JP4565247B2 - High performance liquid chromatography system - Google Patents

High performance liquid chromatography system Download PDF

Info

Publication number
JP4565247B2
JP4565247B2 JP2000252015A JP2000252015A JP4565247B2 JP 4565247 B2 JP4565247 B2 JP 4565247B2 JP 2000252015 A JP2000252015 A JP 2000252015A JP 2000252015 A JP2000252015 A JP 2000252015A JP 4565247 B2 JP4565247 B2 JP 4565247B2
Authority
JP
Japan
Prior art keywords
column
porous graphite
hplc
liquid chromatography
performance liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000252015A
Other languages
Japanese (ja)
Other versions
JP2002062286A (en
Inventor
雅美 澁川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2000252015A priority Critical patent/JP4565247B2/en
Publication of JP2002062286A publication Critical patent/JP2002062286A/en
Application granted granted Critical
Publication of JP4565247B2 publication Critical patent/JP4565247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は固定相中に酸化還元反応場を設けた高速液体クロマトグラフィーシステム及びこれを用いた酸化還元性物質の分離定量法に関する。
【0002】
【従来の技術】
高速液体クロマトグラフィー(HPLC)は優れた分離分析法であり、無機化合物及び有機化合物を問わず広く利用されている。しかし、多成分混合物中の微量成分の分離及び定量に関しては必らずしも容易でない場合があり、新しい分離選択性を有するシステムの構築が求められている。目的の化合物に対する特異的な化学反応を利用することは、高い選択性を得るのに有効な方法の一つであり、これまであらかじめ誘導体化を行う方法、固定相あるいは移動相に反応試薬を導入して保持を特異的に高める方法、反応の平衡を試薬濃度によって制御して高度な分離を目指す、いわゆる「二次的化学平衡(Secondary chemical equilibra:SCE)の導入」による方法が用いられてきている。このうちSCEとして化学反応を利用する方法は、一つの反応で対象となる化合物の範囲が広いことから利用価値が高い。しかし、原理的に酸塩基反応のような反応速度の大きな反応以外は利用できないという欠点があり、酸化還元反応のような反応速度の小さい反応には応用できなかった。
【0003】
【発明が解決しようとする課題】
従って本発明の目的は、反応速度の小さい酸化還元反応を利用した高速誘導体化HPLCシステムを構築し、SCEと同等の分離選択性を実現することにある。
【0004】
【課題を解決するための手段】
そこで本発明者は多孔質グラファイトの酸化還元触媒機能に着目して種々検討してきたところ、通常のHPLC用充填剤を充填した2つのカラムの中間に多孔質グラファイトを充填したカラムを配設すれば、通常のHPLC用充填剤による分離機能と、多孔質グラファイトの酸化還元触媒機能とが効率良く機能し、従来分離が困難であった酸化還元性物質が良好に分離できることを見出し、本発明を完成するに至った。
【0005】
すなわち、本発明は、固定相として、HPLC用充填剤を充填した2つのカラムの間に多孔質グラファイトを充填したカラムを設けたことを特徴とするHPLCシステムを提供するものである。
また本発明は、当該HPLCシステムを用いることを特徴とする酸化還元性物質の分離定量法を提供するものである。
更に本発明は、HPLC用充填剤を充填した2つのカラムの間に多孔質グラファイトを充填したカラムを設けたことを特徴とするHPLC用固定相を提供するものである。
【0006】
【発明の実施の形態】
本発明のHPLCシステムに用いる固定相は、通常のHPLC用充填剤を充填した2つのカラムの間に多孔質グラファイトを充填したカラムを設けてなる。ここで、多孔質グラファイトとしては、大きな表面積と高い耐圧性を有するものが好ましく、表面積30〜100cm2/g、細孔直径20〜500Åのものがより好ましい。当該多孔質グラファイトとしては、石油ピッチ、合成高分子などを高温で焼成して得られたものがいずれも使用できる。また、多孔質グラファイトの形状は、粒状、繊維状、ディスク状等のいずれでもよい。
【0007】
また、当該多孔質グラファイト充填カラムの両側に設けられるカラムに充填されるHPLC用充填剤は、被検対象により選択され、ゲル濾過用充填剤、疎水クロマトグラフィー用充填剤、イオン交換クロマトグラフィー用充填剤、分配クロマトグラフィー用充填剤等を用いることができる。具体的には、シリカ系充填剤、アルミナ系充填剤、ポリマー系充填剤等を用いることができる。シリカ系充填剤としては、多孔性シリカゲル、アルキル基を結合したシリカゲル(オクチルシリル化シリカゲル、オクタデシルシリル化シリカゲル等)のほかフェニル基やアミノ基を結合したシリカゲル等が挙げられる。ポリマー系充填剤としては、ポリスチレンゲル、ポリビニルアルコールゲル、ポリヒドロキシメタアクリレートゲルやそれらにイオン交換基を修飾したイオン交換樹脂等が挙げられる。このほか、ヒドロキシアパタイトやチタニア、ジルコニアなどの無機系充填剤も用いることができる。
【0008】
2つのHPLC用充填剤を充填したカラムには、同一の充填剤を用いてもよいし、相互に異なる充填剤を用いてもよい。
【0009】
また、前記2つのHPLC用充填剤を充填したカラムの上流側には、更に前記の多孔質グラファイト充填カラムを配置してもよい。かくすることにより、目的物質の化学種(酸化状態)をそろえることができる。
【0010】
上記のようなシステムを用いることにより、通常のHPLCカラムによる分離が、酸化還元反応に基づく化学種変換機能により特異的な選択性を有するようになり、酸化還元物質の分離が可能になる。この機能について、遷移金属の分離を例にして説明する。すなわち、銅、鉄、コバルト、ニッケル、ビスマス等の遷移金属混合物にEDTAを反応させて錯体を生成させ、これを従来の逆相イオン対モードHPLCに付すと、コバルトの2価および3価イオンの錯体のピークはそれぞれFe3+とNi2+のピークと重なってしまい、良好な分離は不可能である(図3参照)。これに対し、コバルトをすべて2価イオンにした後にEDTA錯体とした金属混合物を、2つのHPLCカラムの間に酸化剤(過酸化水素)で処理した多孔質グラファイトカラムを配置したHPLCシステムに付すと、前段の分離カラムを2価錯体として通過したコバルトがグラファイトカラムで酸化されて、後段の分離カラムでは3価錯体として溶出する。そのため、前段ではFe3+と後段ではNi2+と完全に分離される(図4参照)。これらの遷移金属の分離は通常のHPLCカラムのみでは不可能である。また、多孔質グラファイトカラムのみを用いた場合には、酸化還元機能と溶質保持機能の両方を多孔質グラファイトカラムに依存することになるが、両者は独立ではないため、分離の制御が極めて複雑になる。したがって、本発明のように分離場と酸化還元反応場を分離して組み合わせることにより、高度でかつ設計が容易な分離分析システムが可能になる。
【0011】
ここで、多孔質グラファイト充填カラムをあらかじめ還元処理しておけば、このカラム内で還元反応を行なわせることができ、一方あらかじめ酸化処理しておけばこのカラム内で酸化反応を行なわせることができる。そして、この酸化処理及び還元処理の強さを制御することによって、このカラム内での酸化反応及び還元反応を制御することができる。また、用いる還元剤及び酸化剤の種類を変えることにより、反応の強さを制御することができる。還元剤の例としては亜硫酸ナトリウム、塩化ヒドロキシルアンモニウム、アスコルビン酸などが、酸化剤の例としては過酸化水素などが挙げられる。
【0012】
酸化処理および還元処理は多孔質グラファイトカラムに電位を印加することによっても行うことができる。すなわち多孔質グラファイト充填剤をカラムに詰め、これを電極とするか、または多孔質グラファイトディスクを電極として電位を印加する。この電位をポテンショスタットを用いて調節することにより、酸化反応および還元反応の進行を制御することができる。
【0013】
本発明のHPLCシステムは、前記の固定相を用いる以外は通常のHPLCと同様に適宜選択することができる。すなわち、本発明のシステムは、逆相HPLC、イオン対HPLC、順相HPLC、イオン交換HPLC、サイズ排除HPLC、疎水性相互作用HPLCなどいずれにも適用可能である。従って溶離液も、水、各種有機溶媒から適宜選択できる。更に検出手段に関しても、紫外吸光検出、屈折率検出、蛍光検出等が使用できる。
【0014】
本発明のHPLCシステムは、酸化還元反応を利用するものであるため、酸化還元性物質の分離定量に好適である。当該酸化還元物質には、各種の金属(希土類金属を含む遷移金属)をはじめとする無機化合物や多くの有機化合物が含まれるので、対象試料としては金属材料、鉱石、無機成分含有試薬や酸化還元酵素、カテコールアミン等の生体関連物質等が挙げられる。
【0015】
【実施例】
次に実施例を挙げて本発明を更に詳細に説明するが、本発明は何らこれに限定されるものではない。
【0016】
実施例1
2つのオクタデシルシリル化シリカゲル(ODS)充填カラムの間に多孔質グラファイト充填カラムを設けた。すなわち、ODS(Capcell Pak C18 UG120,3μm)を充填したカラム(4.6×100nm)を2本用意した。また、多孔質グラファイト(BL−01,3.5μm)を充填したカラム(4.6×10mm)を用意した。ODS充填カラムのみを用いて図1に示すHPLCシステムを構築した。また、ODS充填カラムの間に多孔質グラファイト充填カラムを設けカラムシステムを構築した。このカラムシステムを用いて、図2に示すHPLCシステムを構築した。試料として、コバルト(0.1mM)、ビスマス(0.1mM)、鉄(0.1mM)、ニッケル(0.1mM)及び銅(0.1mM)をEDTAでキレート化した水溶液を用いた。カラムをあらかじめ0.1mMセチルトリメチルアンモニウムブロミドで処理し、溶離液として0.1M酢酸バッファ(pH5)を用い、流速0.6mL/minの条件で分析した。その結果、ODSカラムのみを用いた場合には、図3に示すように、コバルトがCo3+とCo2+とに分離し、Co3+がFe3+のピークと重なり、一方Co2+がNi2+のピークと重なってしまい、コバルトは他の金属と分離できなかった。
一方、本発明の固定相を用いた場合には、図4に示すようにコバルトを、他の金属と完全に分離することができた。
【0017】
【発明の効果】
本発明のHPLCシステムを用いれば従来分離が困難であった酸化還元性物質が良好かつ簡便に分離定量できる。
【図面の簡単な説明】
【図1】ODS充填カラムのみを用いたHPLCシステムを示す概略図である。
【図2】本発明の固定相を用いたHPLCシステムの一例を示す概略図である。
【図3】図1のHPLCシステムを用いた遷移金属の分離結果を示す図である。
【図4】図2のHPLCシステムを用いた遷移金属の分離結果を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high performance liquid chromatography system provided with a redox reaction field in a stationary phase, and a method for separating and quantifying redox substances using the same.
[0002]
[Prior art]
High performance liquid chromatography (HPLC) is an excellent separation analysis method, and is widely used regardless of inorganic compounds and organic compounds. However, separation and quantification of trace components in a multi-component mixture may not always be easy, and there is a demand for construction of a system having new separation selectivity. Utilizing a specific chemical reaction for the target compound is one of the effective methods for obtaining high selectivity. Previously, a derivatization method, a reaction reagent was introduced into the stationary phase or mobile phase. The method of specifically increasing retention and the so-called “introduction of secondary chemical equilibra (SCE)” aiming at advanced separation by controlling the equilibrium of the reaction by the reagent concentration have been used. Yes. Among these, the method of using a chemical reaction as SCE has a high utility value because the range of compounds targeted by one reaction is wide. However, in principle, there is a drawback that it can not be used except for a reaction with a high reaction rate such as an acid-base reaction, and it cannot be applied to a reaction with a low reaction rate such as a redox reaction.
[0003]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to construct a high-speed derivatization HPLC system using a redox reaction having a low reaction rate, and to realize separation selectivity equivalent to that of SCE.
[0004]
[Means for Solving the Problems]
Therefore, the present inventor has made various studies paying attention to the redox catalyst function of porous graphite, and if a column packed with porous graphite is arranged between two columns packed with a normal packing material for HPLC. The present invention was completed by finding that the separation function using a normal HPLC packing material and the redox catalyst function of porous graphite function efficiently, and the redox substances that were difficult to separate can be separated well. It came to do.
[0005]
That is, the present invention provides an HPLC system characterized in that a column filled with porous graphite is provided between two columns packed with a packing material for HPLC as a stationary phase.
The present invention also provides a method for separating and quantifying redox substances characterized by using the HPLC system.
Furthermore, the present invention provides a stationary phase for HPLC, wherein a column filled with porous graphite is provided between two columns packed with a packing material for HPLC.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The stationary phase used in the HPLC system of the present invention comprises a column packed with porous graphite between two columns packed with a normal HPLC packing material. Here, the porous graphite preferably has a large surface area and high pressure resistance, and more preferably has a surface area of 30 to 100 cm 2 / g and a pore diameter of 20 to 500 mm. As the porous graphite, any of those obtained by firing petroleum pitch, synthetic polymer or the like at a high temperature can be used. Further, the shape of the porous graphite may be any of granular, fibrous, disk-like and the like.
[0007]
In addition, the packing material for HPLC packed in the columns provided on both sides of the porous graphite packed column is selected according to the test object, and the packing material for gel filtration, the packing material for hydrophobic chromatography, the packing for ion exchange chromatography. Agents, fillers for partition chromatography, and the like can be used. Specifically, silica-based fillers, alumina-based fillers, polymer-based fillers, and the like can be used. Examples of the silica filler include porous silica gel, silica gel bonded with an alkyl group (octylsilylated silica gel, octadecylsilylated silica gel, etc.), and silica gel bonded with a phenyl group or an amino group. Examples of the polymer filler include polystyrene gel, polyvinyl alcohol gel, polyhydroxymethacrylate gel, and ion exchange resins in which ion exchange groups are modified. In addition, inorganic fillers such as hydroxyapatite, titania and zirconia can also be used.
[0008]
In the column packed with two HPLC packing materials, the same packing material may be used, or different packing materials may be used.
[0009]
Further, the porous graphite packed column may be further arranged on the upstream side of the column packed with the two HPLC packing materials. In this way, the chemical species (oxidation state) of the target substance can be aligned.
[0010]
By using the system as described above, separation by a normal HPLC column has a specific selectivity due to a chemical species conversion function based on a redox reaction, and a redox substance can be separated. This function will be described by taking transition metal separation as an example. That is, EDTA is reacted with a transition metal mixture such as copper, iron, cobalt, nickel, bismuth and the like to form a complex, which is subjected to conventional reversed-phase ion-pair mode HPLC. Complex peaks overlap with Fe 3+ and Ni 2+ peaks, respectively, and good separation is impossible (see FIG. 3). In contrast, when a metal mixture in which all cobalt is converted to divalent ions and then converted into an EDTA complex is applied to an HPLC system in which a porous graphite column treated with an oxidizing agent (hydrogen peroxide) is disposed between two HPLC columns. Cobalt that has passed through the former separation column as a divalent complex is oxidized by the graphite column and eluted as a trivalent complex in the latter separation column. Therefore, it is completely separated from Fe 3+ in the former stage and Ni 2+ in the latter stage (see FIG. 4). Separation of these transition metals is not possible only with ordinary HPLC columns. In addition, when only a porous graphite column is used, both the redox function and the solute retention function depend on the porous graphite column, but since both are not independent, the control of separation is extremely complicated. Become. Therefore, by separating and combining the separation field and the oxidation-reduction reaction field as in the present invention, a separation analysis system that is sophisticated and easy to design becomes possible.
[0011]
Here, if the porous graphite-filled column is subjected to a reduction treatment in advance, the reduction reaction can be carried out in this column, whereas if the oxidation treatment is carried out in advance, the oxidation reaction can be carried out in this column. . And the oxidation reaction and the reduction reaction in this column can be controlled by controlling the strength of the oxidation treatment and the reduction treatment. In addition, the strength of the reaction can be controlled by changing the types of reducing agent and oxidizing agent used. Examples of the reducing agent include sodium sulfite, hydroxylammonium chloride, ascorbic acid and the like, and examples of the oxidizing agent include hydrogen peroxide and the like.
[0012]
The oxidation treatment and the reduction treatment can also be performed by applying a potential to the porous graphite column. That is, a porous graphite filler is packed in a column and used as an electrode, or a potential is applied using a porous graphite disk as an electrode. By adjusting this potential using a potentiostat, the progress of the oxidation reaction and the reduction reaction can be controlled.
[0013]
The HPLC system of the present invention can be appropriately selected in the same manner as normal HPLC except that the above stationary phase is used. That is, the system of the present invention can be applied to any of reverse phase HPLC, ion pair HPLC, normal phase HPLC, ion exchange HPLC, size exclusion HPLC, hydrophobic interaction HPLC, and the like. Therefore, the eluent can also be appropriately selected from water and various organic solvents. Further, with respect to the detection means, ultraviolet absorption detection, refractive index detection, fluorescence detection and the like can be used.
[0014]
Since the HPLC system of the present invention utilizes a redox reaction, it is suitable for separation and quantification of redox substances. Since the redox substances include inorganic compounds and many organic compounds including various metals (transition metals including rare earth metals), target samples include metal materials, ores, inorganic component-containing reagents and redox Examples thereof include bio-related substances such as enzymes and catecholamines.
[0015]
【Example】
EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to this at all.
[0016]
Example 1
A porous graphite packed column was installed between two octadecyl silylated silica gel (ODS) packed columns. That is, two columns (4.6 × 100 nm) packed with ODS (Capcell Pak C18 UG120, 3 μm) were prepared. A column (4.6 × 10 mm) packed with porous graphite (BL-01, 3.5 μm) was prepared. The HPLC system shown in FIG. 1 was constructed using only an ODS packed column. A column system was constructed by providing a porous graphite packed column between ODS packed columns. The HPLC system shown in FIG. 2 was constructed using this column system. As a sample, an aqueous solution in which cobalt (0.1 mM), bismuth (0.1 mM), iron (0.1 mM), nickel (0.1 mM) and copper (0.1 mM) were chelated with EDTA was used. The column was pretreated with 0.1 mM cetyltrimethylammonium bromide, and 0.1 M acetate buffer (pH 5) was used as an eluent, and analysis was performed under conditions of a flow rate of 0.6 mL / min. As a result, when only the ODS column was used, as shown in FIG. 3, cobalt was separated into Co 3+ and Co 2+, and Co 3+ overlapped with the Fe 3+ peak, while Co 2+ Overlapped with the peak of Ni 2+ and cobalt could not be separated from other metals.
On the other hand, when the stationary phase of the present invention was used, cobalt could be completely separated from other metals as shown in FIG.
[0017]
【The invention's effect】
By using the HPLC system of the present invention, redox substances that have been difficult to separate can be separated and quantified easily and easily.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an HPLC system using only an ODS packed column.
FIG. 2 is a schematic diagram showing an example of an HPLC system using the stationary phase of the present invention.
FIG. 3 is a diagram showing the results of separation of transition metals using the HPLC system of FIG.
4 is a diagram showing the results of separation of transition metals using the HPLC system of FIG. 2. FIG.

Claims (7)

固定相として、高速液体クロマトグラフィー用充填剤を充填した2つのカラムの間に多孔質グラファイトを充填したカラムを設けたことを特徴とする高速液体クロマトグラフィーシステム。A high-performance liquid chromatography system comprising a column filled with porous graphite between two columns packed with a packing material for high-performance liquid chromatography as a stationary phase. 上流側の高速液体クロマトグラフィー用充填剤を充填したカラムの上流側に、更に多孔質グラファイトを充填したカラムを設けてなる請求項1記載のシステム。2. The system according to claim 1, wherein a column filled with porous graphite is further provided on the upstream side of the column packed with the upstream high-performance liquid chromatography packing material. 多孔質グラファイトを充填したカラムが、使用前に酸化処理又は還元処理されていることを特徴とする請求項1又は2記載のシステム。The system according to claim 1 or 2, wherein the column filled with porous graphite is oxidized or reduced before use. 請求項1〜3のいずれか1項記載のシステムを用いることを特徴とする酸化還元性物質の分離定量法。A method for separating and quantifying a redox substance using the system according to any one of claims 1 to 3. 高速液体クロマトグラフィー用充填剤を充填した2つのカラムの間に多孔質グラファイトを充填したカラムを設けたことを特徴とする高速液体クロマトグラフィー用固定相。A stationary phase for high-performance liquid chromatography, wherein a column filled with porous graphite is provided between two columns packed with a packing material for high-performance liquid chromatography. 上流側の高速液体クロマトグラフィー用充填剤を充填したカラムの上流側に、更に多孔質グラファイトを充填したカラムを設けてなる請求項5記載の固定相。The stationary phase according to claim 5, wherein a column filled with porous graphite is further provided on the upstream side of the column filled with the upstream high-performance liquid chromatography packing material. 多孔質グラファイトを充填したカラムが、使用前に酸化処理又は還元処理されていることを特徴とする請求項1又は2記載の固定相。The stationary phase according to claim 1 or 2, wherein the column filled with porous graphite is oxidized or reduced before use.
JP2000252015A 2000-08-23 2000-08-23 High performance liquid chromatography system Expired - Fee Related JP4565247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000252015A JP4565247B2 (en) 2000-08-23 2000-08-23 High performance liquid chromatography system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000252015A JP4565247B2 (en) 2000-08-23 2000-08-23 High performance liquid chromatography system

Publications (2)

Publication Number Publication Date
JP2002062286A JP2002062286A (en) 2002-02-28
JP4565247B2 true JP4565247B2 (en) 2010-10-20

Family

ID=18741336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000252015A Expired - Fee Related JP4565247B2 (en) 2000-08-23 2000-08-23 High performance liquid chromatography system

Country Status (1)

Country Link
JP (1) JP4565247B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4962490B2 (en) * 2006-03-29 2012-06-27 ダイソー株式会社 Modified silica gel and use thereof
JP5206120B2 (en) * 2008-05-28 2013-06-12 株式会社Sumco Metal analysis method and semiconductor wafer manufacturing method
JP2015102351A (en) * 2013-11-21 2015-06-04 公立大学法人首都大学東京 Column packing material, column, and column system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127663A (en) * 1985-11-13 1987-06-09 イ−エスエイ インコ−ポレ−テツド Sensor electrode for electrochemical treatment and liquid chromatographic device utilizing said electrode and method of reducing diffusion effect
JPH032553A (en) * 1989-05-30 1991-01-08 Mitsubishi Petrochem Co Ltd Electrode for electrochemical detector
JPH0694670A (en) * 1992-09-09 1994-04-08 Agency Of Ind Science & Technol Carbon sensor electrode and production thereof
JPH0783908A (en) * 1993-09-10 1995-03-31 Toa Denpa Kogyo Kk Method for analyzing beryllium by liquid chromatography
JPH0815244A (en) * 1994-07-04 1996-01-19 Shinotesuto:Kk Aluminum detecting method
WO2001067089A1 (en) * 2000-03-10 2001-09-13 Center For Advanced Science And Technology Incubation, Ltd. Analysis method using liquid chromatograph

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119421B2 (en) * 1987-09-24 1995-12-20 日本カーボン株式会社 Method for producing porous carbonaceous microspheres

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127663A (en) * 1985-11-13 1987-06-09 イ−エスエイ インコ−ポレ−テツド Sensor electrode for electrochemical treatment and liquid chromatographic device utilizing said electrode and method of reducing diffusion effect
JPH032553A (en) * 1989-05-30 1991-01-08 Mitsubishi Petrochem Co Ltd Electrode for electrochemical detector
JPH0694670A (en) * 1992-09-09 1994-04-08 Agency Of Ind Science & Technol Carbon sensor electrode and production thereof
JPH0783908A (en) * 1993-09-10 1995-03-31 Toa Denpa Kogyo Kk Method for analyzing beryllium by liquid chromatography
JPH0815244A (en) * 1994-07-04 1996-01-19 Shinotesuto:Kk Aluminum detecting method
WO2001067089A1 (en) * 2000-03-10 2001-09-13 Center For Advanced Science And Technology Incubation, Ltd. Analysis method using liquid chromatograph

Also Published As

Publication number Publication date
JP2002062286A (en) 2002-02-28

Similar Documents

Publication Publication Date Title
Masini et al. Porous monoliths for on-line sample preparation: a review
Dulay et al. Photopolymerized sol− gel monoliths for capillary electrochromatography
Soylak et al. Solid phase extraction of trace metal ions with Amberlite XAD resins prior to atomic absorption spectrometric analysis
Tarley et al. Molecularly-imprinted solid phase extraction of catechol from aqueous effluents for its selective determination by differential pulse voltammetry
Chen et al. Sorptive extraction techniques in sample preparation for organophosphorus pesticides in complex matrices
El-Sheikh et al. Effect of oxidation and dimensions of multi-walled carbon nanotubes on solid phase extraction and enrichment of some pesticides from environmental waters prior to their simultaneous determination by high performance liquid chromatography
Pyrzynska Redox speciation of chromium using sorption-based systems
Kato et al. Effect of preparatory conditions on the performance of photopolymerized sol–gel monoliths for capillary electrochromatography
JP3066081B2 (en) Method for conditioning silica surface and silicate composition
Krenkova et al. Less common applications of monoliths: V. Monolithic scaffolds modified with nanostructures for chromatographic separations and tissue engineering
Jakavula et al. A critical review on the synthesis and application of ion-imprinted polymers for selective preconcentration, speciation, removal and determination of trace and essential metals from different matrices
El-Sheikh et al. Solid phase extraction and uptake properties of multi-walled carbon nanotubes of different dimensions towards some nitro-phenols and chloro-phenols from water
Fanali et al. Chiral separations using miniaturized techniques: state of the art and perspectives
Derazshamshir et al. Phenol removal from wastewater by surface imprinted bacterial cellulose nanofibres
Karadaş et al. Preconcentration of rare earth elements using amberlite XAD-4 modified with 2, 6-pyridinedicarboxaldehyde and their determination by inductively coupled plasma optical emission spectrometry
Yaacob et al. Fabrication of calixarene-grafted bio-polymeric magnetic composites for magnetic solid phase extraction of non-steroidal anti-inflammatory drugs in water samples
Chai et al. Application of polyethyleneimine-modified attapulgite for the solid-phase extraction of chlorophenols at trace levels in environmental water samples
Pyrzyńska et al. Pre-concentration and separation of vanadium on Amberlite IRA-904 resin functionalized with porphyrin ligands
JP4565247B2 (en) High performance liquid chromatography system
Shibukawa et al. On-column derivatization using redox activity of porous graphitic carbon stationary phase: an approach to enhancement of separation selectivity of liquid chromatography
Ferreira et al. Synthesis and evaluation of a pentafluorobenzamide stationary phase for HPLC separations in the reversed phase and hydrophilic interaction modes
Chiari et al. Separation of organic acids by capillary zone electrophoresis in buffers containing divalent metal cations
Široká et al. Use of inorganic, complex-forming ions for selectivity enhancement in capillary electrophoretic separation of organic compounds
Takeuchi et al. Poly (ethylene oxide)-bonded stationary phase for capillary ion chromatography
Choi et al. Liquid chromatographic resolution of β-amino acids on CSPs based on optically active (3, 3′-diphenyl-1, 1′-binaphthyl)-20-crown-6

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees