JP4579360B2 - Wiring board and manufacturing method thereof - Google Patents

Wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP4579360B2
JP4579360B2 JP23768599A JP23768599A JP4579360B2 JP 4579360 B2 JP4579360 B2 JP 4579360B2 JP 23768599 A JP23768599 A JP 23768599A JP 23768599 A JP23768599 A JP 23768599A JP 4579360 B2 JP4579360 B2 JP 4579360B2
Authority
JP
Japan
Prior art keywords
electrode
wiring board
thickness
semiconductor chip
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23768599A
Other languages
Japanese (ja)
Other versions
JP2001068815A (en
Inventor
新太郎 林
淳司 白金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP23768599A priority Critical patent/JP4579360B2/en
Publication of JP2001068815A publication Critical patent/JP2001068815A/en
Application granted granted Critical
Publication of JP4579360B2 publication Critical patent/JP4579360B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、配線板とその製造方法に関する。
【0002】
【従来の技術】
配線板に電子部品を搭載するときに、電子部品が表面実装用のものであるときに、通常は、図3に示すように、配線板11に形成された電極14の厚さが10〜50μmで、半導体チップ1のバンプ2が10〜50μmで、その間に厚さ15〜50μmの異方導電性フィルム3を挟み、加熱・加圧して積層接着するのであるが、そのときに半導体チップ1の回路を保護するために絶縁樹脂層4を電子部品と基板との間に設ける。この絶縁樹脂層4の厚さは、通常、1〜5μmであった。
【0003】
【発明が解決しようとする課題】
ところで、従来の配線板11には、半導体チップ1がダイシングして分割されているので、その端面の縁端が加工できないため、回路導体が露出したままになっており、加熱圧着時に電極14に半導体チップ1のバンプ2が潜り込み、チップ端部が電極に接触して短絡することがあるという課題があった。
【0004】
本発明は、短絡のない配線板とその配線板を製造する方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の配線板は、基板上に形成した電極に異方導電性層を介して電子部品を接続した配線板であって、前記電子部品が前記電極との接続面の前記電極に対応する位置にバンプと、前記電極の厚さの0.6〜1.3倍の厚さの絶縁樹脂層とを有し、前記異方導電性層を前記絶縁樹脂層と基板との間に有することを特徴とする。
【0006】
また、本発明の配線板の製造方法は、基板上に形成した電極に異方導電性層を介して電子部品を接続する配線板の製造方法であって、前記電子部品の前記電極との接続面の前記電極に対応する位置にバンプと、前記電極の厚さの0.6〜1.3倍の厚さの絶縁樹脂層とを形成し、前記異方導電性層を前記絶縁樹脂層と基板との間に形成することを特徴とする。
【0007】
本発明者らは、鋭意、検討の結果、図3に示すように、半導体チップ1を配線板11に搭載しようとすると、その半導体チップ1の端部が電極14に接触して短絡するという現象が、半導体チップ1のバンプ2が搭載するときの圧力で配線板11の電極14に埋まるので、配線板11の電極14と半導体チップ1の端部とが接近することにより発生するということが分かり、さらに、半導体チップ1が埋まらないように接続しようとすると、接続が不完全になるという知見が得られた。
そこで、この知見を元に、図1に示すように、半導体チップ1と電極14の接続を完全に行えるための接続条件下で、半導体チップ1が電極14に埋まる量を抑制する方法として、絶縁樹脂層4を形成するという本発明をなすことができた。
【0008】
【発明の実施の形態】
本発明の異方導電膜は、樹脂と導電粒子からなるもので、樹脂には、ポリエチレン、ポリプロピレン等の熱可塑性樹脂でも用いることができるが、エポキシ樹脂、ポリイミド樹脂等の熱、光、電子線等のエネルギーによる硬化性絶縁材料が、耐熱性、耐湿性及び機械的特性に優れることから好ましく適用できる。
本発明は加熱加圧下での製造法であるため、エポキシ樹脂類と潜在性硬化剤の系や、アクリルやウレタン、エポキシ樹脂類と光活性化剤との組み合わせ系が比較的低温下で反応し易いことから、より好ましい。
【0009】
また、導電粒子は、導電性を有する各種の金属や合金、酸化物等が採用できる。導電性と耐腐食性を加味して好ましく用いられる材料としてはNi、Cu、Al、Sn、Zn、Au、Pd、Ag、Co、Pb等の粒子である。粒形はほぼ球状が好ましいが、表面に多数の突起を設ける等の任意の形でよい。また、導電粒子は、核材の表面に金属薄層を設けた構成のものが、均一粒径の球状品が容易に入手可能なことから好ましい。核材が有機物の例としては、ポリスチレン、ナイロン、各種ゴム類等の高分子類があり、これらは架橋体であると耐溶剤性が向上するので、例えばシート原材料中に溶剤が含有される場合に溶出がなく、シートの特性に影響が少ないことから好ましい。核材が高分子類のような変形可能な粒子であると、製造時の加熱加圧により、シートからの突出部を扁平化することや弾力性を付与することも可能であり、電極への接触面積の増大による信頼性の向上に有効である。核材は、ガラス、セラミック、シリカ等の無機物の粒子でも良く、この場合は高分子の核材に比べて更に耐熱性の向上が可能となる。
そして、その導電粒子の直径は、中心粒径が2〜5000μm程度が好ましく、5〜100μmにすれば更に好ましく、10〜80μmにすれば特に好ましい。これらは所望の分解能に応じて選択する。即ち、導電性粒子の粒径を隣接する電極や配線パターン間距離の最小幅よりも小さくすることが、ショートを防止し、配線の細線化に対応する上で必要である。また、粒径が小さ過ぎるとシート厚みの減少により強度が不足し、取り扱いがやりにくくなる。
【0010】
絶縁樹脂層4には、エポキシ樹脂、ポリイミド樹脂等の熱、光、電子線等のエネルギーによる硬化性絶縁材料が、耐熱性、耐湿性及び機械的特性に優れることから好ましく適用できる。
この絶縁樹脂層4の厚さは、電極の厚さの0.6〜1.3倍程度の範囲が好ましい。絶縁樹脂層4の厚さが電極の厚さの0.6倍未満であると、バンプ2の埋まり込みを抑制するのが少なく、半導体チップ1の端部が短絡するおそれがあり、厚さが電極の厚さの1.3倍を越えると、異方導電膜中の導電粒子による電気的接続が困難となる。
この絶縁樹脂層4は、半導体チップ1の裏面に、印刷によって形成することができ、また、感光性樹脂フィルムとして、半導体チップ1の裏面に貼り付けておき、必要な形状に露光・現像して形成することもできる。
【0011】
【実施例】
異方導電性フィルムには、核材に平均粒径30μmの架橋ポリスチレン粒子(ガラス転移点160℃)を用い、表面を塩化パラジウム系の活性化処理を行った後、無電解Niめっき液を用いて90℃でNiめっきを行い、更にAuめっき液を用いて70℃で置換めっきを行って金属薄層4を被覆した導電性粒子を、絶縁材料として、ゴム変性可撓性エポキシ樹脂、マイクロカプセル型潜在性硬化剤(活性化温度120℃)及びトルエン溶剤を主成分(不揮発分50%)とする接着剤に、前記粒子を20体積%添加してロール間隔40μmで形成した後、100℃で10分乾燥し、厚さ20μmの接着剤(純水で100℃10時間抽出後の抽出水のNaイオン、Clイオンが各10ppm以下)を基材のテトラフルオロエチレンフイルム(セパレータ、厚さ50μm)の上に形成したものを用いた。
溶剤乾燥による体積収縮により、粒子径よりも薄いシートが作成可能であった。上記シートを、150℃に加熱したシリコーンゴムロール(100mmの鉄ロール上にゴム硬度70のゴムを厚さ2mmで形成したもの)間の圧力2kg/cm2で速度0.1m/分で通過させ、シート面から絶縁性被覆を露出させた。
配線板は、片面に厚さ18μmの銅箔を貼り合わせた厚さ50μmのポリエチレンテレフタレートフィルム製フレキシブル銅張り積層板の不要な銅箔の部分を、塩化第二銅エッチング液をスプレー噴霧してエッチング除去し、ニッケル/金めっき(ニッケル2μm、金0.2μm)を行って、厚さ約20μmの回路導体と電極を形成して作製した。
その電極に、異方導電性フィルムを3mm×4mmに切断したものを貼り付け、その上に、大きさが2mm×3mmで高さ15μmのバンプを形成した半導体チップ1を搭載した、この半導体チップの裏面には、予め、印刷法により、厚さが、それぞれ2μm、10μm、12μm、20μm、26μm、30μmのレジスト膜を形成した。
半導体チップを電極に接続するために、図2に示すように、厚さ20μmの電極14を有する配線板11を固定する固定板12と、加圧ヘッド13と、その加圧ヘッド13を加熱する加熱ヒータ15と、加圧ヘッド13を半導体チップ1を固定する位置に移動させるXYステージ17とからなる加圧装置16を用い、加圧ヘッド13には、その寸法が6mm×6mmのものを用い、175℃で、0.4kgf/cm2の圧力を20秒間加えた。そして、半導体チップを搭載した配線板の回路の短絡と接続不良とを、それぞれ100枚づつの試験片で調べたところ、表1のようになった。
【0012】
【表1】

Figure 0004579360
【0013】
表1に示すように、絶縁樹脂層の厚さが、電極の厚さ20μmの0.6倍の厚さの範囲では、半導体チップの短絡率が、大幅に低く、絶縁樹脂層の厚さが、電極の厚さ20μmの1.3倍以下では、回路の接続不良がなかった。
【0014】
【発明の効果】
以上に説明したとおり、本発明によって、短絡のない配線板とその配線板を製造する方法を提供することができる。
【図面の簡単な説明】
【図1】(a)は本発明の構成を示す上面図であり、(b)はその断面図である。
【図2】本発明の一実施例に用いた装置の側面図である。
【図3】(a)は従来例の構成を示す上面図であり、(b)はその断面図である。
【符号の説明】
1.半導体チップ 2.バンプ
3.異方導電膜 4.絶縁樹脂層
11.配線板 12.固定板
13.加圧ヘッド 14.電極
15.加熱ヒータ 16.加圧装置
17.XYステージ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wiring board and a manufacturing method thereof.
[0002]
[Prior art]
When an electronic component is mounted on a wiring board, when the electronic component is for surface mounting, the thickness of the electrode 14 formed on the wiring board 11 is usually 10 to 50 μm as shown in FIG. Then, the bump 2 of the semiconductor chip 1 is 10 to 50 μm, and an anisotropic conductive film 3 having a thickness of 15 to 50 μm is sandwiched between them, and heated and pressurized to laminate and bond. In order to protect the circuit, an insulating resin layer 4 is provided between the electronic component and the substrate. The thickness of the insulating resin layer 4 was usually 1 to 5 μm.
[0003]
[Problems to be solved by the invention]
By the way, in the conventional wiring board 11, since the semiconductor chip 1 is diced and divided, the edge of the end face cannot be processed, so the circuit conductor remains exposed, and the electrode 14 is applied to the electrode 14 during thermocompression bonding. There has been a problem that the bump 2 of the semiconductor chip 1 may sink and the end of the chip may come into contact with the electrode and short-circuit.
[0004]
An object of this invention is to provide the wiring board without a short circuit, and the method of manufacturing the wiring board.
[0005]
[Means for Solving the Problems]
The wiring board of the present invention is a wiring board in which an electronic component is connected to an electrode formed on a substrate via an anisotropic conductive layer, and the electronic component corresponds to the electrode on a connection surface with the electrode. , the bumps and, and a 0.6 to 1.3 times the thickness of the insulating resin layer of a thickness of the electrode, to have the anisotropic conductive layer between the insulating resin layer and the substrate It is characterized by.
[0006]
The wiring board manufacturing method of the present invention is a wiring board manufacturing method for connecting an electronic component to an electrode formed on a substrate through an anisotropic conductive layer, and the electronic component is connected to the electrode. at positions corresponding to the electrode surface, the bumps and form a 0.6 to 1.3 times the thickness of the insulating resin layer of the thickness of the electrode, the insulating resin layer to the anisotropic conductive layer And the substrate.
[0007]
As a result of diligent research, the present inventors, as shown in FIG. 3, when the semiconductor chip 1 is mounted on the wiring board 11, the end of the semiconductor chip 1 contacts the electrode 14 and is short-circuited. However, since the bumps 2 of the semiconductor chip 1 are buried in the electrodes 14 of the wiring board 11 by the pressure when the semiconductor chip 1 is mounted, it can be seen that this occurs when the electrodes 14 of the wiring board 11 and the end of the semiconductor chip 1 approach each other. Furthermore, it has been found that if the semiconductor chip 1 is connected so as not to be buried, the connection is incomplete.
Therefore, based on this knowledge, as shown in FIG. 1, as a method for suppressing the amount of the semiconductor chip 1 buried in the electrode 14 under the connection conditions for completely connecting the semiconductor chip 1 and the electrode 14, insulation is performed. The present invention of forming the resin layer 4 could be achieved.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The anisotropic conductive film of the present invention comprises a resin and conductive particles, and the resin can be a thermoplastic resin such as polyethylene or polypropylene, but heat, light, electron beam such as epoxy resin or polyimide resin, etc. A curable insulating material by such energy is preferably applicable because of its excellent heat resistance, moisture resistance and mechanical properties.
Since the present invention is a production method under heat and pressure, a system of epoxy resin and latent curing agent, a combination system of acrylic, urethane, epoxy resin and photoactivator reacts at a relatively low temperature. Since it is easy, it is more preferable.
[0009]
In addition, various conductive metals, alloys, oxides, and the like can be used as the conductive particles. Materials that are preferably used in consideration of conductivity and corrosion resistance are particles such as Ni, Cu, Al, Sn, Zn, Au, Pd, Ag, Co, and Pb. The particle shape is preferably approximately spherical, but may be any shape such as providing a large number of protrusions on the surface. In addition, it is preferable that the conductive particles have a structure in which a thin metal layer is provided on the surface of the core material because spherical products having a uniform particle diameter can be easily obtained. Examples of the organic material of the core material include polymers such as polystyrene, nylon, and various rubbers. Since these are crosslinked products, the solvent resistance is improved. For example, when the sheet raw material contains a solvent. Is preferable because it has no elution and little influence on the characteristics of the sheet. When the core material is a deformable particle such as a polymer, it is possible to flatten the protruding portion from the sheet or to provide elasticity by heating and pressurizing during production. This is effective for improving the reliability by increasing the contact area. The core material may be inorganic particles such as glass, ceramic, and silica. In this case, the heat resistance can be further improved as compared with the polymer core material.
The diameter of the conductive particles is preferably about 2 to 5000 μm as the center particle size, more preferably 5 to 100 μm, and particularly preferably 10 to 80 μm. These are selected according to the desired resolution. In other words, it is necessary to make the particle size of the conductive particles smaller than the minimum width of the distance between adjacent electrodes and wiring patterns in order to prevent short-circuiting and cope with thinning of the wiring. On the other hand, if the particle size is too small, the sheet thickness is reduced, resulting in insufficient strength and difficult handling.
[0010]
For the insulating resin layer 4, a curable insulating material by energy such as heat, light, electron beam or the like such as epoxy resin or polyimide resin can be preferably applied because of excellent heat resistance, moisture resistance and mechanical properties.
The thickness of the insulating resin layer 4 is preferably in the range of about 0.6 to 1.3 times the thickness of the electrode. If the thickness of the insulating resin layer 4 is less than 0.6 times the thickness of the electrode, the embedding of the bumps 2 is hardly suppressed, and the end of the semiconductor chip 1 may be short-circuited. When the thickness exceeds 1.3 times the thickness of the electrode, it becomes difficult to electrically connect the conductive particles in the anisotropic conductive film.
This insulating resin layer 4 can be formed on the back surface of the semiconductor chip 1 by printing, and it is affixed to the back surface of the semiconductor chip 1 as a photosensitive resin film, and is exposed and developed to a required shape. It can also be formed.
[0011]
【Example】
For the anisotropic conductive film, cross-linked polystyrene particles having an average particle size of 30 μm (glass transition point 160 ° C.) are used as the core material, and the surface is subjected to palladium chloride activation treatment, and then an electroless Ni plating solution is used. The conductive particles coated with the metal thin layer 4 by performing Ni plating at 90 ° C. and displacement plating at 70 ° C. using an Au plating solution are used as an insulating material, rubber-modified flexible epoxy resin, microcapsule 20% by volume of the particles are added to an adhesive mainly composed of a mold latent curing agent (activation temperature 120 ° C.) and a toluene solvent (non-volatile content 50%), and formed at a roll interval of 40 μm, and then at 100 ° C. Tetrafluoroethylene film (separator, thickness) of 10 μm thick adhesive (Na ions and Cl ions of extracted water after extraction with pure water for 10 hours at 100 ° C. for 10 hours or less). Used was formed on the 0 .mu.m).
A sheet thinner than the particle diameter could be created by volume shrinkage due to solvent drying. The sheet was passed at a speed of 0.1 m / min at a pressure of 2 kg / cm 2 between a silicone rubber roll heated to 150 ° C. (a rubber having a hardness of 70 mm formed on a 100 mm iron roll with a thickness of 2 mm), The insulating coating was exposed from the sheet surface.
Wiring board is etched by spraying cupric chloride etchant on unnecessary copper foil part of flexible copper-clad laminate made of polyethylene terephthalate film of 50 μm thickness with 18 μm thick copper foil bonded on one side. It was removed and nickel / gold plating (nickel 2 μm, gold 0.2 μm) was performed to form a circuit conductor and electrodes having a thickness of about 20 μm.
This semiconductor chip is mounted with a semiconductor chip 1 on which an anisotropic conductive film cut to 3 mm × 4 mm is attached, and a bump having a size of 2 mm × 3 mm and a height of 15 μm is formed thereon. On the back surface, a resist film having a thickness of 2 μm, 10 μm, 12 μm, 20 μm, 26 μm, and 30 μm was formed in advance by a printing method.
In order to connect the semiconductor chip to the electrodes, as shown in FIG. 2, a fixing plate 12 for fixing a wiring board 11 having an electrode 14 having a thickness of 20 μm, a pressure head 13, and the pressure head 13 are heated. A pressurizing device 16 comprising a heater 15 and an XY stage 17 for moving the pressurizing head 13 to a position where the semiconductor chip 1 is fixed is used. At 175 ° C., a pressure of 0.4 kgf / cm 2 was applied for 20 seconds. Then, the short circuit and the connection failure of the circuit of the wiring board on which the semiconductor chip was mounted were examined with 100 test pieces, respectively, and the result was as shown in Table 1.
[0012]
[Table 1]
Figure 0004579360
[0013]
As shown in Table 1, in the range where the thickness of the insulating resin layer is 0.6 times the thickness of the electrode 20 μm, the short-circuit rate of the semiconductor chip is significantly low, and the thickness of the insulating resin layer is When the electrode thickness was 1.3 times or less of 20 μm, there was no circuit connection failure.
[0014]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a wiring board without a short circuit and a method for manufacturing the wiring board.
[Brief description of the drawings]
1A is a top view showing a configuration of the present invention, and FIG. 1B is a cross-sectional view thereof.
FIG. 2 is a side view of an apparatus used in an embodiment of the present invention.
3A is a top view showing a configuration of a conventional example, and FIG. 3B is a cross-sectional view thereof.
[Explanation of symbols]
1. Semiconductor chip Bump 3. 3. Anisotropic conductive film Insulating resin layer 11. Wiring board 12. Fixing plate 13. Pressure head 14. Electrode 15. Heater 16. Pressurizing device 17. XY stage

Claims (2)

基板上に形成した電極に異方導電性層を介して電子部品を接続した配線板であって、
前記電子部品が前記電極との接続面の前記電極に対応する位置にバンプと、前記電極の厚さの0.6〜1.3倍の厚さの絶縁樹脂層とを有し、
前記異方導電性層を前記絶縁樹脂層と基板との間に有することを特徴とする配線板。
A wiring board in which an electronic component is connected to an electrode formed on a substrate via an anisotropic conductive layer,
The electronic component has a bump at a position corresponding to the electrode on the connection surface with the electrode, and an insulating resin layer having a thickness of 0.6 to 1.3 times the thickness of the electrode ,
A wiring board having the anisotropic conductive layer between the insulating resin layer and a substrate.
基板上に形成した電極に異方導電性層を介して電子部品を接続する配線板の製造方法であって、
前記電子部品の前記電極との接続面の前記電極に対応する位置にバンプと、前記電極の厚さの0.6〜1.3倍の厚さの絶縁樹脂層とを形成し、
前記異方導電性層を前記絶縁樹脂層と基板との間に形成することを特徴とする配線板の製造方法。
A method of manufacturing a wiring board for connecting an electronic component to an electrode formed on a substrate via an anisotropic conductive layer,
The electronic component to a position corresponding to the electrode of the connection surface between the electrodes, to form the bumps, and 0.6 to 1.3 times the thickness of the insulating resin layer of a thickness of the electrode,
A method of manufacturing a wiring board, wherein the anisotropic conductive layer is formed between the insulating resin layer and a substrate.
JP23768599A 1999-08-25 1999-08-25 Wiring board and manufacturing method thereof Expired - Lifetime JP4579360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23768599A JP4579360B2 (en) 1999-08-25 1999-08-25 Wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23768599A JP4579360B2 (en) 1999-08-25 1999-08-25 Wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001068815A JP2001068815A (en) 2001-03-16
JP4579360B2 true JP4579360B2 (en) 2010-11-10

Family

ID=17019000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23768599A Expired - Lifetime JP4579360B2 (en) 1999-08-25 1999-08-25 Wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4579360B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8291582B2 (en) 2006-02-13 2012-10-23 Panasonic Corporation Circuit board and process for producing the same
JP4844738B2 (en) * 2006-11-02 2011-12-28 セイコーエプソン株式会社 Wiring board manufacturing method

Also Published As

Publication number Publication date
JP2001068815A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
JP3619395B2 (en) Semiconductor device built-in wiring board and manufacturing method thereof
KR100670751B1 (en) Semiconductor device, semiconductor wafer, semiconductor module and manufacturing method of semiconductor device
JP4123998B2 (en) Electronic circuit device and manufacturing method thereof
JPH1070362A (en) Method and structure for coupling board
JP6691451B2 (en) Wiring board, manufacturing method thereof, and electronic component device
JPH09505444A (en) Multi-chip electronic package module using adhesive sheet
KR100644977B1 (en) Method of manufacturing circuit device
JP2005510618A (en) Anisotropic conductive adhesive film, method for producing the same, and semiconductor device
JP4344966B2 (en) Wiring board and manufacturing method thereof
JP4004196B2 (en) Semiconductor chip
JP4579360B2 (en) Wiring board and manufacturing method thereof
JP2000174050A (en) Semiconductor chip and manufacture thereof
KR20090082370A (en) Method of connecting circuit boards and connected structure
JP4019328B2 (en) Electrode connection method
JP2001036245A (en) Manufacture of wiring board
JP4175347B2 (en) Method for producing anisotropic conductive adhesive film
JP2002064161A (en) Semiconductor chip and manufacturing method thereof
JP4118974B2 (en) IC chip mounting substrate and method of manufacturing IC chip mounting substrate
JP3833084B2 (en) Manufacturing method of film carrier tape for mounting electronic components
JP3455602B2 (en) Manufacturing method of semiconductor device mounting substrate
JP3963620B2 (en) Semiconductor chip and manufacturing method thereof
JP2020150117A (en) Electronic device and manufacturing method thereof
JP2967560B2 (en) Connection structure of film carrier
JP4181239B2 (en) Connecting member
JP3994335B2 (en) Manufacturing method of connecting member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081110

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4579360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term