JP4589567B2 - Rail car axle box support device - Google Patents

Rail car axle box support device Download PDF

Info

Publication number
JP4589567B2
JP4589567B2 JP2001171173A JP2001171173A JP4589567B2 JP 4589567 B2 JP4589567 B2 JP 4589567B2 JP 2001171173 A JP2001171173 A JP 2001171173A JP 2001171173 A JP2001171173 A JP 2001171173A JP 4589567 B2 JP4589567 B2 JP 4589567B2
Authority
JP
Japan
Prior art keywords
cylindrical
axle box
rubber
laminated rubber
cylindrical laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001171173A
Other languages
Japanese (ja)
Other versions
JP2002362362A (en
Inventor
浩 新村
安彦 谷川
賢治郎 上林
啓 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sharyo Ltd
Central Japan Railway Co
Original Assignee
Nippon Sharyo Ltd
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sharyo Ltd, Central Japan Railway Co filed Critical Nippon Sharyo Ltd
Priority to JP2001171173A priority Critical patent/JP4589567B2/en
Publication of JP2002362362A publication Critical patent/JP2002362362A/en
Application granted granted Critical
Publication of JP4589567B2 publication Critical patent/JP4589567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、円筒積層ゴムとコイルバネを組み合わせて軸箱を支持する鉄道車両の軸箱支持装置に関するものである。
【0002】
【従来の技術】
鉄道車両の台車には台車枠を輪軸に対して弾性支持する軸箱支持装置が設けられている。
軸箱支持装置は車体の荷重を支えて上下方向の振動をやわらげるばかりでなく、台車の前後方向には、輪軸を平行に保つためしっかり保持し、左右方向には曲線通過時の衝撃が緩衝されるように余裕を持たせて支持する必要があり、ウイング式、軸梁式、モノリンク式等種々の形式のものがある。
【0003】
近年は摺動部分をなくすため円筒積層ゴムとコイルバネを組み合わせて軸箱を支持するようにしたものが使用されている。
図4はウイング式の軸箱支持装置の構造を示すもので、軸箱体2の前後方向両側に下部軸ばね座6を設けるとともに台車枠1に上部軸バネ座5を設けて、この間にコイルバネ3を設け、かつ、コイルバネ3の中央部に円筒積層ゴム21を設けている。
【0004】
この軸箱支持装置に使用されている円筒積層ゴム21は図6(a)に示すように、金属内筒21aと金属外筒21bとの間に複数の円筒ゴム21cと金属のインナープレート21dを半径方向に交互に積層し、円筒ゴム21cとインナープレート4dは外観が竹の子のように外側から内側に向かって軸方向の長さがしだいに長くなるように構成している。したがって、上下荷重たわみが大きいほど左右方向の剛性が高くなる特性を有している。
【0005】
また、図5は別の円筒積層ゴム24を取り付けたウイング式の軸箱支持装置の構造を示すもので、円筒積層ゴム24以外の構成要素は上記図4と同じである。
円筒積層ゴム24は図6(b)に示すように、金属内筒24aと金属外筒24bとの間に複数の円筒ゴム24cとインナープレート24dを半径方向に交互に積層し、円筒ゴム24cとインナープレート4dは外側から内側に向かって軸方向の長さが上下対称の形で長くしたソロバン玉形の形状を有している。
【0006】
なお、円筒積層ゴム21および円筒積層ゴム24は、台車の左右方向側には図7に示すように曲線通過時の衝撃を緩衝するため扇形状の間隙部24eを設けている。
【0007】
【発明が解決しようとする課題】
2台車4軸を備えた標準的鉄道車両では、一般に空車時に蛇行動安定性が最も低下し、満車時に最もレールを痛めやすく、曲線走行性能が低下する。
軸箱支持における前後方向(進行方向)の剛性は高い程蛇行動安定性が向上するが、逆に曲線通過性能が悪くなる。
【0008】
上記従来の図4に示す竹の子形の円筒積層ゴム21を使用した軸箱支持装置では、円筒積層ゴムの上下荷重たわみが大きいほど軸箱の前後方向の剛性が高くなる傾向にあるので、満車(定員×2.5)時に前後方向の剛性が最も高く空車時に最も小さくなる。
【0009】
したがって、空車時には蛇行動安定性が不利な状態と軸箱の前後方向の支持剛性の小さい状態とが重なり、走行安定性が損なわれることになる。このため、ヨーダンパなどを別途付設して走行安定性を高めるといった手段が採られている。
また、満車時には曲線通過性能の不利な状態と軸箱の前後方向の支持剛性の大きい状態が重なり、輪軸は最もきしみ、横圧が高くなる。
【0010】
また、図5に示すソロバン玉形の円筒積層ゴム24を使用した軸箱支持装置では、上記の竹の子形に比べ上下たわみに伴う前後方向の支持剛性の変化は小さいが、定員乗車時に円筒積層ゴム24のたわみがゼロになるように取り付けられているので、空車時に前後方向の支持剛性が小さくなり、蛇行動安定性が低下する。
【0011】
発明者等は、曲率半径400mm,走行速度85Km/hにおける満車時と空車時における定常横圧と臨界速度の変化を調べたところ、定常横圧で1.2倍、臨界速度で1.3倍の差があることが解った。
そこで、本発明は、空車での直線走行時における安定性が高く、しかも満車での曲線走行時における横圧が低い軸箱支持装置を提供することを目的としている。
【0012】
【課題を解決するための手段】
上記目的を達成するため、本発明では次の手段を採った。即ち、
円筒ゴムとインナープレートを半径方向に交互に積層した円筒積層ゴムをコイルバネと組み合わせて軸箱を支持するようにした鉄道車両の軸箱支持装置において、上下方向の伸縮によって台車の前後方向に対する剛性が変化する特性を備えた円筒積層ゴムを、該コイルバネの圧縮に伴って円筒ゴムは伸び、かつ、空車時に台車の前後方向に対する支持剛性が最大になるように取付けたことを特徴としている。
【0013】
本発明は、円筒積層ゴムとコイルバネを組み合わせて軸箱を支持するようにした軸箱支持装置に適用されるもので、ウイング式、軸梁式、モノリンク式など種々の形式のものに使用できる。
また、円筒積層ゴムは上下方向のたわみによって水平方向の支持剛性が変化するものであれば、竹の子形、ソロバン玉形などその形式は問わない。
【0014】
なお、円筒積層ゴムは請求項2に記載のように、インナープレートの上下方向の肉厚をしだいに変化させて楔状にすれば、上下方向のたわみに対して水平方向の剛性を所望の値に変化させることができる。
円筒積層ゴムはコイルバネが圧縮された時にはゴム部は伸び、コイルバネが伸びた時にはゴム部は縮む方向に取り付ける。例えばウイング式で竹の子形の円筒積層ゴムを使用する場合は、円筒ゴムとインナープレートを外径側から内側へ順次下方に長くなるようにして、その外周を下部軸バネ座に取り付ける。また、軸梁式の場合は円筒積層ゴムをウイング式の場合とは上下逆にして、その外周を上部軸バネ座に取り付ける。
【0015】
本発明は、蛇行動安定性上不利な空車時には軸箱支持前後剛性が最も高くなるようにして取り付けるので、空車時にも走行安定性を維持することが可能となる。この際、曲線通過性能は若千低下することになるが、空車時は横圧が小さいため問題とはならない。また、曲線通過性能上不利な満車時には軸箱支持剛性が最も低いので、横圧を低く抑えることが可能となる。この際、直線走行性能は若千低下することになるが、空車時よりも条件が有利であるため、問題とはならない。
【0016】
なお、本発明は台車の左右方向に対する支持剛性については、特に問うものではない。円筒積層ゴムは一般的に台車の左右方向に扇形状の間隙部を設けているが、例えばブレーキ装置や動力伝達装置が台車の左右方向に対しての移動を僅かしか許容しない場合には、満車時にも台車の左右方向の軸箱支持剛性を大きくする必要がある。この場合は円筒積層ゴムの台車の左右方向側にも円筒ゴムとインナープレートを設け、満車時に支持剛性が大きくなるように取り付けるとよい。
【0017】
【発明の実施の形態】
以下本発明の実施の形態を図1〜図3に基づいて説明する。
なお、この図において従来(図4)と同一構成要素については同一符号を付してある。
【0018】
図1は、本発明をウイング式の軸箱支持装置に適用した実施の形態を示す側面図であり、1は台車枠、2は輪軸の両端を支持する軸箱体、3はコイルバネである。軸箱体2の下部は台車の前後側を張り出し、コイルバネ3の下端を受けるつば6aとコイルバネ3の内側に入る筒状部6bとを備えた下部軸ばね座6が設けられている。そして、これに対向して台車枠1の下面にはコイルバネ3の上端を受けるつば5aと下方に伸びて下部軸ばね座6の筒状部の内部に入る棒状部5bとを備えた上部軸バネ座5が取り付けられている。
【0019】
上部軸バネ座5の棒状部5bと下部軸バネ座6の筒状部6bの間には円筒積層ゴム4が設けられている。すなわち、棒状部5bが円筒積層ゴム4の金属内筒4aに嵌挿されてボルト10で取り付けられ、円筒積層ゴム4の金属外筒4bが筒状部6bに嵌合して固定されている。円筒積層ゴム4の金属内筒4aの上端は棒状部5bに設けた間座7に当接し、下端は押さえ金8によって固定され、円筒積層ゴム4の金属外筒4bの下端は筒状部6bの段部6cに係止し、上端は止め輪9で固定されている。
【0020】
円筒積層ゴム4は図2(a)に示すように、金属内筒4aと金属外筒4bとの間に円筒ゴム4cとインナープレート4dを半径方向に交互に積層して構成されており、インナープレート4dは上端が厚く下端が薄い楔状になっている。また、金属外筒4bとインナープレート4dは軸方向の長さが一定であり、外側から内側に向かって軸方向の長さが階段状に形成されている。また、図2(b)に示すように、台車の左右方向の剛性を低くするため円筒積層ゴム4の2方向には扇形状に切り欠いた間隙部4eを形成している。
【0021】
そして、円筒積層ゴム4は空車時に円筒ゴム4cが最も圧縮された状態となり、満車時に最も伸びた状態になるように、また、間隙部4eが台車の左右方向に位置するように組み付けられている。
上記のように構成されているので、車体が満車状態となったときは、コイルバネ3が縮んで上部軸バネ座5の棒状部5bが下降し、円筒ゴム4cが下方に伸び、したがって、円筒積層ゴム4の前後方向の剛性は小さくなる。
【0022】
逆に、空車状態のときはコイルバネ3が伸びて上部軸バネ座5の棒状部5bが上昇するので、円筒ゴム4cが縮み、したがって、円筒積層ゴム4の前後方向の剛性は大きくなる。
次に、本発明を軸梁式の軸箱支持装置に適用した実施の形態を図3に基づいて説明する。
【0023】
図において11は台車枠、12は輪軸の両端を支持する軸箱体、13はコイルバネである。軸箱体12は台車枠11と梁12aによって連結されており、軸箱体12の上面には、コイルバネ13の下端を受けるつば16aとコイルバネ13の内側に入る支軸部16bとを備えた下部軸ばね座16が設けられている。そして、これに対向して台車枠11にはコイルバネ13の上端を受けるつば15aと下方に伸びる筒状部15bとを備えた上部軸バネ座15が取り付けられている。
【0024】
上部軸バネ座15の筒状部15bと下部軸バネ座6の支軸部16bの間には円筒積層ゴム14が設けられている。すなわち、支軸部15bが円筒積層ゴム14の金属内筒14aに嵌挿されてボルト20で取り付けられ、円筒積層ゴム14の金属外筒14bが筒状部15bに嵌合して固定されている。円筒積層ゴム14の金属内筒14aの下端は支軸部16bに固設した間座17に当接し、上端は押さえ金18によって固定され、円筒積層ゴム14の金属外筒14bの上端は筒状部15bの段部16cに係止し、下端は止め輪19で固定されている。
【0025】
この円筒積層ゴム4は上記の図2で示すものと同じものであり、取付状態が上下逆になっている。すなわち、円筒積層ゴム4は空車時に円筒ゴム4cが最も圧縮された状態となり、満車時に最も伸びた状態になるように組みつけられている。
【0026】
このように構成されているので、車体が満車状態のときは、コイルバネ13が縮んで上部軸バネ座15の筒状部15bが下降し、円筒ゴム4cが下方に伸び、したがって、前後方向の剛性は小さくなる。
逆に、車体が空車のときはコイルバネ13が伸び、上部軸バネ座15の筒状部15bが上昇するので円筒ゴム14cが縮み、したがって、円筒積層ゴム4の前後方向の剛性は大きくなる。
【0027】
なお、上記の実施の形態では、円筒積層ゴムの台車の左右方向は、扇形状の間隙部を設けたもので説明したが、特にこれに限定するものではない。
例えば、ブレーキ装置や動力伝達装置が台車の左右方向に対しての移動を僅かしか許容しないものである場合には満車時にも台車の左右方向の軸箱支持剛性を大きくする必要がある。この場合は円筒積層ゴム4は図8(a)に示すように、台車の左右方向側にも円筒ゴム4cとインナープレート4dを設け、台車の前後方向の縦断面(XX断面)は図8(b)に示すように、金属外筒4bとインナープレート4dは軸方向の長さが一定で、外側から内側に向かって軸方向の長さが階段状に形成された上記図2(a)と同じ形状とし、台車の左右方向の縦断面(YY断面)は図8(c)に示すように、円筒ゴム4cとインナープレート4dは外観が竹の子のように外側から内側に向かって軸方向の長さがしだいに長くなるように形成された上記従来の図6(a)と同様のものとする。そして、円筒積層ゴムはコイルバネが圧縮された時にはXX方向のゴム部は伸びてYY方向のゴム部は縮み、コイルバネが伸びた時にはXX方向のゴム部は縮んでYY方向のゴム部は伸びる方向に取り付ければよい。
【0028】
【発明の効果】
以上説明したように、本発明の軸箱支持装置は、上下方向の伸縮によって台車の前後方向に対する剛性が変化する特性を備えた円筒積層ゴムを、該コイルバネの圧縮に伴って円筒ゴムは伸び、かつ、空車時に台車の前後方向に対する支持剛性が最大になるように取付けたので、蛇行動安定性上不利な空車時には軸箱支持前後剛性が最も高くなり、したがって、走行安定性を高く維持することができる。また、曲線通過性能上不利な満車時には台車の前後方向に対する剛性が最も低くなるので、横圧を低く抑えることができる。
【図面の簡単な説明】
【図1】本発明をウイング式の軸箱支持装置に適用した実施形態の側面図である。
【図2】同 図1の円筒積層ゴム4の詳細を示すもので、(a)は縦断面図、(b)は平断面図である。
【図3】本発明を軸梁式の軸箱支持装置に適用した実施形態の側面図である。
【図4】従来の竹の子形の円筒積層ゴムを使用したウイング式の軸箱支持装置を示す側面図である。
【図5】従来のソロバン玉形の円筒積層ゴムを使用したウイング式の軸箱支持装置を示す側面図である。
【図6】(a)は図4の竹の子形の円筒積層ゴム21の縦断面図、(b)は図5のソロバン玉形の円筒積層ゴム24の縦断面図である。
【図7】図6(a)および図6(b)の円筒積層ゴム21、24の平断面図である。
【図8】円筒積層ゴム4の別の例の詳細を示すもので、(a)は平断面図、(b)XX断面図で(c)はYY断面図である。
【符号の説明】
1…台車枠 2…軸箱体
3…コイルバネ 4…円筒積層ゴム
4a…金属内筒 4b…金属外筒
4c…円筒ゴム 4d…インナープレート
4e…間隙部
5…上部軸バネ座 5a…つば
5b…棒状部 6…下部軸バネ座
6a…つば 6b…筒状部
6c…段部
7…間座 8…押え金
9…止め輪 10…ボルト
11…台車枠 12…軸箱体
12a…梁
13…コイルバネ 14…円筒積層ゴム
14a…金属内筒 14b…金属外筒
14c…円筒ゴム 14d…インナープレート
14e…間隙部
15…上部軸バネ座 15a…つば
15b…筒状部 15c…段部
16…下部軸バネ座 16a…つば
16b…支軸部 17…間座
18…押え金 19…止め輪
20…ボルト 24…円筒積層ゴム
24e…間隙部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an axle box support device for a railway vehicle that supports an axle box by combining a cylindrical laminated rubber and a coil spring.
[0002]
[Prior art]
A rail car bogie is provided with an axle box support device that elastically supports the bogie frame with respect to the wheel shaft.
The axle box support system not only supports the load of the vehicle body and softens vibrations in the vertical direction, but also holds it firmly in the front and rear direction of the carriage to keep the wheel shaft parallel, and shocks when passing the curve are buffered in the left and right direction. There are various types of wing type, shaft beam type, monolink type and the like.
[0003]
In recent years, in order to eliminate a sliding portion, a cylindrical laminated rubber and a coil spring are combined to support a shaft box.
FIG. 4 shows the structure of a wing-type axle box support device. Lower axle spring seats 6 are provided on both sides of the axle box body 2 in the front-rear direction, and an upper axle spring seat 5 is provided on the carriage frame 1 between which coil springs are provided. 3 and a cylindrical laminated rubber 21 is provided at the center of the coil spring 3.
[0004]
As shown in FIG. 6A, the cylindrical laminated rubber 21 used in this axle box support device includes a plurality of cylindrical rubbers 21c and a metal inner plate 21d between a metal inner cylinder 21a and a metal outer cylinder 21b. The cylindrical rubber 21c and the inner plate 4d are alternately laminated in the radial direction, and are configured such that the external appearance of the cylindrical rubber 21c and the inner plate 4d gradually increases from the outside toward the inside like a bamboo shoot. Therefore, it has the characteristic that the rigidity in the left-right direction increases as the vertical load deflection increases.
[0005]
FIG. 5 shows the structure of a wing-type axle box support device to which another cylindrical laminated rubber 24 is attached. The components other than the cylindrical laminated rubber 24 are the same as those in FIG.
As shown in FIG. 6B, the cylindrical laminated rubber 24 is formed by alternately laminating a plurality of cylindrical rubbers 24c and inner plates 24d in the radial direction between the metal inner cylinder 24a and the metal outer cylinder 24b. The inner plate 4d has a Soroban ball shape in which the length in the axial direction is elongated in the vertical direction from the outside to the inside.
[0006]
Note that the cylindrical laminated rubber 21 and the cylindrical laminated rubber 24 are provided with fan-shaped gaps 24e on the left and right sides of the carriage, as shown in FIG.
[0007]
[Problems to be solved by the invention]
In a standard railway vehicle having two trucks and four shafts, the snake behavior stability is generally the lowest when the vehicle is empty, the rail is most easily damaged when the vehicle is full, and the curve running performance is reduced.
The higher the rigidity in the front-rear direction (traveling direction) in the axle box support, the more the snake behavior stability is improved, but the curve passing performance is worse.
[0008]
In the conventional axle box support device using the bamboo slag-shaped cylindrical laminated rubber 21 shown in FIG. 4, the larger the vertical load deflection of the cylindrical laminated rubber, the higher the rigidity in the longitudinal direction of the axle box. The rigidity in the front-rear direction is the highest when the capacity is 2.5 and the smallest when the vehicle is empty.
[0009]
Therefore, when the vehicle is empty, the state in which the snake behavior stability is disadvantageous overlaps with the state in which the support rigidity in the front-rear direction of the axle box is small, and traveling stability is impaired. For this reason, a means has been adopted in which a yaw damper or the like is additionally provided to improve running stability.
Moreover, when the vehicle is full, the disadvantageous state of the curve passing performance overlaps with the state in which the support rigidity of the axle box in the front-rear direction is large, so that the axle is most squeezed and the lateral pressure becomes high.
[0010]
Further, in the axle box support device using the Soroban ball-shaped cylindrical laminated rubber 24 shown in FIG. 5, the change in the support rigidity in the front-rear direction due to the vertical deflection is smaller than that of the above-mentioned bamboo stalk shape, but the cylindrical laminated rubber is used when riding a seat. Since it is attached so that the deflection of 24 becomes zero, the support rigidity in the front-rear direction becomes small when the vehicle is empty, and the snake behavior stability is lowered.
[0011]
The inventors examined changes in the steady lateral pressure and the critical speed when the vehicle is full and empty at a curvature radius of 400 mm and a traveling speed of 85 km / h. The steady lateral pressure is 1.2 times and the critical speed is 1.3 times. It was found that there was a difference.
SUMMARY OF THE INVENTION An object of the present invention is to provide a shaft box support device that has high stability during straight running with an empty vehicle and low lateral pressure during curved running with a full vehicle.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention adopts the following means. That is,
In an axle box support device for a railway vehicle in which a cylindrical laminated rubber in which cylindrical rubbers and inner plates are alternately laminated in a radial direction is combined with a coil spring to support the axle box, the rigidity in the longitudinal direction of the carriage is improved by vertical expansion and contraction. It is characterized in that a cylindrical laminated rubber having changing characteristics is attached so that the cylindrical rubber is stretched as the coil spring is compressed, and the support rigidity in the front-rear direction of the carriage is maximized when empty.
[0013]
INDUSTRIAL APPLICABILITY The present invention is applied to a shaft box support device that supports a shaft box by combining a cylindrical laminated rubber and a coil spring, and can be used for various types such as a wing type, a shaft beam type, and a monolink type. .
The cylindrical laminated rubber may be of any form, such as bamboo shoot shape or abacus bead shape, as long as the horizontal support rigidity changes due to vertical deflection.
[0014]
In addition, as described in claim 2, when the cylindrical laminated rubber is wedge-shaped by gradually changing the thickness of the inner plate in the vertical direction, the horizontal rigidity is set to a desired value with respect to the vertical deflection. Can be changed.
The cylindrical laminated rubber is attached in such a direction that the rubber part extends when the coil spring is compressed and the rubber part contracts when the coil spring extends. For example, when using a bamboo wing-shaped cylindrical laminated rubber with a wing type, the outer circumference is attached to the lower shaft spring seat so that the cylindrical rubber and the inner plate become longer from the outer diameter side to the inner side. In the case of the shaft beam type, the cylindrical laminated rubber is turned upside down from the case of the wing type, and the outer periphery thereof is attached to the upper shaft spring seat.
[0015]
Since the present invention is attached so that the rigidity before and after the axle box is supported when the vehicle is idle, which is disadvantageous in terms of snake behavior stability, it is possible to maintain running stability even when the vehicle is empty. At this time, the curve passing performance is reduced by a thousand, but this is not a problem when the vehicle is empty because the lateral pressure is small. Moreover, since the axle box support rigidity is lowest when the vehicle is full, which is disadvantageous in terms of curve passing performance, the lateral pressure can be kept low. At this time, the straight running performance is reduced by a few thousand, but this is not a problem because the conditions are more advantageous than when the vehicle is empty.
[0016]
The present invention does not particularly ask about the support rigidity in the left-right direction of the carriage. Cylindrical laminated rubber is generally provided with fan-shaped gaps in the left-right direction of the carriage. For example, if the brake device or power transmission device allows slight movement of the carriage in the left-right direction, Sometimes it is necessary to increase the axle box support rigidity in the left-right direction of the carriage. In this case, a cylindrical rubber and an inner plate may be provided on the left and right sides of the cylindrical laminated rubber cart so that the support rigidity is increased when the vehicle is full.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS.
In this figure, the same components as those of the conventional device (FIG. 4) are denoted by the same reference numerals.
[0018]
FIG. 1 is a side view showing an embodiment in which the present invention is applied to a wing-type axle box support device, wherein 1 is a carriage frame, 2 is an axle box body that supports both ends of a wheel shaft, and 3 is a coil spring. A lower shaft spring seat 6 having a flange 6a that receives the lower end of the coil spring 3 and a cylindrical portion 6b that enters the inside of the coil spring 3 is provided at the lower portion of the shaft box body 2 so as to project the front and rear sides of the carriage. An upper shaft spring provided with a flange 5a that receives the upper end of the coil spring 3 and a rod-shaped portion 5b that extends downward and enters the inside of the cylindrical portion of the lower shaft spring seat 6 on the lower surface of the carriage frame 1 so as to face this. A seat 5 is attached.
[0019]
A cylindrical laminated rubber 4 is provided between the rod-shaped portion 5 b of the upper shaft spring seat 5 and the cylindrical portion 6 b of the lower shaft spring seat 6. That is, the rod-like portion 5b is fitted into the metal inner cylinder 4a of the cylindrical laminated rubber 4 and attached with the bolt 10, and the metal outer cylinder 4b of the cylindrical laminated rubber 4 is fitted and fixed to the cylindrical portion 6b. The upper end of the metal inner cylinder 4a of the cylindrical laminated rubber 4 is in contact with a spacer 7 provided on the rod-like part 5b, the lower end is fixed by a presser bar 8, and the lower end of the metal outer cylinder 4b of the cylindrical laminated rubber 4 is the cylindrical part 6b. The upper end is fixed by a retaining ring 9.
[0020]
As shown in FIG. 2 (a), the cylindrical laminated rubber 4 is formed by alternately laminating cylindrical rubber 4c and inner plates 4d in a radial direction between a metal inner cylinder 4a and a metal outer cylinder 4b. The plate 4d has a wedge shape with a thick upper end and a thin lower end. The metal outer cylinder 4b and the inner plate 4d have a constant axial length, and the axial length is formed stepwise from the outside toward the inside. In addition, as shown in FIG. 2B, in order to reduce the rigidity in the left-right direction of the carriage, gap portions 4e cut out in a fan shape are formed in two directions of the cylindrical laminated rubber 4.
[0021]
The cylindrical laminated rubber 4 is assembled so that the cylindrical rubber 4c is compressed most when the vehicle is empty and is extended most when the vehicle is full, and the gap 4e is positioned in the left-right direction of the carriage. .
Since it is configured as described above, when the vehicle body is full, the coil spring 3 is contracted and the rod-like portion 5b of the upper shaft spring seat 5 is lowered, and the cylindrical rubber 4c is extended downward. The rigidity of the rubber 4 in the front-rear direction is reduced.
[0022]
Conversely, when the vehicle is in an empty state, the coil spring 3 extends and the rod-like portion 5b of the upper shaft spring seat 5 rises, so that the cylindrical rubber 4c contracts, and therefore the rigidity of the cylindrical laminated rubber 4 in the front-rear direction increases.
Next, an embodiment in which the present invention is applied to a shaft beam type axle box support device will be described with reference to FIG.
[0023]
In the figure, 11 is a carriage frame, 12 is a shaft box that supports both ends of the wheel shaft, and 13 is a coil spring. The shaft box body 12 is connected to the carriage frame 11 by a beam 12a, and a lower portion provided on the upper surface of the shaft box body 12 with a flange 16a that receives the lower end of the coil spring 13 and a support shaft portion 16b that enters the inside of the coil spring 13. A shaft spring seat 16 is provided. The upper shaft spring seat 15 having a collar 15a that receives the upper end of the coil spring 13 and a cylindrical portion 15b that extends downward is attached to the carriage frame 11 so as to face this.
[0024]
A cylindrical laminated rubber 14 is provided between the cylindrical portion 15 b of the upper shaft spring seat 15 and the support shaft portion 16 b of the lower shaft spring seat 6. That is, the support shaft portion 15b is fitted into the metal inner cylinder 14a of the cylindrical laminated rubber 14 and attached with the bolt 20, and the metal outer cylinder 14b of the cylindrical laminated rubber 14 is fitted and fixed to the cylindrical portion 15b. . The lower end of the metal inner cylinder 14a of the cylindrical laminated rubber 14 abuts on a spacer 17 fixed to the support shaft portion 16b, the upper end is fixed by a presser bar 18, and the upper end of the metal outer cylinder 14b of the cylindrical laminated rubber 14 is cylindrical. The lower end is fixed to a step 16c of the portion 15b, and the lower end is fixed by a retaining ring 19.
[0025]
The cylindrical laminated rubber 4 is the same as that shown in FIG. 2 described above, and is attached upside down. That is, the cylindrical laminated rubber 4 is assembled so that the cylindrical rubber 4c is compressed most when the vehicle is empty and is extended most when the vehicle is full.
[0026]
With this configuration, when the vehicle body is full, the coil spring 13 contracts, the cylindrical portion 15b of the upper shaft spring seat 15 descends, and the cylindrical rubber 4c extends downward. Becomes smaller.
On the contrary, when the vehicle body is an empty vehicle, the coil spring 13 extends and the cylindrical portion 15b of the upper shaft spring seat 15 rises, so that the cylindrical rubber 14c contracts, and therefore the rigidity of the cylindrical laminated rubber 4 in the front-rear direction increases.
[0027]
In the above-described embodiment, the left and right direction of the cylindrical laminated rubber carriage is described as being provided with a fan-shaped gap portion, but is not particularly limited thereto.
For example, when the brake device or the power transmission device only allows the movement of the carriage in the left-right direction, it is necessary to increase the rigidity of the axle box support in the left-right direction of the carriage even when the vehicle is full. In this case, as shown in FIG. 8 (a), the cylindrical laminated rubber 4 is provided with a cylindrical rubber 4c and an inner plate 4d on the left and right sides of the carriage, and the longitudinal section (XX section) in the longitudinal direction of the carriage is shown in FIG. As shown in FIG. 2 (b), the metal outer cylinder 4b and the inner plate 4d have a constant axial length, and the axial length is formed stepwise from the outside toward the inside. As shown in FIG. 8C, the left and right vertical cross sections (YY cross section) of the carriage are the same shape, and the cylindrical rubber 4c and the inner plate 4d are long in the axial direction from the outside to the inside like a bamboo shoot. It is the same as the conventional FIG. 6A formed so as to become longer. When the coil spring is compressed, the cylindrical laminated rubber expands in the direction of the rubber in the XX direction and contracts in the direction of the rubber in the YY direction. When the coil spring is extended, the rubber in the direction of XX contracts and the rubber in the direction of YY extends. It only has to be attached.
[0028]
【The invention's effect】
As described above, the axle box support device of the present invention is a cylindrical laminated rubber having a characteristic that the rigidity with respect to the front-rear direction of the carriage is changed by expansion and contraction in the vertical direction, and the cylindrical rubber expands as the coil spring is compressed, In addition, since it is installed so that the support rigidity in the front-rear direction of the carriage is maximized when empty, the axle box support front-rear rigidity is the highest when empty, which is disadvantageous in terms of snake behavior stability, and therefore maintaining high driving stability. Can do. In addition, when the vehicle is unfavorable in terms of curve passing performance, the rigidity in the front-rear direction of the carriage is the lowest, so the lateral pressure can be kept low.
[Brief description of the drawings]
FIG. 1 is a side view of an embodiment in which the present invention is applied to a wing-type axle box support device.
2 shows details of the cylindrical laminated rubber 4 shown in FIG. 1. FIG. 2A is a longitudinal sectional view, and FIG. 2B is a plan sectional view.
FIG. 3 is a side view of an embodiment in which the present invention is applied to a shaft beam type axle box support device.
FIG. 4 is a side view showing a conventional wing-type axle box support device using a bamboo slab-shaped cylindrical laminated rubber.
FIG. 5 is a side view showing a wing-type axle box support device using a conventional Soroban ball-shaped cylindrical laminated rubber.
6A is a longitudinal cross-sectional view of the bamboo shoot-shaped cylindrical laminated rubber 21 of FIG. 4, and FIG. 6B is a vertical cross-sectional view of the Soroban ball-shaped cylindrical laminated rubber 24 of FIG.
7 is a cross-sectional plan view of cylindrical laminated rubbers 21 and 24 shown in FIGS. 6 (a) and 6 (b). FIG.
8A and 8B show details of another example of the cylindrical laminated rubber 4. FIG. 8A is a plan sectional view, FIG. 8B is a XX sectional view, and FIG. 8C is a YY sectional view.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Bogie frame 2 ... Shaft box 3 ... Coil spring 4 ... Cylindrical laminated rubber 4a ... Metal inner cylinder 4b ... Metal outer cylinder 4c ... Cylindrical rubber 4d ... Inner plate 4e ... Gap part 5 ... Upper shaft spring seat 5a ... Collar 5b ... Rod-like part 6 ... Lower shaft spring seat 6a ... Collar 6b ... Cylindrical part 6c ... Step part 7 ... Spacer 8 ... Presser foot 9 ... Retaining ring 10 ... Bolt 11 ... Bogie frame 12 ... Shaft box 12a ... Beam 13 ... Coil spring 14 ... Cylindrical laminated rubber 14a ... Metal inner cylinder 14b ... Metal outer cylinder 14c ... Cylindrical rubber 14d ... Inner plate 14e ... Gap 15 ... Upper shaft spring seat 15a ... Collar 15b ... Cylindrical portion 15c ... Step 16 ... Lower shaft spring Seat 16a ... Collar 16b ... Support shaft 17 ... Spacer 18 ... Presser foot 19 ... Retaining ring 20 ... Bolt 24 ... Cylindrical laminated rubber 24e ... Gap

Claims (2)

円筒ゴムとインナープレートを半径方向に交互に積層した円筒積層ゴムをコイルバネと組み合わせて軸箱を支持するようにした鉄道車両の軸箱支持装置において、上下方向の伸縮によって台車の前後方向に対する剛性が変化する特性を備えた円筒積層ゴムを、該コイルバネの圧縮に伴って円筒ゴムは伸び、かつ、空車時に台車の前後方向に対する支持剛性が最大になるように取付けたことを特徴とする鉄道車両の軸箱支持装置。In an axle box support device for a railway vehicle in which a cylindrical laminated rubber in which cylindrical rubbers and inner plates are alternately laminated in a radial direction is combined with a coil spring to support the axle box, the rigidity in the longitudinal direction of the carriage is improved by vertical expansion and contraction. A railway laminated vehicle having a changing characteristic is attached so that the cylindrical rubber is stretched as the coil spring is compressed and the support rigidity in the front-rear direction of the carriage is maximized when empty. Shaft box support device. 該円筒積層ゴムはインナープレートの肉厚が上下方向にしだいに変化した楔状としたことを特徴とする請求項1記載の鉄道車両の軸箱支持装置。2. The axle box supporting device for a railway vehicle according to claim 1, wherein the cylindrical laminated rubber has a wedge shape in which the thickness of the inner plate gradually changes in the vertical direction.
JP2001171173A 2001-06-06 2001-06-06 Rail car axle box support device Expired - Fee Related JP4589567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001171173A JP4589567B2 (en) 2001-06-06 2001-06-06 Rail car axle box support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001171173A JP4589567B2 (en) 2001-06-06 2001-06-06 Rail car axle box support device

Publications (2)

Publication Number Publication Date
JP2002362362A JP2002362362A (en) 2002-12-18
JP4589567B2 true JP4589567B2 (en) 2010-12-01

Family

ID=19012984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001171173A Expired - Fee Related JP4589567B2 (en) 2001-06-06 2001-06-06 Rail car axle box support device

Country Status (1)

Country Link
JP (1) JP4589567B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8047139B2 (en) 2004-03-26 2011-11-01 Contitech Luftfedersysteme Gmbh Railway bogie
CN1942355B (en) * 2004-03-26 2012-09-26 Skf股份公司 Railway bogie
JP5097439B2 (en) * 2006-05-18 2012-12-12 日本車輌製造株式会社 Rail car axle box support device
JP4814121B2 (en) * 2007-02-22 2011-11-16 三菱重工業株式会社 Measuring method of wheel load or lateral pressure
JP5095251B2 (en) * 2007-03-30 2012-12-12 株式会社日立製作所 Rail car axle box support device
JP5107371B2 (en) * 2009-02-05 2012-12-26 株式会社総合車両製作所 Shaft box support structure
CN102673596A (en) * 2011-03-10 2012-09-19 南车青岛四方机车车辆股份有限公司 Composite axle box positioning device and processing and assembling method thereof
JP6026288B2 (en) * 2013-01-07 2016-11-16 日本車輌製造株式会社 Axle box support device for railcar bogie
JP6022420B2 (en) * 2013-07-19 2016-11-09 株式会社日立製作所 Rail car axle box support device
CN103661468B (en) 2013-12-13 2016-09-14 齐齐哈尔轨道交通装备有限责任公司 Bogie and hanging and locating device of axle box thereof
JP6339928B2 (en) * 2014-12-09 2018-06-06 株式会社日立製作所 Railcar bogie
CN104742929B (en) * 2015-04-23 2017-05-31 株洲市源创科技有限公司 A kind of railway freight-car long stroke the Constant-Contact Resilient Side Bearings and oscillation damping method
CN107387628B (en) * 2017-09-01 2023-04-18 株洲时代瑞唯减振装备有限公司 Motor node for motor car bogie and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441459U (en) * 1990-08-08 1992-04-08
JP2000280903A (en) * 1999-03-31 2000-10-10 Railway Technical Res Inst Axle box support device for railway rolling stock

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441459U (en) * 1990-08-08 1992-04-08
JP2000280903A (en) * 1999-03-31 2000-10-10 Railway Technical Res Inst Axle box support device for railway rolling stock

Also Published As

Publication number Publication date
JP2002362362A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
JP4589567B2 (en) Rail car axle box support device
WO2012056863A1 (en) Air spring for vehicle and bogie using same
JPS6136006A (en) Shock absorptive connection construction of bar-shaped suspension member
JP2010018086A (en) Pad for leaf spring
JP2008275009A (en) Shaft spring device
JPS63103719A (en) Silent block
TW201713522A (en) Anti-tilt rod device with variable rigidity capable of preventing a vehicle from becoming tilted and vibrating up and down when the vehicle traveling on a bumpy road
JP2003517964A (en) Wheel suspension for rigid axles of cars
JPH04119266U (en) Railway vehicle trolley
JP2003040107A (en) Axle spring device for rolling stock
JP2000280903A (en) Axle box support device for railway rolling stock
JP2008201307A (en) Stabilizer device
JP5254058B2 (en) Shaft box support device
JP5033499B2 (en) Axle spring device
JP2006518296A (en) Vibration absorption mechanism for wheels running on tires filled with air
JP2009079622A (en) Axle spring for railroad vehicle
JP2002205644A (en) Bogie for rolling stock
US20050236795A1 (en) Rear vehicle axle
JP3701958B2 (en) Subframe mounting bush
JP2006290238A (en) Suspension device for vehicle and elastic support device
JP2007030577A (en) Engine mount structure
JP2006057746A (en) Axial spring device
CN221213374U (en) Coil spring mounting structure of suspension system, suspension system and vehicle
JP4408342B2 (en) Axle box support rubber
KR100452203B1 (en) Low arm with difference thickness in suspension

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100910

R150 Certificate of patent or registration of utility model

Ref document number: 4589567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees