JP4573102B2 - Ultrasonic motor and variable stiffness spring - Google Patents

Ultrasonic motor and variable stiffness spring Download PDF

Info

Publication number
JP4573102B2
JP4573102B2 JP2004326475A JP2004326475A JP4573102B2 JP 4573102 B2 JP4573102 B2 JP 4573102B2 JP 2004326475 A JP2004326475 A JP 2004326475A JP 2004326475 A JP2004326475 A JP 2004326475A JP 4573102 B2 JP4573102 B2 JP 4573102B2
Authority
JP
Japan
Prior art keywords
rod
axis direction
shaped member
excitation
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004326475A
Other languages
Japanese (ja)
Other versions
JP2006141091A (en
Inventor
浩一 播磨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2004326475A priority Critical patent/JP4573102B2/en
Publication of JP2006141091A publication Critical patent/JP2006141091A/en
Application granted granted Critical
Publication of JP4573102B2 publication Critical patent/JP4573102B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、超音波モータおよび可変剛性バネに関する。   The present invention relates to an ultrasonic motor and a variable stiffness spring.

近年、小型で高トルクを有し電磁界の影響の無いモータとして超音波モータの開発が進められている。その方式には種々のものがあるが、最も実用化されている方式は、位相の異なる圧電素子の組み合わせにより振動体(ステータ)に楕円運動を起こし、これによる進行波で、振動体に圧接した移動体(ロータ)を回転させるものである(例えば、非特許文献1参照)。また、静的な変位を与える方式として、圧電素子を積層化、あるいは曲げ方向変位を用いるバイモルフ式が多く用いられている(例えば、特許文献1参照)。   In recent years, an ultrasonic motor has been developed as a small motor having a high torque and not affected by an electromagnetic field. There are various types of methods, but the most practical method is that an elliptical motion is generated in the vibrating body (stator) by a combination of piezoelectric elements with different phases, and the traveling wave thereby presses the vibrating body. A moving body (rotor) is rotated (for example, refer nonpatent literature 1). In addition, as a method for giving a static displacement, a bimorph method in which piezoelectric elements are stacked or a bending direction displacement is used is often used (see, for example, Patent Document 1).

他方、近年、可変剛性や負剛性といった特殊な特性を持つバネ(剛性装置)の開発が盛んである。例えば、特許文献2では、ハードスプリング特性を有する非線形バネを用いて高架橋に敷設された軌道の防振装置を提案している。また、特許文献3では、作用した荷重とそれに伴う変形との間に負の関係を生ずる負の剛性装置を提案している。
長松昭男編、「ダイナミクス・ハンドブック」、初版、株式会社朝倉書店、1993年11月、p.305−306 特開2004−233475号公報 (第3−4頁、第1−3図) 特開2000−309901号公報 (第2−4頁、第1−3図) 特開2003−287079号公報 (第4−5頁、第1−2図)
On the other hand, in recent years, springs (rigid devices) having special characteristics such as variable rigidity and negative rigidity have been actively developed. For example, Patent Document 2 proposes a vibration isolator for a track laid on a viaduct using a non-linear spring having hard spring characteristics. Further, Patent Document 3 proposes a negative rigid device that creates a negative relationship between an applied load and a deformation accompanying the applied load.
Edited by Akio Nagamatsu, “Dynamics Handbook”, first edition, Asakura Shoten Co., Ltd., November 1993, p. 305-306 JP 2004-233475 A (page 3-4, Fig. 1-3) JP 2000-309901 A (page 2-4, Fig. 1-3) JP 2003-287079 A (page 4-5, FIG. 1-2)

しかしながら、非特許文献1に記載されたモータは、振動体と移動体間の摩擦を利用しているため、制動特性は優れるが、耐久性が低いという難点を有している。また、特許文献1に記載された方式は、静撓みを用いているため、ストロークが小さいという難点がある。
一方、特許文献2や3に記載されたハードスプリングや負の剛性といった復元力特性はバネごとに固有のものであり、荷重帯域が変化した場合、バネの材質や構造などを設計変更しなければならない。また、1つのバネに複数の復元力特性を混在させることは困難である。
However, since the motor described in Non-Patent Document 1 uses friction between the vibrating body and the moving body, the braking characteristics are excellent, but the durability is low. Moreover, since the system described in Patent Document 1 uses static deflection, there is a drawback that the stroke is small.
On the other hand, the restoring force characteristics such as hard spring and negative stiffness described in Patent Documents 2 and 3 are unique to each spring, and if the load band changes, the design of the spring material and structure must be changed. Don't be. Moreover, it is difficult to mix a plurality of restoring force characteristics in one spring.

本発明は、上述する問題点に鑑みてなされたもので、耐久性が高くストロークの大きな超音波モータと、機構が簡単な可変剛性バネを、同一の基本原理により実現することを目的とする。   The present invention has been made in view of the above-described problems, and an object thereof is to realize an ultrasonic motor having high durability and a large stroke and a variable rigid spring having a simple mechanism by the same basic principle.

上記目的を達成するため、本発明に係る超音波モータは、一端が固定支持された固定端と、他端が材軸方向にのみ移動自在とされたローラー端とを有する棒状部材の材軸方向を直交座標系のX軸方向としたとき、Y軸方向およびZ軸方向をそれぞれ加振方向とする少なくとも一対の並進アクチュエータが前記棒状部材の固定端近傍に装着された構成とされ、前記一対の並進アクチュエータに印加される加振波は、相互の位相が90度異なる正弦波であり、前記棒状部材の固定端近傍が前記加振波により加振されて該棒状部材がY軸方向およびZ軸方向に撓むことにより、前記ローラー端がX軸方向に変位してリニアモータとして機能することを特徴とする。 In order to achieve the above object, an ultrasonic motor according to the present invention has a fixed end whose one end is fixedly supported, and a rod-shaped member having a roller end whose other end is movable only in the direction of the material axis. Is a configuration in which at least a pair of translational actuators having the Y-axis direction and the Z-axis direction as excitation directions are mounted in the vicinity of the fixed ends of the rod-shaped members, respectively, The excitation waves applied to the translation actuator are sine waves whose phases are different from each other by 90 degrees, and the vicinity of the fixed end of the rod-shaped member is vibrated by the excitation wave so that the rod-shaped member moves in the Y-axis direction and the Z-axis. By bending in a direction, the roller end is displaced in the X-axis direction and functions as a linear motor .

ここで、直交座標系のX軸方向は、棒状部材が静止している状態における当該棒状部材の材軸方向である。
棒状部材の固定端近傍に装着された一対の並進アクチュエータに、位相が90度異なる正弦波を印加してY軸方向およびZ軸方向にそれぞれ加振させると、棒状部材は中間部で撓みながらX軸を中心として回転運動を行う。この際、一対の並進アクチュエータに入力する正弦波を同振幅にすると、棒状部材はX軸を中心として円運動をする。
棒状部材を当該棒状部材の固有周波数で加振し、棒状部材を共振させれば、棒状部材は大きく撓みながら回転運動することになる。そして、棒状部材が撓むことにより、棒状部材のローラー端がX軸方向にスライドする。即ち、棒状部材の一端がX軸方向に変位するリニア式超音波モータとなる。但し、棒状部材が大きく撓んで遠心力と釣り合った状態の棒状部材の固有振動数Ωは、微小振動時の固有振動数Ωより高くなるため、最大撓みを得るためには、棒状部材をΩよりも高い周波数で加振する必要がある。
なお、スライド量を大きくする場合は、並進アクチュエータに印加する電圧を大きくすればよい。これにより、棒状部材の撓みが大きくなり、ローラー端のスライド量が増大する。
Here, the X-axis direction of the orthogonal coordinate system is the material axis direction of the rod-shaped member in a state where the rod-shaped member is stationary.
When a pair of translational actuators mounted near the fixed end of the rod-shaped member are applied with sine waves whose phases are different by 90 degrees and are vibrated in the Y-axis direction and the Z-axis direction, the rod-shaped member is bent while being bent at the intermediate portion. Performs rotational movement around the axis. At this time, if the sine waves input to the pair of translation actuators have the same amplitude, the rod-shaped member performs a circular motion around the X axis.
If the rod-like member is vibrated at the natural frequency of the rod-like member and the rod-like member is resonated, the rod-like member rotates while being largely bent. Then, when the rod-shaped member is bent, the roller end of the rod-shaped member slides in the X-axis direction. That is, a linear ultrasonic motor in which one end of the rod-shaped member is displaced in the X-axis direction is obtained. However, the natural frequency Ω 1 of the rod-shaped member in a state where the rod-shaped member is greatly deformed and balanced with the centrifugal force is higher than the natural frequency Ω 0 at the time of minute vibration. it is necessary to vibrate at a frequency higher than the Omega 0.
In addition, what is necessary is just to enlarge the voltage applied to a translation actuator, when enlarging a slide amount. Thereby, the deflection of the rod-shaped member increases, and the sliding amount of the roller end increases.

本発明では、従来のステータ・ロータ間の圧接摩擦を加振原理として用いず、棒状部材の曲げ共振による軸長方向の収縮を加振原理としているため、磨耗がなく耐久性の高いリニア式超音波モータを実現することができる。しかも、棒状部材の共振を利用することにより、大きなストロークを得ることができる。   In the present invention, the conventional frictional contact between the stator and rotor is not used as the excitation principle, but the contraction in the axial direction due to bending resonance of the rod-shaped member is used as the excitation principle. A sonic motor can be realized. Moreover, a large stroke can be obtained by utilizing the resonance of the rod-shaped member.

一方、本発明に係る可変剛性バネは、一端が固定支持された固定端と、他端が材軸方向にのみ移動自在とされたローラー端とを有する棒状部材の材軸方向を直交座標系のX軸方向としたとき、Y軸方向およびZ軸方向をそれぞれ加振方向とする少なくとも一対の並進アクチュエータが前記棒状部材の固定端近傍に装着された構成とされ、前記一対の並進アクチュエータに入力される加振波は、相互の位相が90度異なる正弦波であり、前記棒状部材の固定端近傍が前記加振波により加振されて該棒状部材がY軸方向およびZ軸方向に撓むことにより前記ローラー端がX軸方向に変位可能であり、かつ前記加振波の加振周波数を変化させることにより、前記棒状部材のX軸方向の剛性を可変とすることを特徴とする。 On the other hand, the variable stiffness spring according to the present invention has a material axis direction of a rod-shaped member having a fixed end whose one end is fixedly supported and a roller end whose other end is movable only in the material axis direction in an orthogonal coordinate system. When the X-axis direction is set, at least a pair of translational actuators having an excitation direction in the Y-axis direction and the Z-axis direction are mounted in the vicinity of the fixed end of the rod-shaped member, and input to the pair of translational actuators. The oscillating wave is a sine wave whose phase is 90 degrees different from each other, and the vicinity of the fixed end of the rod-shaped member is vibrated by the exciting wave, and the rod-shaped member is bent in the Y-axis direction and the Z-axis direction. The roller end can be displaced in the X-axis direction, and the rigidity of the rod-shaped member in the X-axis direction can be varied by changing the excitation frequency of the excitation wave.

本発明においても、上記超音波モータの発明と同様、棒状部材の固定端近傍に装着された一対の並進アクチュエータに、位相が90度異なる正弦波を印加してY軸方向およびZ軸方向にそれぞれ加振させることにより、棒状部材が中間部で撓みながらX軸を中心とする回転運動を行うが、さらに本発明では、並進アクチュエータの加振周波数を変化させることにより、棒状部材のX軸方向の剛性を可変とすることができる。   Also in the present invention, as in the above-described ultrasonic motor, a sine wave having a phase difference of 90 degrees is applied to a pair of translation actuators mounted in the vicinity of the fixed end of the rod-shaped member, respectively in the Y axis direction and the Z axis direction By oscillating, the rod-shaped member performs a rotational movement around the X-axis while being bent at the intermediate portion. In the present invention, further, by changing the excitation frequency of the translational actuator, the rod-shaped member in the X-axis direction The rigidity can be made variable.

図4は、棒状部材のローラー端におけるX軸方向の変位−荷重曲線を示したものである。具体的には、棒状部材がX軸を中心として、ある特定周波数で回転している状態において、ローラー端に負荷するX軸方向の荷重を変化させたときのローラー端のX軸方向の変位を示したものである。なお、棒状部材の引張方向を、荷重および変位の正方向とする。
図中、実線は、棒状部材のローラー端に荷重が作用していない状態における棒状部材の固有周波数(以下、荷重ゼロ時の固有周波数と呼ぶ。)で並進アクチュエータを加振している場合を示し、破線は、荷重ゼロ時の固有周波数よりも低周波で並進アクチュエータを加振した場合、一点鎖線は、荷重ゼロ時の固有周波数よりも高周波で並進アクチュエータを加振した場合をそれぞれ示す。なお、細線は、低周波加振と高周波加振の並存している領域を示す。
棒状部材に圧縮力が作用した場合、棒状部材の固有周波数が減少し、棒状部材に引張力が作用した場合、棒状部材の固有周波数が増大する。従って、棒状部材に圧縮力が作用している場合には、荷重ゼロ時の固有周波数よりも低周波で並進アクチュエータを加振した際に棒状部材が共振し、逆に、棒状部材に引張力が作用している場合には、荷重ゼロ時の固有周波数よりも高周波で並進アクチュエータを加振した際に棒状部材が共振することになる。但し、棒状部材が大きく撓んで遠心力と釣り合った状態の棒状部材の固有振動数Ωは、微小振動時の固有振動数Ωより高くなるため、最大撓みを得るためには、棒状部材をΩよりも高い周波数で加振する必要がある。
FIG. 4 shows a displacement-load curve in the X-axis direction at the roller end of the rod-shaped member. Specifically, in a state where the rod-shaped member rotates at a specific frequency around the X axis, the displacement of the roller end in the X axis direction when the load in the X axis direction applied to the roller end is changed. It is shown. In addition, let the tension | pulling direction of a rod-shaped member be the positive direction of a load and a displacement.
In the figure, the solid line shows the case where the translational actuator is vibrated at the natural frequency of the rod-shaped member (hereinafter referred to as the natural frequency at zero load) when no load is applied to the roller end of the rod-shaped member. The broken line indicates the case where the translation actuator is vibrated at a frequency lower than the natural frequency when the load is zero, and the alternate long and short dash line indicates the case where the translation actuator is vibrated at a frequency higher than the natural frequency when the load is zero. A thin line indicates a region where low-frequency excitation and high-frequency excitation coexist.
When a compressive force acts on the rod-shaped member, the natural frequency of the rod-shaped member decreases, and when a tensile force acts on the rod-shaped member, the natural frequency of the rod-shaped member increases. Therefore, when compressive force is acting on the rod-shaped member, the rod-shaped member resonates when the translational actuator is vibrated at a frequency lower than the natural frequency at the time of zero load, and conversely, tensile force is applied to the rod-shaped member. When acting, the rod-shaped member resonates when the translational actuator is vibrated at a frequency higher than the natural frequency at zero load. However, the natural frequency Ω 1 of the rod-shaped member in a state where the rod-shaped member is greatly deformed and balanced with the centrifugal force is higher than the natural frequency Ω 0 at the time of minute vibration. it is necessary to vibrate at a frequency higher than the Omega 0.

次に、棒状部材のローラー端におけるX軸方向の接線剛性について図5の変位−荷重曲線を用いて説明する。接線剛性とは、微小な荷重増加量である荷重増分ΔFを微小な変位増加量である変位増分ΔDで除した値で定義され、tanθに等しい。例えば、変位−荷重曲線のP点の接線剛性は正剛性であり、P点の接線剛性は負剛性、P点の接線剛性は無限大剛性となる。ここで、正剛性とは、荷重の増加・減少と変位の増加・減少が同じ状態となるときの剛性であり、負剛性とは、荷重の増加・減少と変位の増加・減少が逆の状態となるときの剛性である。 Next, the tangential rigidity in the X-axis direction at the roller end of the rod-shaped member will be described using the displacement-load curve of FIG. The tangential stiffness is defined by a value obtained by dividing a load increment ΔF that is a minute load increase amount by a displacement increment ΔD that is a minute displacement increase amount, and is equal to tan θ. For example, the displacement - tangent of P 1 point of the load curve is positive stiffness, tangential stiffness of P 2 points tangent stiffness of the negative stiffness, P 3 points becomes infinite stiffness. Here, the positive stiffness is the stiffness when the load increase / decrease is the same as the displacement increase / decrease, and the negative stiffness is the reverse of the load increase / decrease and displacement increase / decrease. It is rigidity when it becomes.

図6は、棒状部材のローラー端におけるX軸方向の変位−荷重曲線より、棒状部材のX軸方向の接線剛性を求め、剛性−荷重曲線として示したものである。本図においても、図4と同様、実線は、荷重ゼロ時の固有周波数で並進アクチュエータを加振している場合、破線は、荷重ゼロ時の固有周波数よりも低周波で並進アクチュエータを加振した場合、一点鎖線は、荷重ゼロ時の固有周波数よりも高周波で並進アクチュエータを加振した場合をそれぞれ示す。
図6より、並進アクチュエータの加振周波数を変化させることにより、棒状部材のX軸方向の接線剛性を可変とすることができることがわかる。なお、図中のKは棒状部材の軸方向剛性であり、共振点から遠ざかるにつれて棒状部材の剛性はKに漸近する。
FIG. 6 shows the stiffness of the rod-shaped member in the X-axis direction from the displacement-load curve in the X-axis direction at the roller end of the rod-shaped member, and shows the stiffness-load curve. Also in this figure, as in FIG. 4, the solid line vibrates the translation actuator at a natural frequency at zero load, and the broken line vibrates the translation actuator at a lower frequency than the natural frequency at zero load. In this case, the alternate long and short dash line indicates a case where the translational actuator is vibrated at a frequency higher than the natural frequency when the load is zero.
FIG. 6 shows that the tangential rigidity in the X-axis direction of the rod-shaped member can be made variable by changing the excitation frequency of the translation actuator. Incidentally, K 0 in the figure is an axial stiffness of the rod-like member, the rigidity of the rod-like member with increasing distance from the resonance point gradually approaches K 0.

即ち、本発明では、棒状部材のX軸方向の剛性について、棒状部材に装着した並進アクチュエータの加振周波数を変化させることで、正剛性や負剛性あるいは無限大剛性など多様な剛性を実現することができる。加えて、並進アクチュエータの制御は、状態量のフィードバックが不要な開ループ制御であるため、機構が簡単で信頼性も高い。   That is, according to the present invention, various rigidity such as positive rigidity, negative rigidity or infinite rigidity can be realized by changing the excitation frequency of the translational actuator mounted on the rod-shaped member with respect to the rigidity of the rod-shaped member in the X-axis direction. Can do. In addition, the control of the translation actuator is open loop control that does not require feedback of the state quantity, so the mechanism is simple and the reliability is high.

本発明によれば、棒状部材の曲げ共振による軸長方向の収縮を加振原理としているため、磨耗がなく耐久性の高いリニア式超音波モータを実現することができる。
また、本発明によれば、棒状部材に装着した並進アクチュエータの加振周波数を変化させることにより、機構が簡単で信頼性の高い可変剛性バネを実現することができる。
According to the present invention, the contraction in the axial length direction due to the bending resonance of the rod-shaped member is used as the excitation principle, so that a linear ultrasonic motor having no wear and high durability can be realized.
Further, according to the present invention, a variable rigidity spring with a simple mechanism and high reliability can be realized by changing the excitation frequency of the translational actuator mounted on the rod-shaped member.

以下、本発明に係る超音波モータの実施形態について図面に基づいて説明する。
[超音波モータ]
図1は、本発明に係る超音波モータの実施形態の一例を示す概念図である。
図1に示すように、本発明に係る超音波モータ1は、一端が固定支持された固定端3と、他端外周部が拘束され材軸方向にのみ移動自在とされたローラー端4とを有する棒状部材2の固定端3近傍に、並進アクチュエータとして一対の圧電素子5、6を装着した構成となっている。
静止状態における棒状部材2の材軸方向を直交座標系のX軸方向(棒状部材2の引張方向を正とする。)とすると、圧電素子5はZ軸方向を加振方向とし、圧電素子6はY軸方向を加振方向とする。
なお、本実施形態では、棒状部材2の断面形状を矩形としているが、これに限るものではなく、円形や十字形や星形などでもよい。
Embodiments of an ultrasonic motor according to the present invention will be described below with reference to the drawings.
[Ultrasonic motor]
FIG. 1 is a conceptual diagram showing an example of an embodiment of an ultrasonic motor according to the present invention.
As shown in FIG. 1, an ultrasonic motor 1 according to the present invention includes a fixed end 3 whose one end is fixedly supported, and a roller end 4 whose outer peripheral portion is constrained and movable only in the material axis direction. A pair of piezoelectric elements 5 and 6 are mounted as translational actuators in the vicinity of the fixed end 3 of the rod-shaped member 2 having the rod-shaped member 2.
When the material axis direction of the rod-shaped member 2 in the stationary state is the X-axis direction of the orthogonal coordinate system (the tensile direction of the rod-shaped member 2 is positive), the piezoelectric element 5 has the Z-axis direction as the excitation direction, and the piezoelectric element 6 Is the excitation direction in the Y-axis direction.
In the present embodiment, the cross-sectional shape of the rod-shaped member 2 is a rectangle, but is not limited thereto, and may be a circle, a cross, a star, or the like.

図2(a)は、棒状部材2に装着された圧電素子5、6の加振波形を示したものであり、位相のみ90度シフトした同一周波数の正弦波である。
図2(b)は、上記加振波形による加振点Kの動きをY−Z平面上で示したものである。
先ず、圧電素子5が正の最大振幅になると、加振点Kは、Z軸上をA点まで移動する。次いで、圧電素子5の振幅が減少するとともに圧電素子6が加振を開始し、圧電素子5、6が同振幅になると、圧電素子5、6の加振波が合成され、加振点Kは、A点からB点に移動する。その後、圧電素子5の振幅がゼロになり、圧電素子6が正の最大振幅まで達すると、加振点Kは、B点からC点に移動する。以後、加振点Kは、D、E、F、G、HとX軸を中心として円運動をする。
このように、Z軸方向を加振方向とする圧電素子5とY軸方向を加振方向とする圧電素子6の加振波形の位相を90度シフトさせることにより、加振点KはX軸を中心とする円運動をする。
なお、圧電素子5、6の振幅は同じである必要はなく、異なる振幅を用いることにより、加振点Kの動きを楕円運動とすることができる。
FIG. 2 (a) shows the excitation waveforms of the piezoelectric elements 5 and 6 attached to the rod-shaped member 2, and is a sine wave of the same frequency shifted by 90 degrees only in phase.
FIG. 2B shows the movement of the excitation point K based on the excitation waveform on the YZ plane.
First, when the piezoelectric element 5 has a positive maximum amplitude, the excitation point K moves to the A point on the Z axis. Next, when the amplitude of the piezoelectric element 5 decreases and the piezoelectric element 6 starts to vibrate. When the piezoelectric elements 5 and 6 have the same amplitude, the excitation waves of the piezoelectric elements 5 and 6 are combined, and the excitation point K is , Move from point A to point B. Thereafter, when the amplitude of the piezoelectric element 5 becomes zero and the piezoelectric element 6 reaches the maximum positive amplitude, the excitation point K moves from the B point to the C point. Thereafter, the excitation point K performs a circular motion around the D, E, F, G, H, and X axes.
In this way, the excitation point K is set to the X axis by shifting the phase of the excitation waveform of the piezoelectric element 5 having the Z axis direction as the excitation direction and the piezoelectric element 6 having the Y axis direction as the excitation direction by 90 degrees. Make a circular motion around the center.
Note that the amplitudes of the piezoelectric elements 5 and 6 do not have to be the same, and by using different amplitudes, the motion of the excitation point K can be an elliptical motion.

棒状部材2の加振点Kが円運動すると、棒状部材2は中間部で撓みながら円運動をする(図1では、重心Mの動きを示している。)。特に、棒状部材2をその固有周波数で加振することにより、棒状部材2は中間部で大きく撓みながら回転運動することになる。そして、棒状部材2が撓むことにより、棒状部材2のローラー端4はX軸の負の方向にスライドする。
棒状部材2が曲げ1次モードで共振する場合に、棒状部材2の撓み量が最大となり、棒状部材2のローラー端4のスライド量も最大となる。従って、圧電素子5、6の加振周波数は、棒状部材2が曲げ1次モードとなるような周波数が好適である。
When the excitation point K of the rod-shaped member 2 moves in a circular motion, the rod-shaped member 2 performs a circular motion while being bent at the intermediate portion (FIG. 1 shows the movement of the center of gravity M). In particular, when the rod-shaped member 2 is vibrated at its natural frequency, the rod-shaped member 2 rotates while being largely bent at the intermediate portion. And when the rod-shaped member 2 bends, the roller end 4 of the rod-shaped member 2 slides in the negative direction of the X axis.
When the rod-shaped member 2 resonates in the bending primary mode, the deflection amount of the rod-shaped member 2 is maximized, and the slide amount of the roller end 4 of the rod-shaped member 2 is also maximized. Therefore, the excitation frequency of the piezoelectric elements 5 and 6 is preferably a frequency at which the rod-like member 2 is in the bending primary mode.

本発明に係る超音波モータ1では、棒状部材2の曲げ共振によるX軸方向の収縮を加振原理としているため、磨耗がなく耐久性の高いリニア式超音波モータを実現することができる。しかも、棒状部材2の共振を利用することにより、大きなストロークを得ることができる。   In the ultrasonic motor 1 according to the present invention, the contraction in the X-axis direction due to the bending resonance of the rod-shaped member 2 is used as the excitation principle, so that a linear ultrasonic motor with no wear and high durability can be realized. Moreover, a large stroke can be obtained by utilizing the resonance of the rod-shaped member 2.

[可変剛性バネ]
図3は、本発明に係る可変剛性バネの実施形態の一例を示す概念図である。
図3に示すように、本発明に係る可変剛性バネ11は、一端が固定支持された固定端13と、他端外周部が拘束され材軸方向にのみ移動自在とされたローラー端14とを有する棒状部材12の固定端13近傍に一対の並進アクチュエータ15、16を装着した構成となっている。
静止状態における棒状部材12の材軸方向を直交座標系のX軸方向(棒状部材12の引張方向を正とする。)とすると、並進アクチュエータ15はZ軸方向を加振方向とし、並進アクチュエータ16はY軸方向を加振方向とする。また、棒状部材12に装着された並進アクチュエータ15、16の加振波形は、位相のみ90度シフトした同一周波数の正弦波である。
なお、並進アクチュエータ15、16の振幅は同じである必要はなく、異なる振幅を用いることができる。
[Variable stiffness spring]
FIG. 3 is a conceptual diagram showing an example of an embodiment of a variable stiffness spring according to the present invention.
As shown in FIG. 3, the variable stiffness spring 11 according to the present invention includes a fixed end 13 whose one end is fixedly supported, and a roller end 14 whose outer peripheral portion is constrained and movable only in the material axis direction. A pair of translation actuators 15 and 16 are mounted in the vicinity of the fixed end 13 of the rod-shaped member 12 having the rod-shaped member 12.
If the material axis direction of the rod-shaped member 12 in the stationary state is the X-axis direction of the orthogonal coordinate system (the tensile direction of the rod-shaped member 12 is positive), the translation actuator 15 has the Z-axis direction as the excitation direction, and the translation actuator 16. Is the excitation direction in the Y-axis direction. Further, the excitation waveforms of the translation actuators 15 and 16 attached to the rod-shaped member 12 are sine waves having the same frequency and shifted by 90 degrees only in phase.
The amplitudes of the translation actuators 15 and 16 do not have to be the same, and different amplitudes can be used.

90度シフトした加振波形を有する一対の並進アクチュエータ15、16により、加振点KがX軸を中心とする円運動をすると、棒状部材12は中間部で撓みながら円運動する。この際、棒状部材12を固有周波数で加振すれば、棒状部材12は中間部で大きく撓みながら回転運動する。この際、ローラー端14にX軸の負方向の荷重P(圧縮荷重)が負荷されれば、棒状部材12の固有周波数は減少し、ローラー端14にX軸の正方向の荷重P(引張荷重)が負荷されれば、棒状部材12の固有周波数は増大する。   When the excitation point K makes a circular motion around the X axis by the pair of translation actuators 15 and 16 having an excitation waveform shifted by 90 degrees, the rod-shaped member 12 circularly moves while being bent at the intermediate portion. At this time, if the rod-shaped member 12 is vibrated at the natural frequency, the rod-shaped member 12 rotates while being largely bent at the intermediate portion. At this time, if a negative load P (compressive load) of the X axis is applied to the roller end 14, the natural frequency of the rod-shaped member 12 decreases, and a positive load P (tensile load) of the X axis is applied to the roller end 14. ) Increases, the natural frequency of the rod-shaped member 12 increases.

図7乃至9は、本発明に係る可変剛性バネの変位−荷重曲線を示したものである。
ローラー端14にX軸方向の圧縮荷重Pが負荷される条件において、負剛性バネを実現したい場合、例えば図7(a)に示すように、負剛性領域Rが少なくとも荷重軸の負側(圧縮側)に発生し、且つ、負剛性領域Rに対応する荷重に圧縮荷重Pが含まれるように、並進アクチュエータ15、16の加振周波数を調整すればよい。
逆に、ローラー端14にX軸方向の引張荷重Pが負荷される条件において、負剛性バネを実現したい場合、例えば図7(b)に示すように、負剛性領域Rが少なくとも荷重軸の正側(引張側)に発生し、且つ、負剛性領域Rに対応する荷重に引張荷重Pが含まれるように、並進アクチュエータ15、16の加振周波数を調整すればよい。
なお、負剛性領域R、Rは、並進アクチュエータ15、16の駆動電圧を大きくすることにより、広くとることができる。
7 to 9 show displacement-load curves of the variable stiffness spring according to the present invention.
In conditions compressive load P in the X-axis direction on the roller end 14 is loaded, the negative stiffness if you want to achieve a spring, for example, FIG. 7 (a), the negative stiffness region R 1 of at least the negative side of the loading axis ( occurs compression side), and, to include the compressive load P on the load corresponding to the negative stiffness region R 1, may be adjusted vibration frequency of the translational actuators 15 and 16.
Conversely, under conditions in which a tensile load P in the X-axis direction on the roller end 14 is loaded, if you want to realize the negative stiffness springs, for example, as shown in FIG. 7 (b), the negative stiffness region R 2 is at least loading axis occurs positive (tension side), and, to include the tensile load P on the load corresponding to the negative rigidity region R 2, may be adjusted vibration frequency of the translational actuators 15 and 16.
Note that the negative rigidity regions R 1 and R 2 can be widened by increasing the drive voltage of the translation actuators 15 and 16.

また、無限大剛性を実現したい場合には、例えば図8に示すように、並進アクチュエータ15、16の加振周波数を調整して所定荷重領域がRの状態となるようにすればよい。
なお、Q点近傍でも無限大剛性となるが、Q点は共振点であり、一種の不安定平衡点であるため、無限大剛性の利用には適していない。
When it is desired to achieve infinite stiffness, for example, as shown in FIG. 8, a predetermined load area by adjusting the vibration frequency of the translation actuator 15, 16 may be such that the state of R 3.
Although infinite rigidity is obtained near the Q point, the Q point is a resonance point and is a kind of unstable equilibrium point, and is not suitable for use of infinite rigidity.

一方、ローラー端14にX軸方向の圧縮荷重Pが負荷される場合において、正の低剛性バネを実現したい場合、例えば図9(a)に示すように、正の低剛性領域Rが少なくとも荷重軸の負側(圧縮側)に発生し、且つ、正の低剛性領域Rに対応する荷重に圧縮荷重Pが含まれるように、並進アクチュエータ15、16の加振周波数を調整すればよい。
逆に、ローラー端14にX軸方向の引張荷重Pが負荷される場合において、正の低剛性バネを実現したい場合、例えば図9(b)に示すように、正の低剛性領域Rが少なくとも荷重軸の正側(引張側)に発生し、且つ、正の低剛性領域Rに対応する荷重に引張荷重Pが含まれるように、並進アクチュエータ15、16の加振周波数を調整すればよい。
なお、正の低剛性領域R、Rは、並進アクチュエータ15、16の駆動電圧を大きくすることにより、広くとることができる。
On the other hand, when the compressive load P in the X axis direction is loaded on the roller end 14, if you want to achieve a positive low stiffness springs, for example, as shown in FIG. 9 (a), positive low rigidity region R 4 is at least occurs on the negative side of the loading axis (compression side), and, to include the positive compressive load P on the load corresponding to the low rigidity region R 4, may be adjusted vibration frequency of the translation actuator 15, 16 .
Conversely, when the tensile load P in the X axis direction to the roller end 14 is loaded, if you want to achieve a positive low stiffness springs, for example, as shown in FIG. 9 (b), a positive low rigidity region R 5 occurs on the positive side of at least the load axis (tension side), and, to include the positive load P tensile load corresponding to the low rigidity region R 5, by adjusting the vibration frequency of the translational actuators 15 and 16 Good.
The positive low rigidity regions R 4 and R 5 can be widened by increasing the drive voltage of the translation actuators 15 and 16.

本発明に係る可変剛性バネ11では、棒状部材12のローラー端14にX軸方向の所定荷重Pが負荷される場合、棒状部材12に装着した並進アクチュエータ15、16の加振周波数を変化させることで、正の低剛性や負剛性あるいは無限大剛性など多様な剛性を実現することができる。加えて、並進アクチュエータ15、16の制御は開ループ制御であるため、状態量のフィードバックは不要であり、機構が簡単で信頼性も高い。   In the variable stiffness spring 11 according to the present invention, when a predetermined load P in the X-axis direction is applied to the roller end 14 of the rod-shaped member 12, the excitation frequency of the translation actuators 15 and 16 attached to the rod-shaped member 12 is changed. Thus, various rigidity such as positive low rigidity, negative rigidity or infinite rigidity can be realized. In addition, since the translation actuators 15 and 16 are controlled by open loop control, feedback of the state quantity is unnecessary, and the mechanism is simple and highly reliable.

次に、本発明に係る可変剛性バネ11を負剛性バネとして利用する実施例について示す。
図10は、負剛性バネを用いたロボットハンドの概略図である。
ロボットハンド20の把持部21には、対象物23と接触する部位に、把持部21の可動方向をバネ方向とする可変剛性バネ22、22が装着されており、可変剛性バネ22、22は、可変剛性バネ22、22に内蔵された並進アクチュエータ(図示省略)の加振周波数を調整して、圧縮荷重時に負剛性となるように設定されている。なお、可変剛性バネ22、22は、把持部21の可動方向のみではなく、可動方向に加えて可動直交方向に装着されていてもよい。
把持部21を徐々に閉じていくと、ある閉じ量で可変剛性バネ22、22と対象物23が接触し、可変剛性バネ22、22には圧縮力が作用する。この時、可変剛性バネ22、22は負剛性とされているので、圧縮力がかかると可変剛性バネ22、22は伸びて圧縮荷重が再増加し、いち早く荷重平衡点に達して対象物23を把持することができる。
把持完了後、ロボットハンド20のアームの移動動作に伴う対象物23のブレを防ぐためには、並進アクチュエータの加振周波数を切り換えて無限大剛性とすればよい。
Next, an embodiment in which the variable stiffness spring 11 according to the present invention is used as a negative stiffness spring will be described.
FIG. 10 is a schematic view of a robot hand using a negative rigid spring.
A variable stiffness spring 22, 22 having a movable direction of the grip portion 21 as a spring direction is attached to the grip portion 21 of the robot hand 20 at a portion in contact with the object 23. By adjusting the excitation frequency of a translation actuator (not shown) built in the variable stiffness springs 22 and 22, the stiffness is set so as to have negative stiffness at the time of compressive load. The variable stiffness springs 22 and 22 may be mounted not only in the movable direction of the gripping part 21 but also in the movable orthogonal direction in addition to the movable direction.
When the gripping portion 21 is gradually closed, the variable stiffness springs 22 and 22 and the object 23 come into contact with each other with a certain closing amount, and a compression force acts on the variable stiffness springs 22 and 22. At this time, since the variable stiffness springs 22 and 22 are set to have negative stiffness, when a compression force is applied, the variable stiffness springs 22 and 22 are stretched and the compression load is increased again. It can be gripped.
In order to prevent the object 23 from shaking due to the movement of the arm of the robot hand 20 after the gripping is completed, the excitation frequency of the translation actuator may be switched to achieve infinite rigidity.

図11は、負剛性バネを用いた昇降機の概略図である。
昇降機30は、ベース34に載置された、鉛直方向をバネ方向とする可変剛性バネ32上に台座31が設置されたものであり、可変剛性バネ32は、可変剛性バネ32に内蔵された並進アクチュエータ(図示省略)の加振周波数を調整して、圧縮荷重時に負剛性となるように設定されている。
対象物33が台座31上に載置されると、可変剛性バネ32は負剛性なので、重力に逆らうように可変剛性バネ32が鉛直方向に伸び、対象物33が上昇する。その後、対象物33を除去すると、台座31は無荷重となり、可変剛性バネ32は初期位置に自動的に復帰する。
なお、可変剛性バネ32を天井などから吊下げ、台座31を可変剛性バネ32の下に装着してもよい。この場合は、並進アクチュエータの加振周波数を調整して、引張荷重時に負剛性となるようにすればよい。
FIG. 11 is a schematic view of an elevator using a negative rigid spring.
The elevator 30 has a pedestal 31 mounted on a variable rigid spring 32 mounted on a base 34 and having a vertical direction as a spring direction. The variable rigid spring 32 is a translation built in the variable rigid spring 32. By adjusting the excitation frequency of an actuator (not shown), the actuator is set so as to have negative rigidity at the time of compressive load.
When the object 33 is placed on the pedestal 31, the variable rigidity spring 32 is negatively rigid, so the variable rigidity spring 32 extends in the vertical direction against the gravity and the object 33 rises. Thereafter, when the object 33 is removed, the pedestal 31 becomes unloaded and the variable stiffness spring 32 automatically returns to the initial position.
The variable stiffness spring 32 may be suspended from the ceiling or the like, and the pedestal 31 may be mounted under the variable stiffness spring 32. In this case, it is only necessary to adjust the excitation frequency of the translation actuator so as to have negative rigidity at the time of tensile load.

以上、本発明に係る超音波モータの実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。例えば、上記の実施形態では、一対の圧電素子または並進アクチュエータを用いているが、二対以上の圧電素子または並進アクチュエータを用いてもよい。要は、本発明において所期の機能が得られればよいのである。   As mentioned above, although embodiment of the ultrasonic motor based on this invention was described, this invention is not limited to said embodiment, In the range which does not deviate from the meaning, it can change suitably. For example, in the above embodiment, a pair of piezoelectric elements or translation actuators are used, but two or more pairs of piezoelectric elements or translation actuators may be used. The point is that the desired function can be obtained in the present invention.

本発明に係る超音波モータの実施形態の一例を示す概念図である。It is a conceptual diagram which shows an example of embodiment of the ultrasonic motor which concerns on this invention. (a)は棒状部材に装着された一対の圧電素子の加振波形を示し、(b)は加振点の動きをY−Z平面上に示した図である。(A) shows the excitation waveform of a pair of piezoelectric elements attached to the rod-shaped member, and (b) is a diagram showing the movement of the excitation point on the YZ plane. 本発明に係る可変剛性バネの実施形態の一例を示す概念図である。It is a conceptual diagram which shows an example of embodiment of the variable rigidity spring which concerns on this invention. 棒状部材のローラー端におけるX軸方向の変位−荷重曲線である。It is a displacement-load curve of the X-axis direction in the roller end of a rod-shaped member. 棒状部材のX軸方向の接線剛性を説明するための図である。It is a figure for demonstrating the tangent rigidity of the X-axis direction of a rod-shaped member. 本発明に係る可変剛性バネの剛性−荷重曲線である。3 is a stiffness-load curve of a variable stiffness spring according to the present invention. 本発明に係る可変剛性バネの変位−荷重曲線である。It is a displacement-load curve of the variable rigidity spring which concerns on this invention. 本発明に係る可変剛性バネの変位−荷重曲線である。It is a displacement-load curve of the variable rigidity spring which concerns on this invention. 本発明に係る可変剛性バネの変位−荷重曲線である。It is a displacement-load curve of the variable rigidity spring which concerns on this invention. 負剛性バネを用いたロボットハンドの概略図である。It is the schematic of the robot hand using a negative rigid spring. 負剛性バネを用いた昇降機の概略図である。It is the schematic of the elevator using a negative rigid spring.

符号の説明Explanation of symbols

1 超音波モータ
2、12 棒状部材
3、13 固定端
4、14 ローラー端
5、6 圧電素子
11、22、32 可変剛性バネ
15、16 並進アクチュエータ
20 ロボットハンド
21 把持部
23、33 対象物
30 昇降機
31 台座
34 ベース
P 荷重
K 加振点
M 重心
DESCRIPTION OF SYMBOLS 1 Ultrasonic motor 2, 12 Bar-shaped member 3, 13 Fixed end 4, 14 Roller end 5, 6 Piezoelectric element 11, 22, 32 Variable rigid spring 15, 16 Translation actuator 20 Robot hand 21 Grip part 23, 33 Target object 30 Elevator 31 Base 34 Base P Load K Excitation point M Center of gravity

Claims (2)

一端が固定支持された固定端と、他端が材軸方向にのみ移動自在とされたローラー端とを有する棒状部材の材軸方向を直交座標系のX軸方向としたとき、Y軸方向およびZ軸方向をそれぞれ加振方向とする少なくとも一対の並進アクチュエータが前記棒状部材の固定端近傍に装着された構成とされ、
前記一対の並進アクチュエータに印加される加振波は、相互の位相が90度異なる正弦波であり、前記棒状部材の固定端近傍が前記加振波により加振されて該棒状部材がY軸方向およびZ軸方向に撓むことにより、前記ローラー端がX軸方向に変位してリニアモータとして機能することを特徴とする超音波モータ。
When the material axis direction of the rod-shaped member having a fixed end whose one end is fixedly supported and a roller end whose other end is movable only in the material axis direction is defined as the X axis direction of the orthogonal coordinate system, And at least a pair of translation actuators each having a Z-axis direction as an excitation direction are mounted in the vicinity of a fixed end of the rod-shaped member,
The excitation waves applied to the pair of translation actuators are sine waves whose phases are different from each other by 90 degrees, and the vicinity of the fixed end of the rod-like member is vibrated by the excitation wave, and the rod-like member is moved in the Y-axis direction. The ultrasonic motor is characterized in that, by bending in the Z-axis direction, the roller end is displaced in the X-axis direction and functions as a linear motor.
一端が固定支持された固定端と、他端が材軸方向にのみ移動自在とされたローラー端とを有する棒状部材の材軸方向を直交座標系のX軸方向としたとき、Y軸方向およびZ軸方向をそれぞれ加振方向とする少なくとも一対の並進アクチュエータが前記棒状部材の固定端近傍に装着された構成とされ、
前記一対の並進アクチュエータに入力される加振波は、相互の位相が90度異なる正弦波であり、前記棒状部材の固定端近傍が前記加振波により加振されて該棒状部材がY軸方向およびZ軸方向に撓むことにより前記ローラー端がX軸方向に変位可能であり、かつ前記加振波の加振周波数を変化させることにより、前記棒状部材のX軸方向の剛性を可変とすることを特徴とする可変剛性バネ。
When the material axis direction of the rod-shaped member having a fixed end whose one end is fixedly supported and a roller end whose other end is movable only in the material axis direction is defined as the X axis direction of the orthogonal coordinate system, And at least a pair of translation actuators each having a Z-axis direction as an excitation direction are mounted in the vicinity of a fixed end of the rod-shaped member,
The excitation waves input to the pair of translation actuators are sine waves whose phases are different from each other by 90 degrees, and the vicinity of the fixed end of the rod-shaped member is vibrated by the excitation wave, and the rod-shaped member is moved in the Y-axis direction. Further, the end of the roller can be displaced in the X-axis direction by bending in the Z-axis direction, and the rigidity in the X-axis direction of the rod-shaped member can be made variable by changing the excitation frequency of the excitation wave. A variable stiffness spring characterized by that.
JP2004326475A 2004-11-10 2004-11-10 Ultrasonic motor and variable stiffness spring Expired - Fee Related JP4573102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004326475A JP4573102B2 (en) 2004-11-10 2004-11-10 Ultrasonic motor and variable stiffness spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004326475A JP4573102B2 (en) 2004-11-10 2004-11-10 Ultrasonic motor and variable stiffness spring

Publications (2)

Publication Number Publication Date
JP2006141091A JP2006141091A (en) 2006-06-01
JP4573102B2 true JP4573102B2 (en) 2010-11-04

Family

ID=36621488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004326475A Expired - Fee Related JP4573102B2 (en) 2004-11-10 2004-11-10 Ultrasonic motor and variable stiffness spring

Country Status (1)

Country Link
JP (1) JP4573102B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155012A (en) * 1984-08-24 1986-03-19 Canon Inc Method and apparatus for transfer by vibrating wave
JPS63294281A (en) * 1987-05-25 1988-11-30 Hiroshi Shimizu Piezoelectric driving device
JPH01274673A (en) * 1988-04-25 1989-11-02 Matsushita Electric Works Ltd Piezoelectric driver
JPH02266877A (en) * 1989-04-04 1990-10-31 Tokin Corp Ultrasonic motor
JPH04230410A (en) * 1990-08-07 1992-08-19 Robert Bosch Gmbh Device for attenuating kinetic progress
JPH05344765A (en) * 1992-06-11 1993-12-24 Olympus Optical Co Ltd Piezoelectric motor and driving method therefor
JPH10279075A (en) * 1997-04-11 1998-10-20 P & C Kk Member carrying device
JP2000309901A (en) * 1999-02-26 2000-11-07 Ohbayashi Corp Vibration-proofing device of track

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155012A (en) * 1984-08-24 1986-03-19 Canon Inc Method and apparatus for transfer by vibrating wave
JPS63294281A (en) * 1987-05-25 1988-11-30 Hiroshi Shimizu Piezoelectric driving device
JPH01274673A (en) * 1988-04-25 1989-11-02 Matsushita Electric Works Ltd Piezoelectric driver
JPH02266877A (en) * 1989-04-04 1990-10-31 Tokin Corp Ultrasonic motor
JPH04230410A (en) * 1990-08-07 1992-08-19 Robert Bosch Gmbh Device for attenuating kinetic progress
JPH05344765A (en) * 1992-06-11 1993-12-24 Olympus Optical Co Ltd Piezoelectric motor and driving method therefor
JPH10279075A (en) * 1997-04-11 1998-10-20 P & C Kk Member carrying device
JP2000309901A (en) * 1999-02-26 2000-11-07 Ohbayashi Corp Vibration-proofing device of track

Also Published As

Publication number Publication date
JP2006141091A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
CN105103031B (en) With the enhanced MEMS hinge of rotatory
JP4209465B2 (en) Drive device
US20090127974A1 (en) Small piezoelectric or electrostrictive linear motor
KR20110083600A (en) Semi-resonant driving systems and methods thereof
KR100965433B1 (en) Omni-directional linear piezoelectric ultrasonic motor
WO2012172652A1 (en) Drive device
US8633787B2 (en) Coupled MEMS structure for motion amplification
US5017823A (en) Vibration wave driven actuator
US20130321892A1 (en) Positioning device for scanning a surface
JPH08280185A (en) Ultrasonic actuator
JP2007236138A (en) Drive device and vibrator
JP6422248B2 (en) Driving device and lens driving device having the same
JP4573102B2 (en) Ultrasonic motor and variable stiffness spring
JP6269223B2 (en) Piezoelectric motor
US7728488B2 (en) Positioning motor and apparatus
JPH07241090A (en) Ultrasonic motor
JP5760748B2 (en) Piezoelectric actuator driving method and driving unit
KR100712591B1 (en) Omni-directional ultrasonic piezoelectric actuator system
JP7335229B2 (en) Electromechanical stator, motor and method of driving an electromechanical motor
CN109478856B (en) Actuator
CN113950794A (en) Drive unit and method for operating a drive unit
JP4032161B2 (en) Actuator
JP6890856B1 (en) Omnidirectional scanning mirror
JP2016086541A (en) Ultrasonic motor and drive device using the same
JP6012226B2 (en) Vibration wave driving device and driving circuit thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees