JP4576470B1 - Method for producing ammonium ruthenate - Google Patents

Method for producing ammonium ruthenate Download PDF

Info

Publication number
JP4576470B1
JP4576470B1 JP2009129991A JP2009129991A JP4576470B1 JP 4576470 B1 JP4576470 B1 JP 4576470B1 JP 2009129991 A JP2009129991 A JP 2009129991A JP 2009129991 A JP2009129991 A JP 2009129991A JP 4576470 B1 JP4576470 B1 JP 4576470B1
Authority
JP
Japan
Prior art keywords
ruthenium
chloride
ammonium
chlorine
pretreatment step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009129991A
Other languages
Japanese (ja)
Other versions
JP2010275153A (en
Inventor
太朗 田中
順一 竹内
智之 村上
英之 岩沢
大介 野尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2009129991A priority Critical patent/JP4576470B1/en
Application granted granted Critical
Publication of JP4576470B1 publication Critical patent/JP4576470B1/en
Publication of JP2010275153A publication Critical patent/JP2010275153A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】ヘキサクロロルテニウム酸から塩化ルテニウム酸アンモニウムを経由するルテニウム回収方法について、よりルテニウムの収率が高い方法を提供する。
【解決手段】本発明は、ヘキサクロロルテニウム酸溶液を所定温度に保持する前処理工程、前記前処理工程後、ヘキサクロロルテニウム酸溶液と塩化アンモニウムとを反応させて塩化ルテニウム(IV)酸アンモニウムを生成させる反応工程、を含む塩化ルテニウム(IV)酸アンモニウムの製造方法において、前記前処理工程は、ヘキサクロロルテニウム酸溶液を60〜85℃で0.5〜10時間保持し、前記反応工程は、60〜85℃で0.5〜5時間行うものであり、更に、少なくとも前記前処理工程において、ヘキサクロロルテニウム酸溶液中に塩素を流通することを特徴とする方法である。この塩素流通は、前処理工程及び反応工程の双方において行うことがより好ましい。
【選択図】図1
An object of the present invention is to provide a method for recovering ruthenium from hexachlororuthenate acid via ammonium ruthenate to a higher ruthenium yield.
The present invention relates to a pretreatment step of maintaining a hexachlororuthenate solution at a predetermined temperature, and after the pretreatment step, the hexachlororuthenate solution is reacted with ammonium chloride to produce ruthenium (IV) chloride. In the method for producing ammonium ruthenium (IV) chloride including a reaction step, the pretreatment step is to maintain a hexachlororuthenate acid solution at 60 to 85 ° C. for 0.5 to 10 hours, and the reaction step is 60 to 85. The method is carried out at a temperature of 0.5 to 5 hours, and further, chlorine is circulated in the hexachlororuthenate solution at least in the pretreatment step. This chlorine circulation is more preferably performed in both the pretreatment step and the reaction step.
[Selection] Figure 1

Description

本発明は、塩化ルテニウム酸アンモニウムの製造方法に関し、特にルテニウムの価数が4である塩化ルテニウム(IV)酸アンモニウムを高い収率で製造可能とする方法を提供する。   The present invention relates to a method for producing ammonium ruthenate, and in particular, provides a method capable of producing ruthenium ammonium (IV) chloride having a ruthenium valence of 4 in a high yield.

ルテニウムは、電子材料や触媒、蒸着用ターゲットに利用されており、その希少性から回収利用が求められている。ルテニウムを含む廃材等からルテニウムを回収する方法としては、廃材等を溶液化し溶媒抽出によりルテニウムと他の元素とを分離し、更に、酸化蒸留により得られた四酸化ルテニウムを塩酸溶液中に加えてヘキサクロロルテニウム酸を調製し、そこからルテニウムを回収する方法が知られている。   Ruthenium is used in electronic materials, catalysts, and vapor deposition targets, and is required to be recovered and used due to its scarcity. As a method for recovering ruthenium from waste materials containing ruthenium, ruthenium and other elements are separated by dissolving the waste materials, etc. by solvent extraction, and ruthenium tetroxide obtained by oxidative distillation is added to a hydrochloric acid solution. A method for preparing hexachlororuthenic acid and recovering ruthenium therefrom is known.

そして、ヘキサクロロルテニウム酸からのルテニウム回収は、中間体として塩化ルテニウム酸アンモニウムを製造する工程、例えば、特許文献1には、ルテニウムの塩酸溶液(ヘキサクロロルテニウム酸溶液)を80〜95℃で3時間以上保持した状態で塩化アンモニウムを加え、85〜95℃で1時間以上保持して塩化ルテニウム酸アンモニウムの沈殿を生成してろ過する方法が記載されている。   And the recovery of ruthenium from hexachlororuthenic acid is a step of producing ammonium chloride ruthenate as an intermediate. A method is described in which ammonium chloride is added in the retained state, and the mixture is retained at 85 to 95 ° C. for 1 hour or longer to form a precipitate of ammonium ruthenate and filter.

特開2007−230802号公報JP 2007-230802 A

上記塩化ルテニウム酸アンモニウムを経由するルテニウム回収は、その収率が良好であるが、ごく僅かであるがルテニウムのロスが生じている。この点、近年のルテニウムの利用価値の上昇傾向に伴い、より高い収率の回収技術が求められている。そこで、本発明は、ヘキサクロロルテニウム酸から塩化ルテニウム酸アンモニウムを経由するルテニウム回収方法について、よりルテニウムの収率が高い方法を提供することを目的とする。   Although the yield of ruthenium recovery via the ammonium ruthenate is good, there is a slight loss of ruthenium. In this respect, with the recent trend of increasing the utility value of ruthenium, higher yield recovery technology is required. Therefore, an object of the present invention is to provide a method having a higher ruthenium yield with respect to a method for recovering ruthenium from hexachlororuthenate acid via ammonium chloride ruthenate.

本発明者等は、特許文献1のような製造方法において、ヘキサクロロルテニウム酸溶液と塩化アンモニウムとの反応により塩化ルテニウム(IV)酸アンモニウムを製造する場合、ヘキサクロロルテニウム錯体[RuCl2−等のルテニウムの価数が4であるクロロルテニウム錯体の他に、ペンタクロロルテニウム錯体[RuCl2−等のルテニウムの価数が3であるクロロルテニウム錯体が生成する場合があることを見出した。そして、ルテニウムの価数が3であるクロロルテニウム錯体が生成すると、塩化ルテニウム(IV)酸アンモニウムのようなルテニウムの価数が4であるルテニウム化合物の収率が低下してしまうことが分かった。このため、本発明は、ルテニウムの価数が3であるクロロルテニウム錯体の生成を抑制し、塩化ルテニウム(IV)酸アンモニウムの生成を促進する方法を検討した。 The present inventors have, in the manufacturing method disclosed in Patent Document 1, when producing ruthenium chloride (IV) ammonium by reaction with hexachlororuthenate solution with ammonium chloride, hexachloro ruthenium complex [RuCl 6] 2-, etc. It has been found that in addition to the chlororuthenium complex having a ruthenium valence of 4, a chlororuthenium complex having a ruthenium valence of 3 such as a pentachlororuthenium complex [RuCl 5 ] 2− may be produced. And when the chlororuthenium complex whose valence of ruthenium is 3 produces | generates, it turned out that the yield of the ruthenium compound whose valence of ruthenium is 4, like ammonium ruthenium (IV) chloride, will fall. For this reason, this invention examined the method of suppressing the production | generation of the chlororuthenium complex whose valence of ruthenium is 3, and promoting the production | generation of ruthenium (IV) chloride ammonium.

上記課題を解決する本発明はヘキサクロロルテニウム酸溶液を所定温度に保持する前処理工程、前記前処理工程後、ヘキサクロロルテニウム酸溶液と塩化アンモニウムとを反応させて塩化ルテニウム(IV)酸アンモニウムを生成させる反応工程、を含む塩化ルテニウム(IV)酸アンモニウムの製造方法において、前記前処理工程は、ヘキサクロロルテニウム酸溶液を60〜85℃で0.5〜10時間保持し、前記反応工程は、60〜85℃で0.5〜5時間行うものであり、更に、少なくとも前記前処理工程において、ヘキサクロロルテニウム酸溶液中に塩素を流通することを特徴とする方法である。   The present invention for solving the above-mentioned problems is a pretreatment step for maintaining a hexachlororuthenate solution at a predetermined temperature, and after the pretreatment step, the hexachlororuthenate solution is reacted with ammonium chloride to produce ruthenium (IV) chloride. In the method for producing ammonium ruthenium (IV) chloride including a reaction step, the pretreatment step holds a hexachlororuthenate acid solution at 60 to 85 ° C. for 0.5 to 10 hours, and the reaction step includes 60 to 85. The method is carried out at a temperature of 0.5 to 5 hours, and further, chlorine is circulated in the hexachlororuthenic acid solution at least in the pretreatment step.

このように、少なくとも前処理工程において、ヘキサクロロルテニウム酸溶液に塩素を流通することにより、塩化ルテニウム(IV)酸アンモニウムを高い収率で製造できる。ヘキサクロロルテニウム酸溶液中に溶解した塩素の酸化力により、ルテニウムの価数が3価であるクロロルテニウム錯体の発生を有効に防止できるからである。   Thus, at least in the pretreatment step, by circulating chlorine through the hexachlororuthenate solution, ammonium ruthenium (IV) chloride can be produced in a high yield. This is because generation of a chlororuthenium complex whose ruthenium valence is trivalent can be effectively prevented by the oxidizing power of chlorine dissolved in the hexachlororuthenic acid solution.

以下、本発明の塩化ルテニウム(IV)酸アンモニウムの製造方法について詳細に説明する。まず、出発物質であるヘキサクロロルテニウム酸溶液には、上記したように酸化蒸留法によって精製した四酸化ルテニウムを塩酸溶液中に加えて調製したものや、ルテニウム廃棄物を塩素化処理して得られた水溶性のルテニウム化合物を、水又は水と塩酸との混合溶媒に溶解させて調製したもの等、種々の方法によって得られたものを使用できる。   Hereinafter, the manufacturing method of the ammonium ruthenium (IV) chloride of this invention is demonstrated in detail. First, the hexachlororuthenic acid solution, which is the starting material, was prepared by adding ruthenium tetroxide purified by the oxidative distillation method to a hydrochloric acid solution as described above, or obtained by chlorinating ruthenium waste. Those obtained by various methods such as those prepared by dissolving a water-soluble ruthenium compound in water or a mixed solvent of water and hydrochloric acid can be used.

前処理工程では、ヘキサクロロルテニウム酸溶液を、60〜85℃で0.5〜10時間保持するように行う。ヘキサクロロルテニウム酸溶液をこのような温度で保持すると、塩素の溶解度をより高めることができ、酸化力を向上させて、ルテニウムの価数が3であるクロロルテニウム錯体の生成を効果的に抑制し、塩化ルテニウム(IV)酸アンモニウムの収率を高めることができる。前処理工程における保持温度は、60℃未満であると、温度が低く後工程の反応が進みにくく、85℃を超えると溶液中の塩素濃度が低くなるためである。保持時間は、0.5時間未満であると、塩素が溶液中に充分溶解しきらず、10時間を超えると塩素が過飽和になりすぎるからである。これらの事情を考慮した、前処理工程における最適条件は60〜75℃、1〜8時間である。   In the pretreatment step, the hexachlororuthenic acid solution is kept at 60 to 85 ° C. for 0.5 to 10 hours. When the hexachlororuthenic acid solution is maintained at such a temperature, the solubility of chlorine can be further increased, the oxidizing power is improved, and the production of a chlororuthenium complex having a ruthenium valence of 3 is effectively suppressed, The yield of ammonium ruthenium (IV) chloride can be increased. This is because if the holding temperature in the pretreatment step is less than 60 ° C., the temperature is low and the reaction in the subsequent step does not proceed easily. This is because if the holding time is less than 0.5 hours, the chlorine is not sufficiently dissolved in the solution, and if it exceeds 10 hours, the chlorine is excessively saturated. Considering these circumstances, the optimum conditions in the pretreatment process are 60 to 75 ° C. and 1 to 8 hours.

また、前処理工程後、ヘキサクロロルテニウム酸溶液と塩化アンモニウムとを反応させる反応工程は、60℃未満であると、温度が低くアンモン化反応が進まないからであり、85℃を超えると溶液中の塩素濃度が低くなり塩化ルテニウム(IV)酸アンモニウムの収率が低くなるためである。保持時間は、0.5時間未満であると、アンモン化の反応が始まらないからであり、5時間を超えるとアンモン化反応が終了しているにも関わらす、反応を続けることは経済的に不利だからである。この反応工程における最適条件は、60〜75℃、1〜2時間である。   In addition, the reaction step of reacting the hexachlororuthenic acid solution with ammonium chloride after the pretreatment step is because the temperature is low and the ammonization reaction does not proceed when the temperature is lower than 60 ° C. This is because the chlorine concentration is lowered and the yield of ammonium ruthenium (IV) chloride is lowered. If the retention time is less than 0.5 hour, the ammonization reaction will not start. If the retention time exceeds 5 hours, it will be economical to continue the reaction even though the ammonization reaction has been completed. Because it is disadvantageous. The optimum conditions in this reaction process are 60 to 75 ° C. and 1 to 2 hours.

そして、塩素の流通は、上記したように少なくとも前処理工程において行えばよいが、前処理工程及び反応工程の両工程において行うことが好ましい。価数3のクロロルテニウム錯体の生成を、より抑制することができるからである。   And as above-mentioned, the circulation | circulation of chlorine should just be performed in a pre-processing process, but it is preferable to carry out in both processes of a pre-processing process and a reaction process. This is because generation of a chlororuthenium complex having a valence of 3 can be further suppressed.

塩素を流通する際の流量は、0.3〜10L/minとすることが好ましい。この流量であると、ルテニウム酸塩を酸化するのに充分だからである。また、前処理工程と反応工程に流通する塩素の総量を30〜6000Lとするのが好ましい。尚、本発明において、前処理工程時(反応初期)のルテニウム酸塩濃度は、80〜90g/Lとするのが好ましく、上記塩素濃度はこのルテニウム酸塩濃度に適用する。   The flow rate for circulating chlorine is preferably 0.3 to 10 L / min. This is because this flow rate is sufficient to oxidize ruthenate. Moreover, it is preferable that the total amount of chlorine which distribute | circulates to a pre-processing process and a reaction process shall be 30-6000L. In the present invention, the ruthenate concentration during the pretreatment step (initial reaction) is preferably 80 to 90 g / L, and the chlorine concentration is applied to this ruthenate concentration.

以上で説明した本発明の製造方法によれば、ルテニウムの価数が3であるクロロルテニウム錯体の生成を抑制し、塩化ルテニウム(IV)酸アンモニウムを高い収率で製造することができる。   According to the production method of the present invention described above, production of a chlororuthenium complex having a ruthenium valence of 3 can be suppressed, and ammonium ruthenium (IV) chloride can be produced in a high yield.

実施形態における塩化ルテニウム(IV)酸アンモニウムの製造工程のフロー図。The flowchart of the manufacturing process of ruthenium chloride (IV) acid ammonium in embodiment.

以下、本発明における最良の実施形態について説明する。   Hereinafter, the best embodiment of the present invention will be described.

実施例1:図1のフロー図に従い、塩化ルテニウム(IV)酸アンモニウムを製造した。まず、塩化ルテニウム酸ナトリウム75kgと純水150Lとを5分以上撹拌し、溶解残物を回収して得られた溶解液に塩酸を150L添加して、ヘキサクロロルテニウム酸溶液を調製した。そして、このヘキサクロロルテニウム酸溶液を85℃で8時間保持しつつ、流量10L/minで塩素を流通した。この前処理工程において流通した塩素総量は4800Lであった。 Example 1 Ammonium ruthenium (IV) chloride was produced according to the flow chart of FIG. First, 75 kg of sodium ruthenate and 150 L of pure water were stirred for 5 minutes or more, and 150 L of hydrochloric acid was added to the solution obtained by recovering the dissolved residue to prepare a hexachlororuthenate solution. And chlorine was distribute | circulated by the flow volume of 10 L / min, hold | maintaining this hexachloro ruthenic acid solution at 85 degreeC for 8 hours. The total amount of chlorine circulated in this pretreatment step was 4800L.

上記前処理工程後のヘキサクロロルテニウム酸溶液は、反応工程前に、流量10L/minで1時間以上窒素パージした。そして、反応工程として、塩化アンモニウム粉を60kg投入し、85℃で2時間反応させた。このとき、上記と同様、ヘキサクロロルテニウム酸溶液に流量10L/minで塩素を流通した。この反応工程において流通させた塩素総量は1200Lであった。   The hexachlororuthenic acid solution after the pretreatment step was purged with nitrogen at a flow rate of 10 L / min for 1 hour or longer before the reaction step. Then, as a reaction step, 60 kg of ammonium chloride powder was added and reacted at 85 ° C. for 2 hours. At this time, chlorine was circulated through the hexachlororuthenic acid solution at a flow rate of 10 L / min as described above. The total amount of chlorine circulated in this reaction process was 1200L.

反応終了後、冷却水により40℃以下になるまで冷却した後、溶液をろ過し、180℃で24時間乾燥させて塩化ルテニウム(IV)酸アンモニウム結晶を得た。   After completion of the reaction, the reaction mixture was cooled to 40 ° C. or lower with cooling water, and then the solution was filtered and dried at 180 ° C. for 24 hours to obtain ruthenium (IV) chloride ammonium crystals.

実施例2〜6、比較例1〜3:これらの実施例、比較例は、前処理工程又は反応工程における温度、若しくは、塩素の流量を変更して実施例1と同様の工程にて塩化ルテニウム(IV)酸アンモニウムを製造した。 Examples 2-6, Comparative Examples 1-3 : In these Examples and Comparative Examples, ruthenium chloride was used in the same process as in Example 1 by changing the temperature in the pretreatment process or the reaction process or the flow rate of chlorine. (IV) Ammonium acid was produced.

実施例7、比較例4、5:ここでは、ヘキサクロロルテニウム酸溶液への塩素流通を前処理工程のみとした(実施例7)。塩素流量及びその他の条件は実施例1と同様とした。また、塩素流通を前処理工程、反応工程のいずれにも行わずに塩化ルテニウム(IV)酸アンモニウムを製造した(比較例4、5)。 Example 7, Comparative Examples 4, 5 : Here, the chlorine flow into the hexachlororuthenic acid solution was only the pretreatment step (Example 7). The chlorine flow rate and other conditions were the same as in Example 1. Further, ammonium ruthenium (IV) chloride was produced without performing chlorine circulation in any of the pretreatment step and the reaction step (Comparative Examples 4 and 5).

Ru回収率の測定
以上の各実施例及び比較例で製造した塩化ルテニウム酸アンモニウムを基に金属ルテニウムを回収し、その回収率を検討した。この検討は、製造された塩化ルテニウム酸アンモニウムを水素還元してルテニウム粉末とし、その重量からルテニウムの回収率を計算した。表1にその結果を示す。
Measurement of Ru recovery rate Metal ruthenium was recovered based on ammonium ruthenate chloride produced in each of the above Examples and Comparative Examples, and the recovery rate was examined. In this examination, the produced ammonium chloride ruthenate was reduced with hydrogen to obtain ruthenium powder, and the recovery rate of ruthenium was calculated from the weight. Table 1 shows the results.

Figure 0004576470
Figure 0004576470

表1より、実施例1〜7のように、前処理工程及び反応工程における温度制御を適正にしつつ、両工程の少なくともいずれかで塩素を流通して塩化ルテニウム酸アンモニウムを製造することで、高い回収率でRuを得ることできる。但し、実施例1〜6と実施例7のRu回収率の対比から、塩素流通は前処理工程及び反応工程の双方で塩素流通を行うことが好ましいといえる。   From Table 1, like Examples 1-7, it is high by distribute | circulating chlorine in at least any one of both processes, and manufacturing ammonium chloride ruthenate, making the temperature control in a pre-processing process and a reaction process appropriate. Ru can be obtained with a recovery rate. However, from the comparison of the Ru recovery rates of Examples 1 to 6 and Example 7, it can be said that chlorine circulation is preferably carried out in both the pretreatment process and the reaction process.

これに対し、比較例1〜比較例3のように、前処理温度又は反応温度が低すぎる、高すぎる場合には、僅かであるが回収率が低下する。また、更に、前処理工程及び反応工程の双方で塩素流通がない場合(比較例4、5)、これは従来技術に相当するものであるが、このような場合Ru回収率が99%を下回る。このような1%程度の差であっても、廃棄物の処理量やルテニウムの地金コストを考慮すれば、大きなメリットとなる。   On the other hand, as in Comparative Examples 1 to 3, when the pretreatment temperature or the reaction temperature is too low or too high, the recovery rate is slightly reduced. Furthermore, when there is no chlorine circulation in both the pretreatment process and the reaction process (Comparative Examples 4 and 5), this corresponds to the prior art. In such a case, the Ru recovery rate is less than 99%. . Even such a difference of about 1% is a great merit if the amount of waste and the ruthenium metal cost are taken into account.

本発明は、電子機器の回路基板や蒸着用ターゲット等の各種廃棄物から効率的にルテニウムを回収することに寄与する。これにより、これらの製品のコストダウンをも図ることができる。   The present invention contributes to efficiently recovering ruthenium from various wastes such as circuit boards of electronic devices and vapor deposition targets. Thereby, cost reduction of these products can also be aimed at.

Claims (4)

ヘキサクロロルテニウム酸溶液を所定温度に保持する前処理工程、
前記前処理工程後、ヘキサクロロルテニウム酸溶液と塩化アンモニウムとを反応させて塩化ルテニウム(IV)酸アンモニウムを生成させる反応工程、を含む塩化ルテニウム(IV)酸アンモニウムの製造方法において、
前記前処理工程は、ヘキサクロロルテニウム酸溶液を60〜85℃で0.5〜10時間保持し、
前記反応工程は、60〜85℃で0.5〜5時間行うものであり、
更に、少なくとも前記前処理工程において、ヘキサクロロルテニウム酸溶液中に塩素を流通することを特徴とする方法。
A pretreatment step of maintaining the hexachlororuthenic acid solution at a predetermined temperature;
In the method for producing ruthenium ammonium (IV) chloride, comprising a reaction step of reacting a hexachlororuthenic acid solution and ammonium chloride to produce ammonium ruthenium (IV) chloride after the pretreatment step,
In the pretreatment step, the hexachlororuthenic acid solution is held at 60 to 85 ° C. for 0.5 to 10 hours,
The reaction step is performed at 60 to 85 ° C. for 0.5 to 5 hours,
Furthermore, at least in the pretreatment step, chlorine is circulated in the hexachlororuthenic acid solution.
前処理工程及び反応工程の双方において、ヘキサクロロルテニウム酸溶液中に塩素を流通する請求項1記載の塩化ルテニウム(IV)酸アンモニウムの製造方法。   The method for producing ammonium ruthenium (IV) chloride according to claim 1, wherein chlorine is circulated in the hexachlororuthenate solution in both the pretreatment step and the reaction step. 0.3〜10L/minの流量で塩素を流通する請求項1又は請求項2に記載の塩化ルテニウム(IV)酸アンモニウムの製造方法。   The method for producing ammonium ruthenium (IV) chloride according to claim 1 or 2, wherein chlorine is circulated at a flow rate of 0.3 to 10 L / min. 前処理工程と反応工程に流通する塩素の総量を30〜6000Lとする請求項1〜請求項3のいずれか1項に記載の塩化ルテニウム(IV)酸アンモニウムの製造方法。   The method for producing ammonium ruthenium (IV) chloride according to any one of claims 1 to 3, wherein the total amount of chlorine flowing through the pretreatment step and the reaction step is 30 to 6000 L.
JP2009129991A 2009-05-29 2009-05-29 Method for producing ammonium ruthenate Active JP4576470B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009129991A JP4576470B1 (en) 2009-05-29 2009-05-29 Method for producing ammonium ruthenate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009129991A JP4576470B1 (en) 2009-05-29 2009-05-29 Method for producing ammonium ruthenate

Publications (2)

Publication Number Publication Date
JP4576470B1 true JP4576470B1 (en) 2010-11-10
JP2010275153A JP2010275153A (en) 2010-12-09

Family

ID=43319609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009129991A Active JP4576470B1 (en) 2009-05-29 2009-05-29 Method for producing ammonium ruthenate

Country Status (1)

Country Link
JP (1) JP4576470B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034563A (en) * 1998-07-14 2000-02-02 Japan Energy Corp Production of highly pure ruthenium sputtering target and highly pure ruthenium sputtering target
JP2003201526A (en) * 2002-01-07 2003-07-18 Sumitomo Metal Mining Co Ltd Method of refining ruthenium
JP2005145750A (en) * 2003-11-14 2005-06-09 Tanaka Kikinzoku Kogyo Kk Preparation method of hexaammine ruthenium (iii) trichloride
JP2005239441A (en) * 2004-02-24 2005-09-08 Tanaka Kikinzoku Kogyo Kk Method for recovering ruthenium from hydrochloric acid acidic solution
JP2007230802A (en) * 2006-02-28 2007-09-13 Nikko Kinzoku Kk Method for producing ruthenium crystallized substance
JP2009161418A (en) * 2007-01-29 2009-07-23 Nippon Mining & Metals Co Ltd Method of manufacturing ammonium hexachlororuthenate and ruthenium powder, as well as ammonium hexachlororuthenate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034563A (en) * 1998-07-14 2000-02-02 Japan Energy Corp Production of highly pure ruthenium sputtering target and highly pure ruthenium sputtering target
JP2003201526A (en) * 2002-01-07 2003-07-18 Sumitomo Metal Mining Co Ltd Method of refining ruthenium
JP2005145750A (en) * 2003-11-14 2005-06-09 Tanaka Kikinzoku Kogyo Kk Preparation method of hexaammine ruthenium (iii) trichloride
JP2005239441A (en) * 2004-02-24 2005-09-08 Tanaka Kikinzoku Kogyo Kk Method for recovering ruthenium from hydrochloric acid acidic solution
JP2007230802A (en) * 2006-02-28 2007-09-13 Nikko Kinzoku Kk Method for producing ruthenium crystallized substance
JP2009161418A (en) * 2007-01-29 2009-07-23 Nippon Mining & Metals Co Ltd Method of manufacturing ammonium hexachlororuthenate and ruthenium powder, as well as ammonium hexachlororuthenate

Also Published As

Publication number Publication date
JP2010275153A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
KR101226946B1 (en) Method for recycling platinum from platinum based catalysts
CN101638727B (en) Method for recovering ruthenium in activated carbon supported ruthenium catalyst
JP5329615B2 (en) Tungsten recovery method
KR101771596B1 (en) Manufacturing method of lithium salt from waste solution containing lithium
JP2012091999A (en) Method for refining lithium carbonate
JP2009079237A (en) Process for producing scorodite, and process for recycling post-scorodite-synthesis solution
RU2409520C2 (en) Process scheme for producing ammonium or potassium trichloroammine platinate (ii) from platinum
JP2013151717A (en) Method for producing highly-pure nickel sulfate and method for removing impurity element from solution including nickel
JP2021031730A (en) Method for producing cobalt aqueous solution
JP4576470B1 (en) Method for producing ammonium ruthenate
KR102376746B1 (en) A method for manufacuring tantalum powder using metallothermic reduction
JP2013142184A (en) High-purity manganese and method for producing the same
JP6594411B2 (en) Method for producing tungsten
JP4347857B2 (en) : Method for producing ammonium hexachlororuthenate
WO2016158878A1 (en) Tungsten carbide production method
JP2021031729A (en) Method for producing nickel aqueous solution
JP5344313B2 (en) Iridium firing reduction method
JP4821486B2 (en) Method for purifying platinum raw materials containing tin
JP5803491B2 (en) Chlorine leaching method for metal sulfide and metal smelting method
JP2010043359A (en) Method for producing scorodite and method for recycling after-synthesis-solution of scorodite
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
JP2015199614A (en) Method for recovering phosphoric acid solution from sewage sludge incineration ash containing phosphorus (p)
JP5629167B2 (en) Pt separation and recovery method
JP2006045089A (en) METHOD FOR PRODUCING DI-mu-CHLOROBIS(1,5-CYCLOOCTADIENE) DIIRIDIUM(I)
JP6174395B2 (en) Method for recovering copper and method for producing copper oxide

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100813

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R150 Certificate of patent or registration of utility model

Ref document number: 4576470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250