JP2000309901A - Vibration-proofing device of track - Google Patents

Vibration-proofing device of track

Info

Publication number
JP2000309901A
JP2000309901A JP11116055A JP11605599A JP2000309901A JP 2000309901 A JP2000309901 A JP 2000309901A JP 11116055 A JP11116055 A JP 11116055A JP 11605599 A JP11605599 A JP 11605599A JP 2000309901 A JP2000309901 A JP 2000309901A
Authority
JP
Japan
Prior art keywords
track
spring
vertical load
supporting
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11116055A
Other languages
Japanese (ja)
Other versions
JP3723971B2 (en
Inventor
Tadao Koide
忠男 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP11605599A priority Critical patent/JP3723971B2/en
Publication of JP2000309901A publication Critical patent/JP2000309901A/en
Application granted granted Critical
Publication of JP3723971B2 publication Critical patent/JP3723971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Railway Tracks (AREA)

Abstract

PROBLEM TO BE SOLVED: To control noises and vibration occurring in the case a train runs even in a comparatively low frequency band such as 10-20 Hz. SOLUTION: This vibration-proofing device 1 of a track is applied to a railway viaduct 2, a superstructure work 3 of the railway viaduct is used as a base, and it is interposed between sleepers 4 as track bearing members for bearing the base and track 5. The vibration proofing device 1 of the track is constituted of a first cylinder member 11 as a base side member fixed to the superstructure work 3, a vertical load bearing variable rigid spring 13 fixing the lower end to the first cylinder member 11 and a second cylinder member 12 as a track side member mounting the sleepers 4 thereon on the upper surface fixed to the upper end of the vertical load bearing variable rigid spring. Then, the vertical load bearing variable rigid spring 13 is constituted as a non-linear spring increasing the rigidity with increase of a vertical load.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として高架橋に
敷設された軌道の防振装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration isolator for a track mainly laid on a viaduct.

【0002】[0002]

【従来の技術】高架橋等に敷設された軌道上を列車が走
行する際には、動荷重の高速移動等に起因してさまざま
な振動や騒音が発生するが、何らの対策も講じなけれ
ば、かかる振動や騒音が周辺民家に伝播し、公害となっ
て居住者の健全な日常生活を阻害する。
2. Description of the Related Art When a train travels on a track laid on a viaduct or the like, various vibrations and noises are generated due to high-speed movement of a dynamic load, but if no measures are taken, Such vibrations and noises propagate to the surrounding private houses, causing pollution and hindering the resident's healthy daily life.

【0003】列車走行による振動や騒音の防止対策とし
ては、車両の軽量化、レールの重量化、バラストマット
の敷設、レール波状摩耗の削正等が実施されているほ
か、施設構造の面では、防音壁の設置、鉄桁防音工事、
トンネル緩衝工等の対策が講じられている。
[0003] Measures to prevent vibration and noise caused by running a train include reducing the weight of the vehicle, increasing the weight of the rails, laying ballast mats, reducing the wavy wear of the rails, and the like. Installation of soundproofing walls, iron girder soundproofing work,
Measures such as tunnel buffering have been taken.

【0004】ここで、軌道上を高速移動することに起因
する振動や騒音を防止する対策として、軌道を弾性支持
する、例えば枕木等の軌道支持材を弾性材で形成するこ
とも行われている。
Here, as a countermeasure for preventing vibration and noise caused by high-speed movement on a track, a track supporting material such as a sleeper for elastically supporting the track is also made of an elastic material. .

【0005】[0005]

【発明が解決しようとする課題】しかしながら、かかる
対策では、重量のある車両を安全に支持するという本質
的機能を担保しなければならない関係上、枕木等の軌道
支持材の剛性をある程度高く設定しなければならず、そ
の結果、50Hz程度よりも高い周波数範囲で一定の防
振効果を得ることができる反面、10〜20Hzといっ
た公害を引き起こしやすい低周波域については、防振効
果をほとんど期待することができず、さりとて高架橋の
下部工自体の剛性を高めるなどの方法ではコスト負担が
大きすぎるという問題を生じていた。
However, in such a measure, since the essential function of safely supporting a heavy vehicle must be ensured, the rigidity of a track support such as a sleeper is set to be somewhat high. As a result, while it is possible to obtain a certain anti-vibration effect in a frequency range higher than about 50 Hz, the anti-vibration effect is almost expected in a low-frequency range such as 10 to 20 Hz where pollution is likely to occur. However, there has been a problem that the cost burden is too large by a method such as increasing the rigidity of the viaduct substructure itself.

【0006】本発明は、上述した事情を考慮してなされ
たもので、10〜20Hzといった比較的低い周波数域
においても列車走行時の騒音や振動を抑制可能な軌道の
防振装置を提供することを目的とする。
The present invention has been made in consideration of the above circumstances, and provides a vibration isolator for a track capable of suppressing noise and vibration during running of a train even in a relatively low frequency range of 10 to 20 Hz. With the goal.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る軌道の防振装置は請求項1に記載した
ように、高架橋の上部工等の基部に固定される基部側部
材と、該基部側部材に下端が固定された鉛直荷重支持用
可変剛性バネと、該鉛直荷重支持用可変剛性バネの上端
に固定され天端にて枕木等の軌道支持材が載せられる軌
道側部材とからなり、前記鉛直荷重支持用可変剛性バネ
を、鉛直荷重の増大にしたがって剛性が増加するよう非
線形バネとして構成したものである。
In order to achieve the above object, a track vibration isolator according to the present invention has a base side member fixed to a base such as a viaduct superstructure and the like. A vertical load supporting variable rigidity spring having a lower end fixed to the base side member, and a track side member on which a track supporting member such as a sleeper is mounted at the top end fixed to the upper end of the vertical load supporting variable rigidity spring. And the variable stiffness spring for supporting a vertical load is configured as a non-linear spring such that the rigidity increases as the vertical load increases.

【0008】また、本発明に係る軌道の防振装置は、前
記鉛直荷重支持用可変剛性バネを円錐状螺旋バネで構成
したものである。
Further, in the track vibration isolator according to the present invention, the vertical load supporting variable rigidity spring is formed of a conical spiral spring.

【0009】また、本発明に係る軌道の防振装置は、前
記円錐状螺旋バネを平板を巻回して形成するとともに該
平板の内周面を該内周面の内側を周回する部分の外周面
に当接させて構成したものである。
Further, in the vibration isolator for a track according to the present invention, the conical helical spring is formed by winding a flat plate, and an inner peripheral surface of the flat plate is formed on an outer peripheral surface of a portion orbiting inside the inner peripheral surface. It is configured to abut against.

【0010】また、本発明に係る軌道の防振装置は、前
記鉛直荷重支持用可変剛性バネを複数の円錐状螺旋バネ
を積み重ねるとともに、該円錐状螺旋バネの内周面を該
内周面の内側を周回する部分の外周面に当接させて構成
したものである。
Further, in the vibration damping device for a track according to the present invention, the vertical load supporting variable rigidity spring is formed by stacking a plurality of conical helical springs, and the inner peripheral surface of the conical helical spring is It is configured so as to be in contact with the outer peripheral surface of the part that goes around inside.

【0011】また、本発明に係る軌道の防振装置は、前
記基部側部材を第1の筒材で構成するとともに前記軌道
側部材を第2の筒材で構成して入れ子状に相互に嵌合
し、該第1の筒材及び第2の筒材とで囲まれた内部気密
空間に前記鉛直荷重支持用可変剛性バネを配置し、前記
第1の筒材及び第2の筒材のうち、少なくともいずれか
に前記内部気密空間に連通する減衰用空気孔を設けたも
のである。
Also, in the track vibration isolator according to the present invention, the base side member is formed of a first cylindrical member, and the track side member is formed of a second cylindrical member. The variable rigidity spring for supporting a vertical load is disposed in an internal hermetic space surrounded by the first cylindrical member and the second cylindrical member, and among the first cylindrical member and the second cylindrical member, , At least one of which is provided with a damping air hole communicating with the internal airtight space.

【0012】本発明に係る軌道の防振装置においては、
これらを高架橋の上部工等の基部と枕木等の軌道支持材
との間に必要数だけ介在させ、基部側部材は基部に固定
するとともに、枕木等の軌道支持材を軌道側部材の天端
に載せて固定する。
In the track vibration isolator according to the present invention,
A required number of these are interposed between the base of the viaduct superstructure and the like and the track support such as the sleeper, and the base side member is fixed to the base and the track support such as the sleeper is attached to the top end of the track side member. Place and fix.

【0013】このようにすると、基部側部材と軌道側部
材との間に挟み込まれた鉛直荷重支持用可変剛性バネ
が、軌道支持材、軌道及びその上を走行する列車の動荷
重を支持することとなるが、かかる列車の動荷重は、列
車が近づくにつれて徐々に大きくなるとともに、通過し
た後は逆に徐々に小さくなっていく。そして、鉛直荷重
支持用可変剛性バネは、鉛直荷重の増大にしたがって剛
性が増加するよう非線形バネとして構成してあるため、
上述した動荷重の変化にしたがって剛性が増減する。
With this configuration, the vertical load supporting variable stiffness spring sandwiched between the base side member and the track side member supports the dynamic load of the track support member, the track and the train running thereon. However, the dynamic load of the train gradually increases as the train approaches, and gradually decreases after passing the train. And the variable rigidity spring for vertical load support is configured as a non-linear spring so that the rigidity increases as the vertical load increases.
The rigidity increases and decreases according to the change in the dynamic load described above.

【0014】すなわち、移動中の列車が通過している直
下以外の箇所では、比較的小さな列車の動荷重が低剛性
で支持されることとなり、低周波域をも含む防振が可能
となるとともに、移動中の列車が通過している直下で
は、比較的大きな動荷重が軌道に作用するものの、上述
したように鉛直荷重支持用可変剛性バネが高剛性に変化
しているので、振動系の固有振動数に大きな変化はな
く、結局、列車走行位置に関わらず、低周波域をも含む
防振が可能となる。
That is, the dynamic load of a relatively small train is supported with low rigidity at locations other than immediately below where a moving train is passing, so that vibration isolation including a low frequency range can be achieved. Although a relatively large dynamic load acts on the track immediately under the moving train, the variable load spring for vertical load support changes to high rigidity as described above, There is no significant change in the frequency, and eventually, regardless of the train traveling position, it is possible to perform vibration isolation including the low frequency range.

【0015】なお、列車が通過している直下では、上述
したように比較的大きな動荷重を高剛性で支持すること
となるので、軌道の沈込みを抑えることが可能となり、
列車走行時の安全性ないしは安定性が確保されるととも
に、列車の動荷重と鉛直荷重支持用可変剛性バネとを含
む振動系の固有振動数が列車の走行位置に関わらずほと
んど変化しないため、防振設計がやりやすくなる。
It is to be noted that a relatively large dynamic load is supported with high rigidity just below the train passing as described above, so that it is possible to suppress the sinking of the track,
The safety or stability during train running is ensured, and the natural frequency of the vibration system including the dynamic load of the train and the variable stiffness spring supporting the vertical load hardly changes regardless of the running position of the train. The vibration design becomes easier.

【0016】基部としては、例えば高架橋の上部工を構
成するスラブが該当する。
As the base portion, for example, a slab constituting a superstructure of a viaduct corresponds.

【0017】鉛直荷重支持用可変剛性バネは、鉛直荷重
の増大にしたがって剛性が増加するよう非線形バネとし
て構成される限り、その構成は任意であるが、かかる鉛
直荷重支持用可変剛性バネを円錐状螺旋バネで構成した
ならば、圧縮変形したときにバネ材料、例えばコイルバ
ネ用鋼線や丸棒が互いに干渉することなく、平面上で螺
旋状となるまで圧縮変形するので、基部と軌道支持材と
の必要クリアランスを小さく設定することができる。な
お、鉛直荷重支持用可変剛性バネを構成するバネ材料の
材質や材料径が同じであれば、螺旋径が大きな底面近傍
部分にて剛性が小さくなり、螺旋径が小さな円錐頂部近
傍にて剛性が大きくなるので、鉛直荷重支持用可変剛性
バネに必要な非線形特性が自動的に確保される。
The variable stiffness spring for supporting a vertical load may be of any configuration as long as it is configured as a non-linear spring so that the stiffness increases as the vertical load increases. If a helical spring is used, the spring material, such as a coil spring steel wire or a round bar, does not interfere with each other when compressed and deformed until it becomes helical on a plane. Can be set small. If the material and diameter of the spring material constituting the vertical load supporting variable rigidity spring are the same, the rigidity decreases near the bottom surface where the spiral diameter is large, and the rigidity decreases near the cone top where the spiral diameter is small. Since it becomes larger, the non-linear characteristic required for the vertical load supporting variable stiffness spring is automatically secured.

【0018】ここで、円錐状螺旋バネについては、上述
したように、鋼線や丸棒をバネ材料としたコイルバネと
して構成することができるが、これに代えて、平板を巻
回して形成するとともに該平板の内周面を該内周面の内
側を周回する部分の外周面に当接させて構成したなら
ば、鉛直荷重支持用可変剛性バネが変形する際、該鉛直
荷重支持用可変剛性バネの内周面と外周面とが擦れ合う
ため、列車走行による固体振動エネルギーや空気振動エ
ネルギーは、かかる擦れ合いによる摩擦減衰として吸収
され、周囲への散逸が防止される。
Here, the conical helical spring can be formed as a coil spring using a steel wire or a round bar as a spring material as described above, but instead of being formed by winding a flat plate, If the inner peripheral surface of the flat plate is configured to be in contact with the outer peripheral surface of a portion orbiting inside the inner peripheral surface, when the variable rigidity spring for supporting a vertical load is deformed, the variable rigidity spring for supporting a vertical load is deformed. The inner peripheral surface and the outer peripheral surface rub against each other, so that solid vibration energy and air vibration energy due to running of the train are absorbed as frictional attenuation due to the rubbing, thereby preventing the energy from escaping to the surroundings.

【0019】また、鉛直荷重支持用可変剛性バネを、前
記鉛直荷重支持用可変剛性バネを複数の円錐状螺旋バネ
を積み重ねるとともに、該円錐状螺旋バネの内周面を該
内周面の内側を周回する部分の外周面に当接させて構成
したならば、請求項2に係る防振装置と同様、基部と軌
道支持材との必要クリアランスを小さく設定することが
できることに加えて、鉛直荷重支持用可変剛性バネが変
形する際、該鉛直荷重支持用可変剛性バネの内周面と外
周面とが擦れ合うため、列車走行による固体振動エネル
ギーや空気振動エネルギーは、かかる擦れ合いによる摩
擦減衰として吸収され、周囲への散逸が防止される。
Further, the variable rigidity spring for supporting a vertical load is formed by stacking a plurality of conical helical springs on the variable rigidity spring for supporting a vertical load, and the inner peripheral surface of the conical helical spring is fixed to the inside of the inner peripheral surface. If it is configured to contact the outer peripheral surface of the orbiting portion, similar to the vibration isolator according to claim 2, the required clearance between the base and the track support member can be set small, and in addition to the vertical load support. When the variable stiffness spring for vertical deformation deforms, the inner peripheral surface and the outer peripheral surface of the variable stiffness spring for vertical load support rub against each other, so that solid vibration energy and air vibration energy due to train running are absorbed as frictional attenuation due to the friction. , Is prevented from dissipating to the surroundings.

【0020】しかも、かかる鉛直荷重支持用可変剛性バ
ネを製作するにあたっては、円形断面等の円錐状螺旋バ
ネを単に積み重ねるだけでよいので、材料調達や組立に
要する費用を安価に抑えることができる。
Furthermore, in manufacturing such a variable rigidity spring for supporting a vertical load, it is only necessary to simply stack conical helical springs having a circular cross section or the like, so that costs required for material procurement and assembly can be reduced.

【0021】一方、基部側部材や軌道側部材をどのよう
に構成するかは任意であるが、かかる基部側部材を第1
の筒材で構成するとともに軌道側部材を第2の筒材で構
成して入れ子状に相互に嵌合し、該第1の筒材及び第2
の筒材とで囲まれた内部気密空間に鉛直荷重支持用可変
剛性バネを配置し、第1の筒材及び第2の筒材のうち、
少なくともいずれかに内部気密空間に連通する減衰用空
気孔を設けるようにしたならば、該減衰用空気孔を介し
て外部の空気が第1の筒材と第2の筒材とで囲まれた内
部気密空間内に流れ込んだり、逆に該内部気密空間内の
空気が減衰用空気孔を介して外部に流れ出たりすること
となり、列車の動荷重の変化に応じた減衰作用が減衰用
空気孔にて発生し、やはり、列車走行による固体振動エ
ネルギーや空気振動エネルギーがこのような空気ダンパ
で吸収され、周囲への散逸が防止される。
On the other hand, how the base-side member and the track-side member are configured is optional.
And the track-side member is formed of a second cylindrical member and nested with each other to form the first cylindrical member and the second cylindrical member.
A vertical load supporting variable stiffness spring is disposed in an internal airtight space surrounded by the first and second cylindrical members.
If at least one of the damping air holes communicating with the internal airtight space is provided, external air is surrounded by the first and second cylindrical members via the damping air holes. The air flows into the internal airtight space, or conversely, the air in the internal airtight space flows out to the outside through the damping air holes, and the damping action according to the change in the dynamic load of the train is applied to the damping air holes. Again, solid vibration energy and air vibration energy due to running of the train are absorbed by such an air damper, and dissipation to the surroundings is prevented.

【0022】[0022]

【発明の実施の形態】以下、本発明に係る軌道の防振装
置の実施の形態について、添付図面を参照して説明す
る。なお、従来技術と実質的に同一の部品等については
同一の符号を付してその説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a track vibration isolator according to the present invention will be described below with reference to the accompanying drawings. It is to be noted that the same reference numerals are given to components and the like that are substantially the same as those in the conventional technology, and description thereof will be omitted.

【0023】図1は、本実施形態に係る軌道の防振装置
を示したものである。同図でわかるように、本実施形態
に係る軌道の防振装置1は、鉄道用高架橋2に適用して
あり、該鉄道用高架橋の上部工3を基部とし、該基部と
軌道5を支持する軌道支持材としての枕木4との間に介
在させてある。
FIG. 1 shows a track vibration isolator according to this embodiment. As can be seen from the figure, the track vibration isolator 1 according to the present embodiment is applied to a railway viaduct 2, and uses the superstructure 3 of the railway viaduct as a base and supports the base and the track 5. It is interposed between the railroad ties 4 as track support members.

【0024】本実施形態に係る軌道の防振装置1は、図
2に示した詳細図でよくわかるように、上部工3に固定
される基部側部材としての第1の筒材11と、該第1の
筒材に下端が固定された鉛直荷重支持用可変剛性バネ1
3と、該鉛直荷重支持用可変剛性バネの上端に固定され
天端にて枕木4が載せられる軌道側部材としての第2の
筒材12とからなり、円筒状をなす第1の筒材11と第
2の筒材12とを入れ子状に相互に嵌合するとともに該
第1の筒材及び第2の筒材で囲まれた内部気密空間14
に鉛直荷重支持用可変剛性バネ13を配置し、第1の筒
材11には、内部気密空間14に連通する減衰用空気孔
15を設けてある。
The track vibration damping device 1 according to the present embodiment includes a first tubular member 11 as a base side member fixed to the superstructure 3, as can be clearly understood from the detailed view shown in FIG. Vertical load supporting variable rigidity spring 1 having a lower end fixed to a first tubular member
And a second cylindrical member 12 as a track-side member, which is fixed to the upper end of the vertical load supporting variable rigidity spring and on which the sleeper 4 is mounted at the top end, and has a cylindrical first cylindrical member 11. And the second cylindrical member 12 are nested with each other, and an internal airtight space 14 surrounded by the first cylindrical member and the second cylindrical member.
A variable rigidity spring 13 for supporting a vertical load is disposed on the first cylindrical member 11, and a damping air hole 15 communicating with the internal airtight space 14 is provided in the first cylindrical member 11.

【0025】第2の筒材12は、その外径を第1の筒材
11の内径と同等か若干小さく設定してあるが、第2の
筒材12の外周面に第1の筒材11の内周面上を摺動す
る環状シール材を設けておけば、昇降動作の際、第1の
筒材11との気密性を確保しやすくなる。
The outer diameter of the second cylindrical member 12 is set to be equal to or slightly smaller than the inner diameter of the first cylindrical member 11. If an annular seal member is provided that slides on the inner peripheral surface of the first cylindrical member, airtightness with the first cylindrical member 11 can be easily ensured during the elevating operation.

【0026】一方、鉛直荷重支持用可変剛性バネ13
は、平板を巻回して形成した円錐状螺旋バネからなり、
鉛直荷重の増大にしたがって剛性が増加する非線形バネ
として構成してある。
On the other hand, the variable rigidity spring 13 for supporting a vertical load
Consists of a conical helical spring formed by winding a flat plate,
It is configured as a non-linear spring whose rigidity increases as the vertical load increases.

【0027】鉛直荷重支持用可変剛性バネ13の剛性に
どのような非線形特性を持たせるかは、列車の動荷重や
速度、高架橋の剛性、地盤性状などを考慮しつつ、平板
の幅w、厚み、最大径及び最小径、巻き数などを適宜設
定すればよい。なお、平板の幅や厚みを均一にする必要
はなく、動荷重が大きな領域において特に高い剛性に設
定したい場合には、円錐頂部近傍の平板の厚みや幅を大
きくしたり、動荷重が小さな領域において特に低い剛性
に設定したい場合には、円錐底部近傍の平板の厚みや幅
を小さくするといった構成にすることも可能である。
The non-linear characteristic of the rigidity of the variable load spring 13 for supporting the vertical load is determined by considering the dynamic load and speed of the train, the rigidity of the viaduct, and the properties of the ground, and the width w and thickness of the flat plate. , The maximum diameter and the minimum diameter, the number of turns, and the like may be set as appropriate. It is not necessary to make the width and thickness of the flat plate uniform, and if it is desired to set particularly high rigidity in a region where the dynamic load is large, the thickness or width of the flat plate near the top of the cone may be increased, or the region where the dynamic load is small may be used. In the case where it is desired to set the rigidity to be particularly low, it is also possible to reduce the thickness and width of the flat plate near the bottom of the cone.

【0028】ここで、鉛直荷重支持用可変剛性バネ13
は、平板の内周面を該内周面の内側を周回する部分の外
周面に当接させてあり、第2の筒材12の昇降動作に伴
って鉛直荷重支持用可変剛性バネ13が伸縮する際、内
周面と外周面との擦れ合いによって摩擦が発生するよう
になっている。ちなみに、平板の内外面に摩擦材を適宜
被覆しておけば、高い摩擦減衰を確保することが可能と
なる。
Here, the variable rigidity spring 13 for supporting a vertical load
The inner peripheral surface of the flat plate is brought into contact with the outer peripheral surface of a portion orbiting inside the inner peripheral surface, and the vertical load supporting variable rigidity spring 13 expands and contracts as the second cylindrical member 12 moves up and down. At this time, friction is generated due to friction between the inner peripheral surface and the outer peripheral surface. Incidentally, if the inner and outer surfaces of the flat plate are appropriately coated with a friction material, it is possible to ensure high frictional attenuation.

【0029】第2の筒材12の頂部内面には円柱状のス
トッパー16を垂設してあり、該ストッパーの下面が第
1の筒材11の底面に当たることにより、枕木4の沈込
み量が制限されて列車の走行安定性に影響を与えること
がないよう配慮してある。
A cylindrical stopper 16 is provided vertically on the inner surface of the top of the second cylindrical member 12, and the lower surface of the stopper contacts the bottom surface of the first cylindrical member 11. Care has been taken not to be restricted and affect the running stability of the train.

【0030】本実施形態に係る軌道の防振装置1におい
ては、上述したようにこれらを基部である上部工3と軌
道支持材である枕木4との間に必要数だけ介在させ、基
部側部材である第1の筒材11を上部工3に固定すると
ともに、軌道側部材である第2の筒材12の天端に枕木
4を載せて固定してある。
In the track vibration isolator 1 according to the present embodiment, as described above, these are interposed between the superstructure 3 serving as the base and the sleepers 4 serving as the track support members by a required number, and the base side member is provided. Is fixed to the superstructure 3 and the sleeper 4 is fixed to the top end of the second cylindrical member 12 which is the track side member.

【0031】このようにすると、第1の筒材11と第2
の筒材12との間に挟み込まれた鉛直荷重支持用可変剛
性バネ13は、枕木4、軌道5及びその上を走行する列
車の動荷重を支持することとなるが、かかる列車の動荷
重は、列車が近づくにつれて徐々に大きくなるととも
に、通過した後は逆に徐々に小さくなっていく。そし
て、鉛直荷重支持用可変剛性バネ13は、平板を巻回し
た円錐状螺旋バネとして構成してあるため、螺旋径の大
きな底面近傍付近が最も剛性が低く、上方にいくにつれ
て螺旋径が小さくなり、それに伴って剛性も大きくな
る。
By doing so, the first tubular member 11 and the second
The vertical load supporting variable stiffness spring 13 sandwiched between the tubular member 12 and the cylindrical member 12 supports the dynamic load of the sleeper 4, the track 5, and the train running thereon, but the dynamic load of the train is As the train approaches, it gradually increases, and after passing, it gradually decreases. Since the vertical load supporting variable stiffness spring 13 is configured as a conical helical spring formed by winding a flat plate, the stiffness is lowest near the bottom surface where the helical diameter is large, and the helical diameter decreases as it goes upward. Accordingly, the rigidity also increases.

【0032】そのため、動荷重が小さい領域では、図3
(a)に示すように、剛性の小さな底面近傍の部分が先行
収縮し、動荷重が大きくなるにつれて、下方から上方に
向けて順次収縮領域が拡がり、動荷重が大きな領域で
は、図3(b)に示すような状態となる。そして、動荷重
が小さな領域では鉛直方向の変位の変化率が大きい、す
なわち剛性が小さく、動荷重が大きい領域では変位の変
化率が小さい、すなわち剛性が大きくなる。
Therefore, in the region where the dynamic load is small, FIG.
As shown in FIG. 3 (a), the portion near the bottom surface having low rigidity pre-contracts, and as the dynamic load increases, the contraction region gradually expands from below to above, and in the region where the dynamic load is large, FIG. ). In a region where the dynamic load is small, the rate of change of the vertical displacement is large, that is, the rigidity is small. In a region where the dynamic load is large, the rate of change of the displacement is small, that is, the rigidity is large.

【0033】図3(c)は、鉛直荷重支持用可変剛性バネ
13の動荷重と変位との関係をP―δ曲線として示した
ものであり、同図に示したA点、B点が同図(a)、(b)の
状態にそれぞれ対応する。
FIG. 3 (c) shows the relationship between the dynamic load and the displacement of the vertical load supporting variable rigidity spring 13 as a P-δ curve, and points A and B shown in FIG. These correspond to the states shown in FIGS.

【0034】一方、鉛直荷重支持用可変剛性バネ13が
動荷重を受けて伸縮する際、該鉛直荷重支持用可変剛性
バネの内周面と外周面とが擦れ合って摩擦減衰が生じ
る。また、減衰用空気孔15を介して外部の空気が第1
の筒材11と第2の筒材12とで囲まれた内部気密空間
14内に流れ込んだり、逆に該内部気密空間内の空気が
減衰用空気孔15を介して外部に流れ出たりし、やはり
減衰用空気孔15にて空気ダンパとしての減衰が生じ
る。
On the other hand, when the vertical load supporting variable stiffness spring 13 expands and contracts by receiving a dynamic load, the inner peripheral surface and the outer peripheral surface of the vertical load supporting variable stiffness spring rub against each other, causing frictional attenuation. In addition, external air is supplied to the first air through the damping air hole 15.
Flows into the internal hermetic space 14 surrounded by the cylindrical member 11 and the second cylindrical member 12, and conversely, the air in the internal hermetic space flows out through the damping air hole 15, and The damping as the air damper occurs in the damping air hole 15.

【0035】そのため、列車走行による固体振動エネル
ギーや空気振動エネルギーは、かかる摩擦減衰や空気ダ
ンパによる減衰によって吸収され、周囲にはほとんど伝
播しなくなる。
Therefore, the solid vibration energy and the air vibration energy due to the running of the train are absorbed by the friction damping and the damping by the air damper, and hardly propagate to the surroundings.

【0036】以上説明したように、本実施形態に係る軌
道の防振装置1によれば、鉛直荷重の増大にしたがって
剛性が増加するように非線形バネとして構成された鉛直
荷重支持用可変剛性バネ13の作用により、移動中の列
車が通過している直下以外の箇所では、比較的小さな列
車の動荷重が低剛性で支持されることとなり、例えば1
0〜20Hzといった低周波域をも含む防振が可能とな
るとともに、移動中の列車が通過している直下では、比
較的大きな動荷重が軌道に作用するものの、上述したよ
うに鉛直荷重支持用可変剛性バネ13が高剛性に変化し
ているので、振動系の固有振動数に大きな変化はなく、
結局、列車走行位置に関わらず、低周波域をも含む防振
が可能となる。
As described above, according to the track vibration isolator 1 according to the present embodiment, the variable rigidity spring 13 for supporting a vertical load, which is configured as a non-linear spring so that the rigidity increases as the vertical load increases. , The dynamic load of a relatively small train is supported with low rigidity at locations other than immediately below where the moving train is passing.
Vibration isolation including a low frequency range of 0 to 20 Hz becomes possible, and a relatively large dynamic load acts on the track immediately under the moving train, but as described above, it supports vertical loads. Since the variable stiffness spring 13 has changed to high stiffness, there is no large change in the natural frequency of the vibration system.
As a result, regardless of the position where the train travels, vibration isolation including the low frequency range is possible.

【0037】なお、列車が通過している直下では、上述
したように比較的大きな動荷重を高剛性で支持すること
となるので、軌道4の沈込みを抑えることが可能とな
り、列車走行時の安全性ないしは安定性が確保されると
ともに、列車の動荷重Pと鉛直荷重支持用可変剛性バネ
13とを含む振動系の固有振動数が列車の走行位置に関
わらずほとんど変化しないことによって、防振設計がや
りやすくなる。
As described above, a relatively large dynamic load is supported with high rigidity immediately under the passage of the train, so that the sinking of the track 4 can be suppressed, and the The safety or stability is ensured, and the natural frequency of the vibration system including the dynamic load P of the train and the variable rigidity spring 13 for supporting the vertical load hardly changes irrespective of the running position of the train. Design becomes easier.

【0038】また、本実施形態に係る軌道の防振装置1
によれば、鉛直荷重支持用可変剛性バネ13を円錐状螺
旋バネで構成したので、圧縮変形したときにバネ材料で
ある平板が互いに干渉することなく圧縮変形するので、
上部工3と枕木4との必要クリアランスを小さく設定す
ることができる。なお、鉛直荷重支持用可変剛性バネ1
3を構成する平板の材質や断面を同じにしておけば、螺
旋径が大きな底面近傍部分にて剛性が最小になり、螺旋
径が小さな円錐頂部近傍にて剛性が最大となるので、鉛
直荷重支持用可変剛性バネ13に必要な非線形特性が自
動的に確保される。
Further, the track vibration isolator 1 according to the present embodiment.
According to the above, the variable rigidity spring 13 for supporting a vertical load is formed of a conical helical spring, so that when compressed and deformed, the flat plates, which are spring materials, are compressed and deformed without interfering with each other.
The required clearance between the superstructure 3 and the sleeper 4 can be set small. Note that the variable rigidity spring 1 for supporting a vertical load
If the material and cross-section of the flat plate constituting 3 are the same, the rigidity is minimized near the bottom surface where the spiral diameter is large, and the rigidity is maximized near the top of the cone where the spiral diameter is small. The nonlinear characteristic required for the variable stiffness spring 13 is automatically secured.

【0039】また、本実施形態に係る軌道の防振装置1
によれば、円錐状螺旋バネである鉛直荷重支持用可変剛
性バネ13を、平板を巻回して形成するとともに該平板
の内周面を該内周面の内側を周回する部分の外周面に当
接させて構成したので、鉛直荷重支持用可変剛性バネ1
3が変形する際、該鉛直荷重支持用可変剛性バネの内周
面と外周面とが互いに摺動し擦れ合う。そして、列車走
行による固体振動エネルギーや空気振動エネルギーは、
かかる擦れ合いによる摩擦減衰として吸収され、周囲へ
の散逸を未然に防止することが可能となる。
The track vibration isolator 1 according to the present embodiment.
According to this, the variable rigidity spring 13 for supporting a vertical load, which is a conical helical spring, is formed by winding a flat plate, and the inner peripheral surface of the flat plate is applied to the outer peripheral surface of a portion that goes around the inside of the inner peripheral surface. Variable rigidity spring 1 for supporting vertical load
When deformed, the inner peripheral surface and the outer peripheral surface of the variable stiffness spring for vertical load support slide and rub against each other. And the solid vibration energy and air vibration energy by train running are
It is absorbed as frictional attenuation due to such rubbing, and it is possible to prevent the dissipation to the surroundings.

【0040】また、本実施形態に係る軌道の防振装置1
によれば、基部側部材としての第1の筒材11と軌道側
部材としての第2の筒材12とを入れ子状に相互に嵌合
するとともに、両者に囲まれた内部気密空間14に鉛直
荷重支持用可変剛性バネ13を配置し、第1の筒材11
に内部気密空間14に連通する減衰用空気孔15を設け
るようにしたので、該減衰用空気孔を介して外部の空気
が第1の筒材11と第2の筒材12とで囲まれた内部気
密空間内に流れ込んだり、逆に該内部気密空間内の空気
が減衰用空気孔15を介して外部に流れ出たりすること
となり、列車の動荷重の変化に応じた減衰作用が減衰用
空気孔15にて発生し、やはり、列車走行による固体振
動エネルギーや空気振動エネルギーがこのような空気ダ
ンパで吸収され、周囲への散逸を未然に防止することが
可能となる。
Further, the track vibration isolator 1 according to the present embodiment.
According to this, the first cylindrical member 11 as the base side member and the second cylindrical member 12 as the track side member are nested with each other in a nested manner, and are vertically inserted into the internal airtight space 14 surrounded by both. The load supporting variable rigidity spring 13 is disposed, and the first cylindrical member 11 is provided.
Is provided with a damping air hole 15 communicating with the internal airtight space 14, so that external air is surrounded by the first cylindrical member 11 and the second cylindrical member 12 via the damping air hole. The air flows into the internal airtight space, or conversely, the air in the internal airtight space flows out through the damping air holes 15, and the damping action according to the change in the dynamic load of the train causes the damping air holes to flow. At 15, solid vibration energy and air vibration energy due to running of the train are absorbed by such an air damper, and it is possible to prevent dissipation to the surroundings.

【0041】本実施形態では特に言及しなかったが、図
4に示すように、減衰用空気孔15の内面に雌ねじ22
を形成するとともに、中空ネジ21a、21bの外周面
に雄ねじ23を形成しておき、かかる雄ねじ23を雌ね
じ22に螺合させる形で中空ネジ21a、21bを減衰
用空気孔15にねじ込むようにしてもよい。
Although not particularly mentioned in the present embodiment, as shown in FIG.
Is formed, and a male screw 23 is formed on the outer peripheral surface of the hollow screws 21a and 21b, and the hollow screws 21a and 21b are screwed into the damping air hole 15 in such a manner that the male screw 23 is screwed into the female screw 22. Is also good.

【0042】かかる構成によれば、中空ネジ21a、2
1bの中空径を適宜調整することによって空気ダンパの
減衰量を所望の大きさに調整することが可能となる。
According to this configuration, the hollow screws 21a,
By appropriately adjusting the hollow diameter of 1b, the amount of attenuation of the air damper can be adjusted to a desired size.

【0043】また、本実施形態では、本発明に係る軌道
の防振装置を高架橋に適用したが、高架橋である必要は
なく、動荷重の移動に伴う軌道の防振が必要な全ての部
位に適用することができることは言うまでもない。
In this embodiment, the track vibration isolating device according to the present invention is applied to a viaduct. However, it is not necessary to use a viaduct, and the vibration damping device is required for all portions where the vibration of the track is required due to the movement of the dynamic load. It goes without saying that it can be applied.

【0044】また、本実施形態では、鉛直荷重支持用可
変剛性バネを平板を巻回して形成した円錐状螺旋バネで
構成したが、これに代えて図5に示す鉛直荷重支持用可
変剛性バネ32を採用してもよい。
Further, in the present embodiment, the variable rigidity spring for supporting the vertical load is constituted by a conical helical spring formed by winding a flat plate. Instead, the variable rigidity spring 32 for supporting the vertical load shown in FIG. May be adopted.

【0045】同図(b)に示す鉛直荷重支持用可変剛性バ
ネ32は、円形断面の線材をコイル状に巻いてなる円錐
状螺旋バネ31(同図(a))を、例えば図示されている
ように4段に積み重ねるとともに、それらの内周面を該
内周面の内側を周回する部分の外周面に当接させて構成
してあり、第2の筒材12の昇降動作に伴って鉛直荷重
支持用可変剛性バネ32が伸縮する際、内外で隣接し合
う円錐状螺旋バネ31同士の擦れ合い及び噛み合いによ
って摩擦が発生するようになっている。
The variable rigidity spring 32 for supporting a vertical load shown in FIG. 4B is, for example, a conical spiral spring 31 (FIG. 4A) formed by winding a wire having a circular cross section in a coil shape. As described above, the inner peripheral surfaces thereof are brought into contact with the outer peripheral surface of a portion orbiting the inside of the inner peripheral surface, and are vertically arranged with the vertical movement of the second cylindrical member 12. When the load supporting variable stiffness spring 32 expands and contracts, friction is generated due to friction and engagement between the conical spiral springs 31 adjacent inside and outside.

【0046】鉛直荷重支持用可変剛性バネ32は、上述
の実施形態と同様、鉛直荷重の増大にしたがって剛性が
増加する非線形バネとして構成してあるが、その剛性に
どのような非線形特性を持たせるかは、列車の動荷重や
速度、高架橋の剛性、地盤性状などを考慮しつつ、構成
要素である円錐状螺旋バネ31の積み重ね段数や、各円
錐状螺旋バネ31の線材断面積、最大径及び最小径、巻
き数などを適宜設定すればよい。
The variable rigidity spring 32 for supporting the vertical load is configured as a non-linear spring whose rigidity increases with an increase in the vertical load, as in the above-described embodiment. Considering the dynamic load and speed of the train, the rigidity of the viaduct, the properties of the ground, and the like, the number of stacking stages of the conical spiral springs 31 that are constituent elements, the wire cross-sectional area of each conical spiral spring 31, the maximum diameter, The minimum diameter, the number of turns, and the like may be set as appropriate.

【0047】ここで、円錐状螺旋バネ31を積み重ねる
にあたっては、工事用カラーコーンを積み重ねるが如
く、上から順次落とし込むようにするとともに、上下方
向については、必要に応じて接着、溶接等の方法で相互
の離間を防止するようにしてもよい。
Here, when stacking the conical helical springs 31, they are sequentially dropped from the top, as in the case of stacking the construction color cones. The separation from each other may be prevented.

【0048】なお、鉛直荷重支持用可変剛性バネ32も
上述の実施形態と同様、第1の筒材11及び第2の筒材
12で囲まれた内部気密空間14に配置するとともに、
第1の筒材11に内部気密空間14に連通する減衰用空
気孔15を設けてある。
The variable rigidity spring 32 for supporting a vertical load is also disposed in the internal hermetic space 14 surrounded by the first and second cylindrical members 11 and 12, as in the above-described embodiment.
The first cylindrical member 11 is provided with a damping air hole 15 communicating with the internal airtight space 14.

【0049】かかる変形例によれば、上述した実施形態
と同様、上部工3と枕木4との必要クリアランスを小さ
く設定することができることに加えて、鉛直荷重支持用
可変剛性バネ32が変形する際、該鉛直荷重支持用可変
剛性バネの内周面と外周面とが擦れ合いあるいは噛み合
うため、列車走行による固体振動エネルギーや空気振動
エネルギーは、かかる擦れ合い及び噛み合いによる摩擦
減衰として吸収され、周囲への散逸が防止される。
According to this modification, similarly to the above-described embodiment, the required clearance between the superstructure 3 and the sleeper 4 can be set small, and in addition, when the variable rigidity spring 32 for supporting a vertical load is deformed. Since the inner peripheral surface and the outer peripheral surface of the vertical load supporting variable rigidity spring rub or mesh with each other, solid vibration energy and air vibration energy due to train running are absorbed as frictional attenuation due to the rubbing and meshing, and the surroundings are absorbed. Is prevented from dissipating.

【0050】しかも、かかる鉛直荷重支持用可変剛性バ
ネ32を製作するにあたっては、高品質で安価な円錐状
螺旋バネ31を単に積み重ねるだけでよいので、材料調
達や組立に要する費用を安価に抑えることができるとと
もに、積み重ね段数を増やすことによって剛性を容易に
高くすることができるので、単体での剛性の低さについ
ては何ら懸念する必要がない。
Moreover, in manufacturing such a variable rigidity spring 32 for supporting a vertical load, it is only necessary to simply stack high-quality and inexpensive conical helical springs 31, so that costs required for material procurement and assembly can be reduced. In addition, the rigidity can be easily increased by increasing the number of stacking steps, so that there is no need to worry about the low rigidity of a single unit.

【0051】図6は、動荷重が大きい場合、すなわち軌
道5上を列車の車輪が通過している状況での鉛直荷重支
持用可変剛性バネ32の変形性状を示した図である。な
お、鉛直荷重支持用可変剛性バネ32に関する他の作用
効果については、上述した実施形態に係る鉛直荷重支持
用可変剛性バネ13と同様であるので、ここではその説
明を省略する。
FIG. 6 is a diagram showing the deformation characteristics of the vertical load supporting variable rigidity spring 32 when the dynamic load is large, that is, when the train wheels pass on the track 5. The other effects of the vertical load supporting variable stiffness spring 32 are the same as those of the vertical load supporting variable stiffness spring 13 according to the above-described embodiment, and thus description thereof will be omitted.

【0052】一方、かかる変形例では、上述した実施形
態と同様、鉛直荷重支持用可変剛性バネ32の内部に挿
入された円柱状のストッパー16によって、枕木4の沈
込み量を制限するようにしたが、かかるストッパーに代
えて図7(a)に示すストッパー41を採用してもよい。
On the other hand, in this modified example, similarly to the above-described embodiment, the amount of sinking of the sleeper 4 is limited by the cylindrical stopper 16 inserted inside the variable rigidity spring 32 for supporting a vertical load. However, instead of such a stopper, a stopper 41 shown in FIG. 7A may be employed.

【0053】ストッパー41は、螺旋階段状円形台座と
して第1の筒材11の底面に突設してあり、かかる構成
によれば、同図(b)に示すようにストッパー41の螺旋
階段面に鉛直荷重支持用可変剛性バネ32が当たること
で枕木4の沈込み量を制限することができる。
The stopper 41 protrudes from the bottom surface of the first tubular member 11 as a spiral staircase-shaped circular pedestal, and according to this configuration, as shown in FIG. The vertical load supporting variable rigidity spring 32 can limit the sinking amount of the sleeper 4 by being hit.

【0054】[0054]

【発明の効果】以上述べたように、請求項1に係る本発
明の軌道の防振装置によれば、移動中の列車が通過して
いる直下以外の箇所では、比較的小さな列車の動荷重が
低剛性で支持されることとなり、例えば10〜20Hz
といった低周波域をも含む防振が可能となるとともに、
移動中の列車が通過している直下では、比較的大きな動
荷重が軌道に作用するものの、鉛直荷重支持用可変剛性
バネが高剛性に変化しているので、振動系の固有振動数
に大きな変化はなく、結局、列車走行位置に関わらず、
低周波域をも含む防振が可能となる。また、列車が通過
している直下では、比較的大きな動荷重を高剛性で支持
することとなるので、軌道の沈込みを抑えることが可能
となり、列車走行時の安全性ないしは安定性が確保され
るとともに、列車の動荷重と鉛直荷重支持用可変剛性バ
ネとを含む振動系の固有振動数が列車の走行位置に関わ
らずほとんど変化しないため、防振設計がやりやすくな
る。
As described above, according to the track vibration isolator according to the first aspect of the present invention, the dynamic load of a relatively small train is reduced at locations other than immediately below where a moving train is passing. Is supported with low rigidity, for example, 10 to 20 Hz
As well as anti-vibration including low frequency range,
Although a relatively large dynamic load acts on the track immediately below the moving train, the variable rigidity spring for supporting the vertical load has changed to a high rigidity, causing a large change in the natural frequency of the vibration system. No, after all, regardless of the train running position,
Anti-vibration including a low frequency region can be performed. In addition, immediately below the passage of the train, a relatively large dynamic load is supported with high rigidity, so it is possible to suppress the sinking of the track, and the safety or stability during train running is secured. In addition, the natural frequency of the vibration system including the dynamic load of the train and the variable rigidity spring for supporting the vertical load hardly changes irrespective of the running position of the train.

【0055】また、請求項2に係る本発明の軌道の防振
装置によれば、圧縮変形したときにバネ材料、例えばコ
イルバネ用鋼線や丸棒が互いに干渉することなく圧縮変
形するので、基部と枕木等の軌道支持材との必要クリア
ランスを小さく設定することができるという効果も奏す
る。
According to the vibration damping device for a track of the present invention according to the second aspect, the spring material, for example, a steel wire for a coil spring or a round bar is compressed and deformed without interfering with each other when compressed and deformed. Required clearance between the rail and a track supporting material such as a sleeper can be set small.

【0056】また、請求項3に係る本発明の軌道の防振
装置によれば、鉛直荷重支持用可変剛性バネが変形する
際、該鉛直荷重支持用可変剛性バネの内周面と外周面と
が擦れ合うため、列車走行による固体振動エネルギーや
空気振動エネルギーを擦れ合いによる摩擦減衰として吸
収し、周囲への散逸を防止することができるという効果
も奏する。
Further, according to the vibration damping device for a track according to the third aspect of the present invention, when the variable rigidity spring for supporting a vertical load deforms, the inner peripheral surface and the outer peripheral surface of the variable rigidity spring for supporting a vertical load are deformed. Are rubbed against each other, so that solid vibration energy or air vibration energy due to running of the train is absorbed as frictional attenuation due to rubbing, and the effect of preventing dissipation to the surroundings is also achieved.

【0057】また、請求項4に係る本発明の軌道の防振
装置によれば、基部と枕木等の軌道支持材との必要クリ
アランスを小さく設定することができることに加えて、
鉛直荷重支持用可変剛性バネが変形する際、該鉛直荷重
支持用可変剛性バネの内周面と外周面とが擦れ合いある
いは噛み合うため、列車走行による固体振動エネルギー
や空気振動エネルギーを擦れ合い及び噛み合いによる摩
擦減衰として吸収し、周囲への散逸を防止することがで
きるという効果も奏する。
According to the track anti-vibration device of the present invention, the required clearance between the base and the track support such as a sleeper can be set small.
When the variable stiffness spring for vertical load support is deformed, the inner peripheral surface and the outer peripheral surface of the variable stiffness spring for vertical load support rub or mesh with each other. It also absorbs as frictional damping, and prevents the dissipation to the surroundings.

【0058】また、請求項5に係る本発明の軌道の防振
装置によれば、減衰用空気孔を介して外部の空気が第1
の筒材と第2の筒材とで囲まれた内部気密空間内に流れ
込んだり、逆に該内部気密空間内の空気が減衰用空気孔
を介して外部に流れ出たりすることとなり、列車の動荷
重の変化に応じた減衰作用が減衰用空気孔にて発生し、
列車走行による固体振動エネルギーや空気振動エネルギ
ーをかかる空気ダンパで吸収し、周囲への散逸を防止す
ることができるという効果も奏する。
Further, according to the vibration damping device for a track of the present invention according to the fifth aspect, external air is supplied to the first through the damping air hole.
And the air in the internal air-tight space flows out through the damping air holes to the outside, and the airflow in the internal air-tight space surrounded by the cylindrical material and the second cylindrical material flows out. A damping action according to the change in load occurs at the damping air hole,
The effect of absorbing the solid vibration energy and the air vibration energy due to the running of the train by the air damper and preventing the energy from being dissipated to the surroundings can also be obtained.

【0059】[0059]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施形態に係る軌道の防振装置の図であり、
(a)は全体配置図、(b)は詳細配置図。
FIG. 1 is a diagram of a track vibration isolator according to an embodiment;
(a) is an overall layout diagram, and (b) is a detailed layout diagram.

【図2】本実施形態に係る軌道の防振装置の図であり、
(a)は一部を切除した側面図、(b)はA―A線方向から見
た平面図。
FIG. 2 is a view of a track vibration isolator according to the embodiment;
(a) is a side view in which a part is cut away, and (b) is a plan view seen from the direction of the line AA.

【図3】本実施形態に係る軌道の防振装置の作用を示し
た図。
FIG. 3 is a view showing the operation of the track vibration isolator according to the embodiment.

【図4】変形例に係る軌道の防振装置を示した部分詳細
図。
FIG. 4 is a partial detailed view showing a track vibration isolator according to a modification.

【図5】変形例に係る鉛直荷重支持用可変剛性バネを示
した図であり、(a)はその構成要素である円錐状螺旋バ
ネ31の側面図、(b)は第1の筒材11及び第2の筒材
12で囲まれた内部気密空間14に配置された様子を示
した断面図。
5A and 5B are diagrams showing a variable rigidity spring for supporting a vertical load according to a modification, in which FIG. 5A is a side view of a conical spiral spring 31 as a component thereof, and FIG. FIG. 4 is a cross-sectional view showing a state in which the airbag is disposed in an internal airtight space 14 surrounded by a second cylindrical member 12.

【図6】変形例に係る鉛直荷重支持用可変剛性バネの作
用を示した図。
FIG. 6 is a view showing an operation of a variable rigidity spring for supporting a vertical load according to a modified example.

【図7】変形例に係る軌道の防振装置を示した断面図。FIG. 7 is a sectional view showing a track vibration isolator according to a modification.

【符号の説明】[Explanation of symbols]

1 軌道の防振装置 3 上部工(基部) 4 枕木(軌道支持材) 5 軌道 11 第1の筒材(基部側部
材) 12 第2の部材(軌道側部
材) 13 鉛直荷重支持用可変剛性
バネ(円錐状螺旋バネ) 14 内部気密空間 15 減衰用空気孔 31 円錐状螺旋バネ 32 鉛直荷重支持用可変剛性
バネ
DESCRIPTION OF SYMBOLS 1 Track anti-vibration device 3 Superstructure (base) 4 Sleeper (track support) 5 Track 11 First tubular member (base side member) 12 Second member (track side member) 13 Variable rigid spring for vertical load support (Conical spiral spring) 14 Internal airtight space 15 Damping air hole 31 Conical spiral spring 32 Variable rigidity spring for supporting vertical load

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高架橋の上部工等の基部に固定される基
部側部材と、該基部側部材に下端が固定された鉛直荷重
支持用可変剛性バネと、該鉛直荷重支持用可変剛性バネ
の上端に固定され天端にて枕木等の軌道支持材が載せら
れる軌道側部材とからなり、前記鉛直荷重支持用可変剛
性バネを、鉛直荷重の増大にしたがって剛性が増加する
よう非線形バネとして構成したことを特徴とする軌道の
防振装置。
1. A base member fixed to a base such as a superstructure of a viaduct, a variable rigidity spring for supporting a vertical load having a lower end fixed to the base member, and an upper end of the variable rigidity spring for supporting a vertical load. And a track-side member on which a track support such as a sleeper is mounted at the top end, and the variable rigidity spring for supporting a vertical load is configured as a non-linear spring so that the rigidity increases as the vertical load increases. Orbital vibration isolator.
【請求項2】 前記鉛直荷重支持用可変剛性バネを円錐
状螺旋バネで構成した請求項1記載の軌道の防振装置。
2. The vibration isolator for a track according to claim 1, wherein said variable rigidity spring for supporting a vertical load is constituted by a conical helical spring.
【請求項3】 前記円錐状螺旋バネを平板を巻回して形
成するとともに該平板の内周面を該内周面の内側を周回
する部分の外周面に当接させて構成した請求項2記載の
軌道の防振装置。
3. The conical helical spring is formed by winding a flat plate, and the inner peripheral surface of the flat plate is brought into contact with the outer peripheral surface of a portion orbiting inside the inner peripheral surface. Track anti-vibration device.
【請求項4】 前記鉛直荷重支持用可変剛性バネを、複
数の円錐状螺旋バネを積み重ねるとともに、該円錐状螺
旋バネの内周面を該内周面の内側を周回する部分の外周
面に当接させて構成した請求項1記載の軌道の防振装
置。
4. A variable rigidity spring for supporting a vertical load, wherein a plurality of conical helical springs are stacked, and an inner peripheral surface of the conical helical spring is applied to an outer peripheral surface of a portion orbiting inside the inner peripheral surface. The orbital vibration isolator according to claim 1, wherein the vibration isolator is configured to be in contact with the track.
【請求項5】 前記基部側部材を第1の筒材で構成する
とともに前記軌道側部材を第2の筒材で構成して入れ子
状に相互に嵌合し、該第1の筒材及び第2の筒材とで囲
まれた内部気密空間に前記鉛直荷重支持用可変剛性バネ
を配置し、前記第1の筒材及び第2の筒材のうち、少な
くともいずれかに前記内部気密空間に連通する減衰用空
気孔を設けた請求項1記載の軌道の防振装置。
5. The base-side member is formed of a first cylindrical member, and the track-side member is formed of a second cylindrical member. The variable rigidity spring for supporting a vertical load is disposed in an internal hermetic space surrounded by a second cylindrical member, and communicates with the internal hermetic space to at least one of the first cylindrical member and the second cylindrical member. 2. The track vibration isolator according to claim 1, wherein a damping air hole is provided.
JP11605599A 1999-02-26 1999-04-23 Orbital vibration isolator Expired - Fee Related JP3723971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11605599A JP3723971B2 (en) 1999-02-26 1999-04-23 Orbital vibration isolator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-49798 1999-02-26
JP4979899 1999-02-26
JP11605599A JP3723971B2 (en) 1999-02-26 1999-04-23 Orbital vibration isolator

Publications (2)

Publication Number Publication Date
JP2000309901A true JP2000309901A (en) 2000-11-07
JP3723971B2 JP3723971B2 (en) 2005-12-07

Family

ID=26390253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11605599A Expired - Fee Related JP3723971B2 (en) 1999-02-26 1999-04-23 Orbital vibration isolator

Country Status (1)

Country Link
JP (1) JP3723971B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141091A (en) * 2004-11-10 2006-06-01 Shimizu Corp Ultrasonic motor and variable rigidity spring
JP2006214269A (en) * 2003-02-12 2006-08-17 Tekken Constr Co Ltd Erected girder
JP2012188839A (en) * 2011-03-10 2012-10-04 Railway Technical Research Institute Vibration control device
KR101257244B1 (en) 2007-02-15 2013-04-29 쉐쥔 인 A detachable vibration isolation device and the application thereof
CN110055826A (en) * 2019-04-28 2019-07-26 中铁二院工程集团有限责任公司 A kind of enhanced ballast bed structure of cutting cogwheel railway and construction method
CN113584961A (en) * 2021-07-28 2021-11-02 安邦电气股份有限公司 Anti-vibration type electric tracing band for track
CN116180506A (en) * 2023-04-24 2023-05-30 广州航海学院 Ballastless track adapting to foundation deformation and construction method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214269A (en) * 2003-02-12 2006-08-17 Tekken Constr Co Ltd Erected girder
JP4540632B2 (en) * 2003-02-12 2010-09-08 鉄建建設株式会社 Erection girder
JP2006141091A (en) * 2004-11-10 2006-06-01 Shimizu Corp Ultrasonic motor and variable rigidity spring
JP4573102B2 (en) * 2004-11-10 2010-11-04 清水建設株式会社 Ultrasonic motor and variable stiffness spring
KR101257244B1 (en) 2007-02-15 2013-04-29 쉐쥔 인 A detachable vibration isolation device and the application thereof
JP2012188839A (en) * 2011-03-10 2012-10-04 Railway Technical Research Institute Vibration control device
CN110055826A (en) * 2019-04-28 2019-07-26 中铁二院工程集团有限责任公司 A kind of enhanced ballast bed structure of cutting cogwheel railway and construction method
CN110055826B (en) * 2019-04-28 2023-09-22 中铁二院工程集团有限责任公司 Construction method of cutting rack rail reinforced track bed structure
CN113584961A (en) * 2021-07-28 2021-11-02 安邦电气股份有限公司 Anti-vibration type electric tracing band for track
CN113584961B (en) * 2021-07-28 2023-10-13 安邦电气股份有限公司 Vibration-resistant electric tracing band for track
CN116180506A (en) * 2023-04-24 2023-05-30 广州航海学院 Ballastless track adapting to foundation deformation and construction method thereof

Also Published As

Publication number Publication date
JP3723971B2 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
JP4745338B2 (en) Floating slave track bed
JP2008507640A5 (en)
CN103526650B (en) Passive type power vibration reduction floating slab track structure
JP2000309901A (en) Vibration-proofing device of track
JP4476179B2 (en) Railcar floor structure
US6409092B1 (en) Superstructure construction
ES2312969T3 (en) RAIL SHOCK ABSORBER.
CN110593023A (en) Vibration and noise reduction device for track floating plate
JP2005511449A (en) Elevator noise / vibration isolation system
JP7103826B2 (en) Railroad vehicle with anti-vibration material structure and anti-vibration floor structure
CN113005826B (en) Design method of full-frequency vibration reduction track structure
JP2018044397A (en) Vibration damping device
JP3749063B2 (en) Ladder sleeper and vehicle track
KR101791680B1 (en) Vibration reduction type railway station structure and spring-friction damper for the railway station structure
US10487456B2 (en) Special trackwork assembly
JP7239458B2 (en) Railway bridge girder end structure
JP4970234B2 (en) Bridge vibration control device and viaduct
CN216474274U (en) Full-frequency vibration reduction track structure
CN112112002A (en) Special two-way harmonious mass damper of air rail track roof beam
KR20020033337A (en) Non sleeper track apparatus of railroad
CN211772434U (en) Fabricated floating slab track system
CN214782943U (en) Intercity orbital cellular vibration isolation device
JP2020019316A (en) Spring device for freight car
JPH0841801A (en) Roadbed for rails
CN110593025B (en) Dynamic vibration absorber for wave-grinding steel rail

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees