JP4573313B1 - 汚水浄化装置 - Google Patents

汚水浄化装置 Download PDF

Info

Publication number
JP4573313B1
JP4573313B1 JP2010089981A JP2010089981A JP4573313B1 JP 4573313 B1 JP4573313 B1 JP 4573313B1 JP 2010089981 A JP2010089981 A JP 2010089981A JP 2010089981 A JP2010089981 A JP 2010089981A JP 4573313 B1 JP4573313 B1 JP 4573313B1
Authority
JP
Japan
Prior art keywords
water
sewage
tank
bod
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010089981A
Other languages
English (en)
Other versions
JP2011218291A (ja
Inventor
隆二 塩▲崎▼
Original Assignee
隆二 塩▲崎▼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆二 塩▲崎▼ filed Critical 隆二 塩▲崎▼
Priority to JP2010089981A priority Critical patent/JP4573313B1/ja
Application granted granted Critical
Publication of JP4573313B1 publication Critical patent/JP4573313B1/ja
Publication of JP2011218291A publication Critical patent/JP2011218291A/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

【課題】発生する汚水の量や汚水濃度が変動しても、汚水浄化装置を構成する特定の部位に大きな浄化負荷がかかることを防止して、汚水処理速度を適正な水準に維持することが可能な汚水浄化装置を提供する。
【解決手段】メタン発酵装置41では、メタン菌によって汚水中の汚泥が分解されて、汚水のBODが低減される。メタン発酵装置41には、メタン菌によって汚水の原水よりもBOD値を低減された消化液を送出する消化液送出管45が取り付けらており、メタン発酵装置内BODセンサ43によって検知された消化液のBOD情報は、BOD制御部60に送信され、BOD制御部60は、消化液のBOD情報に基づいて、電磁弁49、電磁弁50、電磁弁51のいずれか一つを開いて、消化液を嫌気槽21、好気槽22、処理水排出管24のいずれかに流出させる。
【選択図】図1

Description

本発明は、汚水を浄化するにあたって、嫌気槽と好気槽での微生物による浄化作用を最適な状態で行うことを可能にして、迅速に汚水を浄化することが可能な汚水浄化装置に関する。
近年、自然環境保護の観点から、水質保全の必要性が叫ばれている。水質汚染の原因として従来は工業廃水が大きな問題となっていたが、様々な規制によって工業廃水による水質汚染は減少の傾向にある。その一方、生活排水が水質汚染の一因となっていることが報告されており、それぞれの家庭において生活排水を浄化するための有効な浄化手段が求められている。また、食品工場等においては、製造工程において恒常的に汚泥が発生しており、生産効率の観点から、迅速に汚水を処理する技術が求められている。
本発明者は、節水を実現しつつ効果的な汚水の浄化を可能にした汚水浄化装置を発明し、その技術が、特許文献1、特許文献2に記載されている。
特許第4114174号公報 特許第4191788号公報
この汚水浄化装置を、家庭で生活排水を処理するために使用する際には、汚水の量や汚水濃度が時間的に多少変動するものの、顕著な変動はないため、汚水処理能力について特に問題は生じない。しかし、病院や介護施設のように、多くの人が入院または入居している施設で使用する際には、人数の変動等によって汚水の量や汚水濃度が大きく変動しやすく、一時的に汚水浄化装置に大きな負荷がかかり、汚水処理速度が低下するなどして、汚水浄化能力が低下する状況が発生する。このような状況は、食品工場等においても、生産量の変動に伴って生じやすい。
本発明は、このような事情を考慮してなされたもので、発生する汚水の量や汚水濃度が変動しても、汚水浄化装置を構成する特定の部位に大きな浄化負荷がかかることを防止して、汚水処理速度を適正な水準に維持することが可能な汚水浄化装置を提供することを目的とする。
以上の課題を解決するために、本発明の汚水浄化装置は、汚水流入管から流入する汚水を浄化する嫌気槽と、前記嫌気槽に接続された好気槽と、前記好気槽によって浄化された処理水を排出する処理水排出管と、汚水中の汚泥をメタン菌により分解してメタンを発生して汚水のBOD値を低減するメタン発酵装置とを備え、前記嫌気槽または前記汚水流入管は、前記嫌気槽または前記汚水流入管から流入した汚水を前記メタン発酵装置に流入させる汚水送出管を介して前記メタン発酵装置に接続され、前記メタン発酵装置には、メタン菌によって汚水の原水よりもBOD値を低減された消化液を送出する消化液送出管が接続され、前記消化液送出管は、嫌気槽流入管、好気槽流入管、処理水側流入管の3つに分岐し、前記嫌気槽流入管は前記嫌気槽に接続され、前記好気槽流入管は前記好気槽に接続され、前記処理水側流入管は前記処理水排出管に接続され、前記嫌気槽流入管には第一の電磁弁が設けられ、前記好気槽流入管には第二の電磁弁が設けられ、前記処理水側流入管には第三の電磁弁が設けられ、BOD制御部は、メタン発酵装置内BODセンサが検知する前記消化液のBOD値と、好気槽のBOD基準値の上限および下限との比較によって、消化液の流出先を決定し、消化液のBOD値が好気槽のBOD基準値の上限より大きいときは、前記第一の電磁弁を開いて消化液を嫌気槽へ流出させ、消化液のBOD値が好気槽のBOD基準値の上限より小さく、好気槽のBOD基準値の下限より大きいときは、前記第二の電磁弁を開いて消化液を好気槽へ流出させ、消化液のBOD値が好気槽のBOD基準値の下限より小さいときは、前記第三の電磁弁を開いて消化液を処理水排水管へ流出させることを特徴とする。
汚水はメタン発酵装置によってBOD値を低減され、BOD値を低減された消化液は、そのBOD値のレベルに応じて、嫌気槽、好気槽、処理水排出管のいずれかに流出する構成となっているため、汚水の量や汚水濃度が変動しても、汚水浄化装置を構成する特定の部位に大きな浄化負荷がかかることがなく、汚水処理速度を適正な水準に維持することができる。
本発明の汚水浄化装置においては、前記メタン発酵装置から送出されるメタンによって熱水を生成する熱水発生装置と、前記熱水発生装置から第一の熱水送出管を介して送出される熱水と給水器から第一の給水管を介して送出される水とを混合して温水を生成する第一の温水器と、前記熱水発生装置から第二の熱水送出管を介して送出される熱水と給水器から第二の給水管を介して送出される水とを混合して温水を生成する第二の温水器とを備え、前記第一の熱水送出管には第一の熱水流量調節弁が設けられ、前記第一の給水管には第一の水流量調節弁が設けられ、前記第二の熱水送出管には第二の熱水流量調節弁が設けられ、前記第二の給水管には第二の水流量調節弁が設けられ、前記第一の温水器は第一の給温水管を介して前記嫌気槽に接続され、前記第二の温水器は第二の給温水管を介して前記好気槽に接続され、前記嫌気槽には嫌気槽温度センサが設けられ、前記好気槽には好気槽温度センサが設けられ、温度制御部は、前記嫌気槽温度センサが検知する前記嫌気槽内の汚水の温度が嫌気性細菌の繁殖のための最適温度範囲の下限値より低い場合には、前記第一の熱水流量調節弁と前記第一の水流量調節弁とを制御して、前記嫌気槽内の汚水の温度が、嫌気性細菌の繁殖に最適な温度となるように前記第一の温水器から前記嫌気槽へ温水を供給するとともに、前記好気槽温度センサが検知する前記好気槽内の汚水の温度が好気性細菌の繁殖のための最適温度範囲の下限値より低い場合には、前記第二の熱水流量調節弁と前記第二の水流量調節弁とを制御して、前記好気槽内の汚水の温度が、好気性細菌の繁殖に最適な温度となるように前記第二の温水器から前記好気槽へ温水を供給することを特徴とする構成とすることが好ましい。
嫌気槽と好気槽のいずれも、その中で生息する細菌の繁殖に最適な温度範囲があるため、嫌気槽と好気槽とに対して温水を供給して、嫌気槽と好気槽の内部の温度を最適温度範囲とすることにより、嫌気槽と好気槽での汚水浄化能力を高めて、汚水処理速度を高いレベルで維持することができる。しかも、供給される温水を生成するために使用されるメタンは、メタン発酵装置によって汚水中の汚泥を分解して得られたものであり、他の新たなエネルギー資源を用いることなく、汚泥中の有機物から得られたエネルギーを用いているため、省エネルギーの観点からも優れている。
本発明の汚水浄化装置においては、前記好気槽によって浄化された処理水に対して希釈水を供給して前記処理水の温度低下と希釈を行う希釈槽が備えられていることが好ましい。
処理水に対して希釈水が供給されて混合された後で自然界に排出されるため、温排水となることもなく、自然環境保護に適合した汚水浄化装置を構築することができる。
本発明の汚水浄化装置においては、前記メタン発酵装置にはpHセンサとアンモニア濃度センサとが設けられ、前記メタン発酵装置にはアルカリ液供給部と水供給部とが接続され、前記BOD制御部は、前記メタン発酵装置内での汚水のpHとアンモニア濃度がメタン菌繁殖のための適正値となるように、前記アルカリ液供給部からアルカリ液を前記メタン発酵装置に送出するとともに、前記水供給部から水を前記メタン発酵装置に送出する構成とすることが好ましい。
メタン発酵装置におけるメタン菌による汚水のBOD除去率は、メタン発酵装置内でのpHやアンモニア濃度に影響を受ける。BOD値の高い汚水が大量に、あるいは長時間に亘って流れ込むと、嫌気槽での浄化に大きな負担がかかるばかりでなく、メタン発酵装置でのBOD除去も効率的に進行しない状況が生じる。このような状況が発生することを考慮して、メタン発酵装置でのpHとアンモニア濃度をメタン菌繁殖のための適正値にすることで、メタン発酵装置での高いBOD除去率を維持することができ、メタン発酵装置で生成された消化液を、好気槽や処理水流出管に流出させることが可能となり、嫌気槽での浄化の負担を軽減することができる。
本発明によると、発生する汚水の量や汚水濃度が変動しても、汚水浄化装置を構成する特定の部位に大きな浄化負荷がかかることを防止して、汚水処理速度を適正な水準に維持することが可能な汚水浄化装置を実現することができる。
本発明の第1実施形態に係る汚水浄化装置の構成を示す図である。 汚水浄化装置におけるBOD制御の系統図である。 汚水浄化装置におけるメタン発酵装置のBOD除去率制御の系統図である。 本発明の第2実施形態に係る汚水浄化装置の構成を示す図である。 嫌気槽での汚水浄化のための温度管理の制御系統図である。 好気槽での汚水浄化のための温度管理の制御系統図である。 希釈槽から排出される処理水の温度管理のための制御系統図である。
以下に、本発明の汚水浄化装置を、その実施形態に基づいて説明する。
図1に、本発明の第1実施形態に係る汚水浄化装置の構成を示す。
図1において、屋外に配置された貯水タンク1の上方には、雨水を供給する雨水供給管2が配置され、雨水供給管2から流入する雨水が貯水タンク1内に蓄積されている。貯水タンク1には配水管3を介して給水器4が接続され、貯水タンク1に蓄積された雨水が給水器4に供給される。この給水器4にはまた、水道水供給部5と地下水供給部6とが水道水供給管7、地下水供給管8を介して接続されており、水道水または地下水が必要に応じて給水器4に供給される。
貯水タンク1には、貯水残量を検出する貯水残量センサ9が設置されており、この貯水残量センサ9は、給水器4に設置された給水制御部10と電気的に接続されている。また、給水器4に設置された給水制御部10は、室内に設置された給水ボタン11と電気的に接続されている。
本発明においては、節水の観点から、雨水供給管2から供給される雨水を優先的に使用するが、降水量が少ないときなど、雨水の備蓄が不十分な場合に備えて、貯水残量センサ9からの情報に基づいて、必要に応じて水道水または地下水が使用される。使用する水の選択は、基本的には貯水残量センサ9と給水制御部10とによって自動的に行われるが、室内に設置された給水ボタン11によって、手動によって使用する水の種類を選択することもできる。
給水器4は配水管12を介して水流量調節部13に接続されており、給水器4から水流量調節部13に供給された水は、水流量調節部13に接続された複数の分岐管である分岐管14、分岐管15、分岐管16によって、配分される水の分配比が考慮されて配分される。この水の配分については後に詳述する。
水流量調節部13と分岐管14との接続部には電磁弁31が設けられ、水流量調節部13と分岐管15との接続部には電磁弁32が設けられ、水流量調節部13と分岐管16との接続部には電磁弁33が設けられている。
水流量調節部13における水流量の調節は、分岐制御部17によってなされ、この分岐制御部17には、電磁弁31、電磁弁32、電磁弁33のそれぞれと、後述する汚水濃度センサ18、処理水濃度センサ19、希釈槽濃度センサ27のそれぞれが電気的に接続されている。
浄化槽は、嫌気槽21と好気槽22とから形成されており、嫌気槽21には嫌気性微生物が充填され、好気槽22には好気性微生物が充填されている。嫌気槽21には汚水流入管23が連結され、嫌気槽21に対して生活排水等の汚水が流入する。また、好気槽22の入口側には、好気槽22に流入する汚水の濃度を検出する汚水濃度センサ18が設置され、好気槽22の出口側には、好気槽22から流出する処理水の濃度を検出する処理水濃度センサ19が設置されている。汚水濃度センサ18を設ける位置は、好気槽22内での汚水の流れを考慮して、好気槽22の上方寄りとするのが好ましい。
分岐管14は好気槽22に接続されており、好気槽22の希釈が必要な場合には、分岐管14を介して水流量調節部13から水が供給され、この水は好気槽22に流入して汚水を希釈する。好気槽22には処理水流出管24が接続され、この処理水流出管24の途中に、好気槽22側から見て噴霧槽25、希釈槽26の順に配置されている。噴霧槽25には分岐管15が接続され、また、希釈槽26には分岐管16が接続されており、噴霧槽25と希釈槽26に水流量調節部13から水が供給される。また、希釈槽26には別途雨樋を設けて、雨水が直接希釈槽26に流入する構造としてもよい。
浄化槽ではまず、嫌気槽21で汚水中の浮遊物が取り除かれるとともに、嫌気性微生物によって汚水に含まれる有機物が除去される。
浄化槽においては、生活排水中に含まれる窒素を除去することが必要であるが、排水中に含まれる窒素の多くは、屎尿などに含まれるアンモニアがイオン化したアンモニウムイオンとして存在しており、このアンモニウムイオンを酸化することによって、亜硝酸イオンを経て硝酸イオンに変換する。この硝化の過程は好気槽22において行われる。
しかし、好気槽22に流入する汚水の濃度が高すぎると、好気槽22に充填されている好気性微生物が異常繁殖し、その結果、好気槽22内のBOD(生物化学的酸素要求量)が高くなる。BODは、微生物が水中の有機物を分解するときに消費する酸素量であり、この消費する酸素量の増大によって好気槽22内が酸欠状態となり、好気性微生物が死滅する。また、好気槽22に流入する汚水に、好気性微生物の繁殖に適さない洗剤等が多く含まれている場合には、やはり好気性微生物が死滅する。
そのため、汚水濃度センサ18が、好気槽22に流入する汚水の濃度が基準値より高いことを検知したときは、分岐制御部17は汚水濃度センサ18によって検知される汚水濃度に基づいて、好気槽22内での細菌の繁殖が最適となるように、電磁弁31を開いて、水流量調節部13から分岐管14を介して好気槽22に水を送出する。送出される水の水量は、汚水濃度センサ18によって検知される汚水濃度と汚水濃度の基準値との差によって調整され、この差が大きい程大量の水が送出され、汚水濃度センサ18によって検知される汚水濃度が汚水濃度の基準値と等しくなったときに、電磁弁31が閉じられて水流量調節部13からの水の送出が停止される。電磁弁31の開閉は、汚水濃度センサ18の検知濃度に応じた電圧が分岐制御部17に出力されることによってなされる。
一方、BOD値が低下しすぎると、微生物のえさが減少することとなって微生物が減少し、汚水浄化能力が低下するため、微生物の適正な繁殖がなされる程度のBOD値を保つことが必要である。そのため、汚水濃度センサ18が、好気槽22内の汚水の濃度が基準値より低いことを感知したときは、初めから電磁弁31が閉じられて水流量調節部13からの水の送出はなされない。
上述した分岐制御部17の機能によって、好気槽22内は常に好気性微生物が好適に繁殖できる状態が維持され、これにより汚水処理能力が高いレベルで維持される。
硝化の過程によって好気槽22内で生成された硝酸イオンは、硝化液として嫌気槽21に戻され、嫌気槽21内で還元されて窒素分子となり、窒素分子は大気中に放散されて排水中から分離する。
分岐制御部17はまた、処理水濃度センサ19によって検知される処理水濃度に基づいて、好気槽22での浄化後に流出する処理水の希釈のために、電磁弁32の開閉を制御することにより、水流量調節部13から分岐管15を介して処理水流出管24に送出される水量を調整する機能を有している。
これは、上述したように、好気槽22でのBOD値は、微生物の繁殖を最適に維持する観点から一定の基準値以上に保たれる必要があるが、好気槽22での浄化後に流出する処理水のBOD値と、自然界に排出される排水に求められるBOD値との間にはギャップがあり、自然界に排出するのに適する排水とするためには、好気槽22から流出する処理水をさらに希釈してBOD値を下げることが必要であるからである。
水流量調節部13から分岐管15を介して送出される水は、処理水流出管24に直接流入して処理水を希釈するようにしてもよいが、図1においては、処理水流出管24と分岐管15との間に噴霧槽25を設けている。浄化槽20によって処理された処理水は、処理水流出管24から排出されるが、この処理水流出管24には噴霧槽25が設けられており、噴霧槽25には分岐管15が連結されている。
処理水濃度が基準値よりも高いことを処理水濃度センサ19が検知すると、分岐制御部17は、処理水濃度センサ19によって検知される処理水濃度に基づいて、好気槽22での浄化後に流出する処理水の希釈のために、電磁弁32を開いて、水流量調節部13から分岐管15を介して噴霧槽25に水を送出する。噴霧槽25は処理水流出管24を流れる処理水に対して霧状の水を吹き付ける。電磁弁32の開閉は、処理水濃度センサ19の検知濃度に応じた電圧が分岐制御部17に出力されることによってなされる。
送出される水の水量は、処理水濃度センサ19によって検知される処理水濃度と自然界に放出される排水の基準値との差によって調整され、この差が大きい程大量の水が送出される。自然界に排出される排水に求められるBOD値は5ppm程度であり、処理水のBOD値がこのレベルに達するまで、段階的または連続的に送出される水量を変えて処理水を希釈する。
処理水を希釈するにあたって、希釈後の処理水の濃度ができる限り均等であることが好ましいが、噴霧槽25は霧状の水を吹き付けるため、処理水の特定の領域だけが希釈されることがなく、処理水の濃度を均等にする点において有利である。噴霧槽25の形態としては、例えば、ノズル形状の噴霧口を有し、この噴霧口から所定の圧力で水が噴出するようにすればよい。また、噴霧槽25内において処理水流出管24に沿って噴霧口を複数設けるように配置すると、処理水流出管24を所定の流速で流れる処理水を希釈するにあたって、噴霧による希釈のタイミングを失することを抑制できる。
処理水流出管24にはさらに希釈槽26を設けることができ、噴霧槽25から噴出する霧状の水によって希釈された処理水は、この希釈槽26に一時的に蓄えられる。希釈槽26内に希釈槽濃度センサ27が設けられており、希釈槽26には水流量調節部13から送出される水を供給する分岐管16が接続され、水流量調節部13と分岐管16との接続部には電磁弁33が設けられている。
分岐制御部17は希釈槽濃度センサ27によって検知される希釈槽26内の濃度に基づいて、電磁弁33の開閉を制御することにより、水流量調節部13から分岐管16を介して希釈槽26に送出される水量を調整する。電磁弁33の開閉は、希釈槽濃度センサ27の検知濃度に応じた電圧が分岐制御部17に出力されることによってなされる。送出される水の水量は、希釈槽濃度センサ27によって検知される希釈槽26内の濃度と自然界に放出される排水の基準値との差によって調整され、この差が大きい程大量の水が送出される。
希釈槽26内の濃度が自然界に放出される排水の基準値と等しくなったときは、原則として電磁弁33が閉じられて水の送出が停止するが、貯水されている水量が充分である場合には、さらに水を送出して可能な限り希釈することも可能である。このようにして、噴霧槽25で希釈された後の処理水は、希釈槽26においてさらに希釈され、その上澄み液が放出される。また、希釈槽26に別途雨樋を設けて雨水が直接希釈槽26に流入する構造とすることによって、雨水を直接利用することもできる。
上述したように、汚水濃度センサ18、処理水濃度センサ19、希釈槽濃度センサ27によって検知されるそれぞれの濃度に基づいて、電磁弁31、電磁弁32、電磁弁33の開閉を制御し、分岐管14、分岐管15、分岐管16を介して水を供給しており、その結果、それぞれの供給目的に応じて水流量調節部13から配分される水の分配比が無駄なく決定される構成となっている。
このように、好気槽22内の細菌の繁殖状態を最適化するために必要な水を最小限使用して、細菌による浄化機能を最高レベルで高めて浄化しているため、浄化の効果は最大となる一方で、細菌による浄化ではなおも残留する汚水成分を希釈しているため、使用する水の総和としては最小限の使用量で、自然界に放出できるレベルのきれいな排水を得ることができ、節水と自然環境の保護の両面において大きな効果がある。
嫌気槽21には汚水送出管40を介してメタン発酵装置41が接続されており、汚水送出管40には電磁弁42が設けられている。汚水送出管40は、汚水流入管23を分岐させて形成し、メタン発酵装置41に接続させてもよい。メタン発酵装置41には、メタン発酵装置内BODセンサ43とメタンガス排出口44が設けられている。メタン発酵装置41では、汚水送出管40を介して嫌気槽21または汚水流入管23から流入した汚水中の汚泥が、メタン菌によって分解されてメタンが発生し、メタンはメタンガス排出口44から排出されるとともに、メタン発生によって汚水濃度が低下して、メタン発酵装置41内では、水質の汚濁の指標であるBODが低減される。このように、メタン発酵装置41は、メタン発生と、汚水濃度の低下すなわちBOD低減の2つの役割を担っている。
電磁弁42の開閉のタイミングは、状況に応じて適宜定めることができ、例えば、家庭用に使用する場合には、1日に1回の割合で時間を定めて開いて、汚水をメタン発酵装置41に流すようにすることができる。
メタン発酵装置41には、メタン菌によって汚水の原水よりもBOD値を低減された消化液を送出する消化液送出管45が取り付けらており、この消化液送出管45の先端側、すなわちメタン発酵装置41に接続されている側とは反対側では、嫌気槽流入管46、好気槽流入管47、処理水側流入管48の3つに分岐している。嫌気槽流入管46は嫌気槽21に接続され、好気槽流入管47は好気槽22に接続され、処理水側流入管48は処理水流出管24に接続されている。嫌気槽流入管46には電磁弁49が設けられ、好気槽流入管47には電磁弁50が設けられ、処理水側流入管48には電磁弁51が設けられている。
嫌気槽21には嫌気槽BODセンサ52が設けられ、好気槽22には好気槽BODセンサ53が設けられている。BOD制御部60には、電磁弁49、電磁弁50、電磁弁51のそれぞれと、メタン発酵装置内BODセンサ43、嫌気槽BODセンサ52、好気槽BODセンサ53のそれぞれが電気的に接続されている。なお、嫌気槽21内では、汚水中の浮遊物が上方で浮遊しているため、汚水のBODを正確に検知するためには、嫌気槽BODセンサ52は嫌気槽21中の下方寄りに設けるのが好ましい。
メタン発酵装置41内には、pHセンサ61、アンモニア濃度センサ62が設けられており、メタン発酵装置41に対して、アルカリ液供給部63がアルカリ液供給管64を介して接続され、水供給部65が水供給管66を介して接続されている。アルカリ液供給管64には電磁弁67が設けられ、水供給管66には電磁弁68が設けられている。
BOD制御部60には、電磁弁67、電磁弁68のそれぞれと、pHセンサ61、アンモニア濃度センサ62のそれぞれが電気的に接続されている。
また、必要に応じて、メタン発酵装置41に対して栄養水供給部、界面活性剤供給部を接続して、メタン発酵装置41に栄養水や界面活性剤を供給してメタン菌の活動を活性化することもできる。
図2に、図1に示す汚水浄化装置におけるBOD制御の系統図を示す。
図2に示すように、メタン発酵装置内BODセンサ43によって検知された消化液のBOD情報は、BOD制御部60に送信され、BOD制御部60は、消化液のBOD情報に基づいて、電磁弁49、電磁弁50、電磁弁51のいずれか一つを開いて、消化液を嫌気槽21、好気槽22、処理水排出管24のいずれかに流出させる。
一例として、嫌気槽21での汚水のBOD基準値を80ppm以上、好気槽22での汚水のBOD基準値を20ppm以上80ppm未満、処理水排水管24での処理水のBOD基準値を20ppm未満として、それぞれのBOD基準値を設定した場合について説明する。
メタン発酵装置41内に送り込まれる生活排水または工場排水の原水のBODが400ppmであり、メタン発酵装置41のBOD除去率が50パーセントの場合、メタン発酵装置41から排水される消化液のBODは200ppmとなる。この消化液のBOD値は、好気槽22でのBOD基準値の上限を超えているが、BOD制御部60は、好気槽BODセンサ53が検知する好気槽22内のBOD情報に基づいて、消化液の送り先を判断する。
好気槽BODセンサ53のBOD値が80ppm以上となっている場合には、電磁弁49を開いて消化液を嫌気槽21に供給する。これは、好気槽22内でのBODがすでに基準値の上限を超えており、これ以上好気槽22内でのBOD値を高める必要がないケースであり、このときは、消化液は嫌気槽21に送られて、嫌気槽21によって消化液の処理がなされる。
一方、好気槽BODセンサ53のBOD値が、好気槽22のBOD基準値の上限と下限との中間値である、50ppm以下の場合には、電磁弁50を開いて、消化液は好気槽BODセンサ53のBOD値が80ppmになるまで好気槽22に供給され、好気槽BODセンサ53のBOD値が80ppmを超えたら、電磁弁50を閉じ、電磁弁49を開いて、消化液は嫌気槽21に供給される。これは、好気槽22内のBOD値が基準値の上限に達しておらず、好気槽22内の好気性細菌の繁殖を促進するために、好気槽22内のBOD値が基準値の上限に達するまで、消化液を好気槽22に流すケースであり、これによって、好気槽22内で消化液の処理がなされるとともに、好気槽22内のBOD値が基準値の上限に達した後は、嫌気槽21によって消化液の処理がなされる。
次に、メタン発酵装置41内に送り込まれる生活排水または工場排水の原水が400ppmであり、メタン発酵装置41のBOD除去率が90パーセントの場合には、メタン発酵装置41から排水される消化液のBODは40ppmとなる。このときは、電磁弁50を開いて、消化液は好気槽22に供給される。これは、消化液のBODが、好気槽22のBOD基準値の上限を超えていないケースであり、好気槽22内で消化液の処理がなされる。
次に、メタン発酵装置41内に送り込まれる生活排水または工場排水の原水が400ppmであり、メタン発酵装置41のBOD除去率が95パーセントの場合には、メタン発酵装置41から排水される消化液のBODは20ppmとなる。このときは、電磁弁51を開いて、消化液は処理水流出管24に供給される。これは、消化液のBODが、好気槽22のBOD基準値の下限を下回っており、メタン発酵装置41内での処理ですでに、処理水排水管24に流出できるレベルにまで処理が進んでいるケースである。
このように、汚水はメタン発酵装置41によってBOD値を低減され、BOD値を低減された消化液は、そのBOD値のレベルに応じて、嫌気槽21、好気槽22、処理水排出管24のいずれかに流出する構成となっている。
消化液の流出先は、基本的には、メタン発酵装置内BODセンサ43によって検知された消化液のBOD値と、好気槽22のBOD基準値の上限および下限との比較によってなされる。消化液のBOD値が好気槽22のBOD基準値の上限より大きいときは、消化液は嫌気槽21へ流出し、消化液のBOD値が好気槽22のBOD基準値の上限より小さく、好気槽22のBOD基準値の下限より大きいときは、消化液は好気槽22へ流出し、消化液のBOD値が好気槽22のBOD基準値の下限より小さいときは、消化液は処理水排水管へ流出する。
ただし、好気槽22内の好気性細菌の繁殖を促進するために、好気槽BODセンサ53が検知する好気槽22内の汚水のBOD値が、好気槽22のBOD基準値の上限と下限との中間値以下の場合であって、消化液のBOD値が好気槽22のBOD基準値の上限より大きいときは、消化液を好気槽22に流出させ、好気槽BODセンサ53が検知する好気槽22内の汚水のBOD値が好気槽22のBOD基準値の上限を超えた時点で、消化液を嫌気槽21へ流出させてもよい。
本発明においては、メタン発酵装置41で発生する消化液のBOD値のレベルによって、消化液の流出先を振り分けているため、汚水の量や汚水濃度が変動しても、汚水浄化装置を構成する特定の部位に大きな浄化負荷がかかって汚水浄化能力が低下することを防止できる。そのため、汚水処理速度を適正な水準に維持することができる。
図3に、図1に示す汚水浄化装置におけるメタン発酵装置のBOD除去率制御の系統図を示す。
pHセンサ61によって検知されるメタン発酵装置41内の汚水のpH情報は、BOD制御部60に送信され、メタン発酵装置41内の汚水のpHがpH基準値を下回っているときは、BOD制御部60は電磁弁67を開いて、アルカリ液をメタン発酵装置41に供給して、pHを適正値にする。アルカリ液として苛性ソーダや石灰水等を用いることができる。
また、アンモニア濃度センサ62によって検知されるメタン発酵装置41内の汚水のアンモニア濃度情報は、BOD制御部60に送信され、メタン発酵装置41内の汚水のアンモニア濃度がアンモニア濃度基準値を超えているときは、BOD制御部60は電磁弁68を開いて、水をメタン発酵装置41に供給して、アンモニア濃度を低下させる。
メタン発酵装置41におけるメタン菌による汚水のBOD除去率は、メタン発酵装置41内でのpHやアンモニア濃度に影響を受ける。メタン菌は、pHが6.5〜8.5程度の領域でないと、発酵分解能力が著しく低下するため、メタン発酵装置41においては、pHを6.5〜8.5程度の領域に保つことが好ましい。また、アンモニア濃度は2000mg/L以下とすることが好ましい。
BOD値の高い汚水が大量に、あるいは長時間に亘って流れ込むと、嫌気槽21での浄化に大きな負担がかかるばかりでなく、メタン発酵装置41でのBOD除去も効率的に進行しない状況が生じる。このような場合には、メタン発酵装置41でのpHとアンモニア濃度をメタン菌繁殖のための適正値にすることで、メタン発酵装置41でのBOD除去を促進させることが有効である。
一例として、pH基準値を6.5とすると、メタン発酵装置41内の汚水のpHがこのpH基準値を下回っているときは、BOD制御部60は電磁弁67を開いて、アルカリ液をメタン発酵装置41に供給して、pHを適正値にする。また、アンモニア濃度基準値を2000mg/Lとすると、メタン発酵装置41内の汚水のアンモニア濃度がこのアンモニア濃度基準値を超えているときは、BOD制御部60は電磁弁68を開いて、水をメタン発酵装置41に供給して、アンモニア濃度を低下させる。
この操作によって、メタン発酵装置41での高いBOD除去率を維持することができ、メタン発酵装置41で生成された消化液を、嫌気槽22ではなく、好気槽22や処理水流出管24に流出させることが可能となり、嫌気槽21での浄化の負担を軽減することができる。特に、汚水濃度の変動が大きい場合に、汚水処理能力の平準化を行って、処理速度を速めることができる点において有利である。
なお、嫌気槽21と好気槽22における浄化作用の向上のため、嫌気槽21と好気槽22にも同様のpHセンサ、アンモニア濃度センサを設けて、pHとアンモニア濃度の制御を行うことも可能である。例えば、嫌気槽21内での脱窒反応についての最適pHは7.0前後であり、好気槽22での硝化反応についての最適pHは7.0から8.0であるので、いずれの場合もpHを7.0程度に維持できるように操作するとよい。また、嫌気槽21でのアンモニア濃度は1000mg/L以下とするのがよく、好気槽22でのアンモニア濃度は150mg/L以下とするのがよい。
図4に、本発明の第2実施形態に係る汚水浄化装置の構成を示す。
本実施形態においては、第1実施形態と重複する部分があるため、以下の説明においては、重複部分については省略する。
給水器4には、給水管70を介して温水器71が接続されており、給水管70には、水流量調節弁72が設けられている。温水器71には給温水管75を介して好気槽22が接続され、給温水管75には温水流量調節弁74が設けられている。また、温水器71には、温水器温度センサ73が備えられている。
メタン発酵装置41のメタンガス排出口44には、ガス管80を介してガスメータ81が接続され、ガス管82を介してガスホルダー83に接続されてメタンガスが蓄積される。さらに、ガス管84を介して圧力調整センサ85に接続されてガス圧が調整される。その後、ガス管86を介して接続された脱硫塔87で脱硫されて、ガス管88を介して熱水発生装置89へ送られる。
熱水発生装置89には、熱水送出管90を介して温水器92が接続され、熱水送出管90には熱水流量調節弁91が設けられている。また、熱水発生装置89には、熱水送出管93を介して温水器71が接続され、熱水送出管93には熱水流量調節弁94が設けられている。
給水器4には給水管95を介して温水器92が接続され、給水管95には、水流量調節弁96が設けられている。温水器92には給温水管97を介して嫌気槽21が接続され、給温水管97には温水流量調節弁98が設けられている。また、温水器92には給温水管99を介してメタン発酵装置41が接続されている。温水器92から給温水管99を介して送られる温水は、メタン発酵装置41の保温のために用いられる。
温水器92には温水器温度センサ100が備えられ、嫌気槽21には嫌気槽温度センサ101が備えられ、好気槽22には好気槽温度センサ102が備えられている。また、希釈槽26には希釈槽温度センサ103が設けられている。
温度制御部110には、水流量調節弁72、熱水流量調節弁91、熱水流量調節弁94、水流量調節弁96、温水流量調節弁74、温水流量調節弁98のそれぞれと、温水器温度センサ73、温水器温度センサ100、嫌気槽温度センサ101、好気槽温度センサ102のそれぞれが電気的に接続されている。また、温度制御部110には、電磁弁32、電磁弁33と、希釈槽温度センサ103が電気的に接続されている。
図5、図6、図7に、図4に示す汚水浄化装置における温度制御の系統図を示す。
図5は、嫌気槽21での汚水浄化のための温度管理の制御系統図であり、嫌気槽温度センサ101によって検知された嫌気槽21の温度情報は、温度制御部110に送信され、温度制御部110は、嫌気槽21の温度情報に基づいて、熱水流量調節弁91と水流量調節弁96とを制御する。
嫌気槽内で生息する嫌気性細菌である脱窒菌の繁殖に最適な温度範囲は、25℃以上30℃以下であり、嫌気槽21中の汚水の温度がこの最適温度範囲の下限値より低い場合には、熱水流量調節弁91を通過する熱水流量と、水流量調節弁96を通過する水流量とを調節して、温水器92に温水を生成し、この温水を嫌気槽21に送出して、嫌気槽21中の汚水の温度が最適な温度範囲となるようにする。
具体的に一例を示すと、嫌気槽21内での最適温度基準値を、最適温度範囲の中心温度である27.5℃に設定すると、嫌気槽温度センサ101によって検知された温度が、最適温度範囲の下限値25℃を下回って、x℃である場合には、最適温度基準値と検知された温度との差(27.5−x)に応じて、段階的または連続的に送出される温水量を変えて嫌気槽21内の温度を上昇させる。
温水器92に生成される温水の温度は、温水が嫌気槽21内の汚水と混合されたときに最適温度範囲内となるようにするため、この最適温度範囲よりも高温となるように設定されている。この温度設定は、嫌気槽温度センサ101によって検知された嫌気槽21の温度によって適宜定められる。この温度設定を実現するために、温水器温度センサ100によって検知された温水器92の温度情報は、温度制御部110に送出され、熱水流量調節弁91を通過する熱水流量と、水流量調節弁96を通過する水流量とを調節して、温水器92に生成される温水の温度を設定温度に一致させる。生成された温水は、温水流量調節弁98を開いて嫌気槽21に流れ込む。
上記の操作により、嫌気槽21の温度が最適な温度範囲に達すると、温水流量調節弁98を閉じて、嫌気槽21への温水の供給を停止する。
図6は、好気槽22での汚水浄化のための温度管理の制御系統図であり、好気槽温度センサ102によって検知された好気槽22の温度情報は、温度制御部110に送信され、温度制御部110は、好気槽22の温度情報に基づいて、熱水流量調節弁94と水流量調節弁72とを制御する。
好気槽内で生息する好気性細菌である、亜硝酸菌や硝酸菌等の硝化菌の繁殖に最適な温度範囲は、30℃以上40℃以下であり、好気槽22中の汚水の温度がこの最適温度範囲の下限値より低い場合には、熱水流量調節弁94を通過する熱水流量と、水流量調節弁72を通過する水流量とを調節して、温水器71に温水を生成し、この温水を好気槽22に送出して、好気槽22中の汚水の温度が最適な温度範囲となるようにする。
具体的に一例を示すと、好気槽22内での最適温度基準値を、最適温度範囲の中心温度である35℃に設定すると、好気槽温度センサ102によって検知された温度が、最適温度範囲の下限値30℃を下回って、y℃である場合には、最適温度基準値と検知された温度との差(35−y)に応じて、段階的または連続的に送出される温水量を変えて好気槽22内の温度を上昇させる。
温水器71に生成される温水の温度は、温水が好気槽22内の汚水と混合されたときに最適温度範囲内となるようにするため、この最適温度範囲よりも高温となるように設定されている。この温度設定は、好気槽温度センサ102によって検知された好気槽22の温度によって適宜定められる。この温度設定を実現するために、温水器温度センサ73によって検知された温水器71の温度情報は、温度制御部110に送出され、熱水流量調節弁94を通過する熱水流量と、水流量調節弁72を通過する水流量とを調節して、温水器71に生成される温水の温度を設定温度に一致させる。生成された温水は、温水流量調節弁74を開いて好気槽22に流れ込む。
上記の操作により、好気槽22の温度が最適な温度範囲に達すると、温水流量調節弁74を閉じて、好気槽22への温水の供給を停止する。
図7は、希釈槽26から排出される処理水の温度管理のための制御系統図であり、希釈槽温度センサ103によって検知された希釈槽26内の処理水の温度情報は、温度制御部110に送信され、温度制御部110は、希釈槽26内の処理水の温度情報に基づいて、電磁弁33と電磁弁32とを制御する。
電磁弁33を開くことによって、水流量調節部13から水が希釈槽26に供給されるため、希釈槽温度センサ103によって検知される温度が常温となるまで、好気槽22で加温されて浄化された処理水の温度を低下させる。また、補助的に、電磁弁32を開いて、噴霧槽25へ水を供給して、処理水の温度を低下させることができる。
希釈槽温度センサ103によって検知される温度が常温となった時点で、電磁弁32、電磁弁33を閉じて、水流量調節部13から水の供給が停止されるようにしてもよいが、水流量調節部13からの水の供給は、前述したように、処理水の希釈の役割を持っているため、希釈のための水準を満たすまで水の供給を続けるようにすることが好ましい。
上述した温度制御により、嫌気槽21、好気槽22での汚水浄化速度を速めることができ、より少量の希釈水で効率的な浄化を実現することができるとともに、処理水に対して水流量調節部13から送出される水が混合されて自然界に排出されるため、温排水となることもなく、自然環境保護に適合した汚水浄化装置となっている。さらに、嫌気槽21、好気槽22での温度管理に必要なエネルギーは、汚泥を分解して生成されたメタンから得ており、汚水浄化の過程で得られたエネルギーを汚水処理能力の向上に利用しているため、循環型で省エネルギーに寄与する汚水浄化装置を構築しているということができる。
本発明は、発生する汚水の量や汚水濃度が変動しても、汚水浄化装置を構成する特定の部位に大きな負荷がかかることを防止して、汚水処理速度を適正な水準に維持することが可能な汚水浄化装置として利用することができる。
1 貯水タンク
2 雨水供給管
3 配水管
4 給水器
5 水道水供給部
6 地下水供給部
7 水道水供給管
8 地下水供給管
9 貯水残量センサ
10 給水制御部
11 給水ボタン
12 配水管
13 水流量調節部
14 分岐管
15 分岐管
16 分岐管
17 分岐制御部
18 汚水濃度センサ
19 処理水濃度センサ
21 嫌気槽
22 好気槽
23 汚水流入管
24 処理水流出管
25 噴霧槽
26 希釈槽
27 希釈槽濃度センサ
31 電磁弁
32 電磁弁
33 電磁弁
40 汚水送出管
41 メタン発酵装置
42 電磁弁
43 メタン発酵装置内BODセンサ
44 メタンガス排出口
45 消化液送出管
46 嫌気槽流入管
47 好気槽流入管
48 処理水側流入管
49 電磁弁
50 電磁弁
51 電磁弁
52 嫌気槽BODセンサ
53 好気槽BODセンサ
60 BOD制御部
61 pHセンサ
62 アンモニア濃度センサ
63 アルカリ液供給部
64 アルカリ液供給管
65 水供給部
66 水供給管
67 電磁弁
68 電磁弁
70 給水管
71 温水器
72 水流量調節弁
73 温水器温度センサ
74 温水流量調節弁
75 給温水管
80、82、84、86、88 ガス管
81 ガスメータ
83 ガスホルダー
85 圧力調整センサ
87 脱硫塔
89 熱水発生装置
90 熱水送出管
91 熱水流量調節弁
92 温水器
93 熱水送出管
94 熱水流量調節弁
95 給水管
96 水流量調節弁
97 給温水管
98 温水流量調節弁
99 給温水管
100 温水器温度センサ
101 嫌気槽温度センサ
102 好気槽温度センサ
103 希釈槽温度センサ

Claims (4)

  1. 汚水流入管から流入する汚水を浄化する嫌気槽と、前記嫌気槽に接続された好気槽と、前記好気槽によって浄化された処理水を排出する処理水排出管と、汚水中の汚泥をメタン菌により分解してメタンを発生して汚水のBOD値を低減するメタン発酵装置とを備え、
    前記嫌気槽または前記汚水流入管は、前記嫌気槽または前記汚水流入管から流入した汚水を前記メタン発酵装置に流入させる汚水送出管を介して前記メタン発酵装置に接続され、前記メタン発酵装置には、メタン菌によって汚水の原水よりもBOD値を低減された消化液を送出する消化液送出管が接続され、前記消化液送出管は、嫌気槽流入管、好気槽流入管、処理水側流入管の3つに分岐し、前記嫌気槽流入管は前記嫌気槽に接続され、前記好気槽流入管は前記好気槽に接続され、前記処理水側流入管は前記処理水排出管に接続され、
    前記嫌気槽流入管には第一の電磁弁が設けられ、前記好気槽流入管には第二の電磁弁が設けられ、前記処理水側流入管には第三の電磁弁が設けられ、
    BOD制御部は、メタン発酵装置内BODセンサが検知する前記消化液のBOD値と、好気槽のBOD基準値の上限および下限との比較によって、消化液の流出先を決定し、消化液のBOD値が好気槽のBOD基準値の上限より大きいときは、前記第一の電磁弁を開いて消化液を嫌気槽へ流出させ、消化液のBOD値が好気槽のBOD基準値の上限より小さく、好気槽のBOD基準値の下限より大きいときは、前記第二の電磁弁を開いて消化液を好気槽へ流出させ、消化液のBOD値が好気槽のBOD基準値の下限より小さいときは、前記第三の電磁弁を開いて消化液を処理水排水管へ流出させることを特徴とする汚水浄化装置。
  2. 前記メタン発酵装置から送出されるメタンによって熱水を生成する熱水発生装置と、前記熱水発生装置から第一の熱水送出管を介して送出される熱水と給水器から第一の給水管を介して送出される水とを混合して温水を生成する第一の温水器と、前記熱水発生装置から第二の熱水送出管を介して送出される熱水と給水器から第二の給水管を介して送出される水とを混合して温水を生成する第二の温水器とを備え、
    前記第一の熱水送出管には第一の熱水流量調節弁が設けられ、前記第一の給水管には第一の水流量調節弁が設けられ、前記第二の熱水送出管には第二の熱水流量調節弁が設けられ、前記第二の給水管には第二の水流量調節弁が設けられ、
    前記第一の温水器は第一の給温水管を介して前記嫌気槽に接続され、前記第二の温水器は第二の給温水管を介して前記好気槽に接続され、前記嫌気槽には嫌気槽温度センサが設けられ、前記好気槽には好気槽温度センサが設けられ、
    温度制御部は、前記嫌気槽温度センサが検知する前記嫌気槽内の汚水の温度が嫌気性細菌の繁殖のための最適温度範囲の下限値より低い場合には、前記第一の熱水流量調節弁と前記第一の水流量調節弁とを制御して、前記嫌気槽内の汚水の温度が、嫌気性細菌の繁殖に最適な温度となるように前記第一の温水器から前記嫌気槽へ温水を供給するとともに、前記好気槽温度センサが検知する前記好気槽内の汚水の温度が好気性細菌の繁殖のための最適温度範囲の下限値より低い場合には、前記第二の熱水流量調節弁と前記第二の水流量調節弁とを制御して、前記好気槽内の汚水の温度が、好気性細菌の繁殖に最適な温度となるように前記第二の温水器から前記好気槽へ温水を供給することを特徴とする請求項1記載の汚水浄化装置。
  3. 前記好気槽によって浄化された処理水に対して希釈水を供給して前記処理水の温度低下と希釈を行う希釈槽が備えられていることを特徴とする請求項2記載の汚水浄化装置。
  4. 前記メタン発酵装置にはpHセンサとアンモニア濃度センサとが設けられ、前記メタン発酵装置にはアルカリ液供給部と水供給部とが接続され、前記BOD制御部は、前記メタン発酵装置内での汚水のpHとアンモニア濃度がメタン菌繁殖のための適正値となるように、前記アルカリ液供給部からアルカリ液を前記メタン発酵装置に送出するとともに、前記水供給部から水を前記メタン発酵装置に送出することを特徴とする請求項1から3のいずれかに記載の汚水浄化装置。
JP2010089981A 2010-04-09 2010-04-09 汚水浄化装置 Expired - Fee Related JP4573313B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010089981A JP4573313B1 (ja) 2010-04-09 2010-04-09 汚水浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010089981A JP4573313B1 (ja) 2010-04-09 2010-04-09 汚水浄化装置

Publications (2)

Publication Number Publication Date
JP4573313B1 true JP4573313B1 (ja) 2010-11-04
JP2011218291A JP2011218291A (ja) 2011-11-04

Family

ID=43319583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010089981A Expired - Fee Related JP4573313B1 (ja) 2010-04-09 2010-04-09 汚水浄化装置

Country Status (1)

Country Link
JP (1) JP4573313B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387485A (zh) * 2017-08-14 2019-02-26 宁波方太厨具有限公司 一种污水处理***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596287A (ja) * 1991-10-02 1993-04-20 Matsushita Electric Ind Co Ltd 汚水処理方法
JP2002186992A (ja) * 2000-12-19 2002-07-02 Kurita Water Ind Ltd 生物脱リン装置
JP2004167307A (ja) * 2002-11-18 2004-06-17 Ebara Corp 有機性汚水からのリン除去・回収方法及び装置
JP2008029903A (ja) * 2006-07-26 2008-02-14 Maezawa Ind Inc 排水及び廃棄物の処理装置
JP2009011949A (ja) * 2007-07-05 2009-01-22 Ryuji Shiozaki 汚水浄化装置
JP2009255018A (ja) * 2008-04-21 2009-11-05 Ryuji Shiozaki 汚水浄化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596287A (ja) * 1991-10-02 1993-04-20 Matsushita Electric Ind Co Ltd 汚水処理方法
JP2002186992A (ja) * 2000-12-19 2002-07-02 Kurita Water Ind Ltd 生物脱リン装置
JP2004167307A (ja) * 2002-11-18 2004-06-17 Ebara Corp 有機性汚水からのリン除去・回収方法及び装置
JP2008029903A (ja) * 2006-07-26 2008-02-14 Maezawa Ind Inc 排水及び廃棄物の処理装置
JP2009011949A (ja) * 2007-07-05 2009-01-22 Ryuji Shiozaki 汚水浄化装置
JP2009255018A (ja) * 2008-04-21 2009-11-05 Ryuji Shiozaki 汚水浄化装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387485A (zh) * 2017-08-14 2019-02-26 宁波方太厨具有限公司 一种污水处理***
CN109387485B (zh) * 2017-08-14 2023-12-15 宁波方太厨具有限公司 一种污水处理***

Also Published As

Publication number Publication date
JP2011218291A (ja) 2011-11-04

Similar Documents

Publication Publication Date Title
US11339069B2 (en) Anaerobic ammoxidation synergistic nitrogen removal process device of municipal sewage main and side streams and application method thereof
US8246829B2 (en) Systems and methods for water treatment and remediation
JP5197223B2 (ja) 水処理システム
CN102107997A (zh) 一种处理生活垃圾焚烧厂垃圾滤出液的方法
JP2011189286A (ja) 有機性排水の水処理システム
US7566397B2 (en) Superoxygenation of raw wastewater for odor/corrosion control
JP4191788B1 (ja) 汚水浄化装置
KR20200052821A (ko) 하수처리 시스템
CN103068745B (zh) 用于控制气体或化学制剂的***和方法
JP4573313B1 (ja) 汚水浄化装置
JP2006143780A (ja) バイオガス精製システム
KR101036001B1 (ko) 교번분할주입과 분리막을 이용한 하ㆍ폐수처리방법 및 시스템
JP4114174B1 (ja) 汚水浄化装置
CN103253835B (zh) 一种煤气化废水处理装置及其处理方法
CN100486902C (zh) 内外循环式饮用水处理方法
CN215667619U (zh) 一种一体化餐厨垃圾废水处理装置
CN111268801A (zh) 一种农村污水一体化处理设备及其处理工艺
CN110550828A (zh) 一种新型污水处理***及处理方法
CN212713182U (zh) 一种多级多段复合式化工高难废水零排放处理***
CN216837553U (zh) 一种多区折流与mbr阵列结合的污泥减排中水处理装置
TWI795608B (zh) 汙水處理系統
CN217838511U (zh) 一种组合模块式污水处理集装箱***
CN216687833U (zh) 一种废水处理装置
US20220332604A1 (en) Method, system and device for wastewater treatment
CN210287074U (zh) Mbr脉冲曝气水处理集成***

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4573313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees