JPH032553A - Electrode for electrochemical detector - Google Patents

Electrode for electrochemical detector

Info

Publication number
JPH032553A
JPH032553A JP1136371A JP13637189A JPH032553A JP H032553 A JPH032553 A JP H032553A JP 1136371 A JP1136371 A JP 1136371A JP 13637189 A JP13637189 A JP 13637189A JP H032553 A JPH032553 A JP H032553A
Authority
JP
Japan
Prior art keywords
carbon
electrode
average
surface area
electrochemical detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1136371A
Other languages
Japanese (ja)
Other versions
JP2765953B2 (en
Inventor
Shinji Takai
信治 高井
Yoshiteru Kageyama
景山 芳輝
Yoshiaki Sawada
善秋 沢田
Akira Yoshida
彰 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP1136371A priority Critical patent/JP2765953B2/en
Priority to US07/529,543 priority patent/US5096560A/en
Priority to DE69005703T priority patent/DE69005703T2/en
Priority to EP90305839A priority patent/EP0400968B1/en
Publication of JPH032553A publication Critical patent/JPH032553A/en
Application granted granted Critical
Publication of JP2765953B2 publication Critical patent/JP2765953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To detect extremely trace amts. of materials with a high sensitivity without clogging in spite of long-term use by forming electrodes by using a porous graphitic carbon molding having specific physical properties. CONSTITUTION:The electrodes are used by using the porous graphitic carbon molding having the physical properties of (1) to (3). (1) The average pore size is 0.1 to 50mum. (2) The specific surface area is >=10m<2>/g. (3) The average interlayer spacing (d0.02) of the carbon determined by an X-ray diffraction analysis method is 3.35 to 3.42Angstrom . The clogging by detecting materials or impurities arises in long-term use if the average pore size is too small. The contact of liquid and the inside surface of the electrodes is insufficient and the analysis with good efficiency is not possible if the average pore size is too large. Large electrical conversion characteristics are not obtd. and the analysis with good efficiency is infeasible if the specific surface area is too small. Further, the graphitization is insufficient and the surface is deteriorated with the carbon material having the average interlayer spacing of carbon large than 3.42Angstrom . Such material does not withstand long-term use.

Description

【発明の詳細な説明】 〔発明の背景〕 〈産業上の利用分野〉 本発明は電気化学検出器に組み込まれる電気化学検出器
用電極に関する。特に液体クロマトグラフィーなどによ
って分離した極微量の電気活性物質を高感度に検知する
ことができる電気化学検出器用電極に関する。
DETAILED DESCRIPTION OF THE INVENTION [Background of the Invention] <Industrial Application Field> The present invention relates to an electrochemical detector electrode incorporated into an electrochemical detector. In particular, the present invention relates to an electrode for an electrochemical detector that can detect extremely small amounts of electroactive substances separated by liquid chromatography or the like with high sensitivity.

〈従来の技術〉 従来、電気化学検出器用電極を組み込んだ電気化学検出
器は、液体クロマトグラフィーと組み合せることによっ
て、生体試料等の中に含まれている極微量の電気化学的
に活性な物質、例えばカテコールアミン類およびそれら
の代謝物等に対して極めて高感度に検知することができ
ることから、これら電気活性物質の検出および定量に使
用されている。
<Conventional technology> Conventionally, electrochemical detectors incorporating electrochemical detector electrodes have been used in combination with liquid chromatography to detect minute amounts of electrochemically active substances contained in biological samples, etc. For example, catecholamines and their metabolites can be detected with extremely high sensitivity, so they are used for the detection and quantification of these electroactive substances.

これら電気化学検出器用電極のうちで最も高感度に検知
することができる電極としては、一般にクーロメトリツ
ク型電気化学検出器に用いられる電極が良く知られてい
る。
Among these electrodes for electrochemical detectors, the electrodes used in coulometry type electrochemical detectors are generally well known as the electrodes that can detect with the highest sensitivity.

該クーロメトリツク型電気化学検出器用電極は、■ 電
極セル内に入った検知物質か全て電気化学的に変換され
て通過されることが望ましく、それ故、効率よく反応す
るためには高表面積の導電材料により形成されているこ
と、 ■ 長期間の使用における耐久性を有するため、電極表
面が低極性で化学的に安定であること、および ■ 電極セル内での目詰りを防止するため細孔径の分布
が一定であること、 の各性能を有していることが要求される。
The electrode for the coulometry type electrochemical detector is: (1) It is desirable that all of the detection substance that enters the electrode cell be electrochemically converted and passed through the electrode.Therefore, in order to react efficiently, a conductive material with a high surface area is used. ■ The electrode surface has low polarity and is chemically stable to ensure durability during long-term use, and ■ Pore size distribution to prevent clogging within the electrode cell. is required to be constant, and it is required to have the following performances.

これら■〜■の条件を満たすことのできる導電性の材料
としては、一般に炭素材料、とりわけ低極性で化学的に
安定な・黒鉛形態の炭素材料を使用することが好ましい
As a conductive material that can satisfy these conditions (1) to (2), it is generally preferable to use a carbon material, particularly a carbon material in the form of graphite, which has low polarity and is chemically stable.

〈発明が解決しようとする課題〉 しかしながら、該黒鉛形態の炭素材料は、表面積が著し
く小さく、かつ機械的安定性に乏しいという問題点があ
ることから、特に電気化学検出器電極用材料として広く
利用されることに対して制限を与えてい、る。
<Problems to be Solved by the Invention> However, the graphite-form carbon material has problems such as a significantly small surface area and poor mechanical stability, so it is not widely used, especially as a material for electrochemical detector electrodes. It puts restrictions on what can be done.

〔発明の概要〕[Summary of the invention]

く要旨〉 本発明者等は」1記問題点に鑑みて鋭意研究を重ねた結
果、特定な物理的性質を保有する多孔性黒鉛質炭素成形
体が、その表面が非極性で、安定な化学的性質を有して
おり、しかも適度に大きな表面積で、長期の使用に対し
ても目詰りなどが生じない一定の大きさの細孔径を備え
ていることから、電気化学検出器用電極、特にクーロメ
トリツク型電気化学検出器用電極として使用することが
できるとの知見を得て本発明を完成するに至った。
Summary> The present inventors have conducted intensive research in view of the problem described in item 1 above, and have discovered that a porous graphitic carbon molded body possessing specific physical properties has a non-polar surface and is chemically stable. In addition, it has a moderately large surface area and a pore size of a certain size that does not cause clogging even after long-term use, making it suitable for electrochemical detector electrodes, especially coulometry. The present invention was completed based on the knowledge that the present invention can be used as an electrode for a type electrochemical detector.

すなわち、本発明の電気化学検出器用電極は、下記(1
)〜(3)の物理的性質を保有する多孔性黒鉛質炭素成
形体より形成されていること、を特徴とするものである
That is, the electrode for an electrochemical detector of the present invention has the following (1)
It is characterized by being formed from a porous graphitic carbon molded body having the physical properties of ) to (3).

(1) 平均孔径が0,1〜50μmであること、(2
) 比表面積が1.Orf/g以上であること1、(3
) X線回折分析法で求められた炭素の平均層間隔が(
d002)3. 35〜3.42人であること。
(1) The average pore diameter is 0.1 to 50 μm, (2
) Specific surface area is 1. Orf/g or more1, (3
) The average interlayer spacing of carbon determined by X-ray diffraction analysis is (
d002)3. Must be between 35 and 3.42 people.

〈効果〉 本発明の電気化学検出器用電極は、非極性で安定な化学
的性質と、適度に大きな比表面積と、優れた電気変換特
性と、適度で一定な大きさの細孔径を有していることか
ら、電気化学検出器の電極として長期間使用しても目詰
りなどが生じ難い。
<Effects> The electrode for an electrochemical detector of the present invention has non-polar and stable chemical properties, a moderately large specific surface area, excellent electrical conversion properties, and a moderate and constant pore size. Therefore, clogging is unlikely to occur even when used as an electrode for an electrochemical detector for a long period of time.

従って、液体クロマトグラフィー装置のクーロメトリツ
ク型電気化学検出器の電極として使用した場合に(、長
期間優れた電気変換特性を保持することができるので、
液体クロマトグラフィーによって分離された極微量物質
を長期間高感度に検出することができる。
Therefore, when used as an electrode for a coulometric electrochemical detector in a liquid chromatography device, it can maintain excellent electrical conversion characteristics for a long period of time.
Ultra-trace substances separated by liquid chromatography can be detected with high sensitivity for a long period of time.

〔発明の詳細な説明〕[Detailed description of the invention]

[I]  電気化学検出器用電極 く物理的性質〉 本発明の電気化学検出器用電極は、その表面に平均孔径
0.1〜50μm1好ましくは1〜30μmの細孔が形
成され、比表面積が10rn’/g以上、好ましくは5
0d/、以上で、しかも、X線分析法で求められる炭素
の平均層間隔(d002)が3.35〜3.42人、好
ましくは3.35〜3.40人の物理的性質を保有する
多孔性黒鉛質炭素成形体より形成されている。
[I] Physical properties of electrode for electrochemical detector> The electrode for electrochemical detector of the present invention has pores formed on its surface with an average pore diameter of 0.1 to 50 μm, preferably 1 to 30 μm, and a specific surface area of 10 rn'. /g or more, preferably 5
0d/, moreover, the average carbon interlayer spacing (d002) determined by X-ray analysis is 3.35 to 3.42 people, preferably 3.35 to 3.40 people. It is formed from a porous graphitic carbon molded body.

この成形体の平均孔径か小さ過ぎると、長期間電極とし
て使用されると、細孔に検出物質または不純物による目
詰り等が生じて、電極として使用不能となる。また平均
孔径が大き過ぎると液体と電極内表面との接触が不充分
となって、効率の良い分析を行なうことかできない。
If the average pore diameter of this compact is too small, the pores will become clogged with the detection substance or impurities when used as an electrode for a long period of time, making it unusable as an electrode. Furthermore, if the average pore diameter is too large, contact between the liquid and the inner surface of the electrode becomes insufficient, making it impossible to perform efficient analysis.

また、比表面積が小さすぎるものは、充分な電気変換特
性が得られず、効率の良い分析かできない。さらに、炭
素の平均層間隔が3.42八より大きい炭素材料では、
黒鉛化が不充分であり、極めて化学的に活性な表面であ
ることより検出物質と化学反応が起るなどして、表面が
劣化し、長期の使用に耐えられない。
Furthermore, if the specific surface area is too small, sufficient electrical conversion characteristics cannot be obtained, and only efficient analysis is possible. Furthermore, in carbon materials with an average carbon layer spacing greater than 3.428,
Since the graphitization is insufficient and the surface is extremely chemically active, a chemical reaction occurs with the detection substance, causing the surface to deteriorate and not be able to withstand long-term use.

上記平均孔径は水銀圧入法による測定を行なうことによ
って1.炭素の(d002)平均層間隔はX線回折を行
ないブラッグの式より求めることができる。
The above average pore diameter was measured by mercury intrusion method. The (d002) average interlayer spacing of carbon can be determined from Bragg's equation by performing X-ray diffraction.

〔■〕 製造 本発明の多孔性黒鉛質炭素用電極は、例えば、次のよう
な方法などにより製造することができる。
[■] Production The porous graphitic carbon electrode of the present invention can be produced, for example, by the following method.

すなわち、比表面積が1.CJd/E以上の気相法炭素
繊維およびこれを結着するための炭素化可能結着物質を
含む媒体ならびに気孔形成促進剤とを混合した組成物を
、プレス成形などによって所望の形状に成形した後、非
酸化状態で焼成する方法により目的物を製造することか
できる。
That is, the specific surface area is 1. A composition prepared by mixing vapor-grown carbon fibers of CJd/E or higher, a medium containing a carbonizable binding substance for binding the fibers, and a pore formation promoter was molded into a desired shape by press molding or the like. After that, the desired product can be produced by firing in a non-oxidized state.

く気相法炭素繊維〉 上記方法において使用される気相法炭素繊維としては、
炭化水素、−酸化炭素などの炭素源をFe、Co等の遷
移金属超微粒子触媒の存在下に接触して気相成長させて
得られた繊維状の黒鉛質炭素材料、または、これを加熱
して得られるものである。これら気相法炭素繊維以外の
炭素繊維では結晶性の点で若干劣るので、気相法炭素繊
維を用いることか好ましい。
Vapor grown carbon fiber> The vapor grown carbon fiber used in the above method includes:
A fibrous graphite carbon material obtained by vapor phase growth of a carbon source such as a hydrocarbon or carbon oxide in the presence of a transition metal ultrafine particle catalyst such as Fe or Co, or by heating this. This is what you get. Since carbon fibers other than these vapor-grown carbon fibers are slightly inferior in terms of crystallinity, it is preferable to use vapor-grown carbon fibers.

」二足気相法炭素繊維の比表面積は、BET法で測定す
る比表面積で1cJrrf/g以」二、好ましくは5C
Jd/g以上のものである。上限値は特に限定されない
が、好ましくは400rrr/g程度である。
The specific surface area of the bipedal vapor-grown carbon fiber is 1cJrrf/g or less as measured by the BET method, preferably 5C
Jd/g or more. The upper limit is not particularly limited, but is preferably about 400rrr/g.

このように、好適な高い比表面積C3CJrd/g以上
)の気相法炭素繊維を製造するための方法としては、例
えば、特願昭63−322431号明細書に詳述されて
いる方法を採用することができる。
As a method for producing vapor-grown carbon fibers having a preferable high specific surface area (C3CJrd/g or more), for example, the method detailed in Japanese Patent Application No. 63-322431 is employed. be able to.

具体的には、反応管内の加熱帯域に炭素源化合物をキャ
リアガスと共に供給し、遷移金属カルボニル化合物を酸
素および/または硫黄を含んで成る少な(とも一種の有
機化合物の存在下で気相熱分解して得られる遷移金属超
微粒子からなる触媒の存在下に、気相空間内で該炭素源
化合物を分解してグラファイトウィスカーを製造する方
法によって製造することができる。
Specifically, a carbon source compound is supplied together with a carrier gas to a heating zone in a reaction tube, and a transition metal carbonyl compound is subjected to gas phase pyrolysis in the presence of a small amount (both an organic compound) containing oxygen and/or sulfur. Graphite whiskers can be produced by a method in which the carbon source compound is decomposed in a gas phase space in the presence of a catalyst made of ultrafine transition metal particles.

また、前記気相法炭素繊維の直径及び繊維の長さは、最
終の支持材料の直径により適当な材料を選択して使用さ
れるが、通常直径が5μm以下、好ましくは0.01〜
2μm2繊維の長さがInon以下、好ましくは500
〜1μmの範囲のものを用いるのが好適である。
The diameter and fiber length of the vapor-grown carbon fibers are selected depending on the diameter of the final supporting material, but the diameter is usually 5 μm or less, preferably 0.01 to 100 μm.
2 μm2 fiber length is less than Inon, preferably 500
It is preferable to use a thickness in the range of 1 μm.

く炭素化可能結着物質〉 また、上記の炭素化可能結着物質は、混合及び粒状化の
時に前述の気相法炭素繊維を互いに結着させるものであ
る。そのような炭素化可能結着物質としては、例えば、
フェノール樹脂(レゾール樹脂およびノボラック樹脂等
)、フラン樹脂、アクリル樹脂、エポキシ樹脂、不飽和
ポリエステル樹脂等の熱硬化性樹脂およびABS樹脂、
ポリカーボネート樹脂、ポリプロピレン樹脂等の熱可塑
性樹脂を使用することができる。また、ピッチやタール
等を使用することもできる。ながでも、炭素化収率が比
較的高いフェノール樹脂、とりわけ液状フェノール樹脂
やピッチを使用することが好ましい。
Carbonizable Binding Substance> Furthermore, the above-mentioned carbonizable binding substance binds the vapor-grown carbon fibers mentioned above to each other during mixing and granulation. Such carbonizable binding substances include, for example,
Thermosetting resins such as phenolic resins (resol resins and novolac resins, etc.), furan resins, acrylic resins, epoxy resins, unsaturated polyester resins, and ABS resins,
Thermoplastic resins such as polycarbonate resin and polypropylene resin can be used. Moreover, pitch, tar, etc. can also be used. However, it is preferable to use a phenol resin with a relatively high carbonization yield, especially a liquid phenol resin or pitch.

〈希釈媒体〉 炭素化可能結着物質を溶液または分散液とするために使
用される希釈媒体としては、例えば水、メタノール、テ
トラヒドロフラン、ピリジン、キノリン、ベンセン、ト
ルエンなどがある。
<Dilution medium> Examples of the dilution medium used to form a solution or dispersion of the carbonizable binding substance include water, methanol, tetrahydrofuran, pyridine, quinoline, benzene, and toluene.

この希釈媒体中の炭素化可能結着物質の濃度は、炭素化
可能結着物質の種類、溶媒または分散媒からなる希釈媒
体の種類、希釈媒体と混合される気相法炭素繊維の表面
積、その平均繊維の長さ、得られる目的物である多孔性
粒状体の気孔率、機械的特性等によって変化するか、通
常、5〜60重量%、好ましくは10〜30重量%の範
囲内で行なわれるのが普通である。
The concentration of the carbonizable binding substance in this dilution medium is determined by the type of carbonizable binding substance, the type of dilution medium consisting of a solvent or dispersion medium, the surface area of the vapor-grown carbon fiber mixed with the dilution medium, and its It varies depending on the average fiber length, the porosity and mechanical properties of the porous granules to be obtained, and is usually carried out within a range of 5 to 60% by weight, preferably 10 to 30% by weight. is normal.

く気孔形成促進剤〉 前記多孔性黒鉛質成形体に細孔径のシャープな多孔質黒
鉛を提供する目的で使用される気孔形成促進剤としては
、非酸化性雰囲気中での焼成により分解してガス化し、
炭素分として殆ど残らない物質を用いることができる。
Pore formation accelerator> The pore formation accelerator used for the purpose of providing porous graphite with a sharp pore diameter to the porous graphite molded body is a pore formation accelerator that is decomposed by firing in a non-oxidizing atmosphere to form a gas. turned into
A substance that leaves almost no carbon content can be used.

例えば、澱粉、セルロース、ポリエチレンオキシドおよ
びポリビニルアルコール等がある。この気孔形成促進剤
の添加は前述の炭素化可能結着物質の溶液または分散媒
からなる希釈媒体中に投入することができる。
Examples include starch, cellulose, polyethylene oxide and polyvinyl alcohol. The pore formation accelerator can be added to the diluent medium consisting of the solution or dispersion medium of the carbonizable binding substance mentioned above.

気孔形成促進剤は、多孔質黒鉛成形体の形成時の平均孔
径か0,1〜50μmの範囲となるように、その適当量
を前記した炭素化可能結着物質の溶液または分散媒に添
加される。
The pore formation promoter is added in an appropriate amount to the solution or dispersion medium of the carbonizable binding substance described above so that the average pore diameter at the time of forming the porous graphite molded body is in the range of 0.1 to 50 μm. Ru.

く焼成〉 」二連のようにして得られた組成物は、乾燥後、成型プ
レスにより任意の形状にプレスした後、加熱される。こ
の加熱により結着剤である炭素化可能物質を炭素化して
黒鉛化すると共に気孔形成促進剤を分解させてシャープ
な細孔径を有する多孔性の黒鉛を形成する。加熱は、窒
素、アルゴンニ・1の非酸化性の不活性気体中で行なわ
れ、加熱温度は、800〜3000℃、好ましくは10
00〜2500℃の範囲内であり、加熱時間は5〜20
時間の範囲内で行なわれるのが普通である。
Firing> The composition obtained in two steps is dried, pressed into an arbitrary shape using a molding press, and then heated. By this heating, the carbonizable substance that is the binder is carbonized and graphitized, and the pore formation promoter is decomposed to form porous graphite having a sharp pore diameter. The heating is carried out in a non-oxidizing inert gas such as nitrogen or argon, and the heating temperature is 800 to 3000°C, preferably 10°C.
The temperature is within the range of 00 to 2500℃, and the heating time is 5 to 20
It is usually done within a certain time frame.

く多孔性黒鉛質炭素〉 上記方法によって得られた多孔性黒鉛質炭素としては、
その表面に平均孔径が0.1〜50μm1好ましくは1
〜30μmの細孔が多数形成されており、比表面積が1
0i/、以上、好ましくは50nf/g以」二のものと
なっている。また、このものをX線分析によって測定し
たところ、炭素の平均層間隔(d002)が3.35〜
3.42人を示しており、黒鉛質を示すものであること
が理解できる。
Porous graphitic carbon〉 Porous graphitic carbon obtained by the above method includes:
The surface has an average pore size of 0.1 to 50 μm, preferably 1
Many pores of ~30 μm are formed, and the specific surface area is 1
0i/g or more, preferably 50nf/g or more. In addition, when this material was measured by X-ray analysis, the average interlayer spacing (d002) of carbon was 3.35~
It shows 3.42 people, which can be understood to indicate graphite.

〔3〕 電気化学検出器としての利用 この多孔性黒煙質炭素成形体は、切削等により検出器用
電極としての所望の形状に成形された後、電気化学検出
器用電極として電気化学検出器に組み込まれて使用され
る。特に高速液体20マドグラフイー(HPLC)と組
み合わせて生体中の極微量物質の検出および定量を行な
うのに適している。
[3] Use as an electrochemical detector This porous black smoked carbon molded body is formed into the desired shape as a detector electrode by cutting, etc., and then incorporated into an electrochemical detector as an electrochemical detector electrode. used. It is particularly suitable for detecting and quantifying trace amounts of substances in living organisms in combination with high performance liquid 20 mass spectrometry (HPLC).

〔実験例〕 実施例1 く成型体の製造〉 固定分量65重量%の市販水溶性フェノール樹脂3gを
、3リットルの水に分散させて加熱溶解させた。次いで
、この分散液に気層性炭素繊維(比表面積130rrr
/g、平均直径O62μm。
[Experimental Examples] Example 1 Production of Molded Body 3 g of a commercially available water-soluble phenol resin with a fixed amount of 65% by weight was dispersed in 3 liters of water and dissolved by heating. Next, layered carbon fiber (specific surface area: 130rrr) was added to this dispersion.
/g, average diameter O62 μm.

平均繊維長2μm>100g、ジャガイモデンプン10
gおよびアルギン酸ナトリウム0.2gを加えて混合し
た。この混合溶液を10%塩化カルシウム水溶液中に少
しづつノズルより滴下して該滴下液の球状のゲル化液を
生成させた。
Average fiber length 2μm>100g, potato starch 10
g and 0.2 g of sodium alginate were added and mixed. This mixed solution was dropped little by little into a 10% calcium chloride aqueous solution through a nozzle to form a spherical gelled solution.

得られた球状粒子をろ過した後、室温にて乾燥させた。The obtained spherical particles were filtered and then dried at room temperature.

次いで、この球状粒子を45IIII11径のステンレ
ス製金型に入れ、0. 5kg/c+#の圧力で加圧成
形した後、200℃の温度で2時間加熱して硬化させて
硬化成形体を得た。この成形体を70℃/ h rの昇
温速度で1000°Cの温度にまで昇温しで、1000
℃の温度で6時間保持させた後、再び昇温させて、更に
2000℃の温度で15分間加熱保持し、冷却して生成
物を得た。
Next, the spherical particles were placed in a stainless steel mold with a diameter of 45III11, and the spherical particles were placed in a 45III11 diameter stainless steel mold. After pressure molding at a pressure of 5 kg/c+#, the molded product was cured by heating at a temperature of 200° C. for 2 hours to obtain a cured molded product. This molded body was heated to a temperature of 1000°C at a heating rate of 70°C/hr.
After being held at a temperature of 2000°C for 6 hours, the temperature was raised again, and the mixture was further heated and held at a temperature of 2000°C for 15 minutes, and then cooled to obtain a product.

この生成物は、比表面積が51m2/gであり、平均孔
径が3μmでシャープな分布を有しており、また、X線
回折による平均層間隔(d002)か、3.38人の黒
鉛構造を示すものであった。
This product has a specific surface area of 51 m2/g, an average pore diameter of 3 μm, and a sharp distribution, and also has a graphite structure of 3.38 people, as determined by the average interlayer spacing (d002) by X-ray diffraction. It was something to show.

く電気化学検出器〉 上記黒鉛構造を示す生成物を切削して、5mm径X3m
+nの電気化学検出器用電極とし、この電極をAg/A
gC1を参照電極とする電気化学検出器に組み込み、こ
れを高速液体クロマトグラフィーと組み合わせて下記の
カテコールアミン類の分析を行なった。
Electrochemical detector〉 Cut the product exhibiting the above graphite structure into a 5 mm diameter x 3 m
+n electrode for an electrochemical detector, and this electrode is Ag/A
The following catecholamines were analyzed by incorporating gC1 into an electrochemical detector using a reference electrode and combining this with high performance liquid chromatography.

得られた結果を以下に示す。The results obtained are shown below.

移動相としてリン酸緩衝液(pH3.3)/メタノール
/n−オクチル硫酸ナトリウム/EDTAの混合液を流
している、オクタデシル化されたシリカゲルを充填した
分離カラムに、ノルエピネフリン、エピネフリン;ジヒ
ドロキシ安息香酸(内部標準物質)およびドーパミンを
溶解した水溶液を注入し、溶離液を上記電気化学検出器
に通導したクロマトグラムを得た。
Norepinephrine, epinephrine; dihydroxybenzoic acid ( An aqueous solution containing dissolved internal standard substance) and dopamine was injected, and a chromatogram was obtained by passing the eluent through the electrochemical detector described above.

その結果、本発明による電極を装着した電気化学セル中
では電気化学的酸化率が非常に高い(99%以上)ため
20ピコグラムという極微少量であっても以下に示すよ
うなりロマトグラムを得ることが出来た。
As a result, in the electrochemical cell equipped with the electrode according to the present invention, the electrochemical oxidation rate is extremely high (more than 99%), so even with a very small amount of 20 picograms, it is possible to obtain the romatogram shown below. Ta.

この検出器によるカラニールアミンおよびそれらの代謝
物の検出限界は1ピコグラムであり、従来の電気化学検
出器の500〜1000倍の高感度を示した。
The detection limit of caranylamine and its metabolites by this detector was 1 picogram, indicating a sensitivity 500 to 1000 times higher than that of conventional electrochemical detectors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例における分析チャトを示すも
のである。 1・・・ノルエピネフリンのピーク、2・・・エピネフ
リンのピーク、3・・・ジヒドロキシ安息香酸(内部種
物質)のピーク、4・・・ドーパミンのピーク。
FIG. 1 shows an analysis chart in an embodiment of the present invention. 1... Peak of norepinephrine, 2... Peak of epinephrine, 3... Peak of dihydroxybenzoic acid (internal species substance), 4... Peak of dopamine.

Claims (1)

【特許請求の範囲】 下記(1)〜(3)の物理的性質を保有する多孔性黒鉛
質炭素成形体より形成されていることを特徴とする、電
気化学検出器用電極。 (1)平均孔径が0.1〜50μmであること、(2)
比表面積が10m^2/g以上であること、(3)X線
回折分析法により求められた炭素の平均層間隔が(d_
0_0_2)3.35〜3.42Åであること。
[Scope of Claims] An electrode for an electrochemical detector, characterized in that it is formed from a porous graphitic carbon molded body having the following physical properties (1) to (3). (1) The average pore diameter is 0.1 to 50 μm, (2)
(3) The average interlayer spacing of carbon determined by X-ray diffraction analysis is (d_
0_0_2) 3.35 to 3.42 Å.
JP1136371A 1989-05-30 1989-05-30 Electrode for electrochemical detector Expired - Fee Related JP2765953B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1136371A JP2765953B2 (en) 1989-05-30 1989-05-30 Electrode for electrochemical detector
US07/529,543 US5096560A (en) 1989-05-30 1990-05-29 Electrode for electrochemical detectors
DE69005703T DE69005703T2 (en) 1989-05-30 1990-05-30 Electrode for electrochemical sensors.
EP90305839A EP0400968B1 (en) 1989-05-30 1990-05-30 Electrode for electrochemical detectors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1136371A JP2765953B2 (en) 1989-05-30 1989-05-30 Electrode for electrochemical detector

Publications (2)

Publication Number Publication Date
JPH032553A true JPH032553A (en) 1991-01-08
JP2765953B2 JP2765953B2 (en) 1998-06-18

Family

ID=15173602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1136371A Expired - Fee Related JP2765953B2 (en) 1989-05-30 1989-05-30 Electrode for electrochemical detector

Country Status (1)

Country Link
JP (1) JP2765953B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518928A (en) * 1991-07-09 1993-01-26 Agency Of Ind Science & Technol Carbon fine sensor electrode and its manufacture
JP2002062286A (en) * 2000-08-23 2002-02-28 Univ Nihon High performance liquid chromatography system
WO2016039268A1 (en) * 2014-09-09 2016-03-17 株式会社東北テクノアーチ Method for producing porous graphite, and porous graphite

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518928A (en) * 1991-07-09 1993-01-26 Agency Of Ind Science & Technol Carbon fine sensor electrode and its manufacture
JP2002062286A (en) * 2000-08-23 2002-02-28 Univ Nihon High performance liquid chromatography system
JP4565247B2 (en) * 2000-08-23 2010-10-20 学校法人日本大学 High performance liquid chromatography system
WO2016039268A1 (en) * 2014-09-09 2016-03-17 株式会社東北テクノアーチ Method for producing porous graphite, and porous graphite
JPWO2016039268A1 (en) * 2014-09-09 2017-06-22 株式会社 東北テクノアーチ Method for producing porous graphite and porous graphite
US10403900B2 (en) 2014-09-09 2019-09-03 Tohoku Techno Arch Co., Ltd. Method for producing porous graphite, and porous graphite
US10763511B2 (en) 2014-09-09 2020-09-01 Tohoku Techno Arch Co., Ltd. Method for producing porous graphite, and porous graphite

Also Published As

Publication number Publication date
JP2765953B2 (en) 1998-06-18

Similar Documents

Publication Publication Date Title
US5096560A (en) Electrode for electrochemical detectors
US5376251A (en) Carbon micro-sensor electrode and method for preparing it
JP2783927B2 (en) Carbon material for electrode and method for producing the same
US4029600A (en) Carbon particulates with controlled density
US6960389B2 (en) Rigid porous carbon structures, methods of making, methods of using and products containing same
US20150203356A1 (en) Activated carbon having high active surface area
JPH10297912A (en) Mesoporous carbon and its production
US4081370A (en) Use of carbon particulates with controlled density as adsorbents
DE60316922T2 (en) DIAMOND ELECTRODE
JPH032553A (en) Electrode for electrochemical detector
Nascimento et al. Catalytic behavior of ruthenium anchored on micronanostructured composite in selective benzyl alcohol oxidation
JPH07215711A (en) Production of high performance active carbon
JP3099976B2 (en) Carbon-based shape-selective catalyst and method for producing the same
JP2799187B2 (en) Porous graphitic carbon granules and support materials for chromatography using the same
JP2925639B2 (en) Analysis equipment
JPH0489561A (en) Electrode for coulometric type electrochemical detector
WO2016140358A1 (en) Catalyst composite body
CA1100721A (en) Carbon pellets with controlled porosity
JP3056283B2 (en) Working electrode for coulometer type electrolytic cell
Jiang et al. Preparation of Spirogyra-derived biochar modified electrode and its application in nitrite detection
JPH05155673A (en) Porous carbon material and its production
JPH0797723A (en) Fibril material of carbon containing liquid
JP3197020B2 (en) Method for producing molecular sieve carbon
JPH03188367A (en) Carbon microelectrode and manufacture thereof
Zhao et al. Cellulose-derived hierarchical porous carbon based electrochemical sensor for simultaneous detection of catechol and hydroquinone

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090403

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees