記軽希土類元素の酸化物と、前記重希土類元素及び/又はYの酸化物と、Srの酸化物との合計を100モル%とするときに、0.4モル%以下の含有割合で含有して成る前記請求項1に記載の窒化珪素焼結体。 When the total of Si 3 N 4 , the light rare earth element oxide, the heavy rare earth element and / or Y oxide, and the Sr oxide is 100 mol% in terms of oxide of Al The silicon nitride sintered body according to claim 1, wherein the silicon nitride sintered body is contained at a content ratio of 0.4 mol% or less. 前記軽希土類が、La、Ce、Pr及びNdから選ばれる少なくとも1種である請求項1又は2に記載の窒化珪素焼結体。   The silicon nitride sintered body according to claim 1 or 2, wherein the light rare earth is at least one selected from La, Ce, Pr, and Nd. 前記重希土類元素が、Ho、Er、Yb及びDyから選ばれる1種である請求項1〜3のいずれか一項に記載の窒化珪素焼結体。   The silicon nitride sintered body according to any one of claims 1 to 3, wherein the heavy rare earth element is one selected from Ho, Er, Yb, and Dy. 前記請求項1〜4のいずれかに記載の窒化珪素焼結体を用いた放熱絶縁用セラミックス基板。   A ceramic substrate for heat dissipation insulation using the silicon nitride sintered body according to any one of claims 1 to 4. 前記請求項1〜4のいずれかに記載の窒化珪素焼結体を用いた放熱絶縁用セラミックス回路基板。   A ceramic circuit board for heat dissipation insulation using the silicon nitride sintered body according to any one of claims 1 to 4. 前記請求項1〜4のいずれかに記載の窒化珪素焼結体を用いた放熱絶縁用モジュール。   A module for heat dissipation insulation using the silicon nitride sintered body according to any one of claims 1 to 4.
JP2006242809A 2006-09-07 2006-09-07 Silicon nitride sintered compact, ceramic substrate for heat dissipation and insulation, circuit board for heat dissipation and insulation and module for heat dissipation and insulation Withdrawn JP2008063187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006242809A JP2008063187A (en) 2006-09-07 2006-09-07 Silicon nitride sintered compact, ceramic substrate for heat dissipation and insulation, circuit board for heat dissipation and insulation and module for heat dissipation and insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006242809A JP2008063187A (en) 2006-09-07 2006-09-07 Silicon nitride sintered compact, ceramic substrate for heat dissipation and insulation, circuit board for heat dissipation and insulation and module for heat dissipation and insulation

Publications (1)

Publication Number Publication Date
JP2008063187A true JP2008063187A (en) 2008-03-21

Family

ID=39286205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006242809A Withdrawn JP2008063187A (en) 2006-09-07 2006-09-07 Silicon nitride sintered compact, ceramic substrate for heat dissipation and insulation, circuit board for heat dissipation and insulation and module for heat dissipation and insulation

Country Status (1)

Country Link
JP (1) JP2008063187A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235335A (en) * 2009-03-30 2010-10-21 Kyocera Corp Ceramic sintered compact, heat dissipating substrate and electronic device
JP2011530332A (en) * 2008-08-06 2011-12-22 ザ ジレット カンパニー Heated shaving razor
KR20170063544A (en) * 2014-09-30 2017-06-08 미쓰비시 마테리알 가부시키가이샤 SUBSTRATE FOR POWER MODULE WITH Ag UNDERLAYER AND POWER MODULE
JP2019114782A (en) * 2017-12-21 2019-07-11 京セラ株式会社 Ceramic plate, semiconductor device, and semiconductor module
JP2022023954A (en) * 2017-02-06 2022-02-08 三菱マテリアル株式会社 Ceramic/aluminum bonded body, insulating circuit board, led module and ceramic member
US11247357B2 (en) 2017-01-20 2022-02-15 The Gillette Company Llc Heating delivery element for a shaving razor
US11558931B2 (en) 2016-06-22 2023-01-17 The Gillette Company Llc Personal consumer product with thermal control circuitry
US11577417B2 (en) 2018-03-30 2023-02-14 The Gillette Company Llc Razor handle with a pivoting portion
US11590669B2 (en) 2018-03-30 2023-02-28 The Gillette Company Llc Razor handle with movable members
US11607820B2 (en) 2018-03-30 2023-03-21 The Gillette Company Llc Razor handle with movable members
US11691307B2 (en) 2018-03-30 2023-07-04 The Gillette Company Llc Razor handle with a pivoting portion
US11766795B2 (en) 2018-03-30 2023-09-26 The Gillette Company Llc Razor handle with a pivoting portion
US11780105B2 (en) 2018-03-30 2023-10-10 The Gillette Company Llc Razor handle with a pivoting portion
US11798856B2 (en) 2017-02-06 2023-10-24 Mitsubishi Materials Corporation Ceramic/aluminum bonded body, insulating substrate, LED module, ceramic member, method for producing ceramic/aluminum bonded body, and method for producing insulating substrate
US11806885B2 (en) 2018-03-30 2023-11-07 The Gillette Company Llc Razor handle with movable members
USD1021248S1 (en) 2018-03-30 2024-04-02 The Gillette Company Llc Shaving razor cartridge
US11945128B2 (en) 2018-03-30 2024-04-02 The Gillette Company Llc Razor handle with a pivoting portion

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530332A (en) * 2008-08-06 2011-12-22 ザ ジレット カンパニー Heated shaving razor
JP2010235335A (en) * 2009-03-30 2010-10-21 Kyocera Corp Ceramic sintered compact, heat dissipating substrate and electronic device
KR20170063544A (en) * 2014-09-30 2017-06-08 미쓰비시 마테리알 가부시키가이샤 SUBSTRATE FOR POWER MODULE WITH Ag UNDERLAYER AND POWER MODULE
KR102380037B1 (en) 2014-09-30 2022-03-28 미쓰비시 마테리알 가부시키가이샤 SUBSTRATE FOR POWER MODULE WITH Ag UNDERLAYER AND POWER MODULE
US11558931B2 (en) 2016-06-22 2023-01-17 The Gillette Company Llc Personal consumer product with thermal control circuitry
US11247357B2 (en) 2017-01-20 2022-02-15 The Gillette Company Llc Heating delivery element for a shaving razor
JP7243793B2 (en) 2017-02-06 2023-03-22 三菱マテリアル株式会社 Ceramic/aluminum joints, insulated circuit boards, LED modules, ceramic members
JP2022023954A (en) * 2017-02-06 2022-02-08 三菱マテリアル株式会社 Ceramic/aluminum bonded body, insulating circuit board, led module and ceramic member
US11798856B2 (en) 2017-02-06 2023-10-24 Mitsubishi Materials Corporation Ceramic/aluminum bonded body, insulating substrate, LED module, ceramic member, method for producing ceramic/aluminum bonded body, and method for producing insulating substrate
JP2019114782A (en) * 2017-12-21 2019-07-11 京セラ株式会社 Ceramic plate, semiconductor device, and semiconductor module
JP7264627B2 (en) 2017-12-21 2023-04-25 京セラ株式会社 Ceramic plates, semiconductor devices and semiconductor modules
US11607820B2 (en) 2018-03-30 2023-03-21 The Gillette Company Llc Razor handle with movable members
US11590669B2 (en) 2018-03-30 2023-02-28 The Gillette Company Llc Razor handle with movable members
US11691307B2 (en) 2018-03-30 2023-07-04 The Gillette Company Llc Razor handle with a pivoting portion
US11766795B2 (en) 2018-03-30 2023-09-26 The Gillette Company Llc Razor handle with a pivoting portion
US11780105B2 (en) 2018-03-30 2023-10-10 The Gillette Company Llc Razor handle with a pivoting portion
US11577417B2 (en) 2018-03-30 2023-02-14 The Gillette Company Llc Razor handle with a pivoting portion
US11806885B2 (en) 2018-03-30 2023-11-07 The Gillette Company Llc Razor handle with movable members
USD1021248S1 (en) 2018-03-30 2024-04-02 The Gillette Company Llc Shaving razor cartridge
US11945128B2 (en) 2018-03-30 2024-04-02 The Gillette Company Llc Razor handle with a pivoting portion

Similar Documents

Publication Publication Date Title
JP2008063187A (en) Silicon nitride sintered compact, ceramic substrate for heat dissipation and insulation, circuit board for heat dissipation and insulation and module for heat dissipation and insulation
JP5666749B1 (en) Cooling plate, manufacturing method thereof, and member for semiconductor manufacturing apparatus
JP6591455B2 (en) High thermal conductivity silicon nitride sintered body, silicon nitride substrate, silicon nitride circuit substrate and semiconductor device using the same
EP3632877B1 (en) Aluminum nitride-based sintered compact and semiconductor holding device
JP5755170B2 (en) Silicon nitride sintered body, circuit board and electronic device using the same
KR100278904B1 (en) Method for producing aluminum nitride based composite, electronic functional material, electrostatic chuck and aluminum nitride based composite
JP5743830B2 (en) Silicon nitride sintered body, circuit board and electronic device using the same
JP4571728B2 (en) Silicon nitride sintered body and manufacturing method thereof
KR101413250B1 (en) Aluminum nitride sintered product, method for producing the same, and electrostatic chuck including the same
KR101562401B1 (en) Silicon nitride-melilite compound sintered compact and device utilizing the same
JP4591738B2 (en) Silicon nitride sintered body
WO2020203683A1 (en) Silicon nitride sintered body, method for producing same, multilayer body and power module
EP3854767A1 (en) Ceramic sintered body and substrate for semiconductor devices
JP2003095747A (en) Sintered silicon nitride compact and circuit board obtained by using the same
JP5073135B2 (en) Aluminum nitride sintered body, production method and use thereof
JP3683067B2 (en) Aluminum nitride sintered body
JP5481273B2 (en) Substrate and member using silicon nitride / melilite composite sintered body
JP2002029851A (en) Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JPH10251069A (en) Silicon nitride circuit board and semiconductor device
JP6240034B2 (en) Silicon nitride substrate, circuit board including the same, and electronic device
EP3855484B1 (en) Substrate for semiconductor device
JP4535575B2 (en) Silicon nitride multilayer wiring board
JP2001019556A (en) Silicon nitride sintered compact, its production and substrate using the same
JP2000114425A (en) Wiring board for power module
JP2008063154A (en) Aluminum nitride sintered compact

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110