JP4573313B1 - Sewage purification equipment - Google Patents

Sewage purification equipment Download PDF

Info

Publication number
JP4573313B1
JP4573313B1 JP2010089981A JP2010089981A JP4573313B1 JP 4573313 B1 JP4573313 B1 JP 4573313B1 JP 2010089981 A JP2010089981 A JP 2010089981A JP 2010089981 A JP2010089981 A JP 2010089981A JP 4573313 B1 JP4573313 B1 JP 4573313B1
Authority
JP
Japan
Prior art keywords
water
sewage
tank
bod
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010089981A
Other languages
Japanese (ja)
Other versions
JP2011218291A (en
Inventor
隆二 塩▲崎▼
Original Assignee
隆二 塩▲崎▼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆二 塩▲崎▼ filed Critical 隆二 塩▲崎▼
Priority to JP2010089981A priority Critical patent/JP4573313B1/en
Application granted granted Critical
Publication of JP4573313B1 publication Critical patent/JP4573313B1/en
Publication of JP2011218291A publication Critical patent/JP2011218291A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

【課題】発生する汚水の量や汚水濃度が変動しても、汚水浄化装置を構成する特定の部位に大きな浄化負荷がかかることを防止して、汚水処理速度を適正な水準に維持することが可能な汚水浄化装置を提供する。
【解決手段】メタン発酵装置41では、メタン菌によって汚水中の汚泥が分解されて、汚水のBODが低減される。メタン発酵装置41には、メタン菌によって汚水の原水よりもBOD値を低減された消化液を送出する消化液送出管45が取り付けらており、メタン発酵装置内BODセンサ43によって検知された消化液のBOD情報は、BOD制御部60に送信され、BOD制御部60は、消化液のBOD情報に基づいて、電磁弁49、電磁弁50、電磁弁51のいずれか一つを開いて、消化液を嫌気槽21、好気槽22、処理水排出管24のいずれかに流出させる。
【選択図】図1
[PROBLEMS] To maintain a sewage treatment speed at an appropriate level by preventing a large purification load from being applied to a specific part constituting a sewage purification apparatus even if the amount of sewage generated or the concentration of sewage fluctuates. A possible sewage purification device is provided.
In a methane fermentation apparatus, sludge in sewage is decomposed by methane bacteria, and the BOD of sewage is reduced. The methane fermentation apparatus 41 is provided with a digestion liquid delivery pipe 45 for delivering a digestion liquid having a BOD value reduced by methane bacteria compared to the raw water of sewage, and the digestion liquid detected by the BOD sensor 43 in the methane fermentation apparatus. The BOD information is transmitted to the BOD control unit 60, and the BOD control unit 60 opens any one of the electromagnetic valve 49, the electromagnetic valve 50, and the electromagnetic valve 51 based on the BOD information of the digestive fluid. Is discharged into any one of the anaerobic tank 21, the aerobic tank 22, and the treated water discharge pipe 24.
[Selection] Figure 1

Description

本発明は、汚水を浄化するにあたって、嫌気槽と好気槽での微生物による浄化作用を最適な状態で行うことを可能にして、迅速に汚水を浄化することが可能な汚水浄化装置に関する。   The present invention relates to a sewage purification apparatus capable of purifying sewage quickly by making it possible to purify the microorganisms in an anaerobic tank and an aerobic tank in an optimum state when purifying the sewage.

近年、自然環境保護の観点から、水質保全の必要性が叫ばれている。水質汚染の原因として従来は工業廃水が大きな問題となっていたが、様々な規制によって工業廃水による水質汚染は減少の傾向にある。その一方、生活排水が水質汚染の一因となっていることが報告されており、それぞれの家庭において生活排水を浄化するための有効な浄化手段が求められている。また、食品工場等においては、製造工程において恒常的に汚泥が発生しており、生産効率の観点から、迅速に汚水を処理する技術が求められている。   In recent years, the necessity of water quality conservation has been screamed from the viewpoint of protecting the natural environment. Conventionally, industrial wastewater has become a major problem as a cause of water pollution, but due to various regulations, water pollution due to industrial wastewater tends to decrease. On the other hand, it is reported that domestic wastewater contributes to water pollution, and effective purification means for purifying domestic wastewater is required in each household. In food factories and the like, sludge is constantly generated in the manufacturing process, and from the viewpoint of production efficiency, a technique for quickly treating sewage is required.

本発明者は、節水を実現しつつ効果的な汚水の浄化を可能にした汚水浄化装置を発明し、その技術が、特許文献1、特許文献2に記載されている。   The inventor has invented a sewage purification apparatus that enables effective purification of sewage while realizing water saving, and the technology thereof is described in Patent Documents 1 and 2.

特許第4114174号公報Japanese Patent No. 4114174 特許第4191788号公報Japanese Patent No. 4191788

この汚水浄化装置を、家庭で生活排水を処理するために使用する際には、汚水の量や汚水濃度が時間的に多少変動するものの、顕著な変動はないため、汚水処理能力について特に問題は生じない。しかし、病院や介護施設のように、多くの人が入院または入居している施設で使用する際には、人数の変動等によって汚水の量や汚水濃度が大きく変動しやすく、一時的に汚水浄化装置に大きな負荷がかかり、汚水処理速度が低下するなどして、汚水浄化能力が低下する状況が発生する。このような状況は、食品工場等においても、生産量の変動に伴って生じやすい。   When this sewage purification device is used to treat domestic wastewater at home, the amount of sewage and the concentration of sewage fluctuate slightly over time, but there are no significant fluctuations. Does not occur. However, when used in facilities where many people are admitted or occupy, such as hospitals and nursing homes, the amount of sewage and sewage concentration are likely to fluctuate greatly due to changes in the number of people, etc. A large load is applied to the apparatus, and the sewage treatment speed is lowered. For example, a situation where the sewage purification capacity is lowered occurs. Such a situation is likely to occur in a food factory or the like as the production amount changes.

本発明は、このような事情を考慮してなされたもので、発生する汚水の量や汚水濃度が変動しても、汚水浄化装置を構成する特定の部位に大きな浄化負荷がかかることを防止して、汚水処理速度を適正な水準に維持することが可能な汚水浄化装置を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and prevents a large purification load from being applied to a specific part constituting the sewage purification apparatus even if the amount of sewage generated or the concentration of sewage fluctuates. An object of the present invention is to provide a sewage purification apparatus capable of maintaining a sewage treatment speed at an appropriate level.

以上の課題を解決するために、本発明の汚水浄化装置は、汚水流入管から流入する汚水を浄化する嫌気槽と、前記嫌気槽に接続された好気槽と、前記好気槽によって浄化された処理水を排出する処理水排出管と、汚水中の汚泥をメタン菌により分解してメタンを発生して汚水のBOD値を低減するメタン発酵装置とを備え、前記嫌気槽または前記汚水流入管は、前記嫌気槽または前記汚水流入管から流入した汚水を前記メタン発酵装置に流入させる汚水送出管を介して前記メタン発酵装置に接続され、前記メタン発酵装置には、メタン菌によって汚水の原水よりもBOD値を低減された消化液を送出する消化液送出管が接続され、前記消化液送出管は、嫌気槽流入管、好気槽流入管、処理水側流入管の3つに分岐し、前記嫌気槽流入管は前記嫌気槽に接続され、前記好気槽流入管は前記好気槽に接続され、前記処理水側流入管は前記処理水排出管に接続され、前記嫌気槽流入管には第一の電磁弁が設けられ、前記好気槽流入管には第二の電磁弁が設けられ、前記処理水側流入管には第三の電磁弁が設けられ、BOD制御部は、メタン発酵装置内BODセンサが検知する前記消化液のBOD値と、好気槽のBOD基準値の上限および下限との比較によって、消化液の流出先を決定し、消化液のBOD値が好気槽のBOD基準値の上限より大きいときは、前記第一の電磁弁を開いて消化液を嫌気槽へ流出させ、消化液のBOD値が好気槽のBOD基準値の上限より小さく、好気槽のBOD基準値の下限より大きいときは、前記第二の電磁弁を開いて消化液を好気槽へ流出させ、消化液のBOD値が好気槽のBOD基準値の下限より小さいときは、前記第三の電磁弁を開いて消化液を処理水排水管へ流出させることを特徴とする。 In order to solve the above problems, the sewage purification apparatus of the present invention is purified by an anaerobic tank for purifying sewage flowing from a sewage inflow pipe, an aerobic tank connected to the anaerobic tank, and the aerobic tank. The anaerobic tank or the sewage inflow pipe is provided with a treated water discharge pipe for discharging the treated water, and a methane fermentation device for decomposing sludge in sewage with methane bacteria to generate methane to reduce the BOD value of the sewage. Is connected to the methane fermentation apparatus via a sewage delivery pipe for allowing the sewage flowing from the anaerobic tank or the sewage inflow pipe to flow into the methane fermentation apparatus. A digestive juice delivery pipe for delivering digestive juice with a reduced BOD value is connected, and the digestive juice delivery pipe branches into an anaerobic tank inflow pipe, an aerobic tank inflow pipe, and a treated water side inflow pipe, The anaerobic tank inlet pipe is The aerobic tank inflow pipe is connected to the aerobic tank, the treated water side inflow pipe is connected to the treated water discharge pipe, and the anaerobic tank inflow pipe is provided with a first electromagnetic valve. The aerobic tank inflow pipe is provided with a second electromagnetic valve, the treated water side inflow pipe is provided with a third electromagnetic valve, and the BOD control unit is detected by a BOD sensor in the methane fermentation apparatus. By comparing the BOD value of the digestive juice with the upper limit and lower limit of the BOD reference value of the aerobic tank, the outflow destination of the digestive liquid is determined. When it is larger, the first solenoid valve is opened and the digestive fluid is allowed to flow into the anaerobic tank. If it is larger, open the second solenoid valve and let the digestive fluid flow out to the aerobic tank. When OD value is less than the lower limit of the BOD standard value of aerobic tank is characterized in that to efflux digestive juices opening the third solenoid valve to the treated water discharge pipe.

汚水はメタン発酵装置によってBOD値を低減され、BOD値を低減された消化液は、そのBOD値のレベルに応じて、嫌気槽、好気槽、処理水排出管のいずれかに流出する構成となっているため、汚水の量や汚水濃度が変動しても、汚水浄化装置を構成する特定の部位に大きな浄化負荷がかかることがなく、汚水処理速度を適正な水準に維持することができる。   The sewage is reduced in BOD value by the methane fermentation apparatus, and the digested liquid whose BOD value is reduced flows out to an anaerobic tank, an aerobic tank, or a treated water discharge pipe according to the level of the BOD value. Therefore, even if the amount of sewage or the concentration of sewage varies, a large purification load is not applied to a specific part constituting the sewage purification apparatus, and the sewage treatment speed can be maintained at an appropriate level.

本発明の汚水浄化装置においては、前記メタン発酵装置から送出されるメタンによって熱水を生成する熱水発生装置と、前記熱水発生装置から第一の熱水送出管を介して送出される熱水と給水器から第一の給水管を介して送出される水とを混合して温水を生成する第一の温水器と、前記熱水発生装置から第二の熱水送出管を介して送出される熱水と給水器から第二の給水管を介して送出される水とを混合して温水を生成する第二の温水器とを備え、前記第一の熱水送出管には第一の熱水流量調節弁が設けられ、前記第一の給水管には第一の水流量調節弁が設けられ、前記第二の熱水送出管には第二の熱水流量調節弁が設けられ、前記第二の給水管には第二の水流量調節弁が設けられ、前記第一の温水器は第一の給温水管を介して前記嫌気槽に接続され、前記第二の温水器は第二の給温水管を介して前記好気槽に接続され、前記嫌気槽には嫌気槽温度センサが設けられ、前記好気槽には好気槽温度センサが設けられ、温度制御部は、前記嫌気槽温度センサが検知する前記嫌気槽内の汚水の温度が嫌気性細菌の繁殖のための最適温度範囲の下限値より低い場合には、前記第一の熱水流量調節弁と前記第一の水流量調節弁とを制御して、前記嫌気槽内の汚水の温度が、嫌気性細菌の繁殖に最適な温度となるように前記第一の温水器から前記嫌気槽へ温水を供給するとともに、前記好気槽温度センサが検知する前記好気槽内の汚水の温度が好気性細菌の繁殖のための最適温度範囲の下限値より低い場合には、前記第二の熱水流量調節弁と前記第二の水流量調節弁とを制御して、前記好気槽内の汚水の温度が、好気性細菌の繁殖に最適な温度となるように前記第二の温水器から前記好気槽へ温水を供給することを特徴とする構成とすることが好ましい。   In the sewage purification apparatus of the present invention, a hot water generator that generates hot water using methane sent from the methane fermentation apparatus, and heat that is sent from the hot water generator through a first hot water delivery pipe. A first water heater for producing hot water by mixing water and water sent from the water supply device through the first water supply pipe, and sending the water from the hot water generator through the second hot water delivery pipe And a second water heater that generates hot water by mixing the hot water to be supplied from the water supply device through the second water supply pipe, and the first hot water supply pipe includes a first water heater. The first hot water supply pipe is provided with a first water flow control valve, and the second hot water delivery pipe is provided with a second hot water flow control valve. The second water supply pipe is provided with a second water flow control valve, and the first water heater is connected to the anaerobic tank through the first water supply water pipe. The second water heater is connected to the aerobic tank via a second hot water pipe, the anaerobic tank is provided with an anaerobic tank temperature sensor, and the aerobic tank has an aerobic tank temperature. When the temperature of the sewage in the anaerobic tank detected by the anaerobic tank temperature sensor is lower than the lower limit value of the optimum temperature range for the growth of anaerobic bacteria, the sensor is provided. Controlling the hot water flow rate control valve and the first water flow rate control valve so that the temperature of the sewage in the anaerobic tank is optimal for the growth of anaerobic bacteria. When supplying warm water to the anaerobic tank, and the temperature of the sewage in the aerobic tank detected by the aerobic tank temperature sensor is lower than the lower limit value of the optimum temperature range for the growth of aerobic bacteria, Controlling the second hot water flow rate control valve and the second water flow rate control valve, Temperature of sewage, it is preferable to adopt a configuration, wherein the supplying hot water into the aerobic tank from the second water heater so that the optimum temperature for propagation of aerobic bacteria.

嫌気槽と好気槽のいずれも、その中で生息する細菌の繁殖に最適な温度範囲があるため、嫌気槽と好気槽とに対して温水を供給して、嫌気槽と好気槽の内部の温度を最適温度範囲とすることにより、嫌気槽と好気槽での汚水浄化能力を高めて、汚水処理速度を高いレベルで維持することができる。しかも、供給される温水を生成するために使用されるメタンは、メタン発酵装置によって汚水中の汚泥を分解して得られたものであり、他の新たなエネルギー資源を用いることなく、汚泥中の有機物から得られたエネルギーを用いているため、省エネルギーの観点からも優れている。   Since both the anaerobic tank and the aerobic tank have an optimum temperature range for the growth of the bacteria that inhabit them, supply warm water to the anaerobic tank and the aerobic tank, By setting the internal temperature within the optimum temperature range, the sewage purification ability in the anaerobic tank and the aerobic tank can be enhanced, and the sewage treatment speed can be maintained at a high level. Moreover, the methane used to produce the supplied hot water is obtained by decomposing sludge in the sewage with a methane fermentation device, and without using other new energy resources, Since energy obtained from organic matter is used, it is also excellent from the viewpoint of energy saving.

本発明の汚水浄化装置においては、前記好気槽によって浄化された処理水に対して希釈水を供給して前記処理水の温度低下と希釈を行う希釈槽が備えられていることが好ましい。
処理水に対して希釈水が供給されて混合された後で自然界に排出されるため、温排水となることもなく、自然環境保護に適合した汚水浄化装置を構築することができる。
In the sewage purification apparatus of this invention, it is preferable that the dilution tank which supplies dilution water with respect to the treated water purified by the aerobic tank and performs the temperature fall and dilution of the treated water is provided.
Since the dilution water is supplied to the treated water and mixed, it is discharged to the natural world, so that the wastewater purification apparatus suitable for natural environment protection can be constructed without becoming warm drainage.

本発明の汚水浄化装置においては、前記メタン発酵装置にはpHセンサとアンモニア濃度センサとが設けられ、前記メタン発酵装置にはアルカリ液供給部と水供給部とが接続され、前記BOD制御部は、前記メタン発酵装置内での汚水のpHとアンモニア濃度がメタン菌繁殖のための適正値となるように、前記アルカリ液供給部からアルカリ液を前記メタン発酵装置に送出するとともに、前記水供給部から水を前記メタン発酵装置に送出する構成とすることが好ましい。   In the sewage purification apparatus of the present invention, the methane fermentation apparatus is provided with a pH sensor and an ammonia concentration sensor, the methane fermentation apparatus is connected with an alkaline liquid supply unit and a water supply unit, and the BOD control unit is The alkaline liquid is sent from the alkaline liquid supply unit to the methane fermentation apparatus so that the pH and ammonia concentration of the sewage in the methane fermentation apparatus become appropriate values for the growth of methane bacteria, and the water supply unit The water is preferably sent to the methane fermentation apparatus.

メタン発酵装置におけるメタン菌による汚水のBOD除去率は、メタン発酵装置内でのpHやアンモニア濃度に影響を受ける。BOD値の高い汚水が大量に、あるいは長時間に亘って流れ込むと、嫌気槽での浄化に大きな負担がかかるばかりでなく、メタン発酵装置でのBOD除去も効率的に進行しない状況が生じる。このような状況が発生することを考慮して、メタン発酵装置でのpHとアンモニア濃度をメタン菌繁殖のための適正値にすることで、メタン発酵装置での高いBOD除去率を維持することができ、メタン発酵装置で生成された消化液を、好気槽や処理水流出管に流出させることが可能となり、嫌気槽での浄化の負担を軽減することができる。   The BOD removal rate of sewage by methane bacteria in the methane fermentation apparatus is affected by the pH and ammonia concentration in the methane fermentation apparatus. When sewage with a high BOD value flows in a large amount or for a long time, not only a large burden is imposed on purification in the anaerobic tank, but also a situation in which removal of BOD in the methane fermentation apparatus does not proceed efficiently. In consideration of the occurrence of such a situation, it is possible to maintain a high BOD removal rate in the methane fermentation apparatus by setting the pH and ammonia concentration in the methane fermentation apparatus to appropriate values for the reproduction of methane bacteria. It is possible to allow the digestive juice generated in the methane fermentation apparatus to flow out to the aerobic tank or the treated water outflow pipe, and the purification burden in the anaerobic tank can be reduced.

本発明によると、発生する汚水の量や汚水濃度が変動しても、汚水浄化装置を構成する特定の部位に大きな浄化負荷がかかることを防止して、汚水処理速度を適正な水準に維持することが可能な汚水浄化装置を実現することができる。   According to the present invention, even if the amount of sewage generated and the concentration of sewage fluctuate, it is possible to prevent a large purification load from being applied to a specific part constituting the sewage purification apparatus and maintain the sewage treatment speed at an appropriate level. It is possible to realize a sewage purification device that can be used.

本発明の第1実施形態に係る汚水浄化装置の構成を示す図である。It is a figure which shows the structure of the sewage purification apparatus which concerns on 1st Embodiment of this invention. 汚水浄化装置におけるBOD制御の系統図である。It is a systematic diagram of BOD control in a sewage purification apparatus. 汚水浄化装置におけるメタン発酵装置のBOD除去率制御の系統図である。It is a systematic diagram of BOD removal rate control of the methane fermentation apparatus in a sewage purification apparatus. 本発明の第2実施形態に係る汚水浄化装置の構成を示す図である。It is a figure which shows the structure of the sewage purification apparatus which concerns on 2nd Embodiment of this invention. 嫌気槽での汚水浄化のための温度管理の制御系統図である。It is a control system diagram of temperature management for sewage purification in an anaerobic tank. 好気槽での汚水浄化のための温度管理の制御系統図である。It is a control system diagram of temperature management for sewage purification in an aerobic tank. 希釈槽から排出される処理水の温度管理のための制御系統図である。It is a control system diagram for the temperature management of the treated water discharged | emitted from a dilution tank.

以下に、本発明の汚水浄化装置を、その実施形態に基づいて説明する。
図1に、本発明の第1実施形態に係る汚水浄化装置の構成を示す。
図1において、屋外に配置された貯水タンク1の上方には、雨水を供給する雨水供給管2が配置され、雨水供給管2から流入する雨水が貯水タンク1内に蓄積されている。貯水タンク1には配水管3を介して給水器4が接続され、貯水タンク1に蓄積された雨水が給水器4に供給される。この給水器4にはまた、水道水供給部5と地下水供給部6とが水道水供給管7、地下水供給管8を介して接続されており、水道水または地下水が必要に応じて給水器4に供給される。
Below, the sewage purification apparatus of this invention is demonstrated based on the embodiment.
In FIG. 1, the structure of the sewage purification apparatus which concerns on 1st Embodiment of this invention is shown.
In FIG. 1, a rainwater supply pipe 2 that supplies rainwater is disposed above a water storage tank 1 that is disposed outdoors, and rainwater that flows in from the rainwater supply pipe 2 is accumulated in the water storage tank 1. A water supply 4 is connected to the water storage tank 1 via a water distribution pipe 3, and rainwater accumulated in the water storage tank 1 is supplied to the water supply 4. In addition, a tap water supply unit 5 and a ground water supply unit 6 are connected to the water feeder 4 via a tap water supply pipe 7 and a ground water supply pipe 8, and tap water or ground water is supplied as necessary. To be supplied.

貯水タンク1には、貯水残量を検出する貯水残量センサ9が設置されており、この貯水残量センサ9は、給水器4に設置された給水制御部10と電気的に接続されている。また、給水器4に設置された給水制御部10は、室内に設置された給水ボタン11と電気的に接続されている。   The water storage tank 1 is provided with a remaining water storage sensor 9 that detects the remaining amount of stored water, and the remaining water storage sensor 9 is electrically connected to a water supply control unit 10 installed in the water supply 4. . Moreover, the water supply control part 10 installed in the water feeder 4 is electrically connected with the water supply button 11 installed indoors.

本発明においては、節水の観点から、雨水供給管2から供給される雨水を優先的に使用するが、降水量が少ないときなど、雨水の備蓄が不十分な場合に備えて、貯水残量センサ9からの情報に基づいて、必要に応じて水道水または地下水が使用される。使用する水の選択は、基本的には貯水残量センサ9と給水制御部10とによって自動的に行われるが、室内に設置された給水ボタン11によって、手動によって使用する水の種類を選択することもできる。   In the present invention, from the viewpoint of saving water, rainwater supplied from the rainwater supply pipe 2 is preferentially used. However, in the case where the rainwater reserve is insufficient, such as when there is little rainfall, Based on the information from 9, tap water or groundwater is used as needed. The selection of the water to be used is basically automatically performed by the remaining water storage sensor 9 and the water supply control unit 10, but the type of water to be used is manually selected by the water supply button 11 installed indoors. You can also

給水器4は配水管12を介して水流量調節部13に接続されており、給水器4から水流量調節部13に供給された水は、水流量調節部13に接続された複数の分岐管である分岐管14、分岐管15、分岐管16によって、配分される水の分配比が考慮されて配分される。この水の配分については後に詳述する。   The water supply device 4 is connected to the water flow rate adjustment unit 13 via the water distribution pipe 12, and the water supplied from the water supply device 4 to the water flow rate adjustment unit 13 is a plurality of branch pipes connected to the water flow rate adjustment unit 13. The distribution ratio of the distributed water is taken into consideration by the branch pipe 14, the branch pipe 15 and the branch pipe 16. This water distribution will be described in detail later.

水流量調節部13と分岐管14との接続部には電磁弁31が設けられ、水流量調節部13と分岐管15との接続部には電磁弁32が設けられ、水流量調節部13と分岐管16との接続部には電磁弁33が設けられている。
水流量調節部13における水流量の調節は、分岐制御部17によってなされ、この分岐制御部17には、電磁弁31、電磁弁32、電磁弁33のそれぞれと、後述する汚水濃度センサ18、処理水濃度センサ19、希釈槽濃度センサ27のそれぞれが電気的に接続されている。
A solenoid valve 31 is provided at a connection portion between the water flow rate adjustment unit 13 and the branch pipe 14, and an electromagnetic valve 32 is provided at a connection portion between the water flow rate adjustment unit 13 and the branch pipe 15. A solenoid valve 33 is provided at a connection portion with the branch pipe 16.
Adjustment of the water flow rate in the water flow rate adjustment unit 13 is performed by the branch control unit 17, and each of the electromagnetic valve 31, the electromagnetic valve 32, and the electromagnetic valve 33, a sewage concentration sensor 18 described later, and processing Each of the water concentration sensor 19 and the dilution tank concentration sensor 27 is electrically connected.

浄化槽は、嫌気槽21と好気槽22とから形成されており、嫌気槽21には嫌気性微生物が充填され、好気槽22には好気性微生物が充填されている。嫌気槽21には汚水流入管23が連結され、嫌気槽21に対して生活排水等の汚水が流入する。また、好気槽22の入口側には、好気槽22に流入する汚水の濃度を検出する汚水濃度センサ18が設置され、好気槽22の出口側には、好気槽22から流出する処理水の濃度を検出する処理水濃度センサ19が設置されている。汚水濃度センサ18を設ける位置は、好気槽22内での汚水の流れを考慮して、好気槽22の上方寄りとするのが好ましい。   The septic tank is formed of an anaerobic tank 21 and an aerobic tank 22. The anaerobic tank 21 is filled with anaerobic microorganisms, and the aerobic tank 22 is filled with aerobic microorganisms. A sewage inflow pipe 23 is connected to the anaerobic tank 21, and sewage such as domestic wastewater flows into the anaerobic tank 21. Further, a sewage concentration sensor 18 for detecting the concentration of sewage flowing into the aerobic tank 22 is installed on the inlet side of the aerobic tank 22, and flows out of the aerobic tank 22 on the outlet side of the aerobic tank 22. A treated water concentration sensor 19 for detecting the concentration of treated water is installed. The position where the sewage concentration sensor 18 is provided is preferably located closer to the upper side of the aerobic tank 22 in consideration of the flow of sewage in the aerobic tank 22.

分岐管14は好気槽22に接続されており、好気槽22の希釈が必要な場合には、分岐管14を介して水流量調節部13から水が供給され、この水は好気槽22に流入して汚水を希釈する。好気槽22には処理水流出管24が接続され、この処理水流出管24の途中に、好気槽22側から見て噴霧槽25、希釈槽26の順に配置されている。噴霧槽25には分岐管15が接続され、また、希釈槽26には分岐管16が接続されており、噴霧槽25と希釈槽26に水流量調節部13から水が供給される。また、希釈槽26には別途雨樋を設けて、雨水が直接希釈槽26に流入する構造としてもよい。   The branch pipe 14 is connected to the aerobic tank 22, and when dilution of the aerobic tank 22 is necessary, water is supplied from the water flow rate control unit 13 through the branch pipe 14, and this water is supplied to the aerobic tank 22. It flows in 22 and dilutes sewage. A treated water outflow pipe 24 is connected to the aerobic tank 22, and a spray tank 25 and a dilution tank 26 are arranged in this process water outflow pipe 24 in this order as viewed from the aerobic tank 22 side. The branch pipe 15 is connected to the spray tank 25, and the branch pipe 16 is connected to the dilution tank 26, and water is supplied to the spray tank 25 and the dilution tank 26 from the water flow rate adjustment unit 13. Further, a rain gutter may be provided in the dilution tank 26 so that rainwater flows directly into the dilution tank 26.

浄化槽ではまず、嫌気槽21で汚水中の浮遊物が取り除かれるとともに、嫌気性微生物によって汚水に含まれる有機物が除去される。
浄化槽においては、生活排水中に含まれる窒素を除去することが必要であるが、排水中に含まれる窒素の多くは、屎尿などに含まれるアンモニアがイオン化したアンモニウムイオンとして存在しており、このアンモニウムイオンを酸化することによって、亜硝酸イオンを経て硝酸イオンに変換する。この硝化の過程は好気槽22において行われる。
In the septic tank, first, suspended substances in the sewage are removed in the anaerobic tank 21, and organic substances contained in the sewage are removed by anaerobic microorganisms.
In septic tanks, it is necessary to remove nitrogen contained in domestic wastewater, but most of the nitrogen contained in wastewater exists as ammonium ions that are ionized from ammonia contained in manure. Oxidized ions are converted to nitrate ions via nitrite ions. This nitrification process is performed in the aerobic tank 22.

しかし、好気槽22に流入する汚水の濃度が高すぎると、好気槽22に充填されている好気性微生物が異常繁殖し、その結果、好気槽22内のBOD(生物化学的酸素要求量)が高くなる。BODは、微生物が水中の有機物を分解するときに消費する酸素量であり、この消費する酸素量の増大によって好気槽22内が酸欠状態となり、好気性微生物が死滅する。また、好気槽22に流入する汚水に、好気性微生物の繁殖に適さない洗剤等が多く含まれている場合には、やはり好気性微生物が死滅する。   However, if the concentration of sewage flowing into the aerobic tank 22 is too high, the aerobic microorganisms filled in the aerobic tank 22 will abnormally propagate, and as a result, the BOD (biochemical oxygen demand in the aerobic tank 22) Amount) becomes high. BOD is the amount of oxygen consumed by microorganisms when decomposing organic substances in water. The increase in the amount of oxygen consumed causes the aerobic tank 22 to become deficient and kills the aerobic microorganisms. In addition, when the sewage flowing into the aerobic tank 22 contains a lot of detergent or the like that is not suitable for the growth of aerobic microorganisms, the aerobic microorganisms are also killed.

そのため、汚水濃度センサ18が、好気槽22に流入する汚水の濃度が基準値より高いことを検知したときは、分岐制御部17は汚水濃度センサ18によって検知される汚水濃度に基づいて、好気槽22内での細菌の繁殖が最適となるように、電磁弁31を開いて、水流量調節部13から分岐管14を介して好気槽22に水を送出する。送出される水の水量は、汚水濃度センサ18によって検知される汚水濃度と汚水濃度の基準値との差によって調整され、この差が大きい程大量の水が送出され、汚水濃度センサ18によって検知される汚水濃度が汚水濃度の基準値と等しくなったときに、電磁弁31が閉じられて水流量調節部13からの水の送出が停止される。電磁弁31の開閉は、汚水濃度センサ18の検知濃度に応じた電圧が分岐制御部17に出力されることによってなされる。   For this reason, when the sewage concentration sensor 18 detects that the concentration of sewage flowing into the aerobic tank 22 is higher than the reference value, the branch control unit 17 determines whether the sewage concentration sensor 18 detects the sewage concentration based on the sewage concentration sensor 18. The electromagnetic valve 31 is opened and water is sent from the water flow rate control unit 13 to the aerobic tank 22 through the branch pipe 14 so that the propagation of bacteria in the air tank 22 is optimal. The amount of water to be delivered is adjusted by the difference between the sewage concentration detected by the sewage concentration sensor 18 and the reference value of the sewage concentration. The larger this difference is, the larger the amount of water is sent and the sewage concentration sensor 18 detects it. When the sewage concentration becomes equal to the reference value of the sewage concentration, the solenoid valve 31 is closed and the water flow control unit 13 stops sending water. The electromagnetic valve 31 is opened and closed by outputting a voltage corresponding to the detected concentration of the sewage concentration sensor 18 to the branch control unit 17.

一方、BOD値が低下しすぎると、微生物のえさが減少することとなって微生物が減少し、汚水浄化能力が低下するため、微生物の適正な繁殖がなされる程度のBOD値を保つことが必要である。そのため、汚水濃度センサ18が、好気槽22内の汚水の濃度が基準値より低いことを感知したときは、初めから電磁弁31が閉じられて水流量調節部13からの水の送出はなされない。   On the other hand, if the BOD value is too low, the microorganisms will be reduced and the microorganisms will be reduced, and the sewage purification ability will be reduced. Therefore, it is necessary to maintain the BOD value so that the microorganisms can be properly propagated. It is. Therefore, when the sewage concentration sensor 18 senses that the concentration of sewage in the aerobic tank 22 is lower than the reference value, the electromagnetic valve 31 is closed from the beginning and water is not sent from the water flow rate adjustment unit 13. Not.

上述した分岐制御部17の機能によって、好気槽22内は常に好気性微生物が好適に繁殖できる状態が維持され、これにより汚水処理能力が高いレベルで維持される。
硝化の過程によって好気槽22内で生成された硝酸イオンは、硝化液として嫌気槽21に戻され、嫌気槽21内で還元されて窒素分子となり、窒素分子は大気中に放散されて排水中から分離する。
By the function of the branch control unit 17 described above, the aerobic tank 22 is always maintained in a state where aerobic microorganisms can suitably propagate, thereby maintaining the sewage treatment capacity at a high level.
Nitrate ions generated in the aerobic tank 22 by the nitrification process are returned to the anaerobic tank 21 as a nitrification liquid, reduced in the anaerobic tank 21 to become nitrogen molecules, and the nitrogen molecules are diffused into the atmosphere and discharged into the waste water. Separate from.

分岐制御部17はまた、処理水濃度センサ19によって検知される処理水濃度に基づいて、好気槽22での浄化後に流出する処理水の希釈のために、電磁弁32の開閉を制御することにより、水流量調節部13から分岐管15を介して処理水流出管24に送出される水量を調整する機能を有している。
これは、上述したように、好気槽22でのBOD値は、微生物の繁殖を最適に維持する観点から一定の基準値以上に保たれる必要があるが、好気槽22での浄化後に流出する処理水のBOD値と、自然界に排出される排水に求められるBOD値との間にはギャップがあり、自然界に排出するのに適する排水とするためには、好気槽22から流出する処理水をさらに希釈してBOD値を下げることが必要であるからである。
The branch control unit 17 also controls the opening / closing of the electromagnetic valve 32 to dilute the treated water flowing out after purification in the aerobic tank 22 based on the treated water concentration detected by the treated water concentration sensor 19. Thus, the water flow rate adjusting unit 13 has a function of adjusting the amount of water sent to the treated water outflow pipe 24 via the branch pipe 15.
As described above, the BOD value in the aerobic tank 22 needs to be kept above a certain reference value from the viewpoint of optimally maintaining the growth of microorganisms, but after purification in the aerobic tank 22 There is a gap between the BOD value of the outflowing treated water and the BOD value required for the wastewater discharged into the natural world. In order to make the wastewater suitable for discharging into the natural world, it flows out of the aerobic tank 22. This is because it is necessary to further dilute the treated water to lower the BOD value.

水流量調節部13から分岐管15を介して送出される水は、処理水流出管24に直接流入して処理水を希釈するようにしてもよいが、図1においては、処理水流出管24と分岐管15との間に噴霧槽25を設けている。浄化槽20によって処理された処理水は、処理水流出管24から排出されるが、この処理水流出管24には噴霧槽25が設けられており、噴霧槽25には分岐管15が連結されている。   The water sent from the water flow rate control unit 13 through the branch pipe 15 may directly flow into the treated water outflow pipe 24 to dilute the treated water. In FIG. A spray tank 25 is provided between the pipe 15 and the branch pipe 15. The treated water treated by the septic tank 20 is discharged from the treated water outflow pipe 24. The treated water outflow pipe 24 is provided with a spray tank 25, and the branch pipe 15 is connected to the spray tank 25. Yes.

処理水濃度が基準値よりも高いことを処理水濃度センサ19が検知すると、分岐制御部17は、処理水濃度センサ19によって検知される処理水濃度に基づいて、好気槽22での浄化後に流出する処理水の希釈のために、電磁弁32を開いて、水流量調節部13から分岐管15を介して噴霧槽25に水を送出する。噴霧槽25は処理水流出管24を流れる処理水に対して霧状の水を吹き付ける。電磁弁32の開閉は、処理水濃度センサ19の検知濃度に応じた電圧が分岐制御部17に出力されることによってなされる。
送出される水の水量は、処理水濃度センサ19によって検知される処理水濃度と自然界に放出される排水の基準値との差によって調整され、この差が大きい程大量の水が送出される。自然界に排出される排水に求められるBOD値は5ppm程度であり、処理水のBOD値がこのレベルに達するまで、段階的または連続的に送出される水量を変えて処理水を希釈する。
When the treated water concentration sensor 19 detects that the treated water concentration is higher than the reference value, the branch control unit 17 performs the purification in the aerobic tank 22 based on the treated water concentration detected by the treated water concentration sensor 19. In order to dilute the treated water flowing out, the electromagnetic valve 32 is opened, and water is sent from the water flow rate adjusting unit 13 to the spray tank 25 through the branch pipe 15. The spray tank 25 sprays mist water on the treated water flowing through the treated water outflow pipe 24. The electromagnetic valve 32 is opened and closed by outputting a voltage corresponding to the detected concentration of the treated water concentration sensor 19 to the branch control unit 17.
The amount of water to be sent out is adjusted by the difference between the treated water concentration detected by the treated water concentration sensor 19 and the reference value of the drainage discharged to the natural world, and the larger this difference is, the more water is sent out. The BOD value required for the wastewater discharged into the natural world is about 5 ppm, and the treated water is diluted by changing the amount of water delivered stepwise or continuously until the BOD value of the treated water reaches this level.

処理水を希釈するにあたって、希釈後の処理水の濃度ができる限り均等であることが好ましいが、噴霧槽25は霧状の水を吹き付けるため、処理水の特定の領域だけが希釈されることがなく、処理水の濃度を均等にする点において有利である。噴霧槽25の形態としては、例えば、ノズル形状の噴霧口を有し、この噴霧口から所定の圧力で水が噴出するようにすればよい。また、噴霧槽25内において処理水流出管24に沿って噴霧口を複数設けるように配置すると、処理水流出管24を所定の流速で流れる処理水を希釈するにあたって、噴霧による希釈のタイミングを失することを抑制できる。   In diluting the treated water, the concentration of the treated water after dilution is preferably as uniform as possible. However, since the spray tank 25 sprays mist-like water, only a specific region of the treated water may be diluted. There is no advantage in that the concentration of treated water is uniform. As a form of the spray tank 25, for example, a nozzle-shaped spray port may be provided, and water may be ejected from the spray port at a predetermined pressure. In addition, if a plurality of spray ports are provided along the treated water outflow pipe 24 in the spray tank 25, the dilution timing by spraying is lost when the treated water flowing through the treated water outflow pipe 24 at a predetermined flow rate is diluted. Can be suppressed.

処理水流出管24にはさらに希釈槽26を設けることができ、噴霧槽25から噴出する霧状の水によって希釈された処理水は、この希釈槽26に一時的に蓄えられる。希釈槽26内に希釈槽濃度センサ27が設けられており、希釈槽26には水流量調節部13から送出される水を供給する分岐管16が接続され、水流量調節部13と分岐管16との接続部には電磁弁33が設けられている。   The treatment water outflow pipe 24 can be further provided with a dilution tank 26, and the treated water diluted with the mist-like water ejected from the spray tank 25 is temporarily stored in the dilution tank 26. A dilution tank concentration sensor 27 is provided in the dilution tank 26, and a branch pipe 16 for supplying water sent from the water flow rate adjustment unit 13 is connected to the dilution tank 26, and the water flow rate adjustment unit 13 and the branch pipe 16 are connected. The solenoid valve 33 is provided in the connection part.

分岐制御部17は希釈槽濃度センサ27によって検知される希釈槽26内の濃度に基づいて、電磁弁33の開閉を制御することにより、水流量調節部13から分岐管16を介して希釈槽26に送出される水量を調整する。電磁弁33の開閉は、希釈槽濃度センサ27の検知濃度に応じた電圧が分岐制御部17に出力されることによってなされる。送出される水の水量は、希釈槽濃度センサ27によって検知される希釈槽26内の濃度と自然界に放出される排水の基準値との差によって調整され、この差が大きい程大量の水が送出される。   The branch control unit 17 controls the opening and closing of the electromagnetic valve 33 based on the concentration in the dilution tank 26 detected by the dilution tank concentration sensor 27, thereby allowing the dilution tank 26 to pass through the branch pipe 16 from the water flow rate adjustment unit 13. Adjust the amount of water delivered to the. The electromagnetic valve 33 is opened and closed by outputting a voltage according to the detected concentration of the dilution tank concentration sensor 27 to the branch control unit 17. The amount of water to be delivered is adjusted by the difference between the concentration in the dilution tank 26 detected by the dilution tank concentration sensor 27 and the reference value of the drainage discharged to the natural world. Is done.

希釈槽26内の濃度が自然界に放出される排水の基準値と等しくなったときは、原則として電磁弁33が閉じられて水の送出が停止するが、貯水されている水量が充分である場合には、さらに水を送出して可能な限り希釈することも可能である。このようにして、噴霧槽25で希釈された後の処理水は、希釈槽26においてさらに希釈され、その上澄み液が放出される。また、希釈槽26に別途雨樋を設けて雨水が直接希釈槽26に流入する構造とすることによって、雨水を直接利用することもできる。   When the concentration in the dilution tank 26 becomes equal to the reference value of the drainage discharged into the natural world, the electromagnetic valve 33 is closed and the water supply is stopped in principle, but the amount of stored water is sufficient. It is also possible to dilute as much as possible by sending water. In this way, the treated water after being diluted in the spray tank 25 is further diluted in the dilution tank 26, and the supernatant liquid is discharged. Moreover, rainwater can also be directly used by providing a rain gutter separately in the dilution tank 26 so that rainwater flows directly into the dilution tank 26.

上述したように、汚水濃度センサ18、処理水濃度センサ19、希釈槽濃度センサ27によって検知されるそれぞれの濃度に基づいて、電磁弁31、電磁弁32、電磁弁33の開閉を制御し、分岐管14、分岐管15、分岐管16を介して水を供給しており、その結果、それぞれの供給目的に応じて水流量調節部13から配分される水の分配比が無駄なく決定される構成となっている。
このように、好気槽22内の細菌の繁殖状態を最適化するために必要な水を最小限使用して、細菌による浄化機能を最高レベルで高めて浄化しているため、浄化の効果は最大となる一方で、細菌による浄化ではなおも残留する汚水成分を希釈しているため、使用する水の総和としては最小限の使用量で、自然界に放出できるレベルのきれいな排水を得ることができ、節水と自然環境の保護の両面において大きな効果がある。
As described above, on the basis of the respective concentrations detected by the sewage concentration sensor 18, the treated water concentration sensor 19, and the dilution tank concentration sensor 27, the opening / closing of the solenoid valve 31, the solenoid valve 32, and the solenoid valve 33 is controlled and branched. A structure in which water is supplied through the pipe 14, the branch pipe 15, and the branch pipe 16, and as a result, the distribution ratio of water distributed from the water flow rate control unit 13 is determined without waste according to the respective supply purposes. It has become.
In this way, since the purification function by the bacteria is enhanced and purified at the highest level by using the minimum amount of water necessary for optimizing the breeding state of the bacteria in the aerobic tank 22, the effect of the purification is On the other hand, purification by bacteria still dilutes the remaining sewage components, so that the total amount of water used can be obtained with a minimum amount of water used to obtain clean wastewater at a level that can be released to nature. It has a great effect on both water saving and protection of the natural environment.

嫌気槽21には汚水送出管40を介してメタン発酵装置41が接続されており、汚水送出管40には電磁弁42が設けられている。汚水送出管40は、汚水流入管23を分岐させて形成し、メタン発酵装置41に接続させてもよい。メタン発酵装置41には、メタン発酵装置内BODセンサ43とメタンガス排出口44が設けられている。メタン発酵装置41では、汚水送出管40を介して嫌気槽21または汚水流入管23から流入した汚水中の汚泥が、メタン菌によって分解されてメタンが発生し、メタンはメタンガス排出口44から排出されるとともに、メタン発生によって汚水濃度が低下して、メタン発酵装置41内では、水質の汚濁の指標であるBODが低減される。このように、メタン発酵装置41は、メタン発生と、汚水濃度の低下すなわちBOD低減の2つの役割を担っている。
電磁弁42の開閉のタイミングは、状況に応じて適宜定めることができ、例えば、家庭用に使用する場合には、1日に1回の割合で時間を定めて開いて、汚水をメタン発酵装置41に流すようにすることができる。
A methane fermentation apparatus 41 is connected to the anaerobic tank 21 through a sewage delivery pipe 40, and an electromagnetic valve 42 is provided in the sewage delivery pipe 40. The sewage delivery pipe 40 may be formed by branching the sewage inflow pipe 23 and connected to the methane fermentation apparatus 41. The methane fermentation apparatus 41 is provided with an in-methane fermentation apparatus BOD sensor 43 and a methane gas discharge port 44. In the methane fermentation apparatus 41, sludge in the sewage flowing from the anaerobic tank 21 or the sewage inflow pipe 23 through the sewage delivery pipe 40 is decomposed by methane bacteria to generate methane, and the methane is discharged from the methane gas outlet 44. At the same time, the sewage concentration decreases due to the generation of methane, and the BOD, which is an indicator of water pollution, is reduced in the methane fermentation apparatus 41. Thus, the methane fermentation apparatus 41 plays two roles of methane generation and reduction of sewage concentration, that is, BOD reduction.
The timing for opening and closing the electromagnetic valve 42 can be determined appropriately according to the situation. For example, when used for home use, the sewage is opened by setting the time at a rate of once a day. 41 can be made to flow.

メタン発酵装置41には、メタン菌によって汚水の原水よりもBOD値を低減された消化液を送出する消化液送出管45が取り付けらており、この消化液送出管45の先端側、すなわちメタン発酵装置41に接続されている側とは反対側では、嫌気槽流入管46、好気槽流入管47、処理水側流入管48の3つに分岐している。嫌気槽流入管46は嫌気槽21に接続され、好気槽流入管47は好気槽22に接続され、処理水側流入管48は処理水流出管24に接続されている。嫌気槽流入管46には電磁弁49が設けられ、好気槽流入管47には電磁弁50が設けられ、処理水側流入管48には電磁弁51が設けられている。   The methane fermentation apparatus 41 is provided with a digestive juice delivery pipe 45 for delivering digestive juice having a BOD value reduced by methane bacteria compared to the raw water of sewage. The distal end side of the digestive juice delivery pipe 45, that is, methane fermentation. On the side opposite to the side connected to the apparatus 41, it branches into three parts: an anaerobic tank inflow pipe 46, an aerobic tank inflow pipe 47, and a treated water side inflow pipe 48. The anaerobic tank inflow pipe 46 is connected to the anaerobic tank 21, the aerobic tank inflow pipe 47 is connected to the aerobic tank 22, and the treated water side inflow pipe 48 is connected to the treated water outflow pipe 24. The anaerobic tank inflow pipe 46 is provided with an electromagnetic valve 49, the aerobic tank inflow pipe 47 is provided with an electromagnetic valve 50, and the treated water side inflow pipe 48 is provided with an electromagnetic valve 51.

嫌気槽21には嫌気槽BODセンサ52が設けられ、好気槽22には好気槽BODセンサ53が設けられている。BOD制御部60には、電磁弁49、電磁弁50、電磁弁51のそれぞれと、メタン発酵装置内BODセンサ43、嫌気槽BODセンサ52、好気槽BODセンサ53のそれぞれが電気的に接続されている。なお、嫌気槽21内では、汚水中の浮遊物が上方で浮遊しているため、汚水のBODを正確に検知するためには、嫌気槽BODセンサ52は嫌気槽21中の下方寄りに設けるのが好ましい。   The anaerobic tank 21 is provided with an anaerobic tank BOD sensor 52, and the aerobic tank 22 is provided with an aerobic tank BOD sensor 53. The BOD control unit 60 is electrically connected to each of the solenoid valve 49, the solenoid valve 50, and the solenoid valve 51, and the methane fermentation apparatus BOD sensor 43, the anaerobic tank BOD sensor 52, and the aerobic tank BOD sensor 53. ing. In the anaerobic tank 21, the suspended matter in the sewage floats upward. Therefore, in order to accurately detect the BOD of the sewage, the anaerobic tank BOD sensor 52 is provided closer to the lower side in the anaerobic tank 21. Is preferred.

メタン発酵装置41内には、pHセンサ61、アンモニア濃度センサ62が設けられており、メタン発酵装置41に対して、アルカリ液供給部63がアルカリ液供給管64を介して接続され、水供給部65が水供給管66を介して接続されている。アルカリ液供給管64には電磁弁67が設けられ、水供給管66には電磁弁68が設けられている。
BOD制御部60には、電磁弁67、電磁弁68のそれぞれと、pHセンサ61、アンモニア濃度センサ62のそれぞれが電気的に接続されている。
また、必要に応じて、メタン発酵装置41に対して栄養水供給部、界面活性剤供給部を接続して、メタン発酵装置41に栄養水や界面活性剤を供給してメタン菌の活動を活性化することもできる。
In the methane fermentation apparatus 41, a pH sensor 61 and an ammonia concentration sensor 62 are provided. An alkaline liquid supply unit 63 is connected to the methane fermentation apparatus 41 via an alkaline liquid supply pipe 64, and a water supply unit. 65 is connected via a water supply pipe 66. The alkaline liquid supply pipe 64 is provided with an electromagnetic valve 67, and the water supply pipe 66 is provided with an electromagnetic valve 68.
Each of the electromagnetic valve 67 and the electromagnetic valve 68, and each of the pH sensor 61 and the ammonia concentration sensor 62 are electrically connected to the BOD control unit 60.
If necessary, a nutrient water supply unit and a surfactant supply unit are connected to the methane fermentation apparatus 41 to supply nutrient water and a surfactant to the methane fermentation apparatus 41 to activate the activity of methane bacteria. It can also be converted.

図2に、図1に示す汚水浄化装置におけるBOD制御の系統図を示す。
図2に示すように、メタン発酵装置内BODセンサ43によって検知された消化液のBOD情報は、BOD制御部60に送信され、BOD制御部60は、消化液のBOD情報に基づいて、電磁弁49、電磁弁50、電磁弁51のいずれか一つを開いて、消化液を嫌気槽21、好気槽22、処理水排出管24のいずれかに流出させる。
一例として、嫌気槽21での汚水のBOD基準値を80ppm以上、好気槽22での汚水のBOD基準値を20ppm以上80ppm未満、処理水排水管24での処理水のBOD基準値を20ppm未満として、それぞれのBOD基準値を設定した場合について説明する。
FIG. 2 shows a system diagram of BOD control in the sewage purification apparatus shown in FIG.
As shown in FIG. 2, the BOD information of the digestive juice detected by the BOD sensor 43 in the methane fermentation apparatus is transmitted to the BOD control unit 60, and the BOD control unit 60 uses the electromagnetic valve based on the BOD information of the digestive juice. 49, one of the solenoid valve 50 and the solenoid valve 51 is opened, and the digested liquid is allowed to flow into any one of the anaerobic tank 21, the aerobic tank 22, and the treated water discharge pipe 24.
As an example, the BOD standard value of sewage in the anaerobic tank 21 is 80 ppm or more, the BOD standard value of sewage in the aerobic tank 22 is 20 ppm or more and less than 80 ppm, and the BOD standard value of treated water in the treated water drain pipe 24 is less than 20 ppm. The case where each BOD reference value is set will be described.

メタン発酵装置41内に送り込まれる生活排水または工場排水の原水のBODが400ppmであり、メタン発酵装置41のBOD除去率が50パーセントの場合、メタン発酵装置41から排水される消化液のBODは200ppmとなる。この消化液のBOD値は、好気槽22でのBOD基準値の上限を超えているが、BOD制御部60は、好気槽BODセンサ53が検知する好気槽22内のBOD情報に基づいて、消化液の送り先を判断する。   When the BOD of raw water of domestic wastewater or factory wastewater sent into the methane fermentation apparatus 41 is 400 ppm and the BOD removal rate of the methane fermentation apparatus 41 is 50%, the BOD of the digested liquid discharged from the methane fermentation apparatus 41 is 200 ppm. It becomes. Although the BOD value of the digestive fluid exceeds the upper limit of the BOD reference value in the aerobic tank 22, the BOD control unit 60 is based on the BOD information in the aerobic tank 22 detected by the aerobic tank BOD sensor 53. To determine the destination of the digestive juice.

好気槽BODセンサ53のBOD値が80ppm以上となっている場合には、電磁弁49を開いて消化液を嫌気槽21に供給する。これは、好気槽22内でのBODがすでに基準値の上限を超えており、これ以上好気槽22内でのBOD値を高める必要がないケースであり、このときは、消化液は嫌気槽21に送られて、嫌気槽21によって消化液の処理がなされる。   When the BOD value of the aerobic tank BOD sensor 53 is 80 ppm or more, the electromagnetic valve 49 is opened to supply the digested liquid to the anaerobic tank 21. This is a case in which the BOD in the aerobic tank 22 has already exceeded the upper limit of the reference value, and there is no need to increase the BOD value in the aerobic tank 22 any more. It is sent to the tank 21 and the digestive juice is processed by the anaerobic tank 21.

一方、好気槽BODセンサ53のBOD値が、好気槽22のBOD基準値の上限と下限との中間値である、50ppm以下の場合には、電磁弁50を開いて、消化液は好気槽BODセンサ53のBOD値が80ppmになるまで好気槽22に供給され、好気槽BODセンサ53のBOD値が80ppmを超えたら、電磁弁50を閉じ、電磁弁49を開いて、消化液は嫌気槽21に供給される。これは、好気槽22内のBOD値が基準値の上限に達しておらず、好気槽22内の好気性細菌の繁殖を促進するために、好気槽22内のBOD値が基準値の上限に達するまで、消化液を好気槽22に流すケースであり、これによって、好気槽22内で消化液の処理がなされるとともに、好気槽22内のBOD値が基準値の上限に達した後は、嫌気槽21によって消化液の処理がなされる。   On the other hand, when the BOD value of the aerobic tank BOD sensor 53 is 50 ppm or less, which is an intermediate value between the upper limit and the lower limit of the BOD reference value of the aerobic tank 22, the solenoid valve 50 is opened, It is supplied to the aerobic tank 22 until the BOD value of the air tank BOD sensor 53 reaches 80 ppm. When the BOD value of the aerobic tank BOD sensor 53 exceeds 80 ppm, the electromagnetic valve 50 is closed, the electromagnetic valve 49 is opened, and digestion is performed. The liquid is supplied to the anaerobic tank 21. This is because the BOD value in the aerobic tank 22 does not reach the upper limit of the reference value, and the BOD value in the aerobic tank 22 is the reference value in order to promote the growth of aerobic bacteria in the aerobic tank 22. In this case, the digestive fluid is allowed to flow into the aerobic tank 22 until the upper limit is reached, whereby the digestive fluid is processed in the aerobic tank 22 and the BOD value in the aerobic tank 22 is the upper limit of the reference value. After reaching, the digestive juice is processed by the anaerobic tank 21.

次に、メタン発酵装置41内に送り込まれる生活排水または工場排水の原水が400ppmであり、メタン発酵装置41のBOD除去率が90パーセントの場合には、メタン発酵装置41から排水される消化液のBODは40ppmとなる。このときは、電磁弁50を開いて、消化液は好気槽22に供給される。これは、消化液のBODが、好気槽22のBOD基準値の上限を超えていないケースであり、好気槽22内で消化液の処理がなされる。   Next, when the raw water of domestic wastewater or factory wastewater sent into the methane fermentation apparatus 41 is 400 ppm and the BOD removal rate of the methane fermentation apparatus 41 is 90%, the digested liquid discharged from the methane fermentation apparatus 41 BOD is 40 ppm. At this time, the electromagnetic valve 50 is opened and the digestive fluid is supplied to the aerobic tank 22. This is a case where the BOD of the digestive liquid does not exceed the upper limit of the BOD reference value of the aerobic tank 22, and the digestive liquid is processed in the aerobic tank 22.

次に、メタン発酵装置41内に送り込まれる生活排水または工場排水の原水が400ppmであり、メタン発酵装置41のBOD除去率が95パーセントの場合には、メタン発酵装置41から排水される消化液のBODは20ppmとなる。このときは、電磁弁51を開いて、消化液は処理水流出管24に供給される。これは、消化液のBODが、好気槽22のBOD基準値の下限を下回っており、メタン発酵装置41内での処理ですでに、処理水排水管24に流出できるレベルにまで処理が進んでいるケースである。   Next, when the raw water of domestic wastewater or factory wastewater sent into the methane fermentation apparatus 41 is 400 ppm and the BOD removal rate of the methane fermentation apparatus 41 is 95%, the digested liquid drained from the methane fermentation apparatus 41 BOD is 20 ppm. At this time, the electromagnetic valve 51 is opened, and the digested liquid is supplied to the treated water outflow pipe 24. This is because the BOD of the digested liquid is below the lower limit of the BOD reference value of the aerobic tank 22, and the processing has already progressed to a level at which it can flow out into the treated water drain pipe 24 by the processing in the methane fermentation apparatus 41. This is the case.

このように、汚水はメタン発酵装置41によってBOD値を低減され、BOD値を低減された消化液は、そのBOD値のレベルに応じて、嫌気槽21、好気槽22、処理水排出管24のいずれかに流出する構成となっている。
消化液の流出先は、基本的には、メタン発酵装置内BODセンサ43によって検知された消化液のBOD値と、好気槽22のBOD基準値の上限および下限との比較によってなされる。消化液のBOD値が好気槽22のBOD基準値の上限より大きいときは、消化液は嫌気槽21へ流出し、消化液のBOD値が好気槽22のBOD基準値の上限より小さく、好気槽22のBOD基準値の下限より大きいときは、消化液は好気槽22へ流出し、消化液のBOD値が好気槽22のBOD基準値の下限より小さいときは、消化液は処理水排水管へ流出する。
In this way, the sewage is reduced in BOD value by the methane fermentation apparatus 41, and the digested liquid in which the BOD value is reduced corresponds to the level of the BOD value in the anaerobic tank 21, the aerobic tank 22, and the treated water discharge pipe 24. It becomes the composition which flows out to either.
The outflow destination of the digested liquid is basically determined by comparing the BOD value of the digested liquid detected by the BOD sensor 43 in the methane fermentation apparatus with the upper and lower limits of the BOD reference value of the aerobic tank 22. When the BOD value of the digestive fluid is larger than the upper limit of the BOD reference value of the aerobic tank 22, the digestive fluid flows out into the anaerobic tank 21, and the BOD value of the digested liquid is smaller than the upper limit of the BOD reference value of the aerobic tank 22, When the BOD reference value of the aerobic tank 22 is larger than the lower limit of the BOD reference value, the digestive fluid flows out into the aerobic tank 22, and when the BOD value of the digestive solution is smaller than the lower limit of the BOD reference value of the aerobic tank 22, Outflow to treated water drain.

ただし、好気槽22内の好気性細菌の繁殖を促進するために、好気槽BODセンサ53が検知する好気槽22内の汚水のBOD値が、好気槽22のBOD基準値の上限と下限との中間値以下の場合であって、消化液のBOD値が好気槽22のBOD基準値の上限より大きいときは、消化液を好気槽22に流出させ、好気槽BODセンサ53が検知する好気槽22内の汚水のBOD値が好気槽22のBOD基準値の上限を超えた時点で、消化液を嫌気槽21へ流出させてもよい。   However, in order to promote the growth of aerobic bacteria in the aerobic tank 22, the BOD value of the sewage in the aerobic tank 22 detected by the aerobic tank BOD sensor 53 is the upper limit of the BOD reference value of the aerobic tank 22. When the BOD value of the digestion liquid is larger than the upper limit of the BOD reference value of the aerobic tank 22, the digestion liquid is caused to flow into the aerobic tank 22, and the aerobic tank BOD sensor When the BOD value of the sewage in the aerobic tank 22 detected by 53 exceeds the upper limit of the BOD reference value of the aerobic tank 22, the digested liquid may be discharged to the anaerobic tank 21.

本発明においては、メタン発酵装置41で発生する消化液のBOD値のレベルによって、消化液の流出先を振り分けているため、汚水の量や汚水濃度が変動しても、汚水浄化装置を構成する特定の部位に大きな浄化負荷がかかって汚水浄化能力が低下することを防止できる。そのため、汚水処理速度を適正な水準に維持することができる。   In the present invention, the outflow destination of the digestive liquid is distributed according to the level of the BOD value of the digestive liquid generated in the methane fermentation apparatus 41. Therefore, even if the amount of sewage and the sewage concentration vary, the sewage purification apparatus is configured. It is possible to prevent a sewage purification ability from being reduced due to a large purification load on a specific part. Therefore, the sewage treatment speed can be maintained at an appropriate level.

図3に、図1に示す汚水浄化装置におけるメタン発酵装置のBOD除去率制御の系統図を示す。
pHセンサ61によって検知されるメタン発酵装置41内の汚水のpH情報は、BOD制御部60に送信され、メタン発酵装置41内の汚水のpHがpH基準値を下回っているときは、BOD制御部60は電磁弁67を開いて、アルカリ液をメタン発酵装置41に供給して、pHを適正値にする。アルカリ液として苛性ソーダや石灰水等を用いることができる。
FIG. 3 shows a system diagram of the BOD removal rate control of the methane fermentation apparatus in the sewage purification apparatus shown in FIG.
The pH information of the sewage in the methane fermentation apparatus 41 detected by the pH sensor 61 is transmitted to the BOD control unit 60. When the pH of the sewage in the methane fermentation apparatus 41 is below the pH reference value, the BOD control unit 60 opens the electromagnetic valve 67, supplies an alkaline liquid to the methane fermentation apparatus 41, and sets pH to an appropriate value. Caustic soda or lime water can be used as the alkaline liquid.

また、アンモニア濃度センサ62によって検知されるメタン発酵装置41内の汚水のアンモニア濃度情報は、BOD制御部60に送信され、メタン発酵装置41内の汚水のアンモニア濃度がアンモニア濃度基準値を超えているときは、BOD制御部60は電磁弁68を開いて、水をメタン発酵装置41に供給して、アンモニア濃度を低下させる。   Moreover, the ammonia concentration information of the sewage in the methane fermentation apparatus 41 detected by the ammonia concentration sensor 62 is transmitted to the BOD control unit 60, and the ammonia concentration of the sewage in the methane fermentation apparatus 41 exceeds the ammonia concentration reference value. At that time, the BOD control unit 60 opens the electromagnetic valve 68 and supplies water to the methane fermentation apparatus 41 to reduce the ammonia concentration.

メタン発酵装置41におけるメタン菌による汚水のBOD除去率は、メタン発酵装置41内でのpHやアンモニア濃度に影響を受ける。メタン菌は、pHが6.5〜8.5程度の領域でないと、発酵分解能力が著しく低下するため、メタン発酵装置41においては、pHを6.5〜8.5程度の領域に保つことが好ましい。また、アンモニア濃度は2000mg/L以下とすることが好ましい。   The BOD removal rate of sewage by methane bacteria in the methane fermentation apparatus 41 is affected by the pH and ammonia concentration in the methane fermentation apparatus 41. If the pH of the methane bacterium is not in the range of about 6.5 to 8.5, the fermentation decomposition ability is significantly reduced. Therefore, in the methane fermentation apparatus 41, the pH should be maintained in the range of about 6.5 to 8.5. Is preferred. The ammonia concentration is preferably 2000 mg / L or less.

BOD値の高い汚水が大量に、あるいは長時間に亘って流れ込むと、嫌気槽21での浄化に大きな負担がかかるばかりでなく、メタン発酵装置41でのBOD除去も効率的に進行しない状況が生じる。このような場合には、メタン発酵装置41でのpHとアンモニア濃度をメタン菌繁殖のための適正値にすることで、メタン発酵装置41でのBOD除去を促進させることが有効である。   When a large amount of sewage with a high BOD value flows over a long period of time, not only a large burden is imposed on the purification in the anaerobic tank 21, but also a situation in which the removal of BOD in the methane fermentation apparatus 41 does not proceed efficiently. . In such a case, it is effective to promote the removal of BOD in the methane fermentation apparatus 41 by setting the pH and ammonia concentration in the methane fermentation apparatus 41 to appropriate values for reproduction of methane bacteria.

一例として、pH基準値を6.5とすると、メタン発酵装置41内の汚水のpHがこのpH基準値を下回っているときは、BOD制御部60は電磁弁67を開いて、アルカリ液をメタン発酵装置41に供給して、pHを適正値にする。また、アンモニア濃度基準値を2000mg/Lとすると、メタン発酵装置41内の汚水のアンモニア濃度がこのアンモニア濃度基準値を超えているときは、BOD制御部60は電磁弁68を開いて、水をメタン発酵装置41に供給して、アンモニア濃度を低下させる。   As an example, assuming that the pH reference value is 6.5, when the pH of the sewage in the methane fermentation apparatus 41 is lower than this pH reference value, the BOD control unit 60 opens the electromagnetic valve 67 and converts the alkaline liquid into methane. It supplies to the fermenter 41 and makes pH into an appropriate value. When the ammonia concentration reference value is 2000 mg / L, when the ammonia concentration of the sewage in the methane fermentation apparatus 41 exceeds the ammonia concentration reference value, the BOD control unit 60 opens the electromagnetic valve 68 to supply water. It supplies to the methane fermentation apparatus 41 and reduces ammonia concentration.

この操作によって、メタン発酵装置41での高いBOD除去率を維持することができ、メタン発酵装置41で生成された消化液を、嫌気槽22ではなく、好気槽22や処理水流出管24に流出させることが可能となり、嫌気槽21での浄化の負担を軽減することができる。特に、汚水濃度の変動が大きい場合に、汚水処理能力の平準化を行って、処理速度を速めることができる点において有利である。   By this operation, a high BOD removal rate in the methane fermentation apparatus 41 can be maintained, and the digested liquid generated in the methane fermentation apparatus 41 is not in the anaerobic tank 22 but in the aerobic tank 22 and the treated water outflow pipe 24. It becomes possible to flow out, and the burden of purification in the anaerobic tank 21 can be reduced. In particular, when the sewage concentration varies greatly, it is advantageous in that the treatment speed can be increased by leveling the sewage treatment capacity.

なお、嫌気槽21と好気槽22における浄化作用の向上のため、嫌気槽21と好気槽22にも同様のpHセンサ、アンモニア濃度センサを設けて、pHとアンモニア濃度の制御を行うことも可能である。例えば、嫌気槽21内での脱窒反応についての最適pHは7.0前後であり、好気槽22での硝化反応についての最適pHは7.0から8.0であるので、いずれの場合もpHを7.0程度に維持できるように操作するとよい。また、嫌気槽21でのアンモニア濃度は1000mg/L以下とするのがよく、好気槽22でのアンモニア濃度は150mg/L以下とするのがよい。   In order to improve the purification action in the anaerobic tank 21 and the aerobic tank 22, the pH sensor and the ammonia concentration sensor may be provided in the anaerobic tank 21 and the aerobic tank 22 to control the pH and the ammonia concentration. Is possible. For example, the optimum pH for the denitrification reaction in the anaerobic tank 21 is around 7.0, and the optimum pH for the nitrification reaction in the aerobic tank 22 is 7.0 to 8.0. It is good to operate so that pH can be maintained at about 7.0. The ammonia concentration in the anaerobic tank 21 is preferably 1000 mg / L or less, and the ammonia concentration in the aerobic tank 22 is preferably 150 mg / L or less.

図4に、本発明の第2実施形態に係る汚水浄化装置の構成を示す。
本実施形態においては、第1実施形態と重複する部分があるため、以下の説明においては、重複部分については省略する。
給水器4には、給水管70を介して温水器71が接続されており、給水管70には、水流量調節弁72が設けられている。温水器71には給温水管75を介して好気槽22が接続され、給温水管75には温水流量調節弁74が設けられている。また、温水器71には、温水器温度センサ73が備えられている。
In FIG. 4, the structure of the sewage purification apparatus which concerns on 2nd Embodiment of this invention is shown.
In the present embodiment, since there is a portion that overlaps with the first embodiment, the overlapping portion is omitted in the following description.
A water heater 71 is connected to the water feeder 4 through a water supply pipe 70, and a water flow rate adjustment valve 72 is provided in the water supply pipe 70. The aerobic tank 22 is connected to the water heater 71 via a hot water supply pipe 75, and a hot water flow rate adjustment valve 74 is provided in the hot water supply pipe 75. The water heater 71 is provided with a water heater temperature sensor 73.

メタン発酵装置41のメタンガス排出口44には、ガス管80を介してガスメータ81が接続され、ガス管82を介してガスホルダー83に接続されてメタンガスが蓄積される。さらに、ガス管84を介して圧力調整センサ85に接続されてガス圧が調整される。その後、ガス管86を介して接続された脱硫塔87で脱硫されて、ガス管88を介して熱水発生装置89へ送られる。   A gas meter 81 is connected to the methane gas discharge port 44 of the methane fermentation apparatus 41 via a gas pipe 80 and is connected to a gas holder 83 via a gas pipe 82 to accumulate methane gas. Further, the gas pressure is adjusted by being connected to the pressure adjustment sensor 85 via the gas pipe 84. Thereafter, the gas is desulfurized in a desulfurization tower 87 connected through a gas pipe 86 and sent to a hot water generator 89 through a gas pipe 88.

熱水発生装置89には、熱水送出管90を介して温水器92が接続され、熱水送出管90には熱水流量調節弁91が設けられている。また、熱水発生装置89には、熱水送出管93を介して温水器71が接続され、熱水送出管93には熱水流量調節弁94が設けられている。
給水器4には給水管95を介して温水器92が接続され、給水管95には、水流量調節弁96が設けられている。温水器92には給温水管97を介して嫌気槽21が接続され、給温水管97には温水流量調節弁98が設けられている。また、温水器92には給温水管99を介してメタン発酵装置41が接続されている。温水器92から給温水管99を介して送られる温水は、メタン発酵装置41の保温のために用いられる。
A water heater 92 is connected to the hot water generator 89 via a hot water delivery pipe 90, and a hot water flow rate adjustment valve 91 is provided in the hot water delivery pipe 90. A hot water generator 71 is connected to the hot water generator 89 via a hot water delivery pipe 93, and a hot water flow rate adjusting valve 94 is provided in the hot water delivery pipe 93.
A water heater 92 is connected to the water supply 4 via a water supply pipe 95, and a water flow rate adjustment valve 96 is provided in the water supply pipe 95. The anaerobic tank 21 is connected to the water heater 92 through a hot water supply pipe 97, and a hot water flow rate adjustment valve 98 is provided in the hot water supply pipe 97. A methane fermentation apparatus 41 is connected to the water heater 92 through a hot water pipe 99. The hot water sent from the water heater 92 through the hot water supply pipe 99 is used to keep the methane fermentation apparatus 41 warm.

温水器92には温水器温度センサ100が備えられ、嫌気槽21には嫌気槽温度センサ101が備えられ、好気槽22には好気槽温度センサ102が備えられている。また、希釈槽26には希釈槽温度センサ103が設けられている。
温度制御部110には、水流量調節弁72、熱水流量調節弁91、熱水流量調節弁94、水流量調節弁96、温水流量調節弁74、温水流量調節弁98のそれぞれと、温水器温度センサ73、温水器温度センサ100、嫌気槽温度センサ101、好気槽温度センサ102のそれぞれが電気的に接続されている。また、温度制御部110には、電磁弁32、電磁弁33と、希釈槽温度センサ103が電気的に接続されている。
The water heater 92 is provided with a water heater temperature sensor 100, the anaerobic tank 21 is provided with an anaerobic tank temperature sensor 101, and the aerobic tank 22 is provided with an aerobic tank temperature sensor 102. The dilution tank 26 is provided with a dilution tank temperature sensor 103.
The temperature control unit 110 includes a water flow rate adjustment valve 72, a hot water flow rate adjustment valve 91, a hot water flow rate adjustment valve 94, a water flow rate adjustment valve 96, a hot water flow rate adjustment valve 74, a hot water flow rate adjustment valve 98, and a water heater. Each of the temperature sensor 73, the water heater temperature sensor 100, the anaerobic tank temperature sensor 101, and the aerobic tank temperature sensor 102 is electrically connected. In addition, the temperature control unit 110 is electrically connected to the solenoid valve 32, the solenoid valve 33, and the dilution tank temperature sensor 103.

図5、図6、図7に、図4に示す汚水浄化装置における温度制御の系統図を示す。
図5は、嫌気槽21での汚水浄化のための温度管理の制御系統図であり、嫌気槽温度センサ101によって検知された嫌気槽21の温度情報は、温度制御部110に送信され、温度制御部110は、嫌気槽21の温度情報に基づいて、熱水流量調節弁91と水流量調節弁96とを制御する。
FIG. 5, FIG. 6, and FIG. 7 show system diagrams of temperature control in the sewage purification apparatus shown in FIG.
FIG. 5 is a control system diagram of temperature management for purification of sewage in the anaerobic tank 21, and temperature information of the anaerobic tank 21 detected by the anaerobic tank temperature sensor 101 is transmitted to the temperature control unit 110 to control the temperature. The unit 110 controls the hot water flow rate adjustment valve 91 and the water flow rate adjustment valve 96 based on the temperature information of the anaerobic tank 21.

嫌気槽内で生息する嫌気性細菌である脱窒菌の繁殖に最適な温度範囲は、25℃以上30℃以下であり、嫌気槽21中の汚水の温度がこの最適温度範囲の下限値より低い場合には、熱水流量調節弁91を通過する熱水流量と、水流量調節弁96を通過する水流量とを調節して、温水器92に温水を生成し、この温水を嫌気槽21に送出して、嫌気槽21中の汚水の温度が最適な温度範囲となるようにする。   The optimal temperature range for the growth of denitrifying bacteria, which are anaerobic bacteria inhabiting the anaerobic tank, is 25 ° C. or higher and 30 ° C. or lower, and the temperature of sewage in the anaerobic tank 21 is lower than the lower limit of this optimal temperature range The hot water flow rate passing through the hot water flow rate control valve 91 and the water flow rate passing through the water flow rate control valve 96 are adjusted to generate hot water in the water heater 92, and this hot water is sent to the anaerobic tank 21. Thus, the temperature of the sewage in the anaerobic tank 21 is set to an optimum temperature range.

具体的に一例を示すと、嫌気槽21内での最適温度基準値を、最適温度範囲の中心温度である27.5℃に設定すると、嫌気槽温度センサ101によって検知された温度が、最適温度範囲の下限値25℃を下回って、x℃である場合には、最適温度基準値と検知された温度との差(27.5−x)に応じて、段階的または連続的に送出される温水量を変えて嫌気槽21内の温度を上昇させる。   Specifically, when the optimum temperature reference value in the anaerobic tank 21 is set to 27.5 ° C. which is the center temperature of the optimum temperature range, the temperature detected by the anaerobic tank temperature sensor 101 is the optimum temperature. If the temperature is below the lower limit 25 ° C of the range and x ° C, it is sent stepwise or continuously depending on the difference (27.5-x) between the optimum temperature reference value and the detected temperature. The temperature in the anaerobic tank 21 is increased by changing the amount of hot water.

温水器92に生成される温水の温度は、温水が嫌気槽21内の汚水と混合されたときに最適温度範囲内となるようにするため、この最適温度範囲よりも高温となるように設定されている。この温度設定は、嫌気槽温度センサ101によって検知された嫌気槽21の温度によって適宜定められる。この温度設定を実現するために、温水器温度センサ100によって検知された温水器92の温度情報は、温度制御部110に送出され、熱水流量調節弁91を通過する熱水流量と、水流量調節弁96を通過する水流量とを調節して、温水器92に生成される温水の温度を設定温度に一致させる。生成された温水は、温水流量調節弁98を開いて嫌気槽21に流れ込む。
上記の操作により、嫌気槽21の温度が最適な温度範囲に達すると、温水流量調節弁98を閉じて、嫌気槽21への温水の供給を停止する。
The temperature of the warm water generated in the water heater 92 is set to be higher than the optimum temperature range so that the warm water is within the optimum temperature range when mixed with the sewage in the anaerobic tank 21. ing. This temperature setting is appropriately determined by the temperature of the anaerobic tank 21 detected by the anaerobic tank temperature sensor 101. In order to realize this temperature setting, the temperature information of the water heater 92 detected by the water heater temperature sensor 100 is sent to the temperature control unit 110 and the hot water flow rate passing through the hot water flow rate control valve 91 and the water flow rate. The flow rate of the water passing through the control valve 96 is adjusted so that the temperature of the hot water generated in the water heater 92 matches the set temperature. The generated warm water flows into the anaerobic tank 21 by opening the warm water flow rate control valve 98.
When the temperature of the anaerobic tank 21 reaches the optimum temperature range by the above operation, the hot water flow rate adjustment valve 98 is closed and the supply of hot water to the anaerobic tank 21 is stopped.

図6は、好気槽22での汚水浄化のための温度管理の制御系統図であり、好気槽温度センサ102によって検知された好気槽22の温度情報は、温度制御部110に送信され、温度制御部110は、好気槽22の温度情報に基づいて、熱水流量調節弁94と水流量調節弁72とを制御する。   FIG. 6 is a control system diagram of temperature management for sewage purification in the aerobic tank 22, and temperature information of the aerobic tank 22 detected by the aerobic tank temperature sensor 102 is transmitted to the temperature control unit 110. The temperature controller 110 controls the hot water flow rate adjustment valve 94 and the water flow rate adjustment valve 72 based on the temperature information of the aerobic tank 22.

好気槽内で生息する好気性細菌である、亜硝酸菌や硝酸菌等の硝化菌の繁殖に最適な温度範囲は、30℃以上40℃以下であり、好気槽22中の汚水の温度がこの最適温度範囲の下限値より低い場合には、熱水流量調節弁94を通過する熱水流量と、水流量調節弁72を通過する水流量とを調節して、温水器71に温水を生成し、この温水を好気槽22に送出して、好気槽22中の汚水の温度が最適な温度範囲となるようにする。   The optimal temperature range for the growth of nitrifying bacteria such as nitrite bacteria and nitrate bacteria that are aerobic bacteria that live in the aerobic tank is 30 ° C. or more and 40 ° C. or less, and the temperature of sewage in the aerobic tank 22 Is lower than the lower limit value of the optimum temperature range, the hot water flow rate passing through the hot water flow rate control valve 94 and the water flow rate passing through the water flow rate control valve 72 are adjusted to supply hot water to the water heater 71. It produces | generates and this warm water is sent to the aerobic tank 22, and the temperature of the sewage in the aerobic tank 22 is made into the optimal temperature range.

具体的に一例を示すと、好気槽22内での最適温度基準値を、最適温度範囲の中心温度である35℃に設定すると、好気槽温度センサ102によって検知された温度が、最適温度範囲の下限値30℃を下回って、y℃である場合には、最適温度基準値と検知された温度との差(35−y)に応じて、段階的または連続的に送出される温水量を変えて好気槽22内の温度を上昇させる。   Specifically, when the optimum temperature reference value in the aerobic tank 22 is set to 35 ° C., which is the center temperature of the optimum temperature range, the temperature detected by the aerobic tank temperature sensor 102 is the optimum temperature. When the temperature is lower than the lower limit 30 ° C of the range and y ° C, the amount of hot water delivered stepwise or continuously according to the difference (35-y) between the optimum temperature reference value and the detected temperature To increase the temperature in the aerobic tank 22.

温水器71に生成される温水の温度は、温水が好気槽22内の汚水と混合されたときに最適温度範囲内となるようにするため、この最適温度範囲よりも高温となるように設定されている。この温度設定は、好気槽温度センサ102によって検知された好気槽22の温度によって適宜定められる。この温度設定を実現するために、温水器温度センサ73によって検知された温水器71の温度情報は、温度制御部110に送出され、熱水流量調節弁94を通過する熱水流量と、水流量調節弁72を通過する水流量とを調節して、温水器71に生成される温水の温度を設定温度に一致させる。生成された温水は、温水流量調節弁74を開いて好気槽22に流れ込む。
上記の操作により、好気槽22の温度が最適な温度範囲に達すると、温水流量調節弁74を閉じて、好気槽22への温水の供給を停止する。
The temperature of the warm water generated in the water heater 71 is set to be higher than the optimum temperature range so that the warm water is within the optimum temperature range when mixed with the sewage in the aerobic tank 22. Has been. This temperature setting is appropriately determined by the temperature of the aerobic tank 22 detected by the aerobic tank temperature sensor 102. In order to realize this temperature setting, the temperature information of the water heater 71 detected by the water heater temperature sensor 73 is sent to the temperature control unit 110 and the hot water flow rate passing through the hot water flow rate control valve 94 and the water flow rate The flow rate of the water passing through the control valve 72 is adjusted to make the temperature of the hot water generated in the water heater 71 coincide with the set temperature. The generated hot water flows into the aerobic tank 22 by opening the hot water flow rate adjustment valve 74.
When the temperature of the aerobic tank 22 reaches the optimum temperature range by the above operation, the hot water flow rate adjustment valve 74 is closed and the supply of hot water to the aerobic tank 22 is stopped.

図7は、希釈槽26から排出される処理水の温度管理のための制御系統図であり、希釈槽温度センサ103によって検知された希釈槽26内の処理水の温度情報は、温度制御部110に送信され、温度制御部110は、希釈槽26内の処理水の温度情報に基づいて、電磁弁33と電磁弁32とを制御する。   FIG. 7 is a control system diagram for managing the temperature of the treated water discharged from the dilution tank 26, and the temperature information of the treated water in the dilution tank 26 detected by the dilution tank temperature sensor 103 is the temperature control unit 110. The temperature control unit 110 controls the electromagnetic valve 33 and the electromagnetic valve 32 based on the temperature information of the treated water in the dilution tank 26.

電磁弁33を開くことによって、水流量調節部13から水が希釈槽26に供給されるため、希釈槽温度センサ103によって検知される温度が常温となるまで、好気槽22で加温されて浄化された処理水の温度を低下させる。また、補助的に、電磁弁32を開いて、噴霧槽25へ水を供給して、処理水の温度を低下させることができる。   By opening the electromagnetic valve 33, water is supplied from the water flow rate adjusting unit 13 to the dilution tank 26. Therefore, the water is heated in the aerobic tank 22 until the temperature detected by the dilution tank temperature sensor 103 reaches the normal temperature. Reduce the temperature of the purified treated water. In addition, auxiliaryly, the temperature of the treated water can be lowered by opening the electromagnetic valve 32 and supplying water to the spray tank 25.

希釈槽温度センサ103によって検知される温度が常温となった時点で、電磁弁32、電磁弁33を閉じて、水流量調節部13から水の供給が停止されるようにしてもよいが、水流量調節部13からの水の供給は、前述したように、処理水の希釈の役割を持っているため、希釈のための水準を満たすまで水の供給を続けるようにすることが好ましい。   When the temperature detected by the dilution tank temperature sensor 103 reaches a normal temperature, the electromagnetic valve 32 and the electromagnetic valve 33 may be closed to stop the supply of water from the water flow rate adjustment unit 13. As described above, the supply of water from the flow rate adjusting unit 13 has a role of diluting the treated water. Therefore, it is preferable that the supply of water is continued until the level for dilution is satisfied.

上述した温度制御により、嫌気槽21、好気槽22での汚水浄化速度を速めることができ、より少量の希釈水で効率的な浄化を実現することができるとともに、処理水に対して水流量調節部13から送出される水が混合されて自然界に排出されるため、温排水となることもなく、自然環境保護に適合した汚水浄化装置となっている。さらに、嫌気槽21、好気槽22での温度管理に必要なエネルギーは、汚泥を分解して生成されたメタンから得ており、汚水浄化の過程で得られたエネルギーを汚水処理能力の向上に利用しているため、循環型で省エネルギーに寄与する汚水浄化装置を構築しているということができる。   By the temperature control described above, the sewage purification rate in the anaerobic tank 21 and the aerobic tank 22 can be increased, and an efficient purification can be realized with a smaller amount of dilution water, and the water flow rate with respect to the treated water Since the water sent out from the adjusting unit 13 is mixed and discharged to the natural world, it becomes a sewage purification apparatus suitable for protecting the natural environment without becoming warm drainage. Furthermore, the energy required for temperature control in the anaerobic tank 21 and the aerobic tank 22 is obtained from methane generated by decomposing sludge, and the energy obtained in the process of sewage purification is used to improve the sewage treatment capacity. Since it is used, it can be said that a sewage purification apparatus that contributes to energy saving is constructed.

本発明は、発生する汚水の量や汚水濃度が変動しても、汚水浄化装置を構成する特定の部位に大きな負荷がかかることを防止して、汚水処理速度を適正な水準に維持することが可能な汚水浄化装置として利用することができる。   The present invention can prevent a large load from being applied to a specific part constituting the sewage purification apparatus and maintain the sewage treatment speed at an appropriate level even if the amount of sewage generated and the concentration of sewage fluctuate. It can be used as a possible sewage purification device.

1 貯水タンク
2 雨水供給管
3 配水管
4 給水器
5 水道水供給部
6 地下水供給部
7 水道水供給管
8 地下水供給管
9 貯水残量センサ
10 給水制御部
11 給水ボタン
12 配水管
13 水流量調節部
14 分岐管
15 分岐管
16 分岐管
17 分岐制御部
18 汚水濃度センサ
19 処理水濃度センサ
21 嫌気槽
22 好気槽
23 汚水流入管
24 処理水流出管
25 噴霧槽
26 希釈槽
27 希釈槽濃度センサ
31 電磁弁
32 電磁弁
33 電磁弁
40 汚水送出管
41 メタン発酵装置
42 電磁弁
43 メタン発酵装置内BODセンサ
44 メタンガス排出口
45 消化液送出管
46 嫌気槽流入管
47 好気槽流入管
48 処理水側流入管
49 電磁弁
50 電磁弁
51 電磁弁
52 嫌気槽BODセンサ
53 好気槽BODセンサ
60 BOD制御部
61 pHセンサ
62 アンモニア濃度センサ
63 アルカリ液供給部
64 アルカリ液供給管
65 水供給部
66 水供給管
67 電磁弁
68 電磁弁
70 給水管
71 温水器
72 水流量調節弁
73 温水器温度センサ
74 温水流量調節弁
75 給温水管
80、82、84、86、88 ガス管
81 ガスメータ
83 ガスホルダー
85 圧力調整センサ
87 脱硫塔
89 熱水発生装置
90 熱水送出管
91 熱水流量調節弁
92 温水器
93 熱水送出管
94 熱水流量調節弁
95 給水管
96 水流量調節弁
97 給温水管
98 温水流量調節弁
99 給温水管
100 温水器温度センサ
101 嫌気槽温度センサ
102 好気槽温度センサ
103 希釈槽温度センサ
DESCRIPTION OF SYMBOLS 1 Water storage tank 2 Rainwater supply pipe 3 Water distribution pipe 4 Water supply device 5 Tap water supply part 6 Groundwater supply part 7 Tap water supply pipe 8 Groundwater supply pipe 9 Reservoir residual quantity sensor 10 Water supply control part 11 Water supply button 12 Water supply pipe 13 Water flow adjustment Section 14 Branch pipe 15 Branch pipe 16 Branch pipe 17 Branch control section 18 Sewage concentration sensor 19 Treated water concentration sensor 21 Anaerobic tank 22 Aerobic tank 23 Sewage inflow pipe 24 Treated water outflow pipe 25 Spray tank 26 Dilution tank 27 Dilution tank concentration sensor 31 Solenoid valve 32 Solenoid valve 33 Solenoid valve 40 Sewage delivery pipe 41 Methane fermentation device 42 Solenoid valve 43 BOD sensor in methane fermentation device 44 Methane gas outlet 45 Digestion fluid delivery pipe 46 Anaerobic tank inflow pipe 47 Anaerobic tank inflow pipe 48 Treated water Side inlet pipe 49 Solenoid valve 50 Solenoid valve 51 Solenoid valve 52 Anaerobic tank BOD sensor 53 Aerobic tank BOD sensor 60 B D control part 61 pH sensor 62 Ammonia concentration sensor 63 Alkaline liquid supply part 64 Alkaline liquid supply pipe 65 Water supply part 66 Water supply pipe 67 Solenoid valve 68 Solenoid valve 70 Water supply pipe 71 Water heater 72 Water flow control valve 73 Water heater temperature sensor 74 Hot water flow rate adjustment valve 75 Hot water supply pipe 80, 82, 84, 86, 88 Gas pipe 81 Gas meter 83 Gas holder 85 Pressure adjustment sensor 87 Desulfurization tower 89 Hot water generator 90 Hot water delivery pipe 91 Hot water flow rate adjustment valve 92 Hot water 93 Hot water supply pipe 94 Hot water flow control valve 95 Water supply pipe 96 Water flow control valve 97 Hot water pipe 98 Hot water flow control valve 99 Hot water pipe 100 Hot water temperature sensor 101 Anaerobic tank temperature sensor 102 Aerobic tank temperature sensor 103 Dilution tank temperature sensor

Claims (4)

汚水流入管から流入する汚水を浄化する嫌気槽と、前記嫌気槽に接続された好気槽と、前記好気槽によって浄化された処理水を排出する処理水排出管と、汚水中の汚泥をメタン菌により分解してメタンを発生して汚水のBOD値を低減するメタン発酵装置とを備え、
前記嫌気槽または前記汚水流入管は、前記嫌気槽または前記汚水流入管から流入した汚水を前記メタン発酵装置に流入させる汚水送出管を介して前記メタン発酵装置に接続され、前記メタン発酵装置には、メタン菌によって汚水の原水よりもBOD値を低減された消化液を送出する消化液送出管が接続され、前記消化液送出管は、嫌気槽流入管、好気槽流入管、処理水側流入管の3つに分岐し、前記嫌気槽流入管は前記嫌気槽に接続され、前記好気槽流入管は前記好気槽に接続され、前記処理水側流入管は前記処理水排出管に接続され、
前記嫌気槽流入管には第一の電磁弁が設けられ、前記好気槽流入管には第二の電磁弁が設けられ、前記処理水側流入管には第三の電磁弁が設けられ、
BOD制御部は、メタン発酵装置内BODセンサが検知する前記消化液のBOD値と、好気槽のBOD基準値の上限および下限との比較によって、消化液の流出先を決定し、消化液のBOD値が好気槽のBOD基準値の上限より大きいときは、前記第一の電磁弁を開いて消化液を嫌気槽へ流出させ、消化液のBOD値が好気槽のBOD基準値の上限より小さく、好気槽のBOD基準値の下限より大きいときは、前記第二の電磁弁を開いて消化液を好気槽へ流出させ、消化液のBOD値が好気槽のBOD基準値の下限より小さいときは、前記第三の電磁弁を開いて消化液を処理水排水管へ流出させることを特徴とする汚水浄化装置。
An anaerobic tank for purifying sewage flowing from the sewage inflow pipe, an aerobic tank connected to the anaerobic tank, a treated water discharge pipe for discharging treated water purified by the aerobic tank, and sludge in the sewage Equipped with a methane fermentation device that decomposes by methane bacteria and generates methane to reduce the BOD value of sewage,
The anaerobic tank or the sewage inflow pipe is connected to the methane fermentation apparatus via a sewage delivery pipe for allowing the sewage flowing from the anaerobic tank or the sewage inflow pipe to flow into the methane fermentation apparatus. The digestive juice delivery pipe is connected to send out digestive juice whose BOD value is reduced by methane bacteria compared to the raw water of the sewage. The digestive juice delivery pipe is connected to the anaerobic tank inlet pipe, aerobic tank inlet pipe, treated water side inflow The anaerobic tank inflow pipe is connected to the anaerobic tank, the aerobic tank inflow pipe is connected to the aerobic tank, and the treated water side inflow pipe is connected to the treated water discharge pipe. And
The anaerobic tank inflow pipe is provided with a first electromagnetic valve, the aerobic tank inflow pipe is provided with a second electromagnetic valve, and the treated water side inflow pipe is provided with a third electromagnetic valve,
The BOD control unit determines the outflow destination of the digestion liquid by comparing the BOD value of the digestion liquid detected by the BOD sensor in the methane fermentation apparatus and the upper and lower limits of the BOD reference value of the aerobic tank. When the BOD value is larger than the upper limit of the BOD reference value of the aerobic tank, the first electromagnetic valve is opened to allow the digestive juice to flow into the anaerobic tank, and the BOD value of the digestive liquid is the upper limit of the BOD reference value of the aerobic tank. If it is smaller and larger than the lower limit of the BOD reference value of the aerobic tank, the second solenoid valve is opened to allow the digestive fluid to flow into the aerobic tank, and the BOD value of the digestive fluid is equal to the BOD reference value of the aerobic tank. When it is smaller than the lower limit, the third electromagnetic valve is opened to allow the digestive fluid to flow into the treated water drain pipe .
前記メタン発酵装置から送出されるメタンによって熱水を生成する熱水発生装置と、前記熱水発生装置から第一の熱水送出管を介して送出される熱水と給水器から第一の給水管を介して送出される水とを混合して温水を生成する第一の温水器と、前記熱水発生装置から第二の熱水送出管を介して送出される熱水と給水器から第二の給水管を介して送出される水とを混合して温水を生成する第二の温水器とを備え、
前記第一の熱水送出管には第一の熱水流量調節弁が設けられ、前記第一の給水管には第一の水流量調節弁が設けられ、前記第二の熱水送出管には第二の熱水流量調節弁が設けられ、前記第二の給水管には第二の水流量調節弁が設けられ、
前記第一の温水器は第一の給温水管を介して前記嫌気槽に接続され、前記第二の温水器は第二の給温水管を介して前記好気槽に接続され、前記嫌気槽には嫌気槽温度センサが設けられ、前記好気槽には好気槽温度センサが設けられ、
温度制御部は、前記嫌気槽温度センサが検知する前記嫌気槽内の汚水の温度が嫌気性細菌の繁殖のための最適温度範囲の下限値より低い場合には、前記第一の熱水流量調節弁と前記第一の水流量調節弁とを制御して、前記嫌気槽内の汚水の温度が、嫌気性細菌の繁殖に最適な温度となるように前記第一の温水器から前記嫌気槽へ温水を供給するとともに、前記好気槽温度センサが検知する前記好気槽内の汚水の温度が好気性細菌の繁殖のための最適温度範囲の下限値より低い場合には、前記第二の熱水流量調節弁と前記第二の水流量調節弁とを制御して、前記好気槽内の汚水の温度が、好気性細菌の繁殖に最適な温度となるように前記第二の温水器から前記好気槽へ温水を供給することを特徴とする請求項1記載の汚水浄化装置。
A hot water generator that generates hot water from methane delivered from the methane fermentation apparatus, hot water that is delivered from the hot water generator via a first hot water delivery pipe, and a first water supply from a water supply device A first water heater for producing hot water by mixing water sent through a pipe, and a hot water and a water dispenser sent from the hot water generator via a second hot water delivery pipe. A second water heater that mixes the water sent through the second water supply pipe to generate hot water;
The first hot water delivery pipe is provided with a first hot water flow rate adjustment valve, the first water supply pipe is provided with a first water flow rate adjustment valve, and the second hot water delivery pipe is provided with Is provided with a second hot water flow rate adjustment valve, the second water supply pipe is provided with a second water flow rate adjustment valve,
The first water heater is connected to the anaerobic tank via a first water heater pipe, the second water heater is connected to the aerobic tank via a second water heater pipe, and the anaerobic tank Is provided with an anaerobic tank temperature sensor, the aerobic tank is provided with an aerobic tank temperature sensor,
When the temperature of the sewage in the anaerobic tank detected by the anaerobic tank temperature sensor is lower than the lower limit of the optimum temperature range for the growth of anaerobic bacteria, the temperature control unit adjusts the first hot water flow rate. The first water heater to the anaerobic tank so that the temperature of the sewage in the anaerobic tank is optimal for the growth of anaerobic bacteria by controlling the valve and the first water flow control valve When supplying warm water and the temperature of the sewage in the aerobic tank detected by the aerobic tank temperature sensor is lower than the lower limit of the optimum temperature range for the growth of aerobic bacteria, the second heat From the second water heater, the water flow control valve and the second water flow control valve are controlled so that the temperature of the sewage in the aerobic tank is optimal for the growth of aerobic bacteria. The sewage purification apparatus according to claim 1, wherein warm water is supplied to the aerobic tank.
前記好気槽によって浄化された処理水に対して希釈水を供給して前記処理水の温度低下と希釈を行う希釈槽が備えられていることを特徴とする請求項2記載の汚水浄化装置。   The sewage purification apparatus according to claim 2, further comprising a dilution tank that supplies dilution water to the treated water purified by the aerobic tank to lower the temperature and dilute the treated water. 前記メタン発酵装置にはpHセンサとアンモニア濃度センサとが設けられ、前記メタン発酵装置にはアルカリ液供給部と水供給部とが接続され、前記BOD制御部は、前記メタン発酵装置内での汚水のpHとアンモニア濃度がメタン菌繁殖のための適正値となるように、前記アルカリ液供給部からアルカリ液を前記メタン発酵装置に送出するとともに、前記水供給部から水を前記メタン発酵装置に送出することを特徴とする請求項1から3のいずれかに記載の汚水浄化装置。   The methane fermentation apparatus is provided with a pH sensor and an ammonia concentration sensor, an alkaline liquid supply unit and a water supply unit are connected to the methane fermentation apparatus, and the BOD control unit is a sewage in the methane fermentation apparatus. The alkaline solution is sent from the alkaline solution supply unit to the methane fermentation apparatus so that the pH and ammonia concentration of the solution become appropriate values for the growth of methane bacteria, and water is sent from the water supply unit to the methane fermentation device. The sewage purification apparatus according to any one of claims 1 to 3, wherein:
JP2010089981A 2010-04-09 2010-04-09 Sewage purification equipment Expired - Fee Related JP4573313B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010089981A JP4573313B1 (en) 2010-04-09 2010-04-09 Sewage purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010089981A JP4573313B1 (en) 2010-04-09 2010-04-09 Sewage purification equipment

Publications (2)

Publication Number Publication Date
JP4573313B1 true JP4573313B1 (en) 2010-11-04
JP2011218291A JP2011218291A (en) 2011-11-04

Family

ID=43319583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010089981A Expired - Fee Related JP4573313B1 (en) 2010-04-09 2010-04-09 Sewage purification equipment

Country Status (1)

Country Link
JP (1) JP4573313B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387485A (en) * 2017-08-14 2019-02-26 宁波方太厨具有限公司 A kind of sewage disposal system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596287A (en) * 1991-10-02 1993-04-20 Matsushita Electric Ind Co Ltd Treatment of sewage
JP2002186992A (en) * 2000-12-19 2002-07-02 Kurita Water Ind Ltd Biological de-phosphorization apparatus
JP2004167307A (en) * 2002-11-18 2004-06-17 Ebara Corp Method and apparatus for removing/recovering phosphorus from organic sewage
JP2008029903A (en) * 2006-07-26 2008-02-14 Maezawa Ind Inc Treatment apparatus of drainage and waste material
JP2009011949A (en) * 2007-07-05 2009-01-22 Ryuji Shiozaki Sewage purifying apparatus
JP2009255018A (en) * 2008-04-21 2009-11-05 Ryuji Shiozaki Sewage purifying apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596287A (en) * 1991-10-02 1993-04-20 Matsushita Electric Ind Co Ltd Treatment of sewage
JP2002186992A (en) * 2000-12-19 2002-07-02 Kurita Water Ind Ltd Biological de-phosphorization apparatus
JP2004167307A (en) * 2002-11-18 2004-06-17 Ebara Corp Method and apparatus for removing/recovering phosphorus from organic sewage
JP2008029903A (en) * 2006-07-26 2008-02-14 Maezawa Ind Inc Treatment apparatus of drainage and waste material
JP2009011949A (en) * 2007-07-05 2009-01-22 Ryuji Shiozaki Sewage purifying apparatus
JP2009255018A (en) * 2008-04-21 2009-11-05 Ryuji Shiozaki Sewage purifying apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387485A (en) * 2017-08-14 2019-02-26 宁波方太厨具有限公司 A kind of sewage disposal system
CN109387485B (en) * 2017-08-14 2023-12-15 宁波方太厨具有限公司 Sewage treatment system

Also Published As

Publication number Publication date
JP2011218291A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
US11339069B2 (en) Anaerobic ammoxidation synergistic nitrogen removal process device of municipal sewage main and side streams and application method thereof
US8246829B2 (en) Systems and methods for water treatment and remediation
JP5197223B2 (en) Water treatment system
JP2011189286A (en) Water treatment system for organic wastewater
CN201914999U (en) Complete set of device for treating wastewater
JP4191788B1 (en) Sewage purification equipment
KR20200052821A (en) Sewage treatment system
CN103068745B (en) Systems and methods for control of a gas or chemical
JP4573313B1 (en) Sewage purification equipment
JP2006143780A (en) Biogas purification system
KR970006499B1 (en) Apparatus and method for organic wastewater treatment
KR101036001B1 (en) Wastwater treatment method and system using dynamic flow and submerged membrane
JP4114174B1 (en) Sewage purification equipment
US20220332604A1 (en) Method, system and device for wastewater treatment
CN103253835B (en) Coal gasification wastewater treatment device and treatment method thereof
CN100486902C (en) Process for treating internal and external circulation type drinking water
CN215667619U (en) Integration kitchen garbage effluent treatment plant
CN111268801A (en) Rural sewage integrated treatment equipment and treatment process thereof
CN110550828A (en) Novel sewage treatment system and treatment method
CN212713182U (en) Multistage combined type chemical industry high difficulty waste water zero release processing system
CN216837553U (en) Multi-region baffling and MBR array combined sludge emission reduction reclaimed water treatment device
TWI795608B (en) sewage treatment system
CN217838511U (en) Combined module type sewage treatment container system
CN216687833U (en) Waste water treatment device
CN211800024U (en) High-efficient circulating device of biological deodorization circulating water tank make-up water

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4573313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees