JP2013142184A - High-purity manganese and method for producing the same - Google Patents

High-purity manganese and method for producing the same Download PDF

Info

Publication number
JP2013142184A
JP2013142184A JP2012003812A JP2012003812A JP2013142184A JP 2013142184 A JP2013142184 A JP 2013142184A JP 2012003812 A JP2012003812 A JP 2012003812A JP 2012003812 A JP2012003812 A JP 2012003812A JP 2013142184 A JP2013142184 A JP 2013142184A
Authority
JP
Japan
Prior art keywords
manganese
ppm
purity
electrolysis
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012003812A
Other languages
Japanese (ja)
Other versions
JP5944666B2 (en
Inventor
Kazuto Yagi
和人 八木
Yuichiro Shindo
裕一朗 新藤
Eiji Hino
英治 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012003812A priority Critical patent/JP5944666B2/en
Publication of JP2013142184A publication Critical patent/JP2013142184A/en
Application granted granted Critical
Publication of JP5944666B2 publication Critical patent/JP5944666B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-purity manganese peculiarly having both impurity contents of oxygen and sulfur, obtained from a commercially available electrolysis manganese and to provide the method for producing the same.SOLUTION: A manganese raw material having a purity of 2N-level, is leached with acid and the residue is filtered with a filter. Thereafter, an electrolysis is performed and a degassing-treatment is applied to the obtained electrolysis manganese to be made to ≤100 ppm Cl content in the electrolysis manganese and furthermore, this electrolysis manganese is dissolved under inert gas atmosphere to produce the manganese containing ≤10 ppm Cl, ≤50 ppm C, <50 ppm S and <30 ppm O. The method is provided for producing the high-purity manganese from the commercially available electrolysis manganese to obtain the high-purity metallic manganese particularly having little impurity contents of Cl, C, S and O.

Description

本発明は、市販の電解マンガンから高純度マンガン及びそれを製造する方法に関する。   The present invention relates to high-purity manganese from commercially available electrolytic manganese and a method for producing the same.

市販で入手可能な金属マンガンの製造方法は、硫酸アンモニウム電解浴からの電解法であり、この方法によって得られる市販の電解マンガンにはSが100〜3000ppm程度、カーボンも数100ppm含まれている。塩素も数100ppm、また水溶液中からの電析物のため、酸素も数1000ppm程度含まれている。   A commercially available method for producing metal manganese is an electrolytic method from an ammonium sulfate electrolytic bath. Commercially available electrolytic manganese obtained by this method contains about 100 to 3000 ppm of S and several hundred ppm of carbon. Chlorine is also contained in several hundred ppm, and oxygen is contained in the order of several thousand ppm because of electrodeposits from the aqueous solution.

前記電解マンガンからのS,Oの除去法としては、従来技術では昇華精製法がよく知られている。しかし、昇華精製法は装置が非常に高い上に、歩留まりが非常に悪いという難点があった。また、昇華精製法ではSとOを低減できたとしても、昇華精製装置のヒータ材質、コンデンサー材質等を起因とする汚染を受けてしまうため、精製法による金属マンガンは、電子デバイス用の原料として適さないという問題があった。   As a method for removing S and O from the electrolytic manganese, a sublimation purification method is well known in the prior art. However, the sublimation purification method has a problem that the apparatus is very expensive and the yield is very bad. In addition, even if S and O can be reduced by the sublimation purification method, it is contaminated due to the heater material, capacitor material, etc. of the sublimation purification device. There was a problem that it was not suitable.

先行技術としては、下記特許文献1に金属マンガン中の硫黄の除去方法が記載され、MnO、Mn、MnOなどのマンガン酸化合物及び/又は金属マンガンの溶融温度で、これらのマンガン酸化物となるもの、例えば炭酸マンガンなどを添加し、マンガン化合物を添加した金属マンガンを、不活性雰囲気で溶融し、溶融状態で好ましくは30〜60分間保持して、硫黄含有量:0.002%とすることが記載されている。 As a prior art, a method for removing sulfur in metallic manganese is described in Patent Document 1 below, and these manganese oxidations are performed at the melting temperature of manganic acid compounds such as MnO, Mn 3 O 4 , MnO 2 and / or metallic manganese. A product such as manganese carbonate is added, and manganese metal added with a manganese compound is melted in an inert atmosphere and kept in a molten state, preferably for 30 to 60 minutes, and the sulfur content is 0.002%. It is described that.

しかし、この文献1には、酸素(O)、窒素(N)、炭素(C)、塩素(Cl)の含有量については、一切記載がなく、これらが含有することによる問題の解決に至っていない。   However, this document 1 does not describe the contents of oxygen (O), nitrogen (N), carbon (C), and chlorine (Cl) at all, and has not yet solved the problems caused by the contents thereof. .

下記特許文献2には、金属マンガンの電解採取方法および高純度金属マンガンを、塩酸に過剰に溶解して未溶解物を濾過した溶解液に、酸化剤を添加すると共に中和し、生成した沈殿物を濾過し、緩衝剤を添加して調製した電解液を用いることを特徴とする金属マンガンの電解採取方法が記載され、好ましくは、金属マンガンの塩酸溶解液に、さらに金属マンガンを追加し、未溶解物を濾過した溶解液に過酸化水素とアンモニア水を添加し、弱酸性ないし中性の液性下で生成した沈殿物を濾過し、緩衝剤を添加して調製した電解液を用いて金属マンガンの電解採取を行う方法が記載されている。   In Patent Document 2 below, a method for electrolytically collecting metal manganese and high-purity metal manganese are dissolved in hydrochloric acid, and an undissolved material is filtered. The method for electrolytic collection of manganese metal is characterized by using an electrolyte prepared by filtering a substance and adding a buffer, preferably adding manganese metal to a hydrochloric acid solution of manganese metal, Using electrolyte prepared by adding hydrogen peroxide and aqueous ammonia to the solution obtained by filtering undissolved material, filtering the precipitate formed under weakly acidic or neutral liquidity, and adding a buffer. A method for the electrowinning of metallic manganese is described.

しかし、この文献2には、高純度マンガンのS:1ppmの低減化の記載はあるが、酸素(O)、窒素(N)、炭素(C)、塩素(Cl)の含有量については、一切記載がなく、これらが含有することによる問題の解決に至っていない。   However, in this document 2, there is a description of the reduction of S: 1 ppm of high-purity manganese, but the contents of oxygen (O), nitrogen (N), carbon (C), and chlorine (Cl) are not at all. There is no description and it has not led to the solution of the problems caused by the inclusion thereof.

下記特許文献3には、高純度マンガンの製造方法が記載され、塩化マンガン水溶液にキレート樹脂を用いたイオン交換精製法を適用し、次いで、その精製塩化マンガン水溶液を、電解採取法により高純度化する方法が記載されている。乾式法は、固相マンガンから真空昇華精製法(固相マンガンの昇華により得たマンガン蒸気を蒸気圧差により、冷却部にて選択的に凝縮蒸着させること)により、高純度マンガンを得ることが記載されている。   Patent Document 3 below describes a method for producing high-purity manganese, which uses an ion-exchange purification method using a chelate resin in an aqueous manganese chloride solution, and then purifies the purified aqueous manganese chloride solution by electrowinning. How to do is described. The dry method describes that high-purity manganese is obtained from solid-phase manganese by vacuum sublimation purification (selectively condensing and vaporizing manganese vapor obtained by sublimation of solid-phase manganese in the cooling section using a vapor pressure difference). Has been.

そして、この文献3の硫黄(S)、酸素(O)、窒素(N)、炭素(C)の合計濃度が10ppm以下であることが記載されている。
しかしながら、この文献3には、半導体部品の製造に有害である塩素(Cl)の含有量の記載がない。原料として塩化マンガンを使用していることから、塩素が高濃度に含有される可能性があり、問題を有している。
The document 3 describes that the total concentration of sulfur (S), oxygen (O), nitrogen (N), and carbon (C) is 10 ppm or less.
However, this document 3 does not describe the content of chlorine (Cl) that is harmful to the manufacture of semiconductor components. Since manganese chloride is used as a raw material, there is a possibility that chlorine may be contained in a high concentration, which is problematic.

下記特許文献4には、低酸素Mn材料の製造方法が記載され、Mn原料を不活性ガス雰囲気中で誘導スカル溶解することにより、酸素量を100ppm以下に低減したMn材料を得ること、また、Mn原料を誘導スカル溶解する前に酸洗浄することが、より酸素低減を図ることができるため好ましいという記載がある。   Patent Document 4 below describes a method for producing a low-oxygen Mn material, and obtains a Mn material in which the oxygen content is reduced to 100 ppm or less by inductively skull-dissolving the Mn raw material in an inert gas atmosphere. There is a description that it is preferable to perform acid cleaning before induction skull dissolution of the Mn raw material because oxygen can be further reduced.

しかし、この文献4には、高純度マンガン中の酸素量低減化の記載はあるが、窒素(N)、炭素(C)、塩素(Cl)の含有量については、一切記載がなく、これらが含有することによる問題の解決に至っていない。   However, in this document 4, there is a description of reducing the oxygen content in high-purity manganese, but the contents of nitrogen (N), carbon (C) and chlorine (Cl) are not described at all. The problem of inclusion has not been solved.

下記特許文献5には、磁性材用Mn合金材料、Mn合金スパッタリングタ−ゲット及び磁性薄膜が記載され、酸素含有量が500ppm以下、S含有量が100ppm以下、好ましくはさらに不純物(Mnおよび合金成分以外の元素)含有量が合計で1000ppm以下とすることが記載されている。
さらに、同文献には、市販されている電解Mnに脱酸剤としてCa,Mg,La等を加え、高周波溶解を行うことによって酸素、硫黄を除去。電解Mnを予備溶解した後、さらに真空蒸留することが記載されている。
Patent Document 5 below describes a Mn alloy material for magnetic materials, a Mn alloy sputtering target, and a magnetic thin film, and has an oxygen content of 500 ppm or less and an S content of 100 ppm or less, preferably further impurities (Mn and alloy components) It is described that the total content of elements other than the above is 1000 ppm or less.
Furthermore, in this document, oxygen, sulfur is removed by adding Ca, Mg, La, etc. as deoxidizers to commercially available electrolytic Mn and performing high-frequency dissolution. It is described that electrolytic Mn is pre-dissolved and then further vacuum distilled.

上記のMn原料において、実施例3と実施例7(表3と表7)において、酸素含有量を50ppm、酸素含有量を30ppmとする例がある。また、この例では、Siが10ppm程度、Pbが10ppm程度含有されている。   In the above Mn raw material, in Examples 3 and 7 (Tables 3 and 7), there is an example in which the oxygen content is 50 ppm and the oxygen content is 30 ppm. In this example, Si is contained at about 10 ppm and Pb is contained at about 10 ppm.

下記特許文献6には、高純度Mn材料の製造方法及び薄膜形成用高純度Mn材料が記載されている。この場合、粗Mnを1250〜1500°Cで予備溶解した後、1100〜1500°Cで真空蒸留することにより、高純度Mn材料を得ることが記載されている。好ましくは、真空蒸留の際の真空度を5×10− 5 〜10Torrとする。 Patent Document 6 below describes a method for producing a high-purity Mn material and a high-purity Mn material for forming a thin film. In this case, it is described that a high-purity Mn material is obtained by pre-dissolving crude Mn at 1250 to 1500 ° C. and then vacuum distillation at 1100 to 1500 ° C. Preferably, the degree of vacuum during vacuum distillation 5 × 10 - and 5 to 10 Torr.

これにより得られる高純度Mnは不純物含有量が合計で100ppm以下、酸素:200ppm以下、窒素:50ppm以下、S:50ppm以下、C:100ppm以下である。そして、実施例2(表2)では、酸素が30ppmであり、他の元素が10ppm未満である例が記載されている。   The high-purity Mn thus obtained has a total impurity content of 100 ppm or less, oxygen: 200 ppm or less, nitrogen: 50 ppm or less, S: 50 ppm or less, and C: 100 ppm or less. And Example 2 (Table 2) describes an example in which oxygen is 30 ppm and other elements are less than 10 ppm.

この他、下記特許文献7に高純度Mn合金からなるスパッタリングターゲットが記載され、特許文献8に硫酸を使用したマンガンの回収方法が記載され、特許文献9に酸化マンガンを加熱還元した金属マンガンを製造する方法が記載されているが、特に脱硫に関する記載はない。   In addition, a sputtering target composed of a high-purity Mn alloy is described in Patent Document 7 below, a method for recovering manganese using sulfuric acid is described in Patent Document 8, and manganese metal produced by heating and reducing manganese oxide is manufactured in Patent Document 9. However, there is no description regarding desulfurization.

特開昭53−8309号公報JP 53-8309 A 特開2007−119854号公報JP 2007-119854 A 特開2002−285373号公報JP 2002-285373 A 特開2002−167630号公報JP 2002-167630 A 特開平11−100631号公報Japanese Patent Application Laid-Open No. 11-100651 特開平11−152528号公報JP-A-11-152528 特開2011−068992号公報JP 2011-068992 A 特開2010−209384号公報JP 2010-209384 A 特開2011−094207号公報JP 2011-094207 A

本発明の目的は、市販の電解マンガンから高純度マンガン及びそれを製造する方法を提供するものであり、特に酸素と硫黄の不純物量が少ない高純度マンガンを得ることを課題とする。   An object of the present invention is to provide a high-purity manganese from a commercially available electrolytic manganese and a method for producing the same, and an object of the present invention is to obtain a high-purity manganese having particularly small amounts of oxygen and sulfur impurities.

本発明は、上記課題を解決するものであって、以下の発明を提供する。
1)マンガンの純度が4N(99.99%)以上であり、Cl≦10ppm、C≦50ppm、S<50ppm、O<30ppmであることを特徴とする高純度マンガン。
The present invention solves the above problems and provides the following inventions.
1) High-purity manganese, wherein the purity of manganese is 4N (99.99%) or more, and Cl ≦ 10 ppm, C ≦ 50 ppm, S <50 ppm, and O <30 ppm.

2)マンガン原料を酸で浸出し、フイルターで残渣をろ過後、電解においてカソード側に前記ろ過後の液を使用することを特徴とする高純度マンガンの製造方法。
3)前記電解マンガンを脱ガス処理し、電解マンガン中のCl含有量を100ppm以下とすることを特徴とする前記(2)記載の高純度マンガンの製造方法。
4)不活性雰囲気中で溶解することにより、純度が4N(99.99%)以上であり、Cl≦10ppm、C≦50ppm、S<50ppm、O<30ppmのマンガンを製造することを特徴とする上記(2)又は(3)のいずれか一項に記載の高純度マンガンの製造方法。
2) A method for producing high-purity manganese, which comprises leaching a manganese raw material with an acid, filtering the residue with a filter, and using the filtered solution on the cathode side in electrolysis.
3) The method for producing high-purity manganese according to (2) above, wherein the electrolytic manganese is degassed so that the Cl content in the electrolytic manganese is 100 ppm or less.
4) It is characterized by producing manganese having a purity of 4N (99.99%) or more and Cl ≦ 10 ppm, C ≦ 50 ppm, S <50 ppm, O <30 ppm by dissolving in an inert atmosphere. The manufacturing method of the high purity manganese as described in any one of said (2) or (3).

本発明によれば、
(1)Cl、C、S、O等の不純物を簡単な工程で低減可能となり、高純度マンガンを得ることができる。
(2)特別な装置を必要とせずに、汎用炉で製造可能であり、従来法である蒸留法と比較して低コストかつ高収率で高純度マンガンを得ることができる等の効果を挙げられることができる。
According to the present invention,
(1) Impurities such as Cl, C, S, and O can be reduced by a simple process, and high-purity manganese can be obtained.
(2) It can be manufactured in a general-purpose furnace without the need for special equipment, and can provide high-purity manganese at a low cost and in a high yield compared to the conventional distillation method. Can be done.

以下、本発明の実施の形態について、詳細に説明する。
本願発明の高純度マンガンの製造方法は、2Nレベルの純度を持つマンガン原料を酸浸出した液を用いて精製を行う。
Hereinafter, embodiments of the present invention will be described in detail.
In the method for producing high-purity manganese according to the present invention, purification is performed using a solution obtained by acid leaching of a manganese raw material having a purity of 2N.

また、本願発明の高純度マンガンの製造方法は、2Nレベルの純度を持つマンガン原料を酸で浸出し、フイルターで残渣を分離除去する。酸は、塩酸、硫酸、硝酸あるいはその混酸やそのほか必要と思われる酸、例えば過酸化水素酸を添加してもよい。残渣や浮遊物が残るときもあるが、フイルターにより除去できる。   Moreover, the manufacturing method of the high purity manganese of this invention leaches the manganese raw material with a purity of 2N level with an acid, and isolate | separates and removes a residue with a filter. As the acid, hydrochloric acid, sulfuric acid, nitric acid, a mixed acid thereof, or an acid considered to be necessary, for example, hydrogen peroxide acid may be added. Residues and suspended matter may remain, but can be removed with a filter.

その後電解でアノード側とカソード側をイオン交換膜で分離した装置において、前記酸浸出したマンガン液をカソード側に入れて電解を行う。アノード側はマンガンが入っている必要はなく、硫酸浴等の液でよい。カソード側の液は前記酸浸出したマンガン溶液を用い、必要ならばさらに液中の不純物を除去するために、溶媒抽出等の工程を入れてもよい。   Thereafter, in an apparatus in which the anode side and the cathode side are separated by an ion exchange membrane by electrolysis, the acid solution leached manganese solution is put into the cathode side for electrolysis. The anode side does not need to contain manganese and may be a solution such as a sulfuric acid bath. As the cathode-side liquid, the acid-leached manganese solution is used, and if necessary, a step such as solvent extraction may be added to remove impurities in the liquid.

電解で得たマンガンを、真空中で脱ガス処理を行う。脱ガス処理の温度は、100〜1000℃が好ましく、より好ましくは300〜600℃である。これにより、Cl等の揮発性元素が除去できる。   Manganese obtained by electrolysis is degassed in vacuum. The temperature of the degassing treatment is preferably 100 to 1000 ° C, more preferably 300 to 600 ° C. Thereby, volatile elements such as Cl can be removed.

その後、不活性雰囲気の弱減圧下で溶解して不純物をスラグとして除去し、これにより高純度のマンガンを得ることができる。   Then, it melt | dissolves under the weak decompression of an inert atmosphere, an impurity is removed as slag, and, thereby, high purity manganese can be obtained.

Cl含有量の多い電解マンガンを不活性雰囲気で溶解すると、Clが簡単に揮発してしまうように考えられるが、ClはMnClの形態の物質のスラグを形成することが判明した。
この形態でClを含有するスラグが問題であり、Mnと比重差が少なくなり、浮上分離することなく、Mnインゴット中に分散して残存することになる。
When electrolytic manganese with a high Cl content is dissolved in an inert atmosphere, it is thought that Cl easily volatilizes, but it has been found that Cl forms a slag of a substance in the form of Mn x O y Cl z . .
In this form, slag containing Cl is a problem, the difference in specific gravity from Mn is reduced, and it remains dispersed in the Mn ingot without floating and separation.

本発明者らの研究では、Clが100ppm以上あると、上記の物質の形成が原因で、スラグの分離性が悪くなり、歩留まりが低下することが分かった。このことから、Cl含有量の多い原料マンガンをそのまま溶解するのではなく、上記のような物質の形成を避けるためにClを除去する工程が必要であるという知見を得た。本発明は、この点の重要性を把握した点に、一つの大きな特徴を有する。   According to the study by the present inventors, it was found that when Cl is 100 ppm or more, the separation of slag is deteriorated due to the formation of the above substances, and the yield is lowered. From this, it was found that the raw material manganese having a high Cl content is not dissolved as it is, but a step of removing Cl is necessary to avoid the formation of the above-mentioned substances. The present invention has one major feature in that the importance of this point is grasped.

上記の工程により、Cl、C、S、Oを低減することにより、純度が4N(99.99%)以上であり、Cl≦10ppm、C≦50ppm、S<50ppm、O<30ppmのマンガンを製造することが可能となる。   By reducing Cl, C, S, and O through the above steps, manganese with a purity of 4N (99.99%) or more and Cl ≦ 10 ppm, C ≦ 50 ppm, S <50 ppm, and O <30 ppm is produced. It becomes possible to do.

以下に、実施例及び比較例をもって説明するが、これらは発明を理解し易いようにするためであり、本発明は実施例又は比較例によって限定されるものではない。   Hereinafter, the present invention will be described with reference to examples and comparative examples, but these are for easy understanding of the invention, and the present invention is not limited to the examples or comparative examples.

(実施例1)
出発原料として、市販のCl:110〜300ppm、C:130〜420ppm、S:230〜810ppm、O:720〜2500ppmの純度2N(99%)のマンガンを用いた。
Example 1
As the starting material, commercially available Cl: 110 to 300 ppm, C: 130 to 420 ppm, S: 230 to 810 ppm, O: 720 to 2500 ppm and purity 2N (99%) manganese was used.

このマンガン原料を、塩酸を用いて酸浸出を行った。浮遊物があったため、1μmのフイルターを用いて除去した。この液をカソード側の液として使用し、アノード側は硫酸浴として使用した。これにより、電解マンガンを得た。
このとき、Cl:180ppm、C:50ppm、S:50ppm,O:200ppmの純度であった。
This manganese raw material was acid leached using hydrochloric acid. Since there was a suspended matter, it was removed using a 1 μm filter. This solution was used as a cathode side solution, and the anode side was used as a sulfuric acid bath. Thereby, electrolytic manganese was obtained.
At this time, the purity was Cl: 180 ppm, C: 50 ppm, S: 50 ppm, O: 200 ppm.

この電解マンガンを300℃、0.01torrの真空度で脱ガス処理した。その結果、Cl:80ppm、C:50ppm、S:50ppm ,O:180ppmの純度のマンガンを得た。
次に、前記マンガンをArガス雰囲気中、100torr、1300℃、50分で溶解した。上層部に浮いたスラグを除去し、その結果、歩留まり75%のインゴットでCl:10ppm、C:40ppm、S:40ppm,O:25ppmの純度であった。
The electrolytic manganese was degassed at 300 ° C. and a vacuum degree of 0.01 torr. As a result, manganese having a purity of Cl: 80 ppm, C: 50 ppm, S: 50 ppm, O: 180 ppm was obtained.
Next, the manganese was dissolved in an Ar gas atmosphere at 100 torr and 1300 ° C. for 50 minutes. The slag floating in the upper layer portion was removed, and as a result, the purity was 75% yield ingot with Cl: 10 ppm, C: 40 ppm, S: 40 ppm, O: 25 ppm.

(実施例2)
出発原料として、実施例1と同様の純度2N(99%)のマンガン原料を用いた。
前記マンガン原料を、塩酸と過酸化水素水を用いて酸浸出を行った。浮遊物があったため、0.5μmのフイルターを用いて除去した。この液をカソード側の液として使用し、アノード側は硫酸浴として使用した。これにより、
電解マンガンを得た。このとき、Cl:160ppm、C:20ppm、S:40ppm、O:400ppmの純度であった。
(Example 2)
As a starting material, a manganese material having a purity of 2N (99%) similar to that in Example 1 was used.
The manganese raw material was acid leached using hydrochloric acid and hydrogen peroxide water. Since there was a suspended matter, it was removed using a 0.5 μm filter. This solution was used as a cathode side solution, and the anode side was used as a sulfuric acid bath. This
Electrolytic manganese was obtained. At this time, the purity was Cl: 160 ppm, C: 20 ppm, S: 40 ppm, O: 400 ppm.

この電解マンガンを600℃、0.1torrの真空度で脱ガス処理した。その結果、Cl:10ppm、C:20ppm、S:40ppm ,O:400ppmの純度のマンガンを得た。
次に、前記マンガンをArガス雰囲気中、500torr、1300℃、2時間で溶解した。上層部に浮いたスラグを除去し、その結果、歩留まり80%のインゴットでCl:1ppm、C:20ppm、S:30ppm,O:20ppmの純度であった。
This electrolytic manganese was degassed at 600 ° C. and a vacuum degree of 0.1 torr. As a result, manganese having a purity of Cl: 10 ppm, C: 20 ppm, S: 40 ppm, and O: 400 ppm was obtained.
Next, the manganese was dissolved in an Ar gas atmosphere at 500 torr and 1300 ° C. for 2 hours. The slag floating in the upper layer portion was removed, and as a result, the purity was Cl: 1 ppm, C: 20 ppm, S: 30 ppm, O: 20 ppm with an ingot with a yield of 80%.

(実施例3)
出発原料として、実施例1と同様の純度2N(99%)のマンガンを用いた。
このマンガン原料を、硫酸溶液で表面を洗浄し、その後硫酸で浸出した。さらに、0.1μmのフイルターで異物や浮遊物を除去した。
この液を用いてカソード側に液を入れて電解を行った。アノード側には硫酸浴を用いた。
これにより電解マンガンを得た。このとき、Cl:10ppm、C:20ppm、S:180ppm、O:300ppmの純度であった。
(Example 3)
As a starting material, manganese having a purity of 2N (99%) as in Example 1 was used.
The surface of this manganese raw material was washed with a sulfuric acid solution and then leached with sulfuric acid. Further, foreign matters and suspended matters were removed with a 0.1 μm filter.
Using this solution, electrolysis was performed by putting the solution on the cathode side. A sulfuric acid bath was used on the anode side.
Thereby, electrolytic manganese was obtained. At this time, the purity was Cl: 10 ppm, C: 20 ppm, S: 180 ppm, O: 300 ppm.

次に、これをArガス雰囲気の弱減圧下で溶解した。この際、マグネシウムを添加し、溶湯保持時間を30分とし、坩堝内で凝固した。この結果、インゴット上部にスラグが濃縮した。Cl<1ppm、C:10ppm、S:30ppm、O<10ppmの純度であった。歩留りは、約85%であった。   Next, this was dissolved under a weak reduced pressure in an Ar gas atmosphere. At this time, magnesium was added, the molten metal holding time was set to 30 minutes, and solidified in the crucible. As a result, slag was concentrated at the top of the ingot. The purity was Cl <1 ppm, C: 10 ppm, S: 30 ppm, O <10 ppm. The yield was about 85%.

次に、比較例について説明する。
(比較例1)
実施例1で用いた市販Mnを、そのまま弱減圧下数torr、1300℃、10分で溶解した。その結果、Cl:10〜30ppm、C:70〜130ppm、S:180〜230ppm、O:510〜720ppmで、その他(ガス成分以外)の不純物も2Nレベルであった。この結果、Clが高い市販Mnをそのまま使用したために、スラグの分離性が悪く、スラグが多量に発生し、歩留まりは約60%であった。
Next, a comparative example will be described.
(Comparative Example 1)
Commercially available Mn used in Example 1 was dissolved as it was under a slightly reduced pressure at several torr at 1300 ° C. for 10 minutes. As a result, Cl: 10 to 30 ppm, C: 70 to 130 ppm, S: 180 to 230 ppm, O: 510 to 720 ppm, and other impurities (other than gas components) were also at the 2N level. As a result, since commercially available Mn having a high Cl was used as it was, the slag separation was poor, a large amount of slag was generated, and the yield was about 60%.

(比較例2)
実施例1で用いた市販Mnを、塩酸で溶解した。そのまま、その液を電解した。その結果、Cl:480ppm、C:150ppm、S:90ppm、O:650ppmの電解マンガンを得た。
その電解マンガンを脱ガス処理せず、そのまま弱減圧下数torr、1300℃、5分で溶解した。その結果、Cl:15〜80ppm、C:130〜170ppm、S:20〜40ppm、O:150〜250ppmでその他(ガス成分以外)の不純物も2Nレベルであった。この結果、スラグが多量に発生し、歩留まりは約50%であった。
(Comparative Example 2)
Commercially available Mn used in Example 1 was dissolved with hydrochloric acid. The solution was electrolyzed as it was. As a result, electrolytic manganese having Cl: 480 ppm, C: 150 ppm, S: 90 ppm, and O: 650 ppm was obtained.
The electrolytic manganese was not degassed and dissolved as it was at a low pressure of several torr at 1300 ° C. for 5 minutes. As a result, Cl: 15-80 ppm, C: 130-170 ppm, S: 20-40 ppm, O: 150-250 ppm, and other impurities (other than gas components) were also at a 2N level. As a result, a large amount of slag was generated, and the yield was about 50%.

(比較例3)
出発原料として、純度2N(99%)のマンガンであるが、Cl含有量が1200ppmと非常に高い原料を用いた。これを、そのまま溶解したところ、スラグとの分離ができなく、インゴット内のCl<10〜230ppm、C:70〜140ppm、S:150〜1600ppm、O:120〜780ppmと非常にばらつき、高純度のマンガンを得ることができなかった。
(Comparative Example 3)
As the starting material, manganese having a purity of 2N (99%) but having a very high Cl content of 1200 ppm was used. When this was dissolved as it was, it could not be separated from the slag, and Cl in the ingot was less than 10 to 230 ppm, C: 70 to 140 ppm, S: 150 to 1600 ppm, O: 120 to 780 ppm, and highly purified. Manganese could not be obtained.

本発明によれば、下記の著しい効果を得ることができるので、配線材料、磁性材(磁気ヘッド)等の電子部品材料、半導体部品材料に使用する金属マンガン、同薄膜、特にマンガン含有薄膜を作製するためのスパッタリングターゲット材として有用である。本発明は、特別な装置を必要とせずに、汎用炉で製造可能であり、従来法である蒸留法と比較して低コストかつ高収率で高純度マンガンを得ることができる。   According to the present invention, the following remarkable effects can be obtained. Therefore, electronic parts materials such as wiring materials and magnetic materials (magnetic heads), metal manganese used for semiconductor component materials, and the same thin films, especially manganese-containing thin films are produced. This is useful as a sputtering target material. The present invention can be produced in a general-purpose furnace without requiring a special apparatus, and can obtain high-purity manganese at a low cost and in a high yield as compared with a conventional distillation method.

Claims (4)

マンガンの純度が4N(99.99%)以上であり、Cl≦10ppm、C≦50ppm、S<50ppm、O<30ppmであることを特徴とする高純度マンガン。   High purity manganese characterized in that the purity of manganese is 4N (99.99%) or more, and Cl ≦ 10 ppm, C ≦ 50 ppm, S <50 ppm, O <30 ppm. マンガン原料を酸で浸出し、フイルターで残渣をろ過後、電解においてカソード側に前記ろ過後の液を使用することを特徴とする高純度マンガンの製造方法。   A method for producing high-purity manganese, comprising leaching a manganese raw material with an acid, filtering the residue with a filter, and using the filtered solution on the cathode side in electrolysis. 前記電解マンガンを脱ガス処理し、電解マンガン中のCl含有量を100ppm以下とすることを特徴とする請求項2記載の高純度マンガンの製造方法。   The method for producing high-purity manganese according to claim 2, wherein the electrolytic manganese is degassed so that the Cl content in the electrolytic manganese is 100 ppm or less. 前記電解マンガン原料を脱ガス処理し、不活性雰囲気中で溶解することにより、Cl≦10ppm、C≦50ppm、S<50ppm、O<30ppmのマンガンを製造することを特徴とする請求項2又は3記載のいずれか一項に記載の高純度マンガンの製造方法。   4. The manganese of Cl <= 10ppm, C <= 50ppm, S <50ppm, O <30ppm is manufactured by degassing the said electrolytic manganese raw material, and melt | dissolving in an inert atmosphere. The manufacturing method of the high purity manganese as described in any one of description.
JP2012003812A 2012-01-12 2012-01-12 Manufacturing method of high purity manganese Expired - Fee Related JP5944666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012003812A JP5944666B2 (en) 2012-01-12 2012-01-12 Manufacturing method of high purity manganese

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012003812A JP5944666B2 (en) 2012-01-12 2012-01-12 Manufacturing method of high purity manganese

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016088763A Division JP2016180184A (en) 2016-04-27 2016-04-27 High purity manganese

Publications (2)

Publication Number Publication Date
JP2013142184A true JP2013142184A (en) 2013-07-22
JP5944666B2 JP5944666B2 (en) 2016-07-05

Family

ID=49038925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012003812A Expired - Fee Related JP5944666B2 (en) 2012-01-12 2012-01-12 Manufacturing method of high purity manganese

Country Status (1)

Country Link
JP (1) JP5944666B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150125721A (en) 2013-10-25 2015-11-09 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for manufacturing high purity manganese and high purity manganese
KR20150126662A (en) 2013-10-25 2015-11-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for manufacturing high purity manganese and high purity manganese
CN110804744A (en) * 2019-11-01 2020-02-18 四川中哲新材料科技有限公司 Production process of electrolytic manganese metal
JP2021088744A (en) * 2019-12-04 2021-06-10 株式会社 大阪アサヒメタル工場 Method for manufacturing high purity manganese and high purity manganese
CN115041489A (en) * 2022-06-07 2022-09-13 贵州省建筑材料科学研究设计院有限责任公司 Harmless treatment method and device for electrolytic manganese slag by steam method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114512A (en) * 1976-03-24 1977-09-26 Sakae Tajima High pure metallic manganese
JP2002285373A (en) * 2001-03-26 2002-10-03 Osaka Asahi Metal Mfg Co Ltd Method for producing high purity manganese
JP2007119854A (en) * 2005-10-28 2007-05-17 Mitsubishi Materials Corp Electrowinning method for metal manganese and high purity metal manganese

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114512A (en) * 1976-03-24 1977-09-26 Sakae Tajima High pure metallic manganese
JP2002285373A (en) * 2001-03-26 2002-10-03 Osaka Asahi Metal Mfg Co Ltd Method for producing high purity manganese
JP2007119854A (en) * 2005-10-28 2007-05-17 Mitsubishi Materials Corp Electrowinning method for metal manganese and high purity metal manganese

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150125721A (en) 2013-10-25 2015-11-09 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for manufacturing high purity manganese and high purity manganese
KR20150126662A (en) 2013-10-25 2015-11-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for manufacturing high purity manganese and high purity manganese
KR101664763B1 (en) 2013-10-25 2016-10-12 제이엑스금속주식회사 Method for manufacturing high purity manganese
CN110804744A (en) * 2019-11-01 2020-02-18 四川中哲新材料科技有限公司 Production process of electrolytic manganese metal
JP2021088744A (en) * 2019-12-04 2021-06-10 株式会社 大阪アサヒメタル工場 Method for manufacturing high purity manganese and high purity manganese
JP7298893B2 (en) 2019-12-04 2023-06-27 株式会社 大阪アサヒメタル工場 Method for producing high-purity manganese and high-purity manganese
CN115041489A (en) * 2022-06-07 2022-09-13 贵州省建筑材料科学研究设计院有限责任公司 Harmless treatment method and device for electrolytic manganese slag by steam method
CN115041489B (en) * 2022-06-07 2024-03-22 贵州省建筑材料科学研究设计院有限责任公司 Harmless treatment method and device for electrolytic manganese slag by steam method

Also Published As

Publication number Publication date
JP5944666B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
JP4840808B2 (en) High purity nickel, high purity nickel target and high purity nickel thin film
JP5944666B2 (en) Manufacturing method of high purity manganese
JPWO2005073434A1 (en) Ultra high purity copper and method for producing the same
JP2016180184A (en) High purity manganese
JP5636515B2 (en) High purity manganese and method for producing the same
JP6524973B2 (en) High purity In and method for producing the same
KR20140037277A (en) Method for producing calcium of high purity
JP6050485B2 (en) Method for producing high purity manganese and high purity manganese
JP5925384B2 (en) Method for producing high purity manganese and high purity manganese
JP4544414B2 (en) High purity metallic indium and its production method and application
JP6318049B2 (en) High purity In and its manufacturing method
JP5993097B2 (en) Method for producing high purity cobalt chloride
TW200307060A (en) Method and device for producing high-purity metal
JP4538801B2 (en) Method for recovering Ni from deoxidation solution
JP4087196B2 (en) Method for recovering ruthenium and / or iridium
JP6242725B2 (en) Method for producing metal thallium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160427

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160526

R150 Certificate of patent or registration of utility model

Ref document number: 5944666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees