JP4587110B2 - Rotor phase estimation method for synchronous motor drive control - Google Patents

Rotor phase estimation method for synchronous motor drive control Download PDF

Info

Publication number
JP4587110B2
JP4587110B2 JP2007171208A JP2007171208A JP4587110B2 JP 4587110 B2 JP4587110 B2 JP 4587110B2 JP 2007171208 A JP2007171208 A JP 2007171208A JP 2007171208 A JP2007171208 A JP 2007171208A JP 4587110 B2 JP4587110 B2 JP 4587110B2
Authority
JP
Japan
Prior art keywords
phase
value
rotor
synchronous
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007171208A
Other languages
Japanese (ja)
Other versions
JP2008301695A (en
Inventor
新二 新中
Original Assignee
有限会社シー・アンド・エス国際研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社シー・アンド・エス国際研究所 filed Critical 有限会社シー・アンド・エス国際研究所
Priority to JP2007171208A priority Critical patent/JP4587110B2/en
Publication of JP2008301695A publication Critical patent/JP2008301695A/en
Application granted granted Critical
Publication of JP4587110B2 publication Critical patent/JP4587110B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

本発明は、駆動基本周波数より高い周波数の信号(高周波電圧あるいは高周波電流)の印加に対し回転子が突極特性を示す同期電動機(例えば、回転子に永久磁石を有する永久磁石同期電動機、巻線形同期電動機、同期リラクタンス電動機、回転子に永久磁石と界磁巻線をもつハイブリッド界磁形同期電動機など)のためのセンサレス駆動制御装置に使用される回転子位相(位置と同義)の推定方法に関する。The present invention relates to a synchronous motor in which a rotor exhibits salient pole characteristics with respect to application of a signal (high frequency voltage or high frequency current) having a frequency higher than the drive fundamental frequency (for example, a permanent magnet synchronous motor having a permanent magnet in the rotor, a winding type) The present invention relates to a method for estimating a rotor phase (synonymous with position) used in a sensorless drive control device for a synchronous motor, a synchronous reluctance motor, a hybrid field synchronous motor having a permanent magnet and a field winding on a rotor, etc. .

同期電動機の高性能な制御は、いわゆるベクトル制御法により達成することができる。ベクトル制御法には、回転子の位相情報が必要であり、従来よりエンコーダ等の位置センサが利用されてきた。しかし、この種の位置センサの利用は、信頼性、軸方向の容積、センサケーブルの引回し、コスト等の観点において、好ましいものではなく、位置センサを必要としない、いわゆるセンサレスベクトル制御法の研究開発が長年に行なわれてきた。High-performance control of the synchronous motor can be achieved by a so-called vector control method. The vector control method requires phase information of the rotor, and position sensors such as encoders have been used conventionally. However, the use of this type of position sensor is not preferable in terms of reliability, axial volume, sensor cable routing, cost, etc., so-called sensorless vector control method that does not require a position sensor. Development has been done for many years.

有力なセンサレスベクトル制御法として、駆動基本周波数より高い周波数の高周波電圧を電動機に強制印加し、これに対応した高周波電流を抽出・処理して回転子位相を推定する方法(いわゆる高周波電圧印加法)が、あるいは、駆動基本周波数より高い周波数の高周波電流を電動機に強制印加し、これに対応した高周波電圧を抽出・処理して回転子位相を推定する方法(いわゆる高周波電流印加法)が、これまで、種々、開発・報告されてきた。As a powerful sensorless vector control method, a high-frequency voltage with a frequency higher than the driving fundamental frequency is forcibly applied to the motor, and the rotor phase is estimated by extracting and processing the corresponding high-frequency current (so-called high-frequency voltage application method). However, a method (so-called high-frequency current application method) that forcibly applies a high-frequency current at a frequency higher than the drive fundamental frequency to the motor and extracts and processes the corresponding high-frequency voltage to estimate the rotor phase has been used Various developments and reports have been made.

以下の説明では、説明の簡明性を図るため、高周波電圧印加法と高周波電流印加法の両者を一括して呼称する場合には、高周波信号印加法と呼ぶ。印加高周波電圧と印加高周波電流の両者を一括して呼称する場合には、印加高周波信号と呼ぶ。また、これら対応した各々の応答値である高周波電流、高周波電圧の両者を一括して呼称する場合には、応答高周波信号と呼称する。In the following description, for simplification of description, when both the high-frequency voltage application method and the high-frequency current application method are collectively referred to as a high-frequency signal application method. When both the applied high-frequency voltage and the applied high-frequency current are collectively referred to as an applied high-frequency signal. Further, when both of the corresponding high-frequency current and high-frequency voltage, which are corresponding response values, are collectively referred to, they are referred to as response high-frequency signals.

突極特性をもつ同期電動機においては、推定すべき回転子位相は回転子の任意の位置に定めてよいが、無負荷時の回転子の負突極位相または正突極位相の何れかを回転子位相(基準値)に選定するのが一般的である。当業者には周知のように、負突極位相と正突極位相の間には、電気的に±π/2(rad)の一定位相差があるに過ぎず、何れかの位相が判明すれば、他の位相は自ずと判明する。以上を考慮の上、以降では、特に断らない限り、回転子の負突極位相を回転子位相とする(図1参照)。In synchronous motors with salient pole characteristics, the rotor phase to be estimated may be set at an arbitrary position of the rotor, but it rotates either the negative salient pole phase or the positive salient pole phase of the rotor when there is no load. Generally, it is selected as a child phase (reference value). As is well known to those skilled in the art, there is only a constant phase difference of ± π / 2 (rad) electrically between the negative salient pole phase and the positive salient pole phase, and either phase can be found. In other words, the other phases are naturally found. Considering the above, hereinafter, the negative salient pole phase of the rotor is used as the rotor phase unless otherwise specified (see FIG. 1).

高周波信号印加法は、駆動用電圧、電流の基本波成分を用いた回転子位相推定法に対して、以下のような優れた特長を有する。(a)駆動用電圧が低くS/Nが著しく悪いゼロ速度を含む低速域でも安定的に位相を推定することができる、(b)一般的に電動機パラメータの変動に対して、大変ロバストである。この特長を活用すべく、これまで、種々の高周波信号印加法が提案されてきた。既報の高周波信号印加法は、応答高周波信号が処理される座標系の観点から2つに大別することができる。すなわち、これらは、応答高周波信号を固定座標系上で処理する方法と、回転子位相に対して、ゼロ位相差で代表される一定位相差で同期を目指した準同期座標系上で処理する方法、である。本願発明は、特に後者に関する技術の発明に関する。すなわち、準同期座標系上で応答高周波信号を処理して回転子位相を推定する回転子位相推定方法に関する。The high frequency signal application method has the following excellent features over the rotor phase estimation method using the fundamental wave components of the driving voltage and current. (A) It is possible to stably estimate the phase even in a low speed range including zero speed where the driving voltage is low and the S / N is extremely bad. (B) Generally, it is very robust against fluctuations in the motor parameters. . In order to utilize this feature, various high-frequency signal application methods have been proposed so far. The reported high-frequency signal application methods can be roughly divided into two from the viewpoint of the coordinate system in which the response high-frequency signal is processed. That is, these are a method of processing a response high frequency signal on a fixed coordinate system and a method of processing on a quasi-synchronous coordinate system aiming at synchronization with a constant phase difference represented by a zero phase difference with respect to the rotor phase. . The present invention particularly relates to a technical invention related to the latter. That is, the present invention relates to a rotor phase estimation method for estimating a rotor phase by processing a response high-frequency signal on a quasi-synchronous coordinate system.

同期電動機に高周波信号を印加して回転子位相を推定する場合には、固定子電流の中でトルク発生に寄与する成分などの影響を受けて、回転子位相推定値に誤差が発生することが知られている。初期のこの指摘は、例えば、下記の非特許文献1などに見られる。また、非特許文献2では、この誤差の発生原因を磁束の飽和とdq軸の相互干渉の視点から説明している。当然のことながら、精度の高い回転子位相推定値を得るには、磁束飽和や軸間相互干渉に起因した誤差を補償する必要がある。しかしながら、補償方法に関する研究開発は、必ずしも多くはないようである。この原因の1つは、補償方法が、応答高周波信号を固定座標系上で処理する場合と準同期座標系上で処理する場合とでは、異なることにもあるようである。本願発明が対象とする準同期座標系上で高周波信号を処理して回転子位相を推定する方法を採用し、かつ上記課題のための補償方法を提示した先行発明としては、わずかに、下記の特許文献1、2があるに過ぎないようである。When the rotor phase is estimated by applying a high-frequency signal to the synchronous motor, an error may occur in the rotor phase estimation value due to the influence of components contributing to torque generation in the stator current. Are known. This initial indication is found in, for example, Non-Patent Document 1 below. Non-Patent Document 2 explains the cause of this error from the viewpoint of saturation of magnetic flux and mutual interference of dq axes. Naturally, in order to obtain a highly accurate rotor phase estimation value, it is necessary to compensate for errors due to magnetic flux saturation and inter-axis mutual interference. However, there seems to be little research and development on compensation methods. One of the causes seems to be that the compensation method differs between when the response high-frequency signal is processed on the fixed coordinate system and when it is processed on the quasi-synchronous coordinate system. As a prior invention that employs a method of estimating a rotor phase by processing a high-frequency signal on a quasi-synchronous coordinate system to which the present invention is directed, and presenting a compensation method for the above-mentioned problem, There seems to be only Patent Documents 1 and 2.

M.J.Corley and R.D.Lorenz,“Rotor Position and Velocity Estiamtion for a Salient−Pole Permanent−Magnet Synchronous Machine at Standstill and High Speed”,IEEE Trans.Industry Applications,Vol.34,No.4,pp.784−789(1998−7/8)M.M. J. et al. Corley and R.M. D. Lorenz, “Rotor Position and Velocity Estimate for a Salignant-Pole Permanent-Magnet Synchronous Machine at Standstill and High Speed”, IE. Industry Applications, Vol. 34, no. 4, pp. 784-789 (1998-7 / 8) N.Bianchi and S.Bolognami,”Infuence of Rotor Geometry of an IPM Motor on Sensorless Control Feasibility”,IEEE Trans.Industry Applications,Vol.43,No.1,pp.87−96(2007−1/2)N. Bianchi and S. Bolognami, “Infence of Rotor Geometry of an IPM Motor on Sensor Control Feasibility”, IEEE Trans. Industry Applications, Vol. 43, no. 1, pp. 87-96 (2007-1 / 2) 井手耕三、「同期電動機の磁極位置推定方法および制御装置」、特開2002−291283号Kozo Ide, “Magnetic pole position estimation method and control apparatus for synchronous motor”, Japanese Patent Application Laid-Open No. 2002-291283 中井政樹、稲積祐敦、山本陽一、「同期電動機の制御装置」、特開2006−109589号Masaki Nakai, Yusuke Inazumi, Yoichi Yamamoto, “Control Device for Synchronous Motor”, Japanese Patent Laid-Open No. 2006-109589

図を用いて、上記特許文献に示された先行発明の基本原理とこれに関連した問題点を指摘する。先ず、図1の座標系を考える。αβ軸は固定座標系を、dq軸は回転子座標系(上述のように、基本的には、無負荷時の負突極位相をd軸位相とし、図1では、代表例としてこれを示している)を、γδ軸は、回転子座標系にゼロ位相差で同期を目指した準同期座標系を、各々示している。固定座標系の基軸であるα軸から評価したd軸位相を回転子位相θαとしている。回転子位相にゼロ位相差で同期を目指した準同期座標系の基

Figure 0004587110
ちγ軸とd軸との位相偏差をθγで表現している。位相偏差θγが十分に小さい、所期の準
Figure 0004587110
良好な推定値となる。With reference to the drawings, the basic principle of the prior invention disclosed in the above-mentioned patent document and the problems related thereto will be pointed out. First, consider the coordinate system of FIG. The αβ axis is a fixed coordinate system, the dq axis is a rotor coordinate system (as described above, the negative salient pole phase at no load is basically the d axis phase, and FIG. 1 shows this as a representative example. The γδ axis indicates a quasi-synchronous coordinate system that aims to synchronize with the rotor coordinate system with a zero phase difference. The d-axis phase evaluated from the α axis, which is the base axis of the fixed coordinate system, is the rotor phase θ α . A base of quasi-synchronous coordinate system aimed at synchronization with rotor phase with zero phase difference
Figure 0004587110
That is, the phase deviation between the γ axis and the d axis is expressed by θ γ . Phase deviation θ γ is small enough
Figure 0004587110
A good estimate.

上記特許文献1,2で公開された、回転子位相推定値の補償方法の原理上の要点は、以下のように整理される(図7参照)。高周波電圧印加法により同期電動機に高周波電圧を印加し、応答高周波信号である高周波電流を検出処理して、位相偏差θγに対し相関をもつ偏差相当値xγを算定する。なお、このときの偏差相当値の算定には、45度インピーダンス法と呼ばれる方法を用いている。偏差相当値を得たならば、PI制御器と積分器からな

Figure 0004587110
第1の回転子位相推定値に対して補償値Δθを減算あるいは加算して、回転子位相の最終
Figure 0004587110
器で活用される。The main points of the principle of the rotor phase estimation value compensation method disclosed in Patent Documents 1 and 2 are summarized as follows (see FIG. 7). The high frequency voltage is applied to the synchronous motor by the high-frequency voltage injection method, and the process for detecting the high-frequency current which is a response radio frequency signal, calculates the deviation equivalent value x gamma having a correlation with respect to phase deviation theta gamma. In this case, a method called a 45-degree impedance method is used for calculating the deviation equivalent value. If the deviation equivalent value is obtained, the PI controller and integrator
Figure 0004587110
The compensation value Δθ c is subtracted or added to the first rotor phase estimation value to obtain the final rotor phase.
Figure 0004587110
It is used in a vessel.

偏差相当値が位相偏差θγの良好の近似値となる動作範囲においては、図7で生成された位相推定値の準同期座標系のためのベクトル回転器への使用は、等価的には、図8のようなフィードバックシステムの構成を、意味する。図8では、フィードバックの様子を破線で示した。図8より明らかなように、補償値から最終位相推定値までの伝達関数は、次式となる。

Figure 0004587110
(1)式の伝達関数は、高周波域で1を、直流を含むゼロ周波数近傍でゼロを示すハイパスフィルタの特性を示している。本特性は、補償値が一定(ゼロ周波数)となる定常状態で
Figure 0004587110
を意味している。In the operating range where the deviation equivalent value is a good approximation of the phase deviation θ γ , the use of the phase estimate generated in FIG. 7 for the vector rotator for the quasi-synchronous coordinate system is equivalently This means the configuration of the feedback system as shown in FIG. In FIG. 8, the state of feedback is indicated by a broken line. As is clear from FIG. 8, the transfer function from the compensation value to the final phase estimation value is as follows.
Figure 0004587110
The transfer function of equation (1) shows the characteristics of a high-pass filter that shows 1 in the high frequency region and zero in the vicinity of the zero frequency including DC. This characteristic is a steady state where the compensation value is constant (zero frequency).
Figure 0004587110
Means.

Figure 0004587110
て、確かに次式が成立する(図7、8参照)。
Figure 0004587110
当業者は、(2)式より、効果的な補償が遂行できるような錯覚に陥る。しかし、実際には、(2)式右辺第2項の補償値を右辺第1項に加算した瞬間に、右辺第1項の回転子位相推定値は、フィードバック効果により、補償値を加算する以前の値とは異なることになる。結果的には、(2)式左辺の最終推定値は、補償値を加算しない状態の(すなわち、補償する以前の)第1の推定値と同じ値を取り、実効的補償はされない。以上のように、先行発明による回転子位相推定値の補償方法は、実効的な誤差補償効果を有しない。
Figure 0004587110
Certainly, the following equation holds (see FIGS. 7 and 8).
Figure 0004587110
The person skilled in the art falls into the illusion that effective compensation can be performed from the equation (2). However, in reality, at the moment when the compensation value of the second term on the right side of equation (2) is added to the first term of the right side, the rotor phase estimation value of the first term on the right side is before the compensation value is added due to the feedback effect. Will be different from the value of. As a result, the final estimated value on the left side of equation (2) takes the same value as the first estimated value in a state where the compensation value is not added (that is, before compensation), and is not effectively compensated. As described above, the rotor phase estimation value compensation method according to the prior invention does not have an effective error compensation effect.

本発明は上記背景の下になされたものであり、その目的は、同期電動機のための駆動制御装置に使用され、準同期座標系上で応答高周波信号を処理して回転子位相を推定する方法であって、特に、効果的な位相誤差補償機能を備えた回転子位相推定方法を提供することにある。The present invention has been made under the above background, and its object is to be used in a drive control device for a synchronous motor, and to estimate a rotor phase by processing a response high-frequency signal on a quasi-synchronous coordinate system. In particular, it is an object of the present invention to provide a rotor phase estimation method having an effective phase error compensation function.

上記目的を達成するために、請求項1の発明は、駆動基本周波数より高い周波数の高周波電圧(または電流)の印加に対し回転子が突極特性を示す同期電動機のための駆動制御装置に使用され、かつ、回転子の位相にゼロ位相差で代表される一定位相差で同期を目指した準同期座標系上で、印加に対応した応答高周波電流(または電圧)を検出処理して回転子位相を推定する回転子位相推定方法であって、該応答高周波電流(または電圧)を検出処理して、準同期座標系位相に該一定位相差を補正して得た準同期座標系補正位相と回転子位相との位相偏差に対し相関をもつ偏差相当値を算定する偏差相当値算出工程と、固定子電流の中でトルク発生に寄与する成分の相当値を少なくとも利用して補償値を定め、定めた補償値を、該偏差相当値に加算して、補償された偏差相当値を生成するための補償工程と、該補償偏差相当値がゼロに収斂するように準同期座標系の位相を生成し、生成した準同期座標系位相に該一定位相差を補正して回転子位相推定値とする位相生成工程と、を有することを特徴とする。In order to achieve the above object, the invention of claim 1 is used in a drive control device for a synchronous motor in which a rotor exhibits salient pole characteristics when a high frequency voltage (or current) having a frequency higher than a drive fundamental frequency is applied. On the quasi-synchronous coordinate system aiming for synchronization with a constant phase difference represented by zero phase difference to the rotor phase, the response high-frequency current (or voltage) corresponding to the application is detected and processed to detect the rotor phase. Is a rotator phase estimation method that estimates the response high-frequency current (or voltage) and corrects the constant phase difference to the quasi-synchronous coordinate system phase and rotates it. A compensation equivalent value is determined by using a deviation equivalent value calculation step for calculating a deviation equivalent value having a correlation with a phase deviation with respect to the child phase, and a corresponding value of a component contributing to torque generation in the stator current. The corresponding compensation value Adding, generating a compensated deviation equivalent value, generating a phase of the quasi-synchronous coordinate system so that the compensated deviation equivalent value converges to zero, and generating the phase of the quasi-synchronous coordinate system And a phase generation step of correcting a constant phase difference to obtain a rotor phase estimation value.

請求項2の発明は、請求項1記載の回転子位相推定方法であって、該同期電動機を、回転子に永久磁石を有する同期電動機である永久磁石同期電動機とし、該補償値を、固定子電流のトルク発生に寄与する成分の中で、特に、永久磁石磁極に垂直な固定子電流成分の相当値に概ね比例して算定するようにしたことを特徴とする。The invention of claim 2 is the rotor phase estimation method according to claim 1, wherein the synchronous motor is a permanent magnet synchronous motor that is a synchronous motor having a permanent magnet in the rotor, and the compensation value is set as the stator. Among the components contributing to the generation of torque of the current, in particular, the calculation is performed in proportion to the equivalent value of the stator current component perpendicular to the permanent magnet magnetic pole.

請求項3の発明は、請求項1記載の回転子位相推定方法であって、該同期電動機を、同期リラクタンス電動機とし、固定子電流のトルク発生に寄与する成分相当値を入力引数とし該補償値を出力とする補償値テーブルを予め用意し、補償値テーブルを参照して該補償値を定めるようにしたことを特徴とする。The invention according to claim 3 is the rotor phase estimation method according to claim 1, wherein the synchronous motor is a synchronous reluctance motor, and a component equivalent value contributing to torque generation of a stator current is used as an input argument, and the compensation value A compensation value table is output in advance, and the compensation value is determined with reference to the compensation value table.

なお、上に用いた「相当値」なる用語は、当該信号の真値、真値の良好な近似値、あるいは真値と良好な相関を有する信号などを意味する。Note that the term “equivalent value” used above means a true value of the signal, a good approximate value of the true value, or a signal having a good correlation with the true value.

以下、図面と数式を用いて、本発明の効果を明快に説明する。図2は、請求項1の発明に基づく回転子位相推定方法を位相推定器として実現し、これを、各工程における処理手順に合わせて、概略的にブロック図で表現でしたものである。本図では、応答高周波信号として高周波電流を考え、これを含む固定子電流を位相推定器への入力としている。偏差相当値算出器は偏差相当値算出工程を遂行しており、固定子電流から高周波電流を検出処理して、偏差相当値xγを算定出力している。このときの偏差相当値は、一般に、位相偏差

Figure 0004587110
推定値であり、誤差を含む。係数Kθは、一般に定数である。図2の構成においては、補償工程は、補償値生成器と加算器とにより遂行されている。補償値生成器は、固定子電流からトルク発生に寄与する成分を抽出して補償値を生成し、これを偏差相当値に加算し、
Figure 0004587110
Hereinafter, the effects of the present invention will be described clearly with reference to the drawings and mathematical expressions. FIG. 2 shows a rotor phase estimation method based on the invention of claim 1 as a phase estimator, which is schematically expressed in a block diagram in accordance with the processing procedure in each step. In this figure, a high-frequency current is considered as a response high-frequency signal, and a stator current including this is used as an input to the phase estimator. The deviation equivalent value calculator performs a deviation equivalent value calculation step, detects a high frequency current from the stator current, and calculates and outputs a deviation equivalent value . The deviation equivalent value at this time is generally the phase deviation.
Figure 0004587110
Estimated value, including error. The coefficient is generally a constant. In the configuration of FIG. 2, the compensation process is performed by a compensation value generator and an adder. The compensation value generator extracts a component that contributes to torque generation from the stator current, generates a compensation value, adds this to the deviation equivalent value,
Figure 0004587110

位相生成器は、位相生成工程を遂行するものであり、基本的には、本願発明者により体系化された次式で表現される一般化積分形PLL法に基づき構成されている。

Figure 0004587110
Figure 0004587110
ここに、位相制御器CPLL(s)は、次の(5)式で定義された(m+1)次の多項式H(s)が安定多項式となるように設計されている。
Figure 0004587110
Figure 0004587110
値ωも得られる。図2では、必要に応じこれも出力する様子を破線で示している。The phase generator performs a phase generation process, and is basically configured based on a generalized integral PLL method expressed by the following equation systematized by the present inventor.
Figure 0004587110
Figure 0004587110
Here, the phase controller C PLL (s) is designed so that the (m + 1) -order polynomial H (s) defined by the following equation (5) is a stable polynomial.
Figure 0004587110
Figure 0004587110
A value ω is also obtained. In FIG. 2, the manner in which this is output as necessary is indicated by broken lines.

図2に図示した位相推定の全工程は、ベクトル回転器の存在を考慮するならば(図4参照)、等価的に、図3のフィードバックシステムとして、扱うことができる。図3より明らかなように、補償値から最終位相推定値までの伝達関数は、次の(6)式となる。

Figure 0004587110
上の(6)式の伝達関数においては、分子次数は分母次数より小さく、伝達関数は明らかに安定なローパスフィルタの特性を示す((5)式参照)。より具体的には、(6)式の伝達関数は、高周波域でゼロを、直流を含むゼロ周波数近傍で一定値1/Kθを示すローパスフィルタの特性を示す。本特性は、補償値が位相推定値に有効に作用し、位相推定値が適切に補償されることを意味する。The entire phase estimation process illustrated in FIG. 2 can be equivalently handled as the feedback system of FIG. 3 if the presence of the vector rotator is considered (see FIG. 4). As is clear from FIG. 3, the transfer function from the compensation value to the final phase estimation value is expressed by the following equation (6).
Figure 0004587110
In the transfer function of the above formula (6), the numerator order is smaller than the denominator order, and the transfer function clearly shows the characteristics of a stable low-pass filter (see formula (5)). More specifically, (6) the transfer function of the equation, the zero in the high frequency range, showing the characteristics of the low-pass filter showing a constant value 1 / K theta at zero frequency neighborhood including DC. This characteristic means that the compensation value effectively acts on the phase estimation value, and the phase estimation value is appropriately compensated.

上述の適切な補償効果の事実は、図3のフィーバックシステムとして等価的に表現された推定システムにおいて、すべての入力信号が位相推定値に与えうる影響を総合的に検討すれば、更に明快となる。本影響は、次の(7)式で与えることができる。

Figure 0004587110
図3及び(7)式においては、磁束飽和あるいはdq軸相互干渉に遠因する偏差相当値を算定する工程で混入した誤差をΔθで表現している。(7)式より明白なように、補償値を誤差を考慮して、(8)式のように選定すれば、理想的な補償が達成されることがわかる。
Figure 0004587110
Figure 0004587110
となることもわかる(図1参照)。The fact of the appropriate compensation effect described above can be further clarified by comprehensively considering the influence that all input signals can have on the phase estimation value in the estimation system equivalently expressed as the feedback system of FIG. Become. This influence can be given by the following equation (7).
Figure 0004587110
3 and (7), Δθ e represents an error mixed in the process of calculating a deviation equivalent value due to magnetic flux saturation or dq axis mutual interference. As apparent from the equation (7), it can be seen that an ideal compensation can be achieved if the compensation value is selected as in the equation (8) in consideration of an error.
Figure 0004587110
Figure 0004587110
(See FIG. 1).

以上の説明より既に明白なように、請求項1の発明によれば、同期電動機のための駆動制御装置に使用され、準同期座標系上で応答高周波信号を処理して回転子位相を推定する方法であって、特に、効果的な位相誤差補償機能を備えた回転子位相推定方法を実現できるようになると言う効果が得られる。As is apparent from the above description, according to the invention of claim 1, the rotor phase is estimated by processing the response high-frequency signal on the quasi-synchronous coordinate system, used in the drive control device for the synchronous motor. In particular, an effect is obtained that a rotor phase estimation method having an effective phase error compensation function can be realized.

続いて、請求項2の発明の効果を説明する。永久磁石同期電動機では、磁束飽和あるいは相互干渉に起因する誤差は、概ね次の関係が成立する。

Figure 0004587110
ここに、ifqは、固定子電流のトルク発生に寄与する成分の中で、特に、永久磁石磁極に垂直な固定子電流成分、すなわち固定子電流の基本成分の中のq軸成分を意味する。(9)式を(8)式に用いると、つぎの関係を得る
Figure 0004587110
Next, the effect of the invention of claim 2 will be described. In a permanent magnet synchronous motor, the following relationship is generally established for errors caused by magnetic flux saturation or mutual interference.
Figure 0004587110
Here, i fq means a stator current component perpendicular to the permanent magnet magnetic pole among components contributing to torque generation of the stator current, that is, a q-axis component in a basic component of the stator current. . Using equation (9) in equation (8) yields the following relationship:
Figure 0004587110

請求項2の発明によれば、同期電動機として永久磁石同期電動機を駆動制御する場合には、補償値を、固定子電流のトルク発生に寄与する成分の中で、特に、永久磁石磁極に垂直な固定子電流成分の相当値に概ね比例して算定する。すなわち、基本的に、(10)式の関係が維持されるように、補償値を算定する。この結果、請求項2の発明によれば、簡単な計算で、しかも効果的に、位相推定値を補償できるようになると言う効果が得られる。According to the second aspect of the present invention, when the permanent magnet synchronous motor is driven and controlled as the synchronous motor, the compensation value is a component that contributes to the torque generation of the stator current, in particular, perpendicular to the permanent magnet magnetic pole. Calculated in proportion to the equivalent value of the stator current component. That is, basically, the compensation value is calculated so that the relationship of the expression (10) is maintained. As a result, according to the second aspect of the invention, an effect is obtained that the phase estimation value can be effectively compensated by simple calculation.

続いて、請求項3の発明の効果を説明する。同期リラクタンス電動機では、磁束飽和あるいは相互干渉に起因する誤差は、概ね次のように表現できる。

Figure 0004587110
ここに、ifd,ifqは、固定子電流のトルク発生に寄与する成分(すなわち、基本波成分)であるd軸成分、q軸成分を各々意味している。(11)式を(8)式に用いると、つぎの関係を得る
Figure 0004587110
上の(12)式におけるf′(ifd,ifq)は、一般に、固定子電流基本波成分のd軸、q軸成分の非線形関数となり、必ずしも単純な関数とはならない。このため、(12)式の実現には、算定によるよりも、予め用意した3次元テーブルを用意しこれを利用するようにした方が、実時間処理を遂行しやすく、実際的である。Next, the effect of the invention of claim 3 will be described. In a synchronous reluctance motor, an error due to magnetic flux saturation or mutual interference can be generally expressed as follows.
Figure 0004587110
Here, i fd and i fq mean a d-axis component and a q-axis component, which are components (that is, fundamental wave components) contributing to the torque generation of the stator current, respectively. Using equation (11) in equation (8) gives the following relationship:
Figure 0004587110
In general, f ′ (i fd , i fq ) in the above equation (12) is a nonlinear function of the d-axis and q-axis components of the stator current fundamental wave component, and is not necessarily a simple function. For this reason, it is more practical to realize the expression (12) because it is easier to perform real-time processing by preparing and using a prepared three-dimensional table than by calculation.

請求項3の発明は、(12)式を用いて説明した上記原理に基づくものである。すなわち、請求項3の発明によれば、同期電動機として同期リラクタンス電動機を駆動制御する場合には、固定子電流のトルク発生に寄与する成分を入力引数とし該補償値を出力とする補償値テーブルを予め用意し、該補償値を補償値テーブルを参照して定めるようにしている。従って、請求項3の発明によれば、固定子電流と補償値に関し複雑な関係をもつ同期リラクタンス電動機を対象とする場合にも、実時間で、合理的な補償値を定めることができると言う効果が得られる。換言するならば、同期リラクタンス電動機を対象とする場合にも、実際的で効果的な補償ができると言う効果が得られる。The invention of claim 3 is based on the above principle explained by using the expression (12). That is, according to the third aspect of the present invention, when a synchronous reluctance motor is driven and controlled as a synchronous motor, a compensation value table having a component contributing to torque generation of the stator current as an input argument and an output of the compensation value is provided. Prepared in advance, the compensation value is determined with reference to the compensation value table. Therefore, according to the invention of claim 3, it can be said that a reasonable compensation value can be determined in real time even when a synchronous reluctance motor having a complicated relationship with respect to the stator current and the compensation value is targeted. An effect is obtained. In other words, even when a synchronous reluctance motor is targeted, an effect that practical and effective compensation can be obtained is obtained.

以下、図面を用いて、本発明の実施形態を詳細に説明する。特に、最も実用性が高いと思われる、回転子の位相にゼロ位相差で同期を目指した準同期座標系上で、印加高周波電圧に対応した応答高周波電流を検出処理して回転子位相を推定する高周波電圧印加法の場合を中心に説明する。当然のことながら、ゼロ位相差で同期を目指す本場合には、準同期座標系の位相がそのまま回転子位相推定値となり、準同期座標系位相を用いた回転子位相推定値の決定に際して、一定位相差(すなわち、ゼロ位相差)の補正処理は実質的に消滅する。ひいては、実用性が高くなる。Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In particular, on the quasi-synchronous coordinate system that aims to synchronize with the rotor phase with zero phase difference, which seems to be the most practical, the rotor phase is estimated by detecting the response high-frequency current corresponding to the applied high-frequency voltage. The description will focus on the case of the high frequency voltage application method. As a matter of course, in this case where synchronization is aimed at zero phase difference, the phase of the quasi-synchronous coordinate system is directly used as the rotor phase estimation value. The correction process for the constant phase difference (that is, zero phase difference) substantially disappears. As a result, practicality becomes high.

代表的な同期電動機である永久磁石同期電動機に対し、本発明の回転子位相推定方法を用いた駆動制御装置を適用した1実施形態例を図4に示す。本発明の主眼は回転子位相推定法を装置化した位相推定器にあるが、電動機駆動制御システム全体における位相推定器の位置づけを明示すべく、あえて、駆動制御装置を含む電動機駆動制御システム全体から説明する。1は同期電動機を、2は電力変換器(電圧形)を、3は電流検出器を、4a、4bは夫々3相2相変換器、2相3相変換器を、5a、5bは共にベクトル回転器を、6は電流制御器を、7は指令変換器を、8は速度制御器を、9はバンドストップフィルタを、10aは本発明と関連した高周波電圧指令器を、10bは本発明を利用した位相推定器を、11は係数器を、12は余弦正弦信号発生器を、各々示している。当業者には容易に理解されるように、図4では、1の電動機を除く、2から12までの諸機器が駆動制御装置を構成している。駆動制御装置の中で、特に、10a、10bが、本発明の回転子位相推定法と関連している。本図では、簡明性を確保すべく、2x1のベクトル信号を1本の太い信号線で表現している。以下のブロック図表現もこれを踏襲する。FIG. 4 shows an embodiment in which a drive control device using the rotor phase estimation method of the present invention is applied to a permanent magnet synchronous motor that is a typical synchronous motor. The main point of the present invention is a phase estimator that implements the rotor phase estimation method. However, in order to clarify the position of the phase estimator in the entire motor drive control system, the entire motor drive control system including the drive control device is intentionally used. explain. 1 is a synchronous motor, 2 is a power converter (voltage type), 3 is a current detector, 4a and 4b are 3 phase 2 phase converters, 2 phase 3 phase converters, 5a and 5b are both vectors Rotator, 6 current controller, 7 command converter, 8 speed controller, 9 band stop filter, 10a high frequency voltage commander related to the present invention, 10b present invention. A phase estimator used, 11 is a coefficient unit, and 12 is a cosine sine signal generator. As will be readily understood by those skilled in the art, in FIG. 4, various devices from 2 to 12 except for one electric motor constitute a drive control device. Among the drive control devices, in particular, 10a and 10b are related to the rotor phase estimation method of the present invention. In this figure, a 2 × 1 vector signal is represented by one thick signal line to ensure simplicity. The following block diagram expression follows this.

電流検出器3で検出された3相の固定子電流は、3相2相変換器4aで固定αβ座標系上の2相電流に変換された後、ベクトル回転器5aで回転子位相へゼロ位相差で位相同期を目指した準同期座標系の2相電流に変換される。変換電流からバンドストップフィルタ9を介して駆動用電流を抽出し、これを電流制御器6へ送る。電流制御器6は、準同期座標系上の駆動用2相電流が、各相の電流指令に追随すべく準同期座標系上の駆動用2相電圧指令を生成する。ここで、高周波電圧指令器10aから受けた2相の高周波電圧指令を、駆動用2相電圧指令に重畳させ、重畳合成した2相電圧指令を、ベクトル回転器5bへ送る。5bでは、準同期座標系上の重畳合成の電圧指令を固定αβ座標系の2相電圧指令に変換し、2相3相変換器4bへ送る。4bでは、2相電圧指令を3相電圧指令に変換し、電力変換器2への指令として出力する。電力変換器2は、指令に応じた電力を発生し、同期電動機1へ印加しこれを駆動する。The three-phase stator current detected by the current detector 3 is converted into a two-phase current on the fixed αβ coordinate system by the three-phase two-phase converter 4a, and then is shifted to the rotor phase by the vector rotator 5a. The phase difference is converted into a two-phase current in a quasi-synchronous coordinate system aimed at phase synchronization. A drive current is extracted from the converted current through the band stop filter 9 and sent to the current controller 6. The current controller 6 generates a driving two-phase voltage command on the quasi-synchronous coordinate system so that the driving two-phase current on the quasi-synchronous coordinate system follows the current command of each phase. Here, the two-phase high-frequency voltage command received from the high-frequency voltage command device 10a is superimposed on the driving two-phase voltage command, and the superimposed two-phase voltage command is sent to the vector rotator 5b. In 5b, the voltage command for superposition and synthesis on the quasi-synchronous coordinate system is converted into a two-phase voltage command in the fixed αβ coordinate system and sent to the two-phase three-phase converter 4b. In 4 b, the two-phase voltage command is converted into a three-phase voltage command and output as a command to the power converter 2. The power converter 2 generates electric power according to the command, applies it to the synchronous motor 1, and drives it.

位相推定器10bは、ベクトル回転器5aの出力である準同期座標系上の固定子電流と、固定子電流の駆動用基本波成分制御のための駆動用電流指令値とを受けて、回転子位相推定値、及び回転子の電気速度推定値を出力している。回転子位相推定値は、余弦正弦信号発生器12で余弦・正弦信号に変換された後、準同期座標系を決定づけるベクトル回転器5a、5bへ渡される。当業者には周知のように、高周波電圧指令器が速度に応じた(すなわち、速応的な)電圧指令を生成する場合には、回転子速度推定値(電気速度推定値)が必要となる。この場合のための電気速度推定値は位相推定器から受けている。図9では、回転子速度推定値の必要性の有無を考慮し、これを破線で示している。The phase estimator 10b receives the stator current on the quasi-synchronous coordinate system, which is the output of the vector rotator 5a, and the driving current command value for controlling the fundamental wave component for driving the stator current, and the rotor The estimated phase value and the estimated rotor speed are output. The rotor phase estimation value is converted into a cosine / sine signal by the cosine sine signal generator 12, and then passed to the vector rotators 5a and 5b which determine the quasi-synchronous coordinate system. As is well known to those skilled in the art, when the high-frequency voltage command device generates a voltage command corresponding to speed (that is, speedy response), an estimated value of rotor speed (electrical speed estimated value) is required. . The electrical speed estimate for this case is received from the phase estimator. In FIG. 9, the necessity of the rotor speed estimation value is considered, and this is indicated by a broken line.

準同期座標系上の2相電流指令は、当業者には周知のように、トルク指令を指令変換器7に通じ変換することにより得ている。速度制御器8には、位相推定器10bからの出力信号の1つである回転子速度推定値(電気速度推定値)が、一定値である極対数Npの逆数を係数器11を介して乗じられ機械速度推定値に変換された後、送られている。図4の本例では、速度制御システムを構成した例を示しているので、速度制御器8の出力としてトルク指令を得ている。当業者には周知のように、制御目的がトルク制御にあり速度制御システムを構成しない場合には、速度制御器8は不要である。この場合には、トルク指令が外部から直接印加される。The two-phase current command on the quasi-synchronous coordinate system is obtained by converting the torque command through the command converter 7 as is well known to those skilled in the art. The speed controller 8 multiplies the rotor speed estimated value (electric speed estimated value), which is one of the output signals from the phase estimator 10b, by the inverse of the pole pair number Np, which is a constant value, via the coefficient unit 11. And then sent to the machine speed estimate. In the present example of FIG. 4, an example in which a speed control system is configured is shown, and thus a torque command is obtained as an output of the speed controller 8. As is well known to those skilled in the art, the speed controller 8 is unnecessary when the control purpose is torque control and the speed control system is not configured. In this case, the torque command is directly applied from the outside.

本発明の核心は位相推定器10bにある。速度制御、トルク制御の何れにおいても、位相推定器10bには何らの変更を要しない。また、駆動対象電動機を他の同期電動機とする場合にも位相推定器10bは、本質的には、何らの変更を要しない。以下では、速度制御、トルク制御等の制御モードに関し一般性を失うことなく、更には、駆動対象の同期電動機に対して一般性を失うことなく、位相推定器10bの実施形態例について説明する。The core of the present invention is the phase estimator 10b. In any of the speed control and the torque control, no change is required for the phase estimator 10b. Even when the motor to be driven is another synchronous motor, the phase estimator 10b essentially does not require any change. Hereinafter, an exemplary embodiment of the phase estimator 10b will be described without losing generality with respect to control modes such as speed control and torque control, and without losing generality with respect to the synchronous motor to be driven.

図5に、本発明を用いた本位相推定器10bの1実施形態例を示した。本位相推定器10bは、請求項1の発明に従い、偏差相当値算出工程を遂行する偏差相当値算出器10b−1、補償工程を遂行する補償器10b−2、位相生成工程を遂行する位相生成器10b−3から構成されている。補償器10b−2は、請求項2の発明に従い、固定子電流の中で、モータ駆動制御に利用される基本波成分として、駆動用q軸電流相当値を利用して補償値を算定し、これを偏差相当値算出器からの出力信号である偏差相当値に加算している。駆動用q軸電流相当値としては、駆動用q軸電流指令値を利用している。すなわち、(10)式に従い構成しているが、駆動用q軸電流真値(実測値)に代わって、同指令値を利用している。もちろん、これに代わって、駆動用q軸電流真値(実測値)を利用してもよい。FIG. 5 shows an embodiment of the present phase estimator 10b using the present invention. According to the invention of claim 1, the phase estimator 10b includes a deviation equivalent value calculator 10b-1 that performs a deviation equivalent value calculation step, a compensator 10b-2 that performs a compensation step, and a phase generation step that performs a phase generation step. It comprises the device 10b-3. According to the invention of claim 2, the compensator 10b-2 calculates a compensation value using a driving q-axis current equivalent value as a fundamental wave component used for motor drive control in the stator current, This is added to the deviation equivalent value which is the output signal from the deviation equivalent value calculator. The driving q-axis current command value is used as the driving q-axis current equivalent value. That is, although it is configured according to the equation (10), the command value is used instead of the driving q-axis current true value (actually measured value). Of course, the driving q-axis current true value (actual value) may be used instead.

補償器10b−2を除く、位相推定器内の他の2機器は、公知の方法を利用して構成すればよい。この際、偏差相当値算出器10b−1は、高周波電圧指令器10aが発生する高周波電圧指令と深い関係がある点に注意する必要がある。当業者には周知のように、空間的に一定振幅の真円軌道を描く高周波電圧指令を生成する高周波電圧指令器には、ベクトルヘテロダイン法(非特許文献1参照)、あるいは鏡相推定法(下記、特許文献3参照)に基づいて偏差相当値算出器を構成すれば、所期の偏差相当値を算出できる。また、空間的に一定振幅の直線軌道を描く高周波電圧指令を生成する高周波電圧指令器には、FFT法(下記、非特許文献3参照)、45度インピーダンス法(特許文献1,2参照)、スカラーヘテロダイン法(下記、非特許文献4参照)、高周波電流相関信号法(下記、特許文献4参照)などに基づいて偏差相当値算出器を構成すれば、所期の偏差相当値を算出できる。また、速度に応じて振幅を変化させる速応形の楕円軌道を生成する高周波電圧指令器には、高周波電流相関信号法(下記、特許文献4参照)などに基づいて偏差相当値算出器を構成すれば、所期の偏差相当値を算出できる。これらは、当業者の間では、公開文献を通じて既に公知であるので、これ以上の説明は省略する。The other two devices in the phase estimator other than the compensator 10b-2 may be configured using a known method. At this time, it should be noted that the deviation equivalent value calculator 10b-1 has a deep relationship with the high frequency voltage command generated by the high frequency voltage command device 10a. As is well known to those skilled in the art, a vector heterodyne method (see Non-Patent Document 1) or a mirror phase estimation method (referred to as Non-Patent Document 1) is used as a high-frequency voltage command device that generates a high-frequency voltage command that describes a perfect circular orbit with a constant spatially. If the deviation equivalent value calculator is configured based on the following (see Patent Document 3), the expected deviation equivalent value can be calculated. In addition, the high-frequency voltage command device that generates a high-frequency voltage command that spatially draws a linear trajectory with a constant amplitude includes an FFT method (see Non-Patent Document 3 below), a 45-degree impedance method (see Patent Documents 1 and 2), If the deviation equivalent value calculator is configured based on the scalar heterodyne method (see the following Non-patent Document 4), the high-frequency current correlation signal method (see the following Patent Document 4), etc., the expected deviation equivalent value can be calculated. Also, a deviation equivalent value calculator is configured based on the high-frequency current correlation signal method (see Patent Document 4 below) and the like for a high-frequency voltage command device that generates a quick-response elliptical orbit that changes amplitude according to speed. Then, the expected deviation equivalent value can be calculated. Since these are already known to those skilled in the art through published literature, further explanation is omitted.

新中新二、「交流電動機のベクトル制御方法及び同装置」、特開2003−274700号Shinnaka Shinji, “AC motor vector control method and apparatus”, Japanese Patent Application Laid-Open No. 2003-274700 新中新二、「交流電動機の回転子位相推定装置」、特願2006−27622Shinnaka Shinji, “Rotor phase estimation device for AC motor”, Japanese Patent Application No. 2006-27622 T.Aihara,A.Toba,T.Yanase,A.Mashimo,and K.Endo,“Sensorless Torque Control of Salient−Pole Synchronous Motor at Zero−Speed Operation”,IEEE Trans.on Power Electronics,Vol.14,No.1,pp.202−208(1999−1)T.A. Aihara, A .; Toba, T .; Yanase, A .; Masimo, and K.K. Endo, “Sensorless Torque Control of Salient-Pole Synchronous Motor at Zero-Speed Operation”, IEEE Trans. on Power Electronics, Vol. 14, no. 1, pp. 202-208 (1999-1) J.H.Jang,S.K.Sul,J.I.Ha,K.Ide,and M.Sawamura,“Sensorless Drive of SMPM Motor by High−Frequency Signal Injection Based on Magnet Saliency”,Proc.of 17th IEEE Applied Power Electronics Conference and Exposition(APEC 2002),Vol.1,pp.279−285(2002−3).J. et al. H. Jang, S.J. K. Sul, J. et al. I. Ha, K .; Ide, and M.M. Sawamura, “Sensorless Drive of SMPM Motor by High-Frequency Signal Injection Based on Magnet Saline”, Proc. of 17th IEEE Applied Power Electronics Conference and Exposure (APEC 2002), Vol. 1, pp. 279-285 (2002-3).

位相生成器の構成は、偏差相当値算出器と共に公開された方法に従って、構成してよい。あるいは、本願発明者によって体系化された(3)〜(5)式に従って、構成してもよい(図3参照)。(3)〜(5)式あるいは図3より明白なように、回転子位相にゼロ位相差で同期

Figure 0004587110
できる。必要に応じて、準同期座標系の速度ωをローパスフィルタ処理した値を、電気速度推定値としてもよい。位相生成器の構成は、当業者の間では、基本的に公知であるので、これ以上の説明を省略する(非特許文献1、3、4、特許文献1〜4等を参照)。The configuration of the phase generator may be configured according to a method disclosed together with the deviation equivalent value calculator. Or you may comprise according to (3)-(5) systematized by this inventor (refer FIG. 3). As is clear from equations (3) to (5) or FIG. 3, it is synchronized with the rotor phase with a zero phase difference.
Figure 0004587110
it can. If necessary, a value obtained by low-pass filtering the speed ω of the quasi-synchronous coordinate system may be used as the electric speed estimated value. Since the configuration of the phase generator is basically known among those skilled in the art, further explanation is omitted (see Non-Patent Documents 1, 3, 4, Patent Documents 1 to 4, etc.).

次に、同期リラクタンス電動機を駆動対象とした場合の位相推定器の実施形態例を説明する。同期リラクタンス電動機の駆動制御においては、回転子位相としては、無負荷時の正突極位相または負突極位相を選定するのが、一般的である。特に、高周波電圧印加法において、回転子位相を負突極位相に選定する場合には、回転子の位相にゼロ位相差で同期を目指した準同期座標系が、永久磁石同期電動機と同様に、簡単に構成できる。ここでは、実際性の高い本構成例を例示する。Next, an embodiment of a phase estimator when a synchronous reluctance motor is a driving target will be described. In drive control of a synchronous reluctance motor, it is common to select a positive salient pole phase or a negative salient pole phase when there is no load as the rotor phase. In particular, in the high-frequency voltage application method, when the rotor phase is selected as the negative salient pole phase, the quasi-synchronous coordinate system aiming for synchronization with the rotor phase with a zero phase difference is similar to the permanent magnet synchronous motor. Easy to configure. Here, this configuration example having high practicality is illustrated.

本例では、駆動制御システムの全体構成は、基本的に、図4と同一である。唯一の違いが、位相推定器10bにある。図6は、請求項1及び請求項3の発明に従い構成した位相推定器10bの実施形態例である。位相推定器10bは、基本的には、請求項1の発明に従い、偏差相当値算出工程を遂行する偏差相当値算出器10b−1、補償工程を逆行する補償器10b−2、位相生成工程を遂行する位相生成器10b−3から構成されている。補償器10b−2は、請求項3の発明に従い、補償値を補償値テーブルを利用して生成するようにしている。このときの、補償値テーブルに使用する入力引数は、固定子電流のトルク発生に寄与する成分相当値であるが、本例では、固定子基本波成分(トルク発生に寄与する成分)制御のための指令値を使用するようにしている。もちろん、これに代わって、固定子電流基本波成分の真値(実測値)を利用してもよい。In this example, the overall configuration of the drive control system is basically the same as FIG. The only difference is in the phase estimator 10b. FIG. 6 shows an embodiment of a phase estimator 10b configured according to the inventions of claims 1 and 3. The phase estimator 10b basically includes a deviation equivalent value calculator 10b-1 that performs the deviation equivalent value calculation step, a compensator 10b-2 that reverses the compensation step, and a phase generation step according to the invention of claim 1. It consists of a phase generator 10b-3 that performs. According to the invention of claim 3, the compensator 10b-2 generates a compensation value using a compensation value table. At this time, the input argument used in the compensation value table is a component equivalent value that contributes to the torque generation of the stator current. In this example, the input argument is used to control the stator fundamental wave component (component that contributes to the torque generation). The command value is used. Of course, instead of this, the true value (actually measured value) of the stator current fundamental wave component may be used.

以上、同期電動機として、永久磁石同期電動機、同期リラクタンス電動機を対象とした実施形態例を示した。巻線形同期電動機、回転子に永久磁石と界磁巻線をもつハイブリッド界磁形同期電動機などの他の同期電動機を対象とする実施形態例では、当業者には既に容易に理解できるように、駆動制御システム全体としては、界磁巻線に関する制御の追加が必要であるが、本発明である位相推定器に関しては、特別の変更は必要としない。As described above, the embodiment examples in which the permanent magnet synchronous motor and the synchronous reluctance motor are targeted as the synchronous motor have been described. In an example embodiment directed to other synchronous motors, such as a wound synchronous motor, a hybrid field synchronous motor with permanent magnets and field windings in the rotor, as can be readily understood by those skilled in the art, The drive control system as a whole needs additional control related to the field winding, but the phase estimator according to the present invention does not require any special changes.

図4〜6を用いて説明した以上の実施形態例は、電力変換器としては、基本的に電圧形のものを想定した。電流形の電力変換器を利用する場合には、印加高周波信号としては高周波電流を選定し、これに対応した高周波電圧を処理して回転子位相を推定するようにした方がよい。この場合の位相推定器の構成は、図5、6に示したものと原理的には同一である。特に、本発明の主眼である補償器の構成は変更がない。印加高周波信号と応答高周波信号との変更に伴う位相推定器の変更は、位相推定器への高周波成分を含む入力信号にあるに過ぎない。具体的には、図5、6において、位相推定器への高周波成分を含む入力信号を、固定子電流から固定子電圧へ変更すればよい。これに対応して、回転子位相の定義を負突極位相から正突極位相へ変更すればよい(図1参照)。なお、回転子位相の定義の変更を行わない場合には、準同期座標系は、回転子位相に±π/2の一定位相差で同期を目指すことになる。一定位相差の補正処理が追加的に必要となることを指摘しておく。The above embodiments described with reference to FIGS. 4 to 6 basically assume a voltage type power converter. When a current-type power converter is used, it is better to select a high-frequency current as the applied high-frequency signal and process the high-frequency voltage corresponding to this to estimate the rotor phase. The configuration of the phase estimator in this case is in principle the same as that shown in FIGS. In particular, the configuration of the compensator which is the main focus of the present invention is not changed. The change of the phase estimator accompanying the change of the applied high frequency signal and the response high frequency signal is only in the input signal including the high frequency component to the phase estimator. Specifically, in FIGS. 5 and 6, the input signal including the high-frequency component to the phase estimator may be changed from the stator current to the stator voltage. Correspondingly, the definition of the rotor phase may be changed from the negative salient pole phase to the positive salient pole phase (see FIG. 1). If the definition of the rotor phase is not changed, the quasi-synchronous coordinate system aims to synchronize with the rotor phase with a constant phase difference of ± π / 2. It should be pointed out that a correction process for a constant phase difference is additionally required.

以上、本発明に関し、各種の図を利用しつつ複数の実施形態例を用いて具体的かつ詳しく説明した。上記説明の本発明は、本発明の属する技術分野で通常の知識を有する者によって本発明の技術的範囲を外れない範囲内で多様な変形及び変更が可能であり、前述した実施例及び添付図面に限定されるものではないことを指摘しておく。As described above, the present invention has been described specifically and in detail using a plurality of exemplary embodiments using various drawings. The present invention described above can be variously modified and changed by those having ordinary knowledge in the technical field to which the present invention belongs without departing from the technical scope of the present invention. It should be pointed out that it is not limited to.

リラクタンストルクを多く利用した永久磁石同期電動機では、特に、本発明が解決を目指した誤差発生が大きい。電気自動車、ハイブリッド自動車では、リラクタンストルクをより多く利用する方向にあり、本発明は、これらの用途に好適である。In a permanent magnet synchronous motor that uses a lot of reluctance torque, in particular, the occurrence of errors that the present invention aims to solve is large. Electric vehicles and hybrid vehicles tend to use more reluctance torque, and the present invention is suitable for these applications.

3種の座標系と回転子位相の1関係例を示す図  The figure which shows the example of 1 relationship of three types of coordinate systems and a rotor phase 本発明に基づく位相推定器の基本構成例を示すブロック図  The block diagram which shows the basic structural example of the phase estimator based on this invention 本発明に基づく位相推定器が構成する等価フィードバックシステムを示すブロック図  The block diagram which shows the equivalent feedback system which the phase estimator based on this invention comprises 本発明に基づく位相推定器を利用した駆動制御システムを示すブロック図  Block diagram showing a drive control system using a phase estimator according to the present invention. 1実施形態例における位相推定器の基本構成を示すブロック図  1 is a block diagram showing a basic configuration of a phase estimator in an example embodiment 1実施形態例における位相生成器の基本構成を示すブロック図  1 is a block diagram showing a basic configuration of a phase generator in an example embodiment 従来の位相推定器を概略的に示すブロック図  Block diagram schematically showing a conventional phase estimator 従来の位相推定器が構成する等価フィードバックシステムを示すブロック図  Block diagram showing an equivalent feedback system composed of a conventional phase estimator

符号の説明Explanation of symbols

1 同期電動機
2 電力変換器
3 電流検出器
4a 3相2相変換器
4b 2相3相変換器
5a ベクトル回転器
5b ベクトル回転器
6 電流制御器
7 指令変換器
8 速度制御器
9 バンドストップフィルタ
10a 高周波電圧指令器
10b 位相推定器
10b−1 偏差相当値算出器
10b−2 補償器
10b−3 位相生成器
11 係数器
12 余弦正弦信号発生器
DESCRIPTION OF SYMBOLS 1 Synchronous motor 2 Power converter 3 Current detector 4a 3 phase 2 phase converter 4b 2 phase 3 phase converter 5a Vector rotator 5b Vector rotator 6 Current controller 7 Command converter 8 Speed controller 9 Band stop filter 10a High-frequency voltage command device 10b Phase estimator 10b-1 Deviation equivalent value calculator 10b-2 Compensator 10b-3 Phase generator 11 Coefficient unit 12 Cosine sine signal generator

Claims (3)

駆動基本周波数より高い周波数の高周波電圧(または電流)の印加に対し回転子が突極特性を示す同期電動機のための駆動制御装置に使用され、かつ、回転子の位相にゼロ位相差で代表される一定位相差で同期を目指した準同期座標系上で、印加に対応した応答高周波電流(または電圧)を検出処理して回転子位相を推定する回転子位相推定方法であって、該応答高周波電流(または電圧)を検出処理して、準同期座標系位相に該一定位相差を補正して得た準同期座標系補正位相と回転子位相との位相偏差に対し相関をもつ偏差相当値を算定する偏差相当値算出工程と、
固定子電流の中でトルク発生に寄与する成分の相当値を少なくとも利用して補償値を定め、定めた補償値を、該偏差相当値に加算して、補償された偏差相当値を生成するための補償工程と、
該補償偏差相当値がゼロに収斂するように準同期座標系の位相を生成し、生成した準同期座標系位相に該一定位相差を補正して回転子位相推定値とする位相生成工程と、
を有することを特徴とする回転子位相推定方法。
The rotor is used in a drive controller for a synchronous motor that exhibits salient pole characteristics when a high frequency voltage (or current) with a frequency higher than the drive fundamental frequency is applied, and is represented by a zero phase difference in the rotor phase. A rotor phase estimation method for detecting a response high-frequency current (or voltage) corresponding to application and estimating a rotor phase on a quasi-synchronous coordinate system aiming for synchronization with a constant phase difference. Deviation equivalent value correlated with the phase deviation between the quasi-synchronous coordinate system correction phase and the rotor phase obtained by detecting the current (or voltage) and correcting the constant phase difference to the quasi-synchronous coordinate system phase. A deviation equivalent value calculating step to calculate,
A compensation value is determined by using at least an equivalent value of a component contributing to torque generation in the stator current, and the determined compensation value is added to the deviation equivalent value to generate a compensated deviation equivalent value. Compensation process,
A phase generation step of generating a phase of a quasi-synchronous coordinate system so that the compensation deviation equivalent value converges to zero, and correcting the constant phase difference to the generated quasi-synchronous coordinate system phase to obtain a rotor phase estimation value;
A rotor phase estimation method comprising:
該同期電動機を、回転子に永久磁石を有する同期電動機である永久磁石同期電動機とし、該補償値を、固定子電流のトルク発生に寄与する成分の中で、特に、永久磁石磁極に垂直な固定子電流成分の相当値に概ね比例して算定するようにしたことを特徴とする請求項1記載の回転子位相推定方法。The synchronous motor is a permanent magnet synchronous motor that is a synchronous motor having a permanent magnet in a rotor, and the compensation value is fixed perpendicular to the permanent magnet magnetic pole among the components that contribute to the torque generation of the stator current. 2. The rotor phase estimation method according to claim 1, wherein the calculation is performed in proportion to the equivalent value of the child current component. 該同期電動機を、同期リラクタンス電動機とし、固定子電流のトルク発生に寄与する成分相当値を入力引数とし該補償値を出力とする補償値テーブルを予め用意し、補償値テーブルを参照して該補償値を定めるようにしたことを特徴とする請求項1記載の回転子位相推定方法。The synchronous motor is a synchronous reluctance motor, a compensation value table is prepared in advance with a component equivalent value that contributes to the torque generation of the stator current as an input argument, and the compensation value is output. 2. The rotor phase estimation method according to claim 1, wherein a value is determined.
JP2007171208A 2007-06-01 2007-06-01 Rotor phase estimation method for synchronous motor drive control Expired - Fee Related JP4587110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007171208A JP4587110B2 (en) 2007-06-01 2007-06-01 Rotor phase estimation method for synchronous motor drive control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007171208A JP4587110B2 (en) 2007-06-01 2007-06-01 Rotor phase estimation method for synchronous motor drive control

Publications (2)

Publication Number Publication Date
JP2008301695A JP2008301695A (en) 2008-12-11
JP4587110B2 true JP4587110B2 (en) 2010-11-24

Family

ID=40174658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007171208A Expired - Fee Related JP4587110B2 (en) 2007-06-01 2007-06-01 Rotor phase estimation method for synchronous motor drive control

Country Status (1)

Country Link
JP (1) JP4587110B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5499539B2 (en) * 2009-06-20 2014-05-21 日本電産株式会社 Rotor phase estimation device for synchronous motor
JP5720677B2 (en) * 2010-04-17 2015-05-20 日本電産株式会社 Rotor phase speed estimation device for AC motor
DE102012205540B4 (en) * 2012-04-04 2023-08-17 Vitesco Technologies GmbH Process and device for sensorless control of a separately excited synchronous machine
JP6341770B2 (en) * 2014-06-16 2018-06-13 川崎重工業株式会社 Two-phase signal phase detection device and two-phase signal phase detection method
JP2017229196A (en) 2016-06-24 2017-12-28 株式会社リコー Angle estimation device, motor control device, motor driving device, motor driving system, image forming apparatus, and conveying device
KR101941976B1 (en) * 2017-09-19 2019-01-24 서울대학교산학협력단 Motor control apparatus
WO2020194401A1 (en) * 2019-03-22 2020-10-01 三菱電機株式会社 Velocity estimation device of ac motor, driving device of ac motor, refrigerant compressor, and refrigeration cycle device
JP2023007592A (en) * 2021-07-02 2023-01-19 トヨタ自動車株式会社 Motor control device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002291283A (en) * 2001-03-26 2002-10-04 Yaskawa Electric Corp Method for estimating magnetic pole position in synchronous motor and its controller
JP2003274700A (en) * 2002-03-18 2003-09-26 C & S Kokusai Kenkyusho:Kk Method and apparatus for controlling vector of ac motor
JP2003299381A (en) * 2002-04-02 2003-10-17 Yaskawa Electric Corp Sensorless control device and method for alternator
JP2003348896A (en) * 2002-05-24 2003-12-05 Meidensha Corp Control unit for pm motor
JP2006027622A (en) * 2004-07-12 2006-02-02 Ueda Shikimono Kojo:Kk Fresh article storing container
JP2006109589A (en) * 2004-10-04 2006-04-20 Yaskawa Electric Corp Controller of synchronous motor
JP2007110837A (en) * 2005-10-13 2007-04-26 Denso Corp Method for estimating magnetic pole position and motor controller

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002291283A (en) * 2001-03-26 2002-10-04 Yaskawa Electric Corp Method for estimating magnetic pole position in synchronous motor and its controller
JP2003274700A (en) * 2002-03-18 2003-09-26 C & S Kokusai Kenkyusho:Kk Method and apparatus for controlling vector of ac motor
JP2003299381A (en) * 2002-04-02 2003-10-17 Yaskawa Electric Corp Sensorless control device and method for alternator
JP2003348896A (en) * 2002-05-24 2003-12-05 Meidensha Corp Control unit for pm motor
JP2006027622A (en) * 2004-07-12 2006-02-02 Ueda Shikimono Kojo:Kk Fresh article storing container
JP2006109589A (en) * 2004-10-04 2006-04-20 Yaskawa Electric Corp Controller of synchronous motor
JP2007110837A (en) * 2005-10-13 2007-04-26 Denso Corp Method for estimating magnetic pole position and motor controller

Also Published As

Publication number Publication date
JP2008301695A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP4587110B2 (en) Rotor phase estimation method for synchronous motor drive control
Park et al. Sensorless control method for PMSM based on frequency-adaptive disturbance observer
JP4687846B2 (en) Magnetic pole position estimation method and control apparatus for synchronous motor
JP5720677B2 (en) Rotor phase speed estimation device for AC motor
JP5652664B2 (en) Rotating electrical machine control device
TWI559672B (en) Angle estimation control systems
US20170264227A1 (en) Inverter control device and motor drive system
WO2015019495A1 (en) Motor drive system and motor control device
JP2015136237A (en) Dynamo-electric machine controller, dynamo-electric machine control method, and creation method of control map
JP6015486B2 (en) Variable speed controller for synchronous motor
JP6492320B2 (en) Digital rotor phase speed estimation device for AC motor
JP5543388B2 (en) Control device for permanent magnet synchronous motor
KR20130025387A (en) Synchronous machine control device without position sensors
JP4670405B2 (en) Vector control method for synchronous motor
JP5176406B2 (en) Rotor phase speed estimation device for AC motor
JP2009296788A (en) Rotational angle of rotating machine estimating device
JP2007185080A (en) Rotor phase estimating system of ac motor
JP6150211B2 (en) Digital rotor phase speed estimation device for AC motor
JP4924115B2 (en) Permanent magnet synchronous motor drive control device
JP6150212B2 (en) Digital rotor phase speed estimation device for AC motor
JP5312179B2 (en) DC brushless motor control device
JP2006109589A (en) Controller of synchronous motor
JP6286733B2 (en) Digital rotor phase speed estimation device for AC motor
JP6422796B2 (en) Synchronous machine control device and drive system
JP5741673B2 (en) Rotor phase estimation device for synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100424

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100706

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100828

R150 Certificate of patent or registration of utility model

Ref document number: 4587110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

RG99 Written request for provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R313G99

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees