JP4570190B2 - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP4570190B2
JP4570190B2 JP2000014199A JP2000014199A JP4570190B2 JP 4570190 B2 JP4570190 B2 JP 4570190B2 JP 2000014199 A JP2000014199 A JP 2000014199A JP 2000014199 A JP2000014199 A JP 2000014199A JP 4570190 B2 JP4570190 B2 JP 4570190B2
Authority
JP
Japan
Prior art keywords
thick film
coating layer
film resistor
wiring board
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000014199A
Other languages
Japanese (ja)
Other versions
JP2001203440A (en
Inventor
広繁 伊藤
辰郎 西村
高志 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000014199A priority Critical patent/JP4570190B2/en
Publication of JP2001203440A publication Critical patent/JP2001203440A/en
Application granted granted Critical
Publication of JP4570190B2 publication Critical patent/JP4570190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、厚膜抵抗体を具備する配線基板に関するものである。
【0002】
【従来の技術】
従来、例えば半導体集積回路素子等の電子部品を搭載するための配線基板として、酸化アルミニウム質焼結体等の電気絶縁材料から成る絶縁基体の表面にタングステンやモリブデン等の金属材料から成る配線導体と、この配線導体に電気的に接続されたランタン−ボロン系、酸化錫系等の抵抗体メタライズから成る厚膜抵抗体とを被着させて成る配線基板が知られている。
【0003】
このような配線基板は、一般的にはセラミックグリーンシート積層法によって製作され、具体的には、例えばドクターブレード法等のシート成形技術により形成された複数枚のセラミックグリーンシートを準備し、次いでこれらのセラミックグリーンシートに適当な打ち抜き加工を施すとともに配線導体用の金属ペーストを印刷塗布し、次いでこれらのガラスセラミックグリーンシートを上下に積層するとともに適当な大きさ、形状に切断して配線基板用の生セラミック成形体を得、その後この生セラミック成形体を高温で焼成し、最後に焼成して得た絶縁基体の表面に厚膜抵抗用の抵抗体ペーストを所定パターンに印刷塗布するとともにこの絶縁基体を前記焼成の温度よりも低い温度で熱処理することによって製作される。
【0004】
なお、このような配線基板においては、一般的には、配線導体はその露出表面がニッケルめっき膜および金めっき膜から成るめっき金属膜により順次被覆されており、厚膜抵抗体は酸化ホウ素系ガラス等の保護ガラスでそのほぼ全体が覆われている。配線導体はめっき金属膜で被覆されることにより、その酸化腐食が有効に防止されるとともに電子素子や外部電気回路基板等との接続が容易かつ強固なものとなる。また厚膜抵抗体は保護ガラスで覆われることにより、その酸化腐食が有効に防止される。このように配線導体の露出表面をめっき金属膜で被覆するには、無電解めっき法や電解めっき法が採用される。また、厚膜抵抗体を保護ガラスで覆うには、絶縁基体の厚膜抵抗体を覆うようにして保護ガラスを約600℃で溶融被着させる方法が採用される。この場合、保護ガラスはガラス成分が酸化アルミニウム質焼結体と酸素結合等により強固に接合することから、絶縁基体に極めて強固に接合するとともにその形成が極めて容易である。
【0005】
【発明が解決しようとする課題】
しかしながら、この従来の配線基板によると、厚膜抵抗体は絶縁基体に厚膜抵抗用の抵抗体ペーストをスクリーン印刷法により所定のパターンに印刷塗布しておき、これを絶縁基体の焼成温度よりも低い温度で熱処理することによって形成されており、印刷時のばらつきによりその厚みに2〜3μm程度のばらつきが発生しやすく、また熱処理時の温度、雰囲気等の条件にもばらつきが発生し易い。
このような厚みのばらつきや熱処理時の条件のばらつき等は厚膜抵抗体の電気抵抗値にばらつきを発生させ、抵抗体としての機能を十分に発揮することができない場合がある。そこで、厚膜抵抗体をガラス保護膜上からレーザートリミングして厚膜抵抗体の抵抗値を調整し、抵抗体としての機能を正常に発揮できるようにすることが考えられる。
【0006】
ところが、厚膜抵抗体をレーザートリミングした場合、レーザートリミングされた部位が保護ガラスで覆われず露出してしまい、厚膜抵抗体の酸化腐食を有効に防止することができないという問題が誘発されてしまう。
【0007】
本発明は、かかる従来の問題点に鑑み案出されたものであり、その目的は、所定の電気抵抗値を有する厚膜抵抗体が形成され、かつ前記厚膜抵抗体の酸化腐食が有効に防止された、信頼性に優れた配線基板を提供することにある。
【0008】
【課題を解決するための手段】
本発明の配線基板は、絶縁基体の表面に、配線導体と、該配線導体と電気的に接続された厚膜抵抗体とを被着させるとともに、該厚膜抵抗体をその一部を露出させて保護ガラスで被覆し、かつ少なくともその露出する部位を紫外線硬化型のエポキシ樹脂から成る第1の被覆層と、硬化温度が150℃〜200℃の熱硬化型のシリコーン樹脂から成る第2の被覆層とで順次被覆して成り、前記第1の被覆層および前記第2の被覆層の少なくとも一方が、緑色、青色および黒色のいずれかに着色されていることを特徴とするものである。
【0009】
また本発明の配線基板は、前記第1の被覆層の厚みが30μm〜50μmであり、かつ前記第2の被覆層の厚みが20μm〜40μmであることを特徴とするものである。
【0010】
本発明の配線基板によれば、厚膜抵抗体を保護ガラスで被覆するとともに、レーザートリミングにより露出する部位を紫外線硬化型のエポキシ樹脂から成る第1の被覆層と、硬化温度が150℃〜200℃の熱硬化型のシリコーン樹脂から成る第2の被覆層で順次被覆したことから、厚膜抵抗体が酸化腐食することを極めて有効に防止することができる。
【0011】
また本発明の配線基板によれば、第1の被覆層を形成する際、熱の印加がないことから、厚膜抵抗体の露出部位に酸化等のダメージを与えることはなく、厚膜抵抗体の電気抵抗値を所望する所定値となすことができる。
【0012】
さらに本発明の配線基板によれば、前記硬化温度が150℃〜200℃の熱硬化型のシリコーン樹脂が、酸、アルカリなどに対する耐薬品性に優れることから、耐薬品性に劣る前記第1の被覆層や厚膜抵抗体を有効に保護することができ、配線導体にめっき金属層を被着させるためのめっき作業等の、配線基板を各種薬液に浸漬する作業により厚膜抵抗体等に腐食、剥離等を生じることを防ぐことができ、配線基板としての信頼性を優れたものとすることができる。また、第1の被覆層および第2の被覆層の少なくとも一方が、緑色、青色および黒色のいずれかに着色されていることにより、未硬化の樹脂前駆体を塗布したとき、未硬化の樹脂前駆体と絶縁基体とのコントラストが大きくなり、塗布された未硬化の樹脂前駆体の層の欠陥を認識し易く、この欠陥を介して侵入する外気等により厚膜抵抗体が腐食することを有効に防止することができる。
【0013】
【発明の実施の形態】
次に、本発明を添付の図面に基づき詳細に説明する。図1は、本発明の配線基板を半導体素子や容量素子等の電子部品を搭載する混成集積回路基板に適用した場合の一実施例を示す断面図であり、図中、1は絶縁基体、2は配線導体、3は厚膜抵抗体、4はガラス保護膜、5は第1被覆層、6は第2被覆層である。これらの絶縁基体1、配線導体2、厚膜抵抗体3、保護ガラス4、第1被覆層5、第2被覆層6により配線基板Aが形成される。
【0014】
絶縁基体1は、図1に示すように、その上面に半導体素子や容量素子等の電子部品7が搭載される略四角平板状であり、その搭載部1a表面には半導体素子、容量素子等の電子部品7がロウ材やガラス、樹脂等の接着材を介して取着固定される。
【0015】
前記絶縁基体1は、酸化アルミニウム質焼結体や窒化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化珪素質焼結体、ガラスセラッミックス焼結体等の電気絶縁電気絶縁材料から成り、例えば酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム、酸化珪素、酸化マグネシウム、酸化カルシウム等のセラミック原料粉末に適当な有機バインダ、溶剤を添加混合して得たセラミックスラリーを従来周知のドクターブレード法によりシート状となすとともに、これに適当な打ち抜き加工を施すことにより絶縁基体1用のセラミックグリーンシートを得、次いでこれらのセラミックグリーンシートを上下に積層するとともに適当な形状、大きさに切断して絶縁基体1用の生セラミック成形体となし、しかる後、この成形体を還元雰囲気中約1600℃の温度で焼成することによって製作される。
【0016】
また絶縁基体1には、その上面から下面にかけて導出する複数の配線導体2が被着形成されている。この配線導体2は、絶縁基体1に搭載される半導体素子7を外部電気回路に接続するための導電路として機能する。
【0017】
そして配線導体2の絶縁基体1上面に露出する部位には半導体素子等の電子部品7の電極がボンディングワイヤ8等の導電性接続部材を介して電気的に接続され、配線導体2の絶縁基体1下面に導出した部位は外部電気回路基板の配線導体に錫−鉛半田等の低融点ロウ材を介して電気的に接続される。
【0018】
なお、配線導体2は、タングステンやモリブデン、銅、銀等の金属粉末から成り、タングステン等の金属粉末に適当な有機バインダー、溶剤を添加混合して得た金属ペーストを絶縁基体1用のセラミックグリーンシートに従来周知のスクリーン印刷法により所定のパターンに印刷塗布し、これを絶縁基体1用の生セラミック成形体とともに同時焼成することによって絶縁基体1の上面から下面にかけて被着形成される。
【0019】
また絶縁基体1の下面には、配線導体2と電気的に接続するようにして厚膜抵抗体3が被着形成されている。厚膜抵抗体3は、配線導体2と、配線導体2と電気的に接続された電子部品7とにより形成される電気回路の抵抗値を所定の値に調整する作用をなす。厚膜抵抗体を予め配線基板に形成しておくと、配線導体2にチップ抵抗等を改めて接続する工程を削減することや、配線基板を小型化することができるという効果を得ることができる。
【0020】
このような厚膜抵抗体3は、例えばランタン−ボロン(LaB6)系合金、酸化錫(SnO2)等の抵抗体粉末から成り、酸化錫から成る場合であれば、酸化錫粉末に適当な有機バインダー、溶剤を添加混合して得た抵抗体ペーストを、焼成して成る絶縁基体1の下面に、配線導体2と接続するようにして所定パタ−ンに印刷塗布し、これを約900℃の温度で熱処理して焼き付けることにより、絶縁基体1下面に被着形成される。
【0021】
なお、厚膜抵抗体3は、トリミング後の抵抗値が所定の抵抗値となるようにその厚み、幅、長さが選定され、例えば半導体素子と容量素子とから成る電気回路の抵抗体として使用される場合であれば、一般的にはトリミング後の抵抗値が数0Ω〜数kΩとなるように設定される。
【0022】
このような厚膜抵抗体3は、その厚みが5μm未満であると、厚膜抵抗体3に断線が発生しやすくなり、他方、50μmを超えると、絶縁基体1から剥離しやすくなる。従って、厚膜抵抗体3の厚みは5〜50μmの範囲が好ましい。
【0023】
また厚膜抵抗体3はその幅が0.05mm未満であると、厚膜抵抗体に断線が発生しやすくなり、他方、1.5mmを超えると、絶縁基体1の下面に厚膜抵抗体を効率よく配置することが困難となる傾向にある。従って、厚膜抵抗体3の幅は0.05〜1mmの範囲が好ましい。
【0024】
更に、前記厚膜抵抗体3はその長さが0.1mm未満であると、抵抗体としての所定の抵抗値を得ることが困難であるとともに厚膜抵抗体3のトリミングが困難となる傾向にあり、他方、100mmを超えると、絶縁基体1上に厚膜抵抗体3を効率よく配置することが困難となる傾向にある。従って、前記厚膜抵抗体3の長さは0.1〜100mmの範囲としておくことが好ましい。
【0025】
なお、前記厚膜抵抗体3と配線導体2との電気的な接続は、銅から成る厚膜導体10を介して行うようにしてもよく、この場合、銅厚膜導体10と厚膜抵抗体3との密着性が良好であることから、配線導体2と厚膜抵抗体3とをより一層確実に電気的に接続させることができる。前記厚膜導体10は、例えば、銅粉末に適当な有機バインダー、溶剤を添加、混合して得た銅ペーストを、絶縁基体1の下面に、厚膜抵抗体3を被着形成させる前に、配線導体2とその一部が重なるようにして印刷塗布し、約900℃の温度で熱処理し、焼き付けることにより、絶縁基体1の下面に所定パターンに被着形成することができる。
【0026】
また前記厚膜抵抗体3は、その表面に保護ガラス4が被着されている。
前記保護ガラス4は、厚膜抵抗体3の酸化を防ぐとともに、後述する厚膜抵抗体3にレーザトリミングを施す際、トリミングされる部位以外の部位の露出表面がダメージを受けることを防ぐ作用をなす。
【0027】
このような保護ガラス4は、例えば酸化ホウ素系ガラス等のガラスから成り、酸化ホウ素系ガラスの粉末に適当な有機バインダー、溶剤を添加、混合して得たガラスペーストを厚膜抵抗体3の全面を覆うようにして印刷塗布し、約600〜650℃で熱処理し、焼き付けることにより被着形成される。
【0028】
更に前記保護ガラス4で覆われた厚膜抵抗体3は、レーザートリミングによりその電気抵抗値が所定の値に調整され、トリミングされた部位が保護ガラス4から露出するため、この露出部が酸化することを防ぐために、紫外線硬化型のエポキシ樹脂から成る第1の被覆層5と、硬化温度が150℃〜200℃の熱硬化型のシリコーン樹脂から成る第2の被覆層6とにより被覆される。
【0029】
前記紫外線硬化型の有機樹脂から成る第1の被覆層5は、例えば、紫外線硬化型のエポキシ樹脂で形成され、未硬化のエポキシ樹脂前駆体を適当な光重合開始剤等の添加成分と混合し、絶縁基体1の下面の配線導体2を除くほぼ全面を覆うようにして印刷塗布するとともに、約300mJ/cm2の紫外線を照射し、光硬化させることによって露出する厚膜抵抗体3の表面、絶縁基体1の表面及び保護ガラス3の表面に被着形成される。
【0030】
前記紫外線硬化型エポキシ樹脂等の紫外線硬化型の有機樹脂から成る第1の被覆層5は、絶縁基体1、厚膜抵抗体3及び保護ガラスのいずれとも密着性が良好であることから露出する厚膜抵抗体3の表面、絶縁基体1の表面及び保護ガラスの表面に極めて強固に被着する。
【0031】
また、前記紫外線硬化型の有機樹脂から成る第1の被覆層5を形成する際、熱の印加がないことから、厚膜抵抗体3の露出部位に酸化等のダメージを与えることはなく、厚膜抵抗体3の電気抵抗値を所望する所定値となすことができる。
【0032】
なお、前記紫外線硬化型の有機樹脂から成る第1の被覆層5は、その厚みが30μm未満の薄いものとなると、厚膜抵抗体3を有効に被覆するのが困難となり、また50μmを超えると、搭載した半導体素子の作動時に発する熱で絶縁基体1と第1の被覆層5との熱膨張係数の差に起因して生じる熱応力等により絶縁基体1から剥がれ易くなる危険性がある。従って、前記第1の被覆層は、その厚みを30μm〜50μmの範囲としておくことが好ましい。
【0033】
更に前記紫外線硬化型のエポキシ樹脂から成る第1の被覆層5の表面には、硬化温度が150℃〜200℃の熱硬化型のシリコーン樹脂から成る第2の被覆層6が被着されている。
【0034】
記第2の被覆層は、硬化温度が150℃〜200℃の熱硬化型樹脂、具体的にはシリコーン樹脂が好適に使用され、例えば、未硬化のシリコーン樹脂前駆体を第1の被覆層の全面を覆うようにして塗布するとともに、約150℃、30分の条件で加熱硬化させることによって第1の被覆層5の表面を被覆するように被着される。
【0035】
化温度が150℃〜200℃の熱硬化型のシリコーン樹脂から成る第2の被覆層6は、酸、アルカリ等の薬品に対する耐薬品性に優れることから、耐薬品性に劣る前記第1の被覆層5(および厚膜抵抗体3の露出部位)を有効に保護し、例えば、後述するように、配線導体2にニッケルめっき膜、金めっき膜等のめっき金属膜9を被着させるために配線基板Aを酸性のニッケルめっき浴や、酸性またはアルカリ性の金めっき浴に浸漬したときに、第1の被覆層5等が前記めっき浴により侵食され、厚膜抵抗体3の被覆が不完全となって酸化、腐食してしまう、ということを有効に防止することができる。
【0036】
前記第2の被覆層6は、またその厚みが20μm未満の薄いものとなると、第1の被覆層5を有効に被覆してめっき浴等の薬品から保護することが困難となる危険性がある。従って、前記第2の被覆層6は、その厚みを20μm以上としておくことが好ましく、形成時の作業性や経済性を考慮すれば、20μm〜40μmの範囲としておくことが好適である。
【0037】
更に前記配線導体2はその露出表面に配線導体2とボンディングワイヤ8等の導電性接続部材および低融点ロウ材等との接続を容易かつ強固なものとするために、1〜10μm程度の厚みのニッケルめっき膜と0.1〜3μm程度の厚みの金めっき膜とからなるめっき金属膜9が被着されている。
【0038】
前記ニッケルめっき膜と金めっき膜とからなるめっき金属膜9は、例えば硫酸ニッケルとリン系、またはホウ素系の還元剤を主成分とする無電解ニッケルめっき浴(酸性)と、シアン化金カリウムとホウ素系還元剤とを主成分とする無電解金めっき浴(アルカリ性)を準備し、各々のめっき浴に、配線基板Aを順次、所定時間ずつ浸漬することによって配線導体2の露出表面に所定厚みに被着形成される。このめっき金属膜9を形成する場合、耐薬品性に劣る第1の被覆層5および厚膜抵抗体3が耐薬品性に優れる第2の被覆層6で被覆されているため厚膜抵抗体3に腐食、剥離等を生じることが有効に防止され、これによって配線基板としての信頼性を優れたものとすることができる。
【0039】
かくして本発明の配線基板によれば、絶縁基体1の上面に半導体素子や容量素子等の電子部品7を、ガラスや樹脂、ロウ材等の接着剤を介して接着固定するとともにこの電子部品7の各電極を配線導体2にボンディングワイヤ8等の導電性接続部材を介して電気的に接続することによって混成集積回路基板として完成し、配線導体2の露出部を外部の電気回路基板に低融点ロウ材を介して接続することにより、搭載された電子部品7と外部電気回路とが電気的に接続される。
【0040】
なお、本発明の配線基板は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能であり、例えば、上記実施例では、第1の被覆層5および第2の被覆層を絶縁基体1下面のほぼ全面に被着させているが、厚膜抵抗体の露出部位とその周辺のみを被覆するように被着させてもよい。
【0041】
また、前記第1の被覆層5および第2の被覆層6はその各々を1回ずつの印刷塗布によって形成するものに限定されるものではなく、複数回の印刷塗布、複数回の紫外線硬化、熱硬化によって形成してもよい。前記第1の被覆層5および第2の被覆層6の各々を複数回の印刷塗布、複数回の紫外線硬化、熱硬化によって形成した場合、絶縁基体1や厚膜抵抗体3等に対する第1の被覆層5の被着強度および第1の被覆層5に対する第2の被覆層6の被着強度が強くなって配線基板の長期信頼性を極めて優れたものとすることが可能となる。従って、前記第1の被覆層5および第2の被覆層6はその各々を複数回の印刷塗布、複数回の紫外線硬化、熱硬化によって形成することが好ましい。
【0042】
更に前記第1の被覆層5および前記第2の被覆層6の少なくとも一方は、緑色青色および黒色のいずれかに着色されいることから未硬化の樹脂前駆体を塗布したとき、未硬化の樹脂前駆体と絶縁基体1とのコントラストが大きくなり、塗布された未硬化の樹脂前駆体の層の欠陥を認識し易く、この欠陥を介して侵入する外気等により厚膜抵抗体3が腐食することを有効に防止することができる。従って、前記第1の被覆層5および前記第2の被覆層6の少なくとも一方は、緑色青色および黒色のいずれかに着色されいる
【0043】
更にまた上述の実施例では、本発明の配線基板を混成集積回路基板用に用いた例で説明したが、これを基体と蓋体とから成る容器内部に半導体素子を気密封止する構造の半導体素子収納用パッケージの基体に適用してもよい。
【0044】
【発明の効果】
本発明の配線基板によれば、厚膜抵抗体を保護ガラスで被覆するとともに、レーザートリミングにより露出する部位を紫外線硬化型のエポキシ樹脂から成る第1の被覆層と、硬化温度が150℃〜200℃の熱硬化型のシリコーン樹脂から成る第2の被覆層で順次被覆したことから、厚膜抵抗体が酸化腐食することを極めて有効に防止することができる。
【0045】
また本発明の配線基板によれば、第1の被覆層を形成する際、熱の印加がないことから、厚膜抵抗体の露出部位に酸化等のダメージを与えることはなく、厚膜抵抗体の電気抵抗値を所望する所定値となすことができる。
【0046】
さらに本発明の配線基板によれば、前記硬化温度が150℃〜200℃の熱硬化型のシリコーン樹脂が、酸、アルカリなどに対する耐薬品性に優れることから、耐薬品性に劣る前記第1の被覆層や厚膜抵抗体を有効に保護することができ、配線導体にめっき金属層を被着させるためのめっき作業等の、配線基板を各種薬液に浸漬する作業により厚膜抵抗体等に腐食、剥離等を生じることを防ぐことができ、配線基板としての信頼性を優れたものとすることができる。また、第1の被覆層および第2の被覆層の少なくとも一方が、緑色、青色および黒色のいずれかに着色されていることにより、未硬化の樹脂前駆体を塗布したとき、未硬化の樹脂前駆体と絶縁基体とのコントラストが大きくなり、塗布された未硬化の樹脂前駆体の層の欠陥を認識し易く、この欠陥を介して侵入する外気等により厚膜抵抗体が腐食することを有効に防止することができる。
【図面の簡単な説明】
【図1】 本発明の配線基板の一実施例を示す断面図である。
【符号の説明】
1・・・・絶縁基体
2・・・・配線導体
3・・・・厚膜抵抗体
4・・・・保護ガラ
5・・・・第1の被覆層
6・・・・第2の被覆層
7・・・・電子部品
8・・・・ボンディングワイヤ
9・・・・めっき金属膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wiring board having a thick film resistor.
[0002]
[Prior art]
Conventionally, as a wiring board for mounting an electronic component such as a semiconductor integrated circuit element, a wiring conductor made of a metal material such as tungsten or molybdenum on the surface of an insulating base made of an electrically insulating material such as an aluminum oxide sintered body There is known a wiring board formed by depositing a lanthanum-boron-based or tin-oxide-based thick metal resistor electrically connected to the wiring conductor.
[0003]
Such a wiring board is generally manufactured by a ceramic green sheet laminating method. Specifically, for example, a plurality of ceramic green sheets formed by a sheet forming technique such as a doctor blade method are prepared, and then these are prepared. Appropriate punching processing is applied to the ceramic green sheet, and a metal paste for the wiring conductor is printed and applied, and then these glass ceramic green sheets are laminated vertically and cut into an appropriate size and shape for a wiring board. A green ceramic molded body is obtained, then the green ceramic molded body is fired at a high temperature, and finally, a thick film resistance resistor paste is printed and applied in a predetermined pattern on the surface of the insulating base body obtained by firing. Is manufactured by heat treatment at a temperature lower than the firing temperature.
[0004]
In such a wiring board, generally, the exposed surface of the wiring conductor is sequentially covered with a plating metal film made of a nickel plating film and a gold plating film, and the thick film resistor is made of boron oxide glass. It is almost entirely covered with protective glass. By covering the wiring conductor with the plated metal film, the oxidative corrosion is effectively prevented, and the connection with the electronic element, the external electric circuit board, and the like becomes easy and strong. Further, the thick film resistor is effectively prevented from being oxidized and corroded by being covered with the protective glass. Thus, in order to coat the exposed surface of the wiring conductor with the plated metal film, an electroless plating method or an electrolytic plating method is employed. In order to cover the thick film resistor with the protective glass, a method of melting and depositing the protective glass at about 600 ° C. so as to cover the thick film resistor of the insulating substrate is employed. In this case, since the glass component is strongly bonded to the aluminum oxide sintered body by oxygen bonding or the like, the protective glass is extremely strongly bonded to the insulating substrate and is very easy to form.
[0005]
[Problems to be solved by the invention]
However, according to this conventional wiring board, the thick film resistor is formed by applying a thick film resistor resistor paste to the insulating substrate in a predetermined pattern by screen printing, which is higher than the firing temperature of the insulating substrate. It is formed by heat treatment at a low temperature. Due to variations during printing, variations in thickness of about 2 to 3 μm are likely to occur, and variations in conditions such as temperature and atmosphere during heat treatment are also likely to occur.
Such variation in thickness, variation in conditions during heat treatment, etc. may cause variation in the electric resistance value of the thick film resistor, and the function as the resistor may not be sufficiently exhibited. Therefore, it is conceivable to laser trim the thick film resistor from the glass protective film to adjust the resistance value of the thick film resistor so that the function as the resistor can be normally exhibited.
[0006]
However, when the thick film resistor is laser trimmed, the laser trimmed part is exposed without being covered with the protective glass, and the problem that the oxidative corrosion of the thick film resistor cannot be effectively prevented is induced. End up.
[0007]
The present invention has been devised in view of such conventional problems, and an object of the present invention is to form a thick film resistor having a predetermined electric resistance value and to effectively oxidize corrosion of the thick film resistor. An object of the present invention is to provide a wiring board which is prevented and has excellent reliability.
[0008]
[Means for Solving the Problems]
In the wiring board of the present invention, a wiring conductor and a thick film resistor electrically connected to the wiring conductor are deposited on the surface of the insulating base, and a part of the thick film resistor is exposed. A first coating layer made of an ultraviolet curable epoxy resin and a second coating made of a thermosetting silicone resin having a curing temperature of 150 ° C. to 200 ° C. In this case, at least one of the first coating layer and the second coating layer is colored green, blue, or black.
[0009]
In the wiring board of the present invention, the thickness of the first coating layer is 30 μm to 50 μm, and the thickness of the second coating layer is 20 μm to 40 μm.
[0010]
According to the wiring board of the present invention, the thick film resistor is covered with the protective glass, and the portion exposed by the laser trimming is coated with the first coating layer made of an ultraviolet curing epoxy resin, and the curing temperature is 150 ° C. to 200 ° C. Since the coating is sequentially performed with the second coating layer made of a thermosetting silicone resin at 0 ° C., it is possible to extremely effectively prevent the thick film resistor from being oxidatively corroded.
[0011]
Further, according to the wiring board of the present invention, since no heat is applied when the first coating layer is formed, the exposed portion of the thick film resistor is not damaged such as oxidation, and the thick film resistor The electrical resistance value can be a desired predetermined value.
[0012]
Furthermore, according to the wiring board of the present invention, since the thermosetting silicone resin having a curing temperature of 150 ° C. to 200 ° C. is excellent in chemical resistance against acids, alkalis, etc., the first inferior in chemical resistance. The coating layer and thick film resistor can be effectively protected, and the thick film resistor and the like are corroded by the work of immersing the wiring board in various chemicals, such as plating work for depositing the plated metal layer on the wiring conductor. Further, it is possible to prevent peeling and the like, and the reliability as a wiring board can be made excellent. In addition, when at least one of the first coating layer and the second coating layer is colored green, blue, or black, an uncured resin precursor is applied when an uncured resin precursor is applied. The contrast between the body and the insulating substrate is increased, it is easy to recognize the defect of the applied uncured resin precursor layer, and it is effective that the thick film resistor is corroded by the outside air entering through this defect. Can be prevented.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing an embodiment in which the wiring board of the present invention is applied to a hybrid integrated circuit board on which electronic components such as semiconductor elements and capacitive elements are mounted. Is a wiring conductor, 3 is a thick film resistor, 4 is a glass protective film, 5 is a first coating layer, and 6 is a second coating layer. These insulating base 1, the wiring conductor 2, the thick-film resistor 3, the protective glass 4, the first cover layer 5, the wiring board A is formed by the second cover layer 6.
[0014]
As shown in FIG. 1, the insulating substrate 1 has a substantially rectangular flat plate shape on which an electronic component 7 such as a semiconductor element or a capacitive element is mounted. The surface of the mounting portion 1a includes a semiconductor element, a capacitive element, or the like. The electronic component 7 is attached and fixed via an adhesive such as brazing material, glass, or resin.
[0015]
The insulating substrate 1 is made of an electric material such as an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a silicon carbide sintered body, a silicon nitride sintered body, or a glass ceramic sintered body. For example, in the case of an aluminum oxide sintered body, an appropriate organic binder and solvent are added to and mixed with ceramic raw material powder such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide. The ceramic slurry is formed into a sheet by a conventionally known doctor blade method, and a ceramic green sheet for the insulating substrate 1 is obtained by performing an appropriate punching process, and then these ceramic green sheets are stacked one above the other. Cut into an appropriate shape and size to form a green ceramic molded body for the insulating substrate 1, and then The molded body is fabricated by firing at a temperature of about 1600 ° C. in a reducing atmosphere.
[0016]
The insulating base 1 is formed with a plurality of wiring conductors 2 led out from the upper surface to the lower surface. The wiring conductor 2 functions as a conductive path for connecting the semiconductor element 7 mounted on the insulating base 1 to an external electric circuit.
[0017]
Then, an electrode of an electronic component 7 such as a semiconductor element is electrically connected to a portion exposed on the upper surface of the insulating base 1 of the wiring conductor 2 via a conductive connecting member such as a bonding wire 8. The portion led out to the lower surface is electrically connected to the wiring conductor of the external electric circuit board through a low melting point brazing material such as tin-lead solder.
[0018]
The wiring conductor 2 is made of a metal powder such as tungsten, molybdenum, copper, or silver, and a ceramic paste for the insulating substrate 1 is obtained by adding and mixing a suitable organic binder and solvent to the metal powder such as tungsten. A predetermined pattern is printed and applied to a sheet by a well-known screen printing method, and this is co-fired together with a green ceramic molded body for the insulating substrate 1 so as to be deposited from the upper surface to the lower surface of the insulating substrate 1.
[0019]
A thick film resistor 3 is deposited on the lower surface of the insulating substrate 1 so as to be electrically connected to the wiring conductor 2. The thick film resistor 3 functions to adjust the resistance value of an electric circuit formed by the wiring conductor 2 and the electronic component 7 electrically connected to the wiring conductor 2 to a predetermined value. If the thick film resistor 3 is formed on the wiring board in advance, it is possible to reduce the step of connecting the chip resistance and the like to the wiring conductor 2 again and to obtain an effect that the wiring board can be reduced in size. .
[0020]
Such a thick film resistor 3 is made of a resistor powder such as lanthanum-boron (LaB6) alloy, tin oxide (SnO2), etc., and if it is made of tin oxide, an organic binder suitable for the tin oxide powder. The resistor paste obtained by adding and mixing the solvent is printed on a predetermined pattern so as to be connected to the wiring conductor 2 on the lower surface of the fired insulating substrate 1, and this is applied at a temperature of about 900 ° C. By heat-treating and baking, the insulating base 1 is deposited on the lower surface.
[0021]
The thickness, width, and length of the thick film resistor 3 are selected so that the resistance value after trimming becomes a predetermined resistance value. For example, the thick film resistor 3 is used as a resistor of an electric circuit including a semiconductor element and a capacitor element. In general, the resistance value after trimming is set to several 0Ω to several kΩ.
[0022]
When such a thick film resistor 3 has a thickness of less than 5 μm, disconnection of the thick film resistor 3 is liable to occur. On the other hand, when the thickness exceeds 50 μm, it is easily peeled off from the insulating substrate 1. Therefore, the thickness of the thick film resistor 3 is preferably in the range of 5 to 50 μm.
[0023]
Further, if the width of the thick film resistor 3 is less than 0.05 mm, the thick film resistor 3 is likely to be disconnected. On the other hand, if the width exceeds 1.5 mm, the thick film resistor 3 is formed on the lower surface of the insulating substrate 1. 3 tends to be difficult to arrange efficiently. Therefore, the width of the thick film resistor 3 is preferably in the range of 0.05 to 1 mm.
[0024]
Further, if the thickness of the thick film resistor 3 is less than 0.1 mm, it is difficult to obtain a predetermined resistance value as a resistor and it is difficult to trim the thick film resistor 3. On the other hand, if it exceeds 100 mm, it tends to be difficult to efficiently dispose the thick film resistor 3 on the insulating substrate 1. Therefore, the length of the thick film resistor 3 is preferably in the range of 0.1 to 100 mm.
[0025]
The electrical connection between the thick film resistor 3 and the wiring conductor 2 may be made through a thick film conductor 10 made of copper. In this case, the copper thick film conductor 10 and the thick film resistor are used. Therefore, the wiring conductor 2 and the thick film resistor 3 can be more reliably electrically connected. The thick film conductor 10 is obtained by, for example, adding a suitable organic binder and a solvent to copper powder and mixing the copper paste before the thick film resistor 3 is deposited on the lower surface of the insulating substrate 1. The wiring conductor 2 and a part of the wiring conductor 2 are printed and applied so as to overlap with each other, heat-treated at a temperature of about 900 ° C., and baked to form a predetermined pattern on the lower surface of the insulating substrate 1.
[0026]
The thick film resistor 3 has a protective glass 4 attached to the surface thereof.
The protective glass 4 functions to prevent oxidation of the thick film resistor 3 and to prevent damage to the exposed surface of parts other than the part to be trimmed when laser trimming is performed on the thick film resistor 3 described later. Eggplant.
[0027]
Such a protective glass 4 is made of, for example, a glass such as boron oxide glass, and a glass paste obtained by adding and mixing a suitable organic binder and solvent to the boron oxide glass powder is used for the entire surface of the thick film resistor 3. The coating is applied so as to cover the substrate, heat-treated at about 600 to 650 ° C., and baked.
[0028]
Further, the thick film resistor 3 covered with the protective glass 4 has its electric resistance adjusted to a predetermined value by laser trimming, and the trimmed portion is exposed from the protective glass 4, so that the exposed portion is oxidized. In order to prevent this, the first coating layer 5 made of an ultraviolet curable epoxy resin and the second coating layer 6 made of a thermosetting silicone resin having a curing temperature of 150 ° C. to 200 ° C. are covered.
[0029]
The first coating layer 5 made of an ultraviolet curable organic resin is formed of, for example, an ultraviolet curable epoxy resin, and an uncured epoxy resin precursor is mixed with an additive component such as a suitable photopolymerization initiator. The surface of the thick film resistor 3 exposed by printing and coating so as to cover almost the entire surface except for the wiring conductor 2 on the lower surface of the insulating substrate 1, and irradiating with ultraviolet rays of about 300 mJ / cm 2 and photocuring, insulating It is deposited on the surface of the substrate 1 and the surface of the protective glass 3.
[0030]
First coating layer 5 made of UV-curable organic resin such as the ultraviolet-curable epoxy resin, since with any adhesion of the insulating substrate 1, the thick film resistor 3 and the protective glass 4 is good, exposed It adheres very firmly to the surface of the thick film resistor 3, the surface of the insulating substrate 1, and the surface of the protective glass 4 .
[0031]
Further, when the first coating layer 5 made of the ultraviolet curable organic resin is formed, no heat is applied, so that the exposed portion of the thick film resistor 3 is not damaged by oxidation or the like. The electric resistance value of the film resistor 3 can be set to a desired predetermined value.
[0032]
If the thickness of the first coating layer 5 made of the ultraviolet curable organic resin is less than 30 μm, it is difficult to effectively coat the thick film resistor 3, and if the thickness exceeds 50 μm. There is a risk that the heat generated during the operation of the mounted semiconductor element is likely to be peeled off from the insulating substrate 1 due to thermal stress caused by the difference in thermal expansion coefficient between the insulating substrate 1 and the first coating layer 5. Therefore, it is preferable that the thickness of the first coating layer be in the range of 30 μm to 50 μm.
[0033]
Further, a second coating layer 6 made of a thermosetting silicone resin having a curing temperature of 150 ° C. to 200 ° C. is deposited on the surface of the first coating layer 5 made of the ultraviolet curable epoxy resin. .
[0034]
Before Stories second cover layer 6, the curing temperature is 0.99 ° C. to 200 DEG ° C. thermosetting resin, in particular is preferably used a silicone resin, for example, coating a silicone resin precursor uncured first with applied so as to cover the entire surface of the layer 5, about 0.99 ° C., by heat curing at 30 minutes of conditions, it is deposited to cover the surface of the first coating layer 5.
[0035]
The second coating layer 6 made of hard temperature is 0.99 ° C. to 200 DEG ° C. for thermosetting silicone resin, an acid, since it is excellent in chemical resistance to chemicals such as an alkali, said first inferior chemical resistance To effectively protect the covering layer 5 (and the exposed portion of the thick film resistor 3), for example, to deposit a plated metal film 9 such as a nickel plating film or a gold plating film on the wiring conductor 2 as described later. When the wiring board A is immersed in an acidic nickel plating bath or an acidic or alkaline gold plating bath, the first coating layer 5 or the like is eroded by the plating bath, and the thick film resistor 3 is not completely coated. It is possible to effectively prevent oxidation and corrosion.
[0036]
If the thickness of the second coating layer 6 is less than 20 μm, there is a risk that it is difficult to effectively coat the first coating layer 5 and protect it from chemicals such as a plating bath. . Therefore, the thickness of the second coating layer 6 is preferably set to 20 μm or more, and it is preferable to set the thickness to a range of 20 μm to 40 μm in consideration of workability and economy at the time of formation.
[0037]
Furthermore, the wiring conductor 2 has a thickness of about 1 to 10 μm on the exposed surface in order to make the connection between the wiring conductor 2 and the conductive connecting member such as the bonding wire 8 and the low melting point brazing material easy and strong. A plated metal film 9 made of a nickel plating film and a gold plating film having a thickness of about 0.1 to 3 μm is deposited.
[0038]
The plated metal film 9 composed of the nickel plating film and the gold plating film includes, for example, an electroless nickel plating bath (acidic) mainly composed of nickel sulfate and a phosphorus-based or boron-based reducing agent, potassium gold cyanide, An electroless gold plating bath (alkaline) having a boron-based reducing agent as a main component is prepared, and a predetermined thickness is formed on the exposed surface of the wiring conductor 2 by immersing the wiring board A in each plating bath sequentially for a predetermined time. Is formed on the substrate. When the plated metal film 9 is formed, the first coating layer 5 and the thick film resistor 3 which are inferior in chemical resistance are covered with the second coating layer 6 which is excellent in chemical resistance, so that the thick film resistor 3 is formed. It is possible to effectively prevent the occurrence of corrosion, peeling, etc., thereby improving the reliability of the wiring board.
[0039]
Thus, according to the wiring board of the present invention, the electronic component 7 such as a semiconductor element or a capacitive element is bonded and fixed to the upper surface of the insulating substrate 1 via an adhesive such as glass, resin, or brazing material, and the electronic component 7 Each electrode is electrically connected to the wiring conductor 2 through a conductive connecting member such as a bonding wire 8 to complete a hybrid integrated circuit board. The exposed portion of the wiring conductor 2 is connected to an external electric circuit board with a low melting point soldering. By connecting through the material, the mounted electronic component 7 and the external electric circuit are electrically connected.
[0040]
The wiring board of the present invention is not limited to the above embodiments, and various modifications as long as it does not depart from the gist of the present invention can be, for example, in the above embodiment, the first the coating layer 5 and the second cover layer 6 is made to deposited over substantially the entire lower surface insulating base 1, but also be applied so as to cover only the exposed portion surrounding the thick film resistor 3 Good.
[0041]
In addition, the first coating layer 5 and the second coating layer 6 are not limited to those formed by one printing application each time, but multiple printing application, multiple UV curing, You may form by thermosetting. When each of the first coating layer 5 and the second coating layer 6 is formed by a plurality of times of printing application, a plurality of times of ultraviolet curing, and heat curing, the first coating for the insulating substrate 1, the thick film resistor 3, etc. The adhesion strength of the coating layer 5 and the adhesion strength of the second coating layer 6 with respect to the first coating layer 5 are increased, and the long-term reliability of the wiring board can be made extremely excellent. Therefore, it is preferable that the first coating layer 5 and the second coating layer 6 are each formed by a plurality of times of printing application, a plurality of times of ultraviolet curing, and heat curing.
[0042]
Furthermore at least one of the first cover layer 5 and the second cover layer 6 is green, because it is colored in one of blue and black, when applied to resin precursor uncured, the uncured The contrast between the resin precursor and the insulating substrate 1 is increased, it is easy to recognize defects in the applied uncured resin precursor layer, and the thick film resistor 3 is corroded by outside air or the like entering through the defects. This can be effectively prevented. Accordingly, at least one of the first cover layer 5 and the second cover layer 6 is green, is colored in any one of blue and black.
[0043]
Furthermore, in the above-described embodiment, the example in which the wiring board of the present invention is used for a hybrid integrated circuit board has been described, but this is a semiconductor having a structure in which a semiconductor element is hermetically sealed inside a container composed of a base and a lid. You may apply to the base | substrate of an element storage package.
[0044]
【The invention's effect】
According to the wiring board of the present invention, the thick film resistor is covered with the protective glass, and the portion exposed by the laser trimming is coated with the first coating layer made of an ultraviolet curable epoxy resin, and the curing temperature is 150 ° C. to 200 ° C. Since the coating is sequentially performed with the second coating layer made of a thermosetting silicone resin at 0 ° C., it is possible to extremely effectively prevent the thick film resistor from being oxidatively corroded.
[0045]
Further, according to the wiring board of the present invention, since no heat is applied when the first coating layer is formed, the exposed portion of the thick film resistor is not damaged such as oxidation, and the thick film resistor The electrical resistance value can be a desired predetermined value.
[0046]
Furthermore, according to the wiring board of the present invention, since the thermosetting silicone resin having a curing temperature of 150 ° C. to 200 ° C. is excellent in chemical resistance against acids, alkalis, etc., the first inferior in chemical resistance. The coating layer and thick film resistor can be effectively protected, and the thick film resistor and the like are corroded by the work of immersing the wiring board in various chemicals, such as plating work for depositing the plated metal layer on the wiring conductor. Further, it is possible to prevent peeling and the like, and the reliability as a wiring board can be made excellent. In addition, when at least one of the first coating layer and the second coating layer is colored green, blue, or black, an uncured resin precursor is applied when an uncured resin precursor is applied. The contrast between the body and the insulating substrate is increased, it is easy to recognize the defect of the applied uncured resin precursor layer, and it is effective that the thick film resistor is corroded by the outside air entering through this defect. Can be prevented.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a wiring board according to the present invention.
[Explanation of symbols]
1 ... insulating substrate 2 .... conductor 3 ... thick-film resistor 4 ... protective glass 5 ... first coating layer 6 ... second coating Layer 7... Electronic component 8... Bonding wire 9.

Claims (2)

絶縁基体の表面に、配線導体と、該配線導体と電気的に接続された厚膜抵抗体とを被着させるとともに、該厚膜抵抗体をその一部を露出させて保護ガラスで被覆し、かつ少なくともその露出部を紫外線硬化型のエポキシ樹脂から成る第1の被覆層と、硬化温度が150℃〜200℃の熱硬化型のシリコーン樹脂から成る第2の被覆層とで順次被覆して成り、前記第1の被覆層および前記第2の被覆層の少なくとも一方が、緑色、青色および黒色のいずれかに着色されていることを特徴とする配線基板。On the surface of the insulating substrate, a wiring conductor and a thick film resistor electrically connected to the wiring conductor are deposited, and the thick film resistor is partially exposed to be covered with a protective glass, In addition, at least the exposed portion is sequentially coated with a first coating layer made of an ultraviolet curable epoxy resin and a second coating layer made of a thermosetting silicone resin having a curing temperature of 150 ° C. to 200 ° C. A wiring board, wherein at least one of the first coating layer and the second coating layer is colored green, blue, or black. 前記第1の被覆層の厚みが30μm〜50μmであり、かつ前記第2の被覆層の厚みが20μm〜40μmであることを特徴とする請求項1に記載の配線基板。  2. The wiring board according to claim 1, wherein the thickness of the first coating layer is 30 μm to 50 μm, and the thickness of the second coating layer is 20 μm to 40 μm.
JP2000014199A 2000-01-20 2000-01-20 Wiring board Expired - Fee Related JP4570190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000014199A JP4570190B2 (en) 2000-01-20 2000-01-20 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000014199A JP4570190B2 (en) 2000-01-20 2000-01-20 Wiring board

Publications (2)

Publication Number Publication Date
JP2001203440A JP2001203440A (en) 2001-07-27
JP4570190B2 true JP4570190B2 (en) 2010-10-27

Family

ID=18541688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000014199A Expired - Fee Related JP4570190B2 (en) 2000-01-20 2000-01-20 Wiring board

Country Status (1)

Country Link
JP (1) JP4570190B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186031A (en) * 2009-02-12 2010-08-26 Fujikura Ltd Optical fiber cable
JP2014135403A (en) * 2013-01-11 2014-07-24 Mitsubishi Electric Corp Printed circuit board and manufacturing method of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156761A (en) * 1984-12-27 1986-07-16 Murata Mfg Co Ltd Manufacture of electronic parts
JPS63253659A (en) * 1987-04-10 1988-10-20 Hitachi Ltd Thick-film hybrid integrated circuit device
JPH08186349A (en) * 1994-12-27 1996-07-16 Kyocera Corp Characteristic-controllable electronic part
JPH08250303A (en) * 1995-03-15 1996-09-27 Mitsubishi Electric Corp Thick film resistive elment and its manufactur
JPH10154868A (en) * 1996-11-21 1998-06-09 Sumitomo Kinzoku Electro Device:Kk Manufacture of ceramic circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156761A (en) * 1984-12-27 1986-07-16 Murata Mfg Co Ltd Manufacture of electronic parts
JPS63253659A (en) * 1987-04-10 1988-10-20 Hitachi Ltd Thick-film hybrid integrated circuit device
JPH08186349A (en) * 1994-12-27 1996-07-16 Kyocera Corp Characteristic-controllable electronic part
JPH08250303A (en) * 1995-03-15 1996-09-27 Mitsubishi Electric Corp Thick film resistive elment and its manufactur
JPH10154868A (en) * 1996-11-21 1998-06-09 Sumitomo Kinzoku Electro Device:Kk Manufacture of ceramic circuit board

Also Published As

Publication number Publication date
JP2001203440A (en) 2001-07-27

Similar Documents

Publication Publication Date Title
JPH11219849A (en) Laminated ceramic capacitor
JP4570190B2 (en) Wiring board
JP3495773B2 (en) Circuit board
JP4574025B2 (en) Wiring module
JP3940589B2 (en) Manufacturing method of ceramic wiring board
JPH06169173A (en) Method for manufacturing aluminum nitride substrate
JP4741624B2 (en) Wiring board
JP4540223B2 (en) Electronic component mounting board
JP4264091B2 (en) Wiring board manufacturing method
JPWO2020095813A1 (en) Ceramic electronic components
JP2000286353A (en) Semiconductor device housing package
JP4671511B2 (en) Wiring board manufacturing method
JP3940590B2 (en) Manufacturing method of ceramic wiring board
JP3748283B2 (en) Manufacturing method of laminated glass ceramic circuit board
JP2003078237A (en) Ceramic wiring board
JP4334659B2 (en) Ceramic wiring board and manufacturing method thereof
JP3792642B2 (en) Wiring board and manufacturing method thereof
WO2006032836A1 (en) Thick-film hybrid production process
JP2005268515A (en) Ceramic wiring substrate and its manufacturing method
JP4423181B2 (en) Multiple wiring board
JP4395227B2 (en) Wiring board
JP3857219B2 (en) Wiring board and manufacturing method thereof
JP2002016176A (en) Wiring board and connection structure therefor
JP2003046205A (en) Ceramic wiring board
JP2000223821A (en) Ceramic wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees