JP4590558B2 - Fluid mixing device - Google Patents

Fluid mixing device Download PDF

Info

Publication number
JP4590558B2
JP4590558B2 JP2005148720A JP2005148720A JP4590558B2 JP 4590558 B2 JP4590558 B2 JP 4590558B2 JP 2005148720 A JP2005148720 A JP 2005148720A JP 2005148720 A JP2005148720 A JP 2005148720A JP 4590558 B2 JP4590558 B2 JP 4590558B2
Authority
JP
Japan
Prior art keywords
fluid
mixing
electrodes
channel
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005148720A
Other languages
Japanese (ja)
Other versions
JP2006320878A (en
Inventor
武彦 北森
幸夫 金
直樹 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2005148720A priority Critical patent/JP4590558B2/en
Publication of JP2006320878A publication Critical patent/JP2006320878A/en
Application granted granted Critical
Publication of JP4590558B2 publication Critical patent/JP4590558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Accessories For Mixers (AREA)

Description

本発明は、流体混合装置に関し、詳しくは、第1の流体に第1の流体とは異なる第2の流体を混合比率の調整を伴って混合する流体混合装置に関する。   The present invention relates to a fluid mixing apparatus, and more particularly, to a fluid mixing apparatus that mixes a first fluid with a second fluid different from the first fluid with adjustment of a mixing ratio.

流路内の異なる二つの流体を混合する手法としては、先端部にプロペラを有するミキサーをモータで駆動して混合する機械的手法や超音波を照射することにより混合する手法などが種々提案されている。   Various methods for mixing two different fluids in the flow path have been proposed, such as a mechanical method in which a mixer having a propeller at the tip is driven by a motor and a method in which mixing is performed by irradiating ultrasonic waves. Yes.

一般に、断面の相当直径が1000マイクロメートル以下のマイクロ流路内に流れる二つの流体の混合は、二つの流体の導入流量を目的とする混合比になるように調節することにより行なわれる。このため、二つの流体の導入流量の調節を高い精度をもって行なう必要が生じ、二つの流体を導入する装置が複雑化したり大型化する。   In general, mixing of two fluids flowing in a microchannel having an equivalent diameter of a cross section of 1000 micrometers or less is performed by adjusting an introduction flow rate of the two fluids to a target mixing ratio. For this reason, it is necessary to adjust the introduction flow rates of the two fluids with high accuracy, and the apparatus for introducing the two fluids becomes complicated or large.

本発明の流体混合装置は、簡易で小型の構成で断面の相当直径が1000マイクロメートル以下のマイクロ流路内に流れる二つの流体を任意の混合比率をもって混合することを目的の一つとする。また、本発明の流体混合装置は、断面の相当直径が1000マイクロメートル以下のマイクロ流路内に流れる二つの流体を高い精度の任意の混合比率をもって混合することを目的の一つとする。   One object of the fluid mixing apparatus of the present invention is to mix two fluids flowing in a microchannel having a simple and small configuration with an equivalent cross-sectional diameter of 1000 micrometers or less with an arbitrary mixing ratio. Another object of the fluid mixing apparatus of the present invention is to mix two fluids flowing in a microchannel having an equivalent diameter of 1000 μm or less in cross section with an arbitrary mixing ratio with high accuracy.

本発明の流体混合装置は、上述の目的の少なくとも一部を達成するために以下の手段を採った。   In order to achieve at least a part of the above object, the fluid mixing apparatus of the present invention employs the following means.

本発明の流体混合装置は、
第1の流体に該第1の流体とは異なる第2の流体を混合比率の調整を伴って混合する流体混合装置であって、
同一平面内にY字状に分岐した二つの導入口とY字状に分岐した二つの排出口とを有し、断面の相当直径が1000マイクロメートル以下の混合流路と、
前記混合流路の導入口の一方に前記第1の流体を導入する第1流体導入部と、
前記混合流路の導入口の他方に前記第2の流体を導入する第2流体導入部と、
前記混合流路における流体の撹拌の程度を調整する撹拌程度調整手段と、
前記混合流路の二つの排出口のうち前記第1の流体が導入される導入口と同側の排出口に接続されて混合流体を取り出す混合流体取出流路と、
を備えることを要旨とする。
The fluid mixing device of the present invention comprises:
A fluid mixing device that mixes a first fluid with a second fluid different from the first fluid with adjustment of a mixing ratio,
A mixing channel having two inlets branched in a Y-shape and two outlets branched in a Y-shape in the same plane, the equivalent diameter of the cross section being 1000 micrometers or less;
A first fluid introduction part for introducing the first fluid into one of the introduction ports of the mixing channel;
A second fluid introduction section for introducing the second fluid into the other inlet of the mixing channel;
A stirring degree adjusting means for adjusting the degree of stirring of the fluid in the mixing channel;
A mixed fluid outlet channel connected to an outlet on the same side as the inlet into which the first fluid is introduced out of the two outlets of the mixed channel;
It is a summary to provide.

この本発明の流体混合装置では、一方の導入口から混合流路に導入された第1の流体と他方の導入口から混合流路に導入された第2の流体とを撹拌の程度の調整をもって撹拌し、混合流路の二つの排出口のうち一方の導入口と同側の排出口に接続された混合流体取出流路から混合流体を取り出す。混合流路における流体の撹拌の程度を低くすると、混合流路内の二つの流体の層状の流れはあまり乱されないから、混合流体取出流路からは第2の流体の混合比率の低い混合流体を取り出すことができる。一方、混合流路における流体の撹拌の程度を高くすると、混合流路内の二つの流体の層状の流れは大きく乱されて撹拌されるから、混合流体取出流路からは第2の流体の混合比率の高い混合流体を取り出すことができる。このように混合流路の撹拌の程度を調整することにより、第1の流体に対する第2の流体の混合率を値0から両流体の導入流量の比率の範囲で変化させることができる。この結果、断面の相当直径が1000マイクロメートル以下のマイクロ流路内で二つの流体を高い精度の任意の混合比率をもって混合することができる。ここで、本発明の流体混合装置において、混合流路の断面の相当直径については1000マイクロメートル以下であればよく、断面の相当直径としては、500マイクロメートルや100マイクロメートル、50マイクロメートル、10マイクロメートルなどを用いることものとしてもよい他、ナノメートルオーダーを用いるものとしてもよい。   In this fluid mixing device of the present invention, the first fluid introduced from one inlet to the mixing channel and the second fluid introduced from the other inlet to the mixing channel are adjusted to the degree of stirring. Agitation is performed, and the mixed fluid is taken out from the mixed fluid outlet channel connected to the outlet on the same side as one of the two outlets of the mixing channel. If the degree of agitation of the fluid in the mixing channel is lowered, the laminar flow of the two fluids in the mixing channel is not disturbed so much, so that a mixed fluid having a low mixing ratio of the second fluid is added from the mixed fluid extraction channel. It can be taken out. On the other hand, if the degree of fluid agitation in the mixing channel is increased, the laminar flow of the two fluids in the mixing channel is greatly disturbed and agitated, so that the second fluid is mixed from the mixed fluid extraction channel. A mixed fluid with a high ratio can be taken out. Thus, by adjusting the degree of stirring of the mixing flow path, the mixing ratio of the second fluid to the first fluid can be changed within a range of the value 0 to the ratio of the introduction flow rates of both fluids. As a result, two fluids can be mixed with an arbitrary mixing ratio with high accuracy in a micro flow channel having an equivalent diameter of a cross section of 1000 micrometers or less. Here, in the fluid mixing device of the present invention, the equivalent diameter of the cross section of the mixing channel may be 1000 micrometers or less, and the equivalent diameter of the cross section may be 500 micrometers, 100 micrometers, 50 micrometers, 10 A micrometer or the like may be used, or a nanometer order may be used.

こうした本発明の流体混合装置において、前記撹拌程度調整手段は、前記混合流路に配設された複数の電極と、該複数の電極に電圧および/または周波数を変更可能に交流電圧を印加する交流電圧印加手段と、を備える手段であるものとすることもできる。この撹拌は、流体内に配設された二つの電極に交流電圧を印加すると、各電極上の流体粒子に他方の電極から遠ざかる方向の力が作用して流体内に対流が生じる、いわゆる交流電気浸透が生じる現象に基づく。即ち、流路に配設された複数の電極に交流電圧を印加することにより、流路内の流体に交流電気浸透を生じさせ、流路内の流体にその流向とは異なる方向の対流現象作用を生じさせ、これにより流体を撹拌するのである。こうした撹拌の程度は印加する交流電圧の大きさや周波数によって異なるものとすることができるから、印加する交流電圧を調整するだけで二つの流体を任意の混合比率をもって混合することができる。この結果、簡易で小型の構成でマイクロ流路内を流れる二つの流体を任意の混合比率をもって高い精度で混合することができる。この場合、前記撹拌程度調整手段は、前記複数の電極を前記混合流路における流体の流心に対して非対称となるよう配置してなる手段であるものとすることもできるし、前記複数の電極として二つの電極を用いると共に該二つの電極を電極間の隙間が曲線状となるよう形成して配置してなる手段であるものとすることもできる。後者の場合、前記二つの電極は、該二つの電極間の隙間が波線状となるよう形成されてなるものとすることもできる。これらの場合、撹拌性を高くすることができるから、印加する交流電圧の強度範囲を小さくすることができる。また、前記第1流体導入部および前記第2流体導入部は、前記混合流路の断面の相当直径dh、前記混合流路の長さL、前記混合流路における流体の流速v、前記混合流路における流体の拡散係数Dに対して、v・dh/Dにより演算されるペクレ数が102〜104の範囲でL/dhにより演算される対象演算値が100〜102の範囲となる条件を満たすよう前記第1の流体と前記第2の流体とを導入することを特徴とするものとすることもできる。 In such a fluid mixing apparatus of the present invention, the stirring degree adjusting means includes a plurality of electrodes disposed in the mixing flow path, and an alternating current that applies an alternating voltage to the plurality of electrodes so that the voltage and / or frequency can be changed. And a voltage applying unit. In this stirring, when an AC voltage is applied to two electrodes arranged in a fluid, a force in a direction away from the other electrode acts on the fluid particles on each electrode to generate convection in the fluid. Based on the phenomenon of penetration. That is, by applying an AC voltage to a plurality of electrodes arranged in the flow path, AC electroosmosis occurs in the fluid in the flow path, and the convection phenomenon acts in a direction different from the flow direction of the fluid in the flow path. This causes the fluid to be agitated. Since the degree of such agitation can be varied depending on the magnitude and frequency of the applied AC voltage, the two fluids can be mixed at an arbitrary mixing ratio simply by adjusting the applied AC voltage. As a result, it is possible to mix two fluids flowing in the micro flow path with a simple and small configuration with an arbitrary mixing ratio with high accuracy. In this case, the stirring degree adjusting means may be a means in which the plurality of electrodes are arranged so as to be asymmetric with respect to the flow center of the fluid in the mixing channel. In addition, the two electrodes may be used and the two electrodes may be formed and arranged so that the gap between the electrodes is curved. In the latter case, the two electrodes may be formed so that the gap between the two electrodes is wavy. In these cases, the stirrability can be increased, so that the strength range of the applied AC voltage can be reduced. In addition, the first fluid introduction part and the second fluid introduction part include an equivalent diameter dh of a cross section of the mixing channel, a length L of the mixing channel, a flow velocity v of the fluid in the mixing channel, the mixed flow With respect to the diffusion coefficient D of the fluid in the channel, the target calculation value calculated by L / dh is in the range of 10 0 to 10 2 when the Peclet number calculated by v · dh / D is in the range of 10 2 to 10 4. The first fluid and the second fluid may be introduced so as to satisfy the following condition.

また、本発明の流体混合装置において、前記混合流体取出流路から取り出される混合流体の混合を均一化する均一化手段を備えるものとすることもできる。こうすれば、均一に混合された混合流体を取り出すことができる。この場合、前記均一化手段は、前記混合流体取出流路に配設された複数の電極と、該複数の電極に交流電圧を印加する交流電圧印加手段と、を備える手段であるものとすることもできる。こうすれば、交流電気浸透により混合流体の混合を均一なものとすることができる。   Moreover, the fluid mixing apparatus of the present invention may further include a homogenizing means for homogenizing mixing of the mixed fluid taken out from the mixed fluid take-out flow path. In this way, a uniformly mixed fluid can be taken out. In this case, the uniformizing means is a means provided with a plurality of electrodes disposed in the mixed fluid extraction flow path, and an AC voltage applying means for applying an AC voltage to the plurality of electrodes. You can also. If it carries out like this, mixing of mixed fluid can be made uniform by alternating current electroosmosis.

次に、本発明を実施するための最良の形態を実施例を用いて説明する。   Next, the best mode for carrying out the present invention will be described using examples.

図1は、本発明の一実施例としての流体混合装置20の構成の概略を示す構成図である。実施例の流体混合装置20は、図示するように、希釈用の溶媒を導入する溶媒導入流路22と、希釈される原液を導入する原液導入流路24と、導入された原液を導入された溶媒に任意の混合比率で混合する混合流路32を有する混合部30と、この混合部30の混合流路32の下流部の溶媒導入流路22側に取り付けられて混合流路32から混合された希釈液を取り出す希釈液取出流路40と、この希釈液取出流路40に取り付けられて希釈液の均一化を図る均一化部42と、混合部30の混合流路32の下流部の原液導入流路24側に取り付けられて混合流路32から若干の希釈液が混合した不要な原液である廃液を回収する廃液回収流路48と、混合部30における原液の溶媒に対する混合比率をコントロールする電子制御ユニット50と、を備える。   FIG. 1 is a configuration diagram showing an outline of a configuration of a fluid mixing apparatus 20 as an embodiment of the present invention. In the fluid mixing apparatus 20 of the example, as shown in the drawing, a solvent introduction channel 22 for introducing a solvent for dilution, a stock solution introduction channel 24 for introducing a stock solution to be diluted, and the introduced stock solution were introduced. A mixing unit 30 having a mixing channel 32 that mixes with a solvent at an arbitrary mixing ratio and a solvent introduction channel 22 downstream of the mixing channel 32 of the mixing unit 30 and is mixed from the mixing channel 32 A diluting liquid extraction flow path 40 for taking out the diluted liquid, a homogenizing section 42 attached to the diluting liquid extraction flow path 40 to homogenize the diluting liquid, and a stock solution downstream of the mixing flow path 32 of the mixing section 30 A waste liquid collecting flow path 48 that is attached to the introduction flow path 24 and collects a waste liquid that is an unnecessary stock solution mixed with a slight amount of diluent from the mixing flow path 32 and a mixing ratio of the stock solution to the solvent in the mixing unit 30 are controlled. Electronic control unit 5 And, equipped with a.

混合部30は、溶媒導入流路22からの溶媒と原液導入流路24からの原液が導入される混合流路32と、この混合流路32の底部に隙間が波線状となる一対の電極34a,34bと、この電極34a,34bに交流電圧を印加する交流電源36と、電極34a,34bに印加される交流電圧の電圧Vを調整する可変抵抗38と、を備える。混合流路32は、その断面は幅が120μmで深さが40μmの略円弧状に形成されており、長さが5mmとして形成されている。一対の電極34a,34bは、混合流路32内に流れる流体の流心に沿って対をなし、その隙間が波線状となり長手方向(流心に沿った方向)の長さが1.5mmとなるよう形成されて混合流路32の底部に同一平面状となるよう配設されている。また、交流電源36は、振幅の電圧が20Vで周波数が1kHzの交流電圧を供給し、可変抵抗38の抵抗値を変更することにより0V〜20Vの交流電圧を一対の電極34a,34bに印加することができるようになっている。なお、溶媒導入流路22からの溶媒と原液導入流路24からの原液は、原液の溶媒に対する最大混合比率となる流量比で混合流路32に導入され、混合流路32での流速が3mm/s〜15mm/s程度となるよう調節されている。   The mixing unit 30 includes a mixing channel 32 into which a solvent from the solvent introduction channel 22 and a stock solution from the stock solution introduction channel 24 are introduced, and a pair of electrodes 34a in which a gap is wavy at the bottom of the mixing channel 32. , 34b, an AC power source 36 for applying an AC voltage to the electrodes 34a, 34b, and a variable resistor 38 for adjusting the voltage V of the AC voltage applied to the electrodes 34a, 34b. The cross section of the mixing channel 32 is formed in a substantially arc shape with a width of 120 μm and a depth of 40 μm, and the length is 5 mm. The pair of electrodes 34a and 34b form a pair along the flow center of the fluid flowing in the mixing channel 32, and the gap is wavy and the length in the longitudinal direction (the direction along the flow center) is 1.5 mm. It is formed in such a manner that it is arranged in the same plane at the bottom of the mixing channel 32. The AC power source 36 supplies an AC voltage having an amplitude voltage of 20 V and a frequency of 1 kHz, and applies an AC voltage of 0 V to 20 V to the pair of electrodes 34 a and 34 b by changing the resistance value of the variable resistor 38. Be able to. The solvent from the solvent introduction channel 22 and the stock solution from the stock solution introduction channel 24 are introduced into the mixing channel 32 at a flow rate ratio that is the maximum mixing ratio of the stock solution to the solvent, and the flow rate in the mixing channel 32 is 3 mm. / S to about 15 mm / s.

混合部30における混合は次の原理による。一般に、断面の相当直径が1000μm以下のマイクロ流路内に流れる流体は乱流領域になり難く、層流領域で流れる。したがって、同一の流量の溶媒と原液とを混合流路32に導入すると、溶媒と原液は流路の中央を境として図1中では上下に層をなして流れ、それぞれの拡散係数にしたがった拡散により混合する。したがって、この状態では、混合部30の混合流路32の下流部の溶媒導入流路22側に取り付けられた希釈液取出流路40からは原液がほとんど混合されていない溶媒が希釈液として取り出されることになり、混合流路32の下流部の原液導入流路24側に取り付けられた廃液回収流路48からは溶媒がほとんど混合されていない原液が廃液としてとして取り出されることになる。実施例のように、混合部30の混合流路32の底部に一対の電極34a,34bを設け、この一対の電極34a,34bに交流電圧を印加すると、電極34a,34b上の流体粒子が他方の電極から遠ざかる方向に移動する現象が見られる。この現象は交流電気浸透として知られている。図2に例示するように、混合流路32内の流体の流心に沿って一対の電極34a,34bを配置して電極34a,34bに交流電圧を印加すれば、こうした交流電気浸透による流体粒子の移動に伴って混合流路32内の流体の流心に対して対称をなす二つの対流現象作用が生じる。ここで、図3に例示するように、混合流路32内の流体の流心に対して偏心して、即ち、一方の電極34aを他方の電極34bより大きな面積となるように配置して電極34a,34bに交流電圧を印加すれば、混合流路32内の流体の流心から偏心した位置で非対称の二つの対流現象作用が生じる。前述したように、混合流路32内では溶媒と原液とは流路の中央を境として層を流れるから、図3に例示するように、電極34a,34bを混合流路32内の流体の流心に対して偏心するように配置すれば、交流電気浸透による非対称の二つの対流現象作用により溶媒と原液との混合が行なわれる。実施例の混合部30では、図1に示すように、電極34a,34bは混合流路32内の流体の流心に沿ってその隙間が波線状となるように形成されて配置されているから、混合流路32の流体の流れに沿って、電極34aが電極34bより大きな面積となるように配置された状態と逆に電極34bが電極34aより大きな面積となるように配置された状態とを繰り返すことになる。このため、混合流路32内では、溶媒側に偏った非対称の二つの対流現象作用と原液側に偏った非対称の二つの対流現象作用とが繰り返されることにより混合流路32内が撹拌され、溶媒と原液とが混合する。上述の交流電気浸透に基づく対流現象作用は、印加する交流電圧の振幅、即ち電圧の大きさによって変化するから、電極34a,34bに印加する交流電圧の大きさを調整することにより、溶媒と原液との混合の程度を調節することができる。即ち、可変抵抗38の抵抗値を最大値として最小電圧の交流電圧を電極34a,34bに印加するものとすれば、原液の混合比率が略0の希釈液を得ることができ、逆に可変抵抗の抵抗値を最小値として最大電圧の交流電圧を電極34a,34bに印加するものとすれば、原液と溶媒の流量比の混合比率の希釈液を得ることができ、可変抵抗38の抵抗値を最小値と最大値との間の中間値として中間電圧の交流電圧を電極34a,34bに印加するものとすれば、原液と溶媒の流量比と値0との中間の混合比率の希釈液を得ることができるのである。   Mixing in the mixing unit 30 is based on the following principle. In general, a fluid that flows in a micro flow channel having an equivalent diameter of 1000 μm or less is unlikely to be a turbulent flow region and flows in a laminar flow region. Therefore, when the solvent and the stock solution having the same flow rate are introduced into the mixing channel 32, the solvent and the stock solution flow in layers up and down in FIG. 1 with the center of the channel as a boundary, and diffusion according to the respective diffusion coefficients. Mix by. Therefore, in this state, the solvent in which the undiluted solution is hardly mixed is taken out as a diluent from the diluent extraction passage 40 attached to the solvent introduction passage 22 side downstream of the mixing passage 32 of the mixing portion 30. In other words, a stock solution in which almost no solvent is mixed is taken out as a waste solution from a waste solution collection channel 48 attached to the side of the stock solution introduction channel 24 downstream of the mixing channel 32. As in the embodiment, when a pair of electrodes 34a and 34b are provided at the bottom of the mixing channel 32 of the mixing unit 30 and an AC voltage is applied to the pair of electrodes 34a and 34b, the fluid particles on the electrodes 34a and 34b The phenomenon of moving away from the electrode is observed. This phenomenon is known as alternating current electroosmosis. As illustrated in FIG. 2, when a pair of electrodes 34 a and 34 b are arranged along the flow center of the fluid in the mixing channel 32 and an AC voltage is applied to the electrodes 34 a and 34 b, fluid particles due to such AC electroosmosis. As a result of the movement, two convection phenomenon effects that are symmetric with respect to the flow center of the fluid in the mixing channel 32 are generated. Here, as illustrated in FIG. 3, the electrode 34a is arranged eccentrically with respect to the flow center of the fluid in the mixing channel 32, that is, one electrode 34a is arranged to have a larger area than the other electrode 34b. , 34b, two asymmetric convection phenomena occur at a position deviated from the flow center of the fluid in the mixing channel 32. As described above, in the mixing channel 32, the solvent and the stock solution flow through the layers with the center of the channel as a boundary. Therefore, the electrodes 34a and 34b are connected to the fluid flow in the mixing channel 32 as illustrated in FIG. If arranged so as to be eccentric with respect to the heart, the solvent and the stock solution are mixed by the action of two asymmetric convection phenomena due to AC electroosmosis. In the mixing unit 30 of the embodiment, as shown in FIG. 1, the electrodes 34 a and 34 b are formed and disposed along the flow center of the fluid in the mixing channel 32 so that the gaps are wavy. In a state where the electrode 34a is arranged to have a larger area than the electrode 34b along the fluid flow in the mixing channel 32, the electrode 34b is arranged to have a larger area than the electrode 34a. Will repeat. For this reason, in the mixing channel 32, the inside of the mixing channel 32 is agitated by repeating two asymmetric convection phenomenon actions biased toward the solvent side and two asymmetric convection phenomenon actions biased toward the stock solution side, The solvent and stock solution are mixed. The convection phenomenon action based on the AC electroosmosis described above varies depending on the amplitude of the AC voltage to be applied, that is, the magnitude of the voltage. Therefore, by adjusting the AC voltage applied to the electrodes 34a and 34b, the solvent and the stock solution are adjusted. The degree of mixing with can be adjusted. That is, if the resistance value of the variable resistor 38 is set to the maximum value and a minimum alternating voltage is applied to the electrodes 34a and 34b, a diluted solution with a mixing ratio of the stock solution can be obtained. If the AC voltage of the maximum voltage is applied to the electrodes 34a and 34b with the resistance value of the resistor as the minimum value, a diluted solution having a mixing ratio of the flow rate ratio of the stock solution and the solvent can be obtained, and the resistance value of the variable resistor 38 is If an AC voltage of an intermediate voltage is applied to the electrodes 34a and 34b as an intermediate value between the minimum value and the maximum value, a dilute solution having a mixing ratio between the flow rate ratio of the stock solution and the solvent and a value of 0 is obtained. It can be done.

次に、実施例の混合部30における混合性能について説明する。図4は、実施例の混合部30における混合流路32内の流体(溶媒および原液)の流速Vと90%混合するのに必要な混合流路32内における電極34a,34bの長さを比較例と共に示した説明図である。ここで比較例は、実施例の混合部30から電極34a,34bを取り除いたときの混合流路32内の流体(溶媒および原液)の流速Vと90%混合するのに必要な混合流路32の長さである。図示するように、比較例では、混合流路32内の流体の流速が4mm/s〜12mm/sの範囲内で90%混合するのに必要な混合流路32の長さが15mm〜100mm程度であるのに対して、実施例では、同一の混合流路32内の流体の流速の範囲に対して90%混合するのに必要な電極34a,34bの長さは0.3mm〜1.2mm程度となる。したがって、実施例では、混合流路32の長さを比較例に比して1/10〜1/100程度にすることができる。上述したように、実施例では電極34a,34bの長さを1.5mmとしたから、実施例の混合部30は原液と溶媒とをほぼ完全に混合することができる性能を有しているのが解る。   Next, the mixing performance in the mixing unit 30 of the embodiment will be described. FIG. 4 compares the lengths of the electrodes 34a and 34b in the mixing channel 32 required for 90% mixing with the flow velocity V of the fluid (solvent and stock solution) in the mixing channel 32 in the mixing unit 30 of the embodiment. It is explanatory drawing shown with the example. Here, in the comparative example, the mixing flow path 32 necessary for 90% mixing with the flow velocity V of the fluid (solvent and stock solution) in the mixing flow path 32 when the electrodes 34a and 34b are removed from the mixing section 30 of the embodiment. Is the length of As shown in the figure, in the comparative example, the length of the mixing flow path 32 required for 90% mixing within the range of the flow velocity of the fluid in the mixing flow path 32 of 4 mm / s to 12 mm / s is about 15 mm to 100 mm. In contrast, in the embodiment, the lengths of the electrodes 34a and 34b necessary for mixing 90% with respect to the range of the flow velocity of the fluid in the same mixing channel 32 are 0.3 mm to 1.2 mm. It will be about. Therefore, in the embodiment, the length of the mixing channel 32 can be reduced to about 1/10 to 1/100 as compared with the comparative example. As described above, since the length of the electrodes 34a and 34b is 1.5 mm in the embodiment, the mixing section 30 of the embodiment has a performance capable of almost completely mixing the stock solution and the solvent. I understand.

実施例の混合部30では、その緒言(断面の幅や深さ、断面形状、流路内の流速)を変更すれば、電極34a,34bの長さや混合流路32の長さが変化する。そこで、一般的な緒言とするために、混合流路32内の流体の流速を「V」、混合流路32の断面の相当直径を「dh」、混合流路32内の流体の拡散係数を「D」、90%混合するのに必要な混合流路32内における電極34a,34bの長さを「X90」としたときに、V・dh/Dで表わされるペクレ数Peと90%混合するのに必要な混合流路32内における電極34a,34bの長さを混合流路32の断面の相当直径で除したX90/dhとの関係を示せば、図5に示すように、ペクレ数Peが102〜104の範囲でX90/dhが100〜102の範囲となる。この図5の関係は、詳しくは、ペクレ数Peを横軸にX90/dhを縦軸に両対数軸としたときに図中のポイントを結ぶ近似直線より左上の領域となるように緒言を調整すれば、原液と溶媒との混合率が90%以上として取り出すことができることを意味している。したがって、必要な混合率から実施例の混合部30の混合流路32の断面の幅や深さ、断面形状、流路内の流速、電極34a,34bの長さを設定することができる。 In the mixing unit 30 of the embodiment, the lengths of the electrodes 34a and 34b and the length of the mixing channel 32 are changed by changing the introduction (width and depth of the cross section, cross-sectional shape, flow velocity in the channel). Therefore, for general introduction, the flow velocity of the fluid in the mixing channel 32 is “V”, the equivalent diameter of the cross section of the mixing channel 32 is “dh”, and the diffusion coefficient of the fluid in the mixing channel 32 is When the length of the electrodes 34a and 34b in the mixing channel 32 necessary for mixing “D” and 90% is “X90”, 90% is mixed with the Peclet number Pe represented by V · dh / D. If the relationship between X90 / dh obtained by dividing the length of the electrodes 34a and 34b in the mixing flow path 32 required for the above by the equivalent diameter of the cross section of the mixing flow path 32 is shown, as shown in FIG. Is in the range of 10 2 to 10 4 , and X90 / dh is in the range of 10 0 to 10 2 . In detail, the relationship in FIG. 5 is adjusted so that the upper left region of the approximate straight line connecting the points in the figure is obtained when the Peclet number Pe is set on the horizontal axis and X90 / dh is set on the vertical axis. This means that the mixing ratio of the stock solution and the solvent can be taken out as 90% or more. Therefore, the width and depth of the cross section of the mixing channel 32 of the mixing unit 30 of the embodiment, the cross-sectional shape, the flow velocity in the channel, and the length of the electrodes 34a and 34b can be set from the required mixing ratio.

希釈液取出流路40に取り付けられた均一化部42は、混合部30と同様に、この希釈液取出流路40の底部に隙間が波線状となる一対の電極44a,44bと、この電極44a,44bに交流電圧を印加する交流電源46と、を備える。均一化部42は、混合部30とは異なり、希釈液の均一化を行なうものであるから、交流電圧の大きさを調節する必要がないため、可変抵抗は設けられていない。   Similar to the mixing unit 30, the homogenizing unit 42 attached to the diluent extraction flow path 40 has a pair of electrodes 44a and 44b having a wavy line at the bottom of the dilution liquid extraction flow path 40, and the electrode 44a. , 44b, and an AC power supply 46 for applying an AC voltage. Unlike the mixing unit 30, the homogenizing unit 42 homogenizes the diluted solution. Therefore, there is no need to adjust the magnitude of the AC voltage, and therefore no variable resistor is provided.

電子制御ユニット50は、CPU52を中心とするマイクロコンピュータとして構成されており、CPU52の他に、処理プログラムなどを記憶するROM54と、データを一時的に記憶するRAM56と、図示しない入出力ポートとを備える。こうした電子制御ユニット50には、スイッチやキーボードなどの入力機器として構成された濃度指示値入力部60からの濃度指示値C*などが入出力ポートを介して入力されており、電子制御ユニット50からは、混合部30の交流電源36へのオンオフ信号や可変抵抗38への抵抗調整信号、均一化部42の交流電源46へのオンオフ信号などが出力ポートを介して出力されている。   The electronic control unit 50 is configured as a microcomputer centering on the CPU 52. In addition to the CPU 52, the electronic control unit 50 includes a ROM 54 for storing processing programs, a RAM 56 for temporarily storing data, and an input / output port (not shown). Prepare. Such an electronic control unit 50 is input with a density instruction value C * or the like from a density instruction value input unit 60 configured as an input device such as a switch or a keyboard via an input / output port. On the other hand, an on / off signal to the AC power source 36 of the mixing unit 30, a resistance adjustment signal to the variable resistor 38, an on / off signal to the AC power source 46 of the equalizing unit 42, and the like are output via the output port.

次に、こうして構成された実施例の流体混合装置20の動作について説明する。図6は電子制御ユニット50により実行される濃度設定ルーチンの一例を示すフローチャートである。このルーチンは、濃度指示値入力部60から濃度指示値C*が入力されたときに実行される。このルーチンが実行されると、電子制御ユニット50のCPU52は、まず、濃度指示値入力部60からの濃度指示値C*を入力し(ステップS100)、入力した濃度指示値C*に基づいて電極34a,34bに印加する交流電圧の振幅としての電圧Vを設定する(ステップS110)。この電圧Vの設定は、実施例では、実験などにより希釈液取出流路40から取り出される希釈液の原液の混合比率が濃度指示値C*に一致する交流電圧の電圧値を求めて予め電圧設定用マップとしてROM54に記憶しておき、濃度指示値C*が与えられるとマップから対応する電圧Vを導出して設定するものとした。電圧設定用マップの一例を図7に示す。こうして電圧Vを設定すると、設定した電圧Vの交流電圧が電極34a,34bに印加されるよう可変抵抗38の抵抗値を調整して(ステップS120)、本ルーチンを終了する。こうした処理により、濃度指示値C*を入力するだけで、指示した濃度に原液を希釈した希釈液を希釈液取出流路40から取り出すことができる。   Next, the operation of the fluid mixing apparatus 20 of the embodiment thus configured will be described. FIG. 6 is a flowchart showing an example of a density setting routine executed by the electronic control unit 50. This routine is executed when the density instruction value C * is input from the density instruction value input unit 60. When this routine is executed, the CPU 52 of the electronic control unit 50 first inputs the concentration instruction value C * from the concentration instruction value input unit 60 (step S100), and the electrode is based on the input concentration instruction value C *. A voltage V is set as the amplitude of the AC voltage applied to 34a and 34b (step S110). In the embodiment, the voltage V is set in advance by obtaining a voltage value of an alternating voltage at which the mixing ratio of the diluted solution extracted from the diluted solution extraction flow path 40 by experiment or the like matches the concentration instruction value C *. As a map for use, it is stored in the ROM 54, and when the density instruction value C * is given, the corresponding voltage V is derived and set from the map. An example of the voltage setting map is shown in FIG. When the voltage V is set in this way, the resistance value of the variable resistor 38 is adjusted so that the AC voltage of the set voltage V is applied to the electrodes 34a and 34b (step S120), and this routine is finished. By such a process, the diluted solution obtained by diluting the stock solution to the indicated concentration can be taken out from the diluted solution take-out flow path 40 only by inputting the concentration indication value C *.

以上説明した実施例の流体混合装置20によれば、混合部30の混合流路32の底部に隙間が波線状となる一対の電極34a,34bに交流電圧を印加することにより原液と溶媒とを混合するから、簡易で小型の構成で断面の相当直径が1000マイクロメートル以下の混合流路32内に流れる原液と溶媒とを混合することができる。しかも、一対の電極34a,34bに印加する交流電圧の大きさを変更するだけで原液の混合比率を変更した希釈液を希釈液取出流路40から取り出すことができる。したがって、一対の電極34a,34bに印加する交流電圧の大きさを調整することにより、原液と溶媒と任意の混合比率をもって混合することができる。さらに、実施例の流体混合装置20によれば、こうした原理に基づいて電圧設定用マップを用いることにより、濃度指示値C*を入力するだけで指示した濃度に原液を希釈した希釈液を希釈液取出流路40から取り出すことができる。これにより、断面の相当直径が1000マイクロメートル以下の混合流路32内に流れる原液と溶媒とを高い精度の任意の混合比率をもって混合して希釈液として取り出すことができる。   According to the fluid mixing apparatus 20 of the embodiment described above, the stock solution and the solvent are removed by applying an alternating voltage to the pair of electrodes 34a and 34b whose gaps are wavy at the bottom of the mixing flow path 32 of the mixing unit 30. Since they are mixed, it is possible to mix the stock solution and the solvent flowing in the mixing flow path 32 having an equivalent diameter of 1000 micrometers or less with a simple and small configuration. Moreover, it is possible to take out the diluting liquid in which the mixing ratio of the stock solution is changed from the diluting liquid take-out flow path 40 only by changing the magnitude of the alternating voltage applied to the pair of electrodes 34a and 34b. Therefore, by adjusting the magnitude of the AC voltage applied to the pair of electrodes 34a and 34b, the stock solution and the solvent can be mixed with an arbitrary mixing ratio. Further, according to the fluid mixing device 20 of the embodiment, by using the voltage setting map based on such a principle, the diluted solution obtained by diluting the stock solution to the indicated concentration simply by inputting the concentration indicating value C * is diluted. It can be taken out from the take-out flow path 40. Thereby, the undiluted | stock solution and solvent which flow into the mixing flow path 32 whose equivalent diameter of a cross section is 1000 micrometers or less can be mixed with arbitrary high mixing ratios, and it can take out as a dilution liquid.

実施例の流体混合装置20によれば、希釈液取出流路40に均一化部42を設けているから、希釈液取出流路40から取り出される希釈液における原液の溶媒への混合を均一なものとすることができる。   According to the fluid mixing apparatus 20 of the embodiment, since the uniformizing section 42 is provided in the diluent extraction flow path 40, the mixing of the stock solution into the solvent in the dilution liquid extracted from the dilution liquid extraction flow path 40 is uniform. It can be.

実施例の流体混合装置20では、混合部30の混合流路32内に流れる流体の流心に沿って対をなし、その隙間が波線状となるよう一対の電極34a,34bを形成して混合流路32の底部に配設するものとしたが、混合流路32内に流れる流体の流心に対して偏心していればよいから、図8の変形例の混合部130に例示するように、混合流路132の底部に混合流路132内に流れる流体の流心から偏心するよう二対の電極134a,134bを配設するものとしてもよい。また、図9の変形例の混合部230に例示するように、混合流路232の底部の中央に電極234aを配設すると共に混合流路232の底部の両サイドに二つの電極234bを配設するものとしてもよい。この場合、中央の電極234aは、二つの電極を合体させたものと見ることができ、対流現象作用は混合流路232内に流れる流体の流心から偏心している。さらに、図10の変形例の混合部330に例示するように、その隙間が曲線状となるように且つその隙間が混合流路332内に流れる流体の流心から偏心するように一対の電極334a,334bを形成して混合流路332の底部に配設するものとしてもよい。このほか、矩形や円形,楕円形に形成された複数の電極を混合流路32内に千鳥状に配置するものとしても構わない。こうした変形例の混合部130,230,330の電極134a,13b,234a,234b,334a,334bの構成や配置は希釈液取出流路40に取り付けられた均一化部42の電極44a,44bの構成や配置にも適用することができる。   In the fluid mixing apparatus 20 of the embodiment, a pair is formed along the flow center of the fluid flowing in the mixing flow path 32 of the mixing unit 30, and a pair of electrodes 34a and 34b are formed and mixed so that the gap is wavy. Although it should be arranged at the bottom of the flow path 32, it is only necessary to be eccentric with respect to the flow center of the fluid flowing in the mixing flow path 32, so as illustrated in the mixing section 130 of the modification of FIG. Two pairs of electrodes 134 a and 134 b may be disposed at the bottom of the mixing channel 132 so as to be eccentric from the flow center of the fluid flowing in the mixing channel 132. 9, the electrode 234a is disposed at the center of the bottom of the mixing channel 232 and two electrodes 234b are disposed on both sides of the bottom of the mixing channel 232, as illustrated in the mixing unit 230 of the modification of FIG. It is good also as what to do. In this case, the central electrode 234 a can be regarded as a combination of the two electrodes, and the convection phenomenon action is eccentric from the center of the fluid flowing in the mixing channel 232. Further, as illustrated in the mixing unit 330 of the modification of FIG. 10, the pair of electrodes 334 a, the gap is curved, and the gap is eccentric from the flow center of the fluid flowing in the mixing channel 332. 334 b may be formed and disposed at the bottom of the mixing channel 332. In addition, a plurality of electrodes formed in a rectangular shape, a circular shape, or an elliptical shape may be arranged in a staggered manner in the mixing channel 32. The configuration and arrangement of the electrodes 134 a, 13 b, 234 a, 234 b, 334 a, 334 b of the mixing units 130, 230, 330 of such a modified example are the configurations of the electrodes 44 a, 44 b of the homogenizing unit 42 attached to the diluent extraction flow path 40. And can also be applied to placement.

実施例の流体混合装置20では、交流電気浸透の原理を用いて混合部30を構成するものとしたが、相当直径が1000マイクロメートル以下の混合流路32内に流れる原液と溶媒との混合の程度(撹拌の程度)を変更可能なものであれば、如何なるものを用いるものとしてもよい。例えば、超音波の強度を変更可能な超音波攪拌機を用いて混合部を構成するものとしてもよいし、混合流路に流れる原液と溶媒に強度を変更可能な圧力パルスを与えることにより、原液と溶媒との混合の程度を変更するものとしても構わない。   In the fluid mixing apparatus 20 of the embodiment, the mixing unit 30 is configured using the principle of alternating current electroosmosis. However, the mixing of the stock solution and the solvent flowing in the mixing channel 32 having an equivalent diameter of 1000 micrometers or less is performed. As long as the degree (the degree of stirring) can be changed, any one may be used. For example, the mixing unit may be configured using an ultrasonic stirrer capable of changing the intensity of ultrasonic waves, or by applying a pressure pulse capable of changing the intensity to the stock solution and the solvent flowing in the mixing flow path, The degree of mixing with the solvent may be changed.

実施例の流体混合装置20では、希釈液取出流路40に均一化部42を設けるものとしたが、こうした均一化部42を設けないものとしても構わない。   In the fluid mixing apparatus 20 of the embodiment, the uniformizing section 42 is provided in the diluent extraction flow path 40, but the uniformizing section 42 may not be provided.

実施例の流体混合装置20では、入力された濃度指示値C*に基づいて電極34a,34bに印加する交流電圧の振幅としての電圧Vを設定すると共に設定した電圧Vとなるように可変抵抗38の抵抗値を調整するものとしたが、希釈液取出流路40から取り出される希釈液の濃度を検出する濃度センサを取り付け、濃度センサにより検出される希釈液の濃度が濃度指示値C*に一致するよう可変抵抗38の抵抗値を調整する、いわゆるフィードバック制御を行なうものとしてもよい。   In the fluid mixing apparatus 20 of the embodiment, the variable resistor 38 is set so that the voltage V is set as the amplitude of the AC voltage applied to the electrodes 34a and 34b based on the input concentration instruction value C * and becomes the set voltage V. The resistance value is adjusted, but a concentration sensor for detecting the concentration of the diluent taken out from the diluent outlet flow path 40 is attached, and the concentration of the diluent detected by the concentration sensor matches the concentration indication value C *. It is also possible to perform so-called feedback control, in which the resistance value of the variable resistor 38 is adjusted.

実施例の流体混合装置20では、原液と溶媒とを混合して任意の混合比率をもって原液を希釈した希釈液を取り出すものとしたが、異なる二つの液体を任意の混合比率をもって混合してなる溶液を取り出すものとしても構わない。   In the fluid mixing apparatus 20 of the embodiment, the stock solution and the solvent are mixed, and the diluted solution obtained by diluting the stock solution with an arbitrary mixing ratio is taken out. However, a solution obtained by mixing two different liquids with an arbitrary mixing ratio It does not matter as a thing to take out.

実施例の流体混合装置20、一対の電極34a,34bを混合流路32の底部に配設するものとしたが、一対の電極34a,34bを混合流路32の底部に配設するものに限定されるものではなく、一対の電極34a,34bを混合流路32の頂部や側部など種々の部位に配設するものとしてもよい。この場合、一対の電極34a,34bを同一平面上に配置しないものとしても構わない。   Although the fluid mixing device 20 of the embodiment is configured such that the pair of electrodes 34 a and 34 b are disposed at the bottom of the mixing channel 32, the pair of electrodes 34 a and 34 b are limited to those disposed at the bottom of the mixing channel 32. Instead, the pair of electrodes 34 a and 34 b may be disposed at various sites such as the top and sides of the mixing channel 32. In this case, the pair of electrodes 34a and 34b may not be arranged on the same plane.

実施例の流体混合装置20では、混合流路32の断面を幅が120μmで深さが40μmの略円弧状としたが、混合流路32の断面は、相当直径が1000μm以下であれば、如何なる断面形状としてもよい。即ち、円形断面としてもよいし、矩形断面としてもよいし、多角形断面や楕円断面などとしても構わない。また、こうした混合流路32としては、断面の相当直径が1000μm以下のマイクロ流路であればよく、マイクロ流路の断面の相当直径としては、500μmや100μm、50μm、10μmなどを用いるものとしてもよい他、ナノメートルオーダーを用いるものとしてもよい。   In the fluid mixing device 20 of the embodiment, the cross section of the mixing flow path 32 has a substantially arc shape with a width of 120 μm and a depth of 40 μm. However, the cross section of the mixing flow path 32 may have any diameter as long as the equivalent diameter is 1000 μm or less. It is good also as a cross-sectional shape. That is, it may be a circular cross section, a rectangular cross section, a polygonal cross section, an elliptical cross section, or the like. The mixing channel 32 may be a micro channel having an equivalent cross section diameter of 1000 μm or less, and 500 μm, 100 μm, 50 μm, 10 μm, etc. may be used as the equivalent diameter of the micro channel cross section. In addition, it is good also as what uses a nanometer order.

実施例の流体混合装置20では、交流電源36として振幅の電圧が20Vで周波数が1kHzのものを用いるものとしたが、電極34a,34b上で交流電気浸透の現象を生じさせると共にその程度を変更可能なものであれば、如何なる振幅の如何なる周波数の交流電圧であっても構わない。例えば、交流電圧の振幅は1V以上や3V,5V,10V,30V,50Vなど種々のものを用いることができるし、周波数も100Hzや300Hz,500Hz,1kHz,3kHz,5kHzなど種々のものを用いることができる。   In the fluid mixing apparatus 20 of the embodiment, the AC power source 36 having an amplitude voltage of 20 V and a frequency of 1 kHz is used, but the AC electroosmosis phenomenon is caused on the electrodes 34a and 34b and the degree thereof is changed. If possible, an AC voltage with any amplitude and any frequency may be used. For example, the AC voltage can have various amplitudes such as 1 V or more, 3 V, 5 V, 10 V, 30 V, 50 V, and various frequencies such as 100 Hz, 300 Hz, 500 Hz, 1 kHz, 3 kHz, 5 kHz. Can do.

実施例の流体混合装置20では、可変抵抗38の抵抗値を変更して電極34a,34bに印加する交流電圧の振幅を変更することにより、原液の溶媒に対する混合比率を変更するものとしたが、交流電圧の周波数を変更することにより、原液の溶媒に対する混合比率を変更するものとしても構わない。   In the fluid mixing apparatus 20 of the embodiment, the mixing ratio of the stock solution to the solvent is changed by changing the resistance value of the variable resistor 38 and changing the amplitude of the AC voltage applied to the electrodes 34a and 34b. The mixing ratio of the stock solution to the solvent may be changed by changing the frequency of the AC voltage.

以上、本発明を実施するための最良の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   The best mode for carrying out the present invention has been described with reference to the embodiments. However, the present invention is not limited to these embodiments, and various modifications can be made without departing from the gist of the present invention. Of course, it can be implemented in the form.

本発明は、流体混合装置の製造産業に利用可能である。   The present invention can be used in the manufacturing industry of fluid mixing devices.

本発明の一実施例としての流体混合装置20の構成の概略を模式的に示す構成図である。It is a block diagram which shows typically the outline of a structure of the fluid mixing apparatus 20 as one Example of this invention. 交流電気浸透により対称な二つの対流現象作用を説明する説明図である。It is explanatory drawing explaining the effect | action of two convection phenomena symmetrical by alternating current electroosmosis. 非対称な二つの対流現象作用を説明する説明図である。It is explanatory drawing explaining two asymmetrical convection phenomenon effect | actions. 実施例における混合流路32内の流体の流速Vと90%混合するのに必要な混合流路32内における電極34a,34bの長さとの関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between the flow velocity V of the fluid in the mixing flow path 32 in an Example, and the length of the electrodes 34a and 34b in the mixing flow path 32 required for mixing 90%. ペクレ数PeとX90/dhとの関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between the Peclet number Pe and X90 / dh. 電子制御ユニット50により実行される濃度設定ルーチンの一例を示すフローチャートである。3 is a flowchart showing an example of a concentration setting routine executed by an electronic control unit 50. 電圧設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the map for voltage setting. 変形例の混合部130の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the mixing part 130 of a modification. 変形例の混合部230の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the mixing part 230 of a modification. 変形例の混合部330の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the mixing part 330 of a modification.

符号の説明Explanation of symbols

20 流体混合装置、22 溶媒導入流路、24 原液導入流路、30,130,230,330 混合部、32,132,232,332 混合流路、34a,34b,134a,134b,234a,234b,334a,334b 電極、36 交流電源、38 可変抵抗、40 希釈液取出流路、42 均一化部、44a,44b 電極、 46 交流電源、48 廃液回収流路、50 電子制御ユニット、52 CPU、54 ROM、56 RAM 60 濃度指示値入力部。
20 fluid mixing device, 22 solvent introduction channel, 24 stock solution introduction channel, 30, 130, 230, 330 mixing unit, 32, 132, 232, 332 mixing channel, 34a, 34b, 134a, 134b, 234a, 234b, 334a, 334b Electrode, 36 AC power supply, 38 Variable resistance, 40 Diluent extraction flow path, 42 Uniform section, 44a, 44b Electrode, 46 AC power supply, 48 Waste liquid recovery flow path, 50 Electronic control unit, 52 CPU, 54 ROM 56 RAM 60 Density indication value input section.

Claims (7)

第1の流体に該第1の流体とは異なる第2の流体を混合比率の調整を伴って混合する流体混合装置であって、
同一平面内にY字状に分岐した二つの導入口とY字状に分岐した二つの排出口とを有し、断面の相当直径が1000マイクロメートル以下の混合流路と、
前記混合流路の導入口の一方に前記第1の流体を導入する第1流体導入部と、
前記混合流路の導入口の他方に前記第2の流体を導入する第2流体導入部と、
前記混合流路に配設された複数の電極と、該複数の電極に電圧および/または周波数を変更可能に交流電圧を印加する交流電圧印加手段と、を有し、前記交流電圧印加手段により印加される交流電圧の大きさを調整することにより前記混合流路における流体の撹拌の程度を調整する撹拌程度調整手段と、
前記混合流路の二つの排出口のうち前記第1の流体が導入される導入口と同側の排出口に接続されて混合流体を取り出す混合流体取出流路と、
を備える流体混合装置。
A fluid mixing device that mixes a first fluid with a second fluid different from the first fluid with adjustment of a mixing ratio,
A mixing channel having two inlets branched in a Y-shape and two outlets branched in a Y-shape in the same plane, the equivalent diameter of the cross section being 1000 micrometers or less;
A first fluid introduction part for introducing the first fluid into one of the introduction ports of the mixing channel;
A second fluid introduction section for introducing the second fluid into the other inlet of the mixing channel;
A plurality of electrodes disposed in the mixing flow path; and an AC voltage applying unit that applies an AC voltage to the plurality of electrodes so that a voltage and / or frequency can be changed, and is applied by the AC voltage applying unit. An agitation degree adjusting means for adjusting the degree of agitation of the fluid in the mixing channel by adjusting the magnitude of the alternating voltage to be applied ;
A mixed fluid outlet channel connected to an outlet on the same side as the inlet into which the first fluid is introduced out of the two outlets of the mixed channel;
A fluid mixing device.
前記撹拌程度調整手段は、前記複数の電極を前記混合流路における流体の流心に対して非対称となるよう配置してなる手段である請求項記載の流体混合装置。 The stirring about adjusting means, the plurality of electrodes fluid mixing apparatus according to claim 1, wherein the means formed by arranging so as to be asymmetrical with respect to the flow center of the fluid in the mixing channel. 前記撹拌程度調整手段は、前記複数の電極として二つの電極を用いると共に該二つの電極を電極間の隙間が曲線状となるよう形成して配置してなる手段である請求項記載の流体混合装置。 2. The fluid mixing according to claim 1, wherein the stirring degree adjusting means is means for using two electrodes as the plurality of electrodes and arranging the two electrodes so that a gap between the electrodes is curved. apparatus. 前記二つの電極は、該二つの電極間の隙間が波線状となるよう形成されてなる請求項記載の流体混合装置。 The fluid mixing device according to claim 3 , wherein the two electrodes are formed such that a gap between the two electrodes is wavy. 前記第1流体導入部および前記第2流体導入部は、前記混合流路の断面の相当直径dh、前記混合流路の長さL、前記混合流路における流体の流速v、前記混合流路における流体の拡散係数Dに対して、v・dh/Dにより演算されるペクレ数が102〜104の範囲でL/dhにより演算される対象演算値が100〜102の範囲となる条件を満たすよう前記第1の流体と前記第2の流体とを導入することを特徴とする請求項1ないし4いずれか記載の流体混合装置。 The first fluid introduction part and the second fluid introduction part have an equivalent diameter dh of a cross section of the mixing flow path, a length L of the mixing flow path, a fluid flow velocity v in the mixing flow path, and in the mixing flow path. The condition that the target calculation value calculated by L / dh is in the range of 10 0 to 10 2 when the Peclet number calculated by v · dh / D is in the range of 10 2 to 10 4 with respect to the diffusion coefficient D of the fluid. It said first fluid and said second fluid mixing apparatus of claims 1 to 4, wherein any and introducing a fluid to meet. 前記混合流体取出流路から取り出される混合流体の混合を均一化する均一化手段を備える請求項1ないし5いずれか記載の流体混合装置。 The fluid mixing apparatus according to any one of claims 1 to 5 , further comprising a homogenizing means for homogenizing mixing of the mixed fluid taken out from the mixed fluid take-out flow path. 前記均一化手段は、前記混合流体取出流路に配設された複数の電極と、該複数の電極に交流電圧を印加する交流電圧印加手段と、を備える手段である請求項記載の流体混合装置。
The fluid mixing according to claim 6 , wherein the homogenizing means includes a plurality of electrodes disposed in the mixed fluid take-out flow path, and AC voltage applying means for applying an AC voltage to the plurality of electrodes. apparatus.
JP2005148720A 2005-05-20 2005-05-20 Fluid mixing device Active JP4590558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005148720A JP4590558B2 (en) 2005-05-20 2005-05-20 Fluid mixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005148720A JP4590558B2 (en) 2005-05-20 2005-05-20 Fluid mixing device

Publications (2)

Publication Number Publication Date
JP2006320878A JP2006320878A (en) 2006-11-30
JP4590558B2 true JP4590558B2 (en) 2010-12-01

Family

ID=37540929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148720A Active JP4590558B2 (en) 2005-05-20 2005-05-20 Fluid mixing device

Country Status (1)

Country Link
JP (1) JP4590558B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5749987B2 (en) 2011-06-22 2015-07-15 株式会社神戸製鋼所 Liquid mixing method and apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH115029A (en) * 1997-04-11 1999-01-12 Eastman Kodak Co Integrated micro-ceramic chemical plant
JPH11347392A (en) * 1998-06-11 1999-12-21 Hitachi Ltd Stirrer
JP2001120972A (en) * 1999-10-21 2001-05-08 Shimadzu Corp Liquid mixer
JP2004156964A (en) * 2002-11-05 2004-06-03 Rikogaku Shinkokai Liquid mixing apparatus
JP2005007292A (en) * 2003-06-19 2005-01-13 Yaskawa Electric Corp Sample mixing method and device therefor
JP2005087868A (en) * 2003-09-17 2005-04-07 Keio Gijuku Particle isolating process and apparatus therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH115029A (en) * 1997-04-11 1999-01-12 Eastman Kodak Co Integrated micro-ceramic chemical plant
JPH11347392A (en) * 1998-06-11 1999-12-21 Hitachi Ltd Stirrer
JP2001120972A (en) * 1999-10-21 2001-05-08 Shimadzu Corp Liquid mixer
JP2004156964A (en) * 2002-11-05 2004-06-03 Rikogaku Shinkokai Liquid mixing apparatus
JP2005007292A (en) * 2003-06-19 2005-01-13 Yaskawa Electric Corp Sample mixing method and device therefor
JP2005087868A (en) * 2003-09-17 2005-04-07 Keio Gijuku Particle isolating process and apparatus therefor

Also Published As

Publication number Publication date
JP2006320878A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
Vatankhah et al. Parametric study on mixing process in an in-plane spiral micromixer utilizing chaotic advection
Wang et al. Efficient manipulation of microparticles in bubble streaming flows
Ahmed et al. A millisecond micromixer via single-bubble-based acoustic streaming
Bayareh et al. Rapid mixing of Newtonian and non-Newtonian fluids in a three-dimensional micro-mixer using non-uniform magnetic field
JP4590557B2 (en) Micromixer, fluid stirring method and fluid mixing method
JP4997571B2 (en) Microfluidic device and analyzer using the same
JP5645169B2 (en) Ultra-fine droplet preparation device
Pan et al. Immersed AC electrospray (iACE) for monodispersed aqueous droplet generation
KR20140082377A (en) Micromixer with circular chambers and crossing constriction channels
CN101757864B (en) Bubble swinging micro-mixing system
JP4590558B2 (en) Fluid mixing device
CN108993622A (en) It is a kind of to realize various combination drop to the micro-fluidic chip of collision
Majhi et al. Electroosmotic mixing of non-Newtonian fluid in an optimized geometry connected with a modulated microchamber
Bagherabadi et al. Enhancing active electro-kinetic micro-mixer efficiency by introducing vertical electrodes and modifying chamber aspect ratio
Keshavarzian et al. Optimization of an active electrokinetic micromixer based on the number and arrangement of microelectrodes
CN201596477U (en) Bubble oscillating micro-mixing system
Wei et al. Induced charge electro-osmotic mixing performance of viscoelastic fluids in microchannels with an electrically conductive plate
US9221023B2 (en) Liquid mixing apparatus
Paramanantham et al. Numerical investigation of the influence of microchannel geometry on the droplet generation process
Herrada et al. Generation of small mono-disperse bubbles in axisymmetric T-junction: the role of swirl
CN110947329A (en) Sawtooth type passive micro mixer
Roy et al. Interplay of fluid rheology and flow actuation for modulation of mixing characteristics in T-shaped microchannels
JP2008062190A (en) Micro mixer and method of agitating fluid, and method of mixing fluid
JP2005127864A (en) Micromixing device
JP2005054023A (en) Method for producing polymer particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150