JP4556305B2 - 燃料改質装置および水素製造方法 - Google Patents

燃料改質装置および水素製造方法 Download PDF

Info

Publication number
JP4556305B2
JP4556305B2 JP2000234796A JP2000234796A JP4556305B2 JP 4556305 B2 JP4556305 B2 JP 4556305B2 JP 2000234796 A JP2000234796 A JP 2000234796A JP 2000234796 A JP2000234796 A JP 2000234796A JP 4556305 B2 JP4556305 B2 JP 4556305B2
Authority
JP
Japan
Prior art keywords
hydrogen
carbon monoxide
reaction
selective oxidation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000234796A
Other languages
English (en)
Other versions
JP2002047002A (ja
Inventor
文彦 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000234796A priority Critical patent/JP4556305B2/ja
Publication of JP2002047002A publication Critical patent/JP2002047002A/ja
Application granted granted Critical
Publication of JP4556305B2 publication Critical patent/JP4556305B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Liquid Carbonaceous Fuels (AREA)
  • Industrial Gases (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料改質装置および水素製造方法に関し、詳しくは、炭化水素系燃料を改質して水素を生成するための装置、および、炭化水素系燃料から水素を製造する方法に関する。
【0002】
【従来の技術】
従来、水素を製造するための装置として、炭化水素系燃料を改質して水素リッチガスを生成する燃料改質装置が知られている。このような燃料改質装置は、例えば燃料電池と共に用いられる。ここでは、燃料改質装置で生成された水素リッチガスを燃料電池に供給し、燃料電池ではこの水素リッチガスを燃料ガスとして用いて電気化学反応により起電力を得る。
【0003】
改質反応によって炭化水素系燃料から水素リッチガスを生成する際には、改質反応に伴って一酸化炭素が生じ、水素リッチガス中に所定量の一酸化炭素が残留する。上記したように水素リッチガスを燃料ガスとして燃料電池に供給する場合には、一酸化炭素は燃料電池が備える触媒に吸着して電気化学反応を阻害する性質を有しているため、燃料電池に供給する水素リッチガス中の一酸化炭素濃度を充分に抑えることが要求される。従って、燃料改質装置は、通常は、改質反応を進行する改質器に加えて、この改質器で生成した水素リッチガス中の一酸化炭素濃度を低減するための装置を、さらに備えている。
【0004】
例えば、特開平1−265461号公報には、燃料を改質して得た水素リッチガスをシフト部に供し、一酸化炭素と水とから二酸化炭素と水素とを生じるシフト反応によって水素リッチガスの一酸化炭素濃度を低減して、この一酸化炭素濃度を低減した水素リッチガスをりん酸型燃料電池に供給する技術が開示されている。シフト反応は発熱反応であるため、シフト反応を充分に進行させるためには、シフト部を冷却して過剰の熱を取り除き、シフト部内を所望の温度範囲に保つ必要がある。上記公報に開示された構成では、燃料電池で生じた熱が間接的に伝えられることで昇温した冷却水を用いて、シフト部の冷却が行なわれている。このような構成とすることで、一酸化炭素濃度を数%以下に低減した水素リッチガスを燃料電池に供給することができる。
【0005】
【発明が解決しようとする課題】
しかしながら、燃料を改質して得た水素リッチガスの供給を受ける燃料電池として、上記りん酸型燃料電池ではなく固体高分子型燃料電池を用いる場合などは、水素リッチガス中の一酸化炭素濃度をさらに低く(例えば数ppm以下に)抑える必要がある。このような場合には、上記シフト部に加えてさらに一酸化炭素選択酸化部を設けて、水素リッチガス中における一酸化炭素濃度のさらなる低減を図る。
【0006】
一酸化炭素選択酸化部とは、一酸化炭素選択酸化触媒を備えており、水素に優先して一酸化炭素を酸化する一酸化炭素選択酸化反応を進行する部材である。この一酸化炭素選択酸化反応はシフト反応と同様に発熱反応であり、一酸化炭素選択酸化部もまた、発生した熱を冷却によって取り除き、内部を所望の温度範囲に維持する必要がある。ここで、一酸化炭素選択酸化触媒としては、白金やパラジウムやロジウムを備えるような貴金属系の触媒等が知られているが、このような触媒を備える一酸化炭素選択酸化反応部は、一酸化炭素選択酸化反応の活性を充分に高く維持するために、100〜200℃程度の範囲に内部温度(触媒温度)を保つ必要がある。
【0007】
一酸化炭素選択酸化部を冷却する方法として、例えば、一酸化炭素選択酸化部内に冷却水を循環させる方法が考えられる。ここで、一酸化炭素選択酸化反応は、シフト反応に比べて発熱量が大きいため、より高い効率で冷却を行なう必要がある。しかしながら、上記した一酸化炭素選択酸化触媒を用いる場合には、反応の活性が充分に高くなる望ましい反応温度は、水の沸点(凝縮温度)に近いため、燃料改質装置で生成すべき水素リッチガス量が変動して、一酸化炭素選択酸化反応部における発熱量が変動する場合などには、一酸化炭素選択酸化反応に伴う大きな発熱に対応しようとする際に、一時的に冷却が過剰となって、一酸化炭素選択酸化反応部の内部温度が部分的に100℃を下回り、凝縮水が生じるおそれがある。一酸化炭素選択酸化反応部内で凝縮水が生じると、凝縮水が一酸化炭素選択酸化触媒の表面を覆って、一酸化炭素選択酸化反応を阻害するおそれがある。したがって、燃料改質装置全体のエネルギ効率を損なうことなく、一酸化炭素選択酸化反応部を過冷却することなく充分に冷却し、一酸化炭素選択酸化反応の活性を充分に維持するための構成が望まれていた。
【0008】
本発明の燃料改質装置および水素製造方法は、こうした問題を解決し、一酸化炭素選択酸化反応部における反応の活性を充分に維持するための冷却方法を提供することを目的としてなされ、次の構成を採った。
【0009】
【課題を解決するための手段およびその作用・効果】
本発明の燃料改質装置は、炭化水素系燃料を改質して水素を生成する燃料改質装置であって、
改質反応を促進する改質触媒を備え、前記炭化水素系燃料の供給を受けて、改質反応を進行して水素リッチガスを生成する改質器と、
前記改質器から排出される前記水素リッチガスと所定の流体との間で熱交換を行なわせ、前記水素リッチガスを降温させると共に前記流体を昇温させる熱交換部と、
水素に優先して一酸化炭素を酸化する一酸化炭素選択酸化反応を促進する一酸化炭素選択酸化触媒を備え、前記熱交換部を経由した水素リッチガスの供給を受けて、前記一酸化炭素選択酸化反応を進行することで前記水素リッチガス中の一酸化炭素濃度を低減する一酸化炭素選択酸化部と、
昇温した前記流体を用いて、前記一酸化炭素選択酸化部の冷却を行なう冷却手段と
を備えることを要旨とする。
【0010】
以上のように構成された本発明の燃料改質装置は、改質反応を促進する改質触媒を備える改質器において、前記炭化水素系燃料の供給を受けて、改質反応を進行して水素リッチガスを生成し、熱交換部において、前記改質器から排出される前記水素リッチガスと所定の流体との間で熱交換を行なわせ、前記水素リッチガスを降温させると共に前記流体を昇温させる。また、水素に優先して一酸化炭素を酸化する一酸化炭素選択酸化反応を促進する一酸化炭素選択酸化触媒を備える一酸化炭素選択酸化部において、前記熱交換部を経由した水素リッチガスの供給を受けて、前記一酸化炭素選択酸化反応を進行することで前記水素リッチガス中の一酸化炭素濃度を低減する。このとき、昇温した前記流体を用いて、前記一酸化炭素選択酸化部の冷却を行なう。
【0011】
また、本発明の水素製造方法は、炭化水素系燃料を改質して水素を生成する水素製造方法であって、
(a)改質反応を進行して、前記炭化水素系燃料から水素リッチガスを生成する工程と、
(b)前記水素リッチガスと所定の流体との間で熱交換を行なわせ、前記水素リッチガスを降温させると共に前記流体を昇温させる工程と、
(c)水素に優先して一酸化炭素を酸化する一酸化炭素選択酸化反応を促進する一酸化炭素選択酸化触媒を用いて、前記一酸化炭素選択酸化反応によって、前記降温させた水素リッチガス中の一酸化炭素濃度を低減する工程と
を備え、
前記(c)工程は、
(c−1)前記(b)工程で昇温させた前記流体を用いて、前記一酸化炭素選択酸化触媒の冷却を行なう工程を備えることを要旨とする。
【0012】
このような本発明の燃料改質装置および水素製造方法によれば、改質反応によって生成された水素リッチガスとの間で熱交換を行なうことで昇温した流体を用いて、一酸化炭素選択酸化触媒を冷却するため、一酸化炭素選択酸化触媒を冷却しすぎることが無く、一酸化炭素選択酸化触媒を所望の温度範囲に保つ動作を、より容易に行なうことができる。一酸化炭素選択酸化触媒を冷却しすぎることがないため、一酸化炭素選択酸化反応の活性を充分に高く維持することができ、一酸化炭素濃度が充分に低い水素リッチガスを安定して得ることができる。
【0013】
ここで、炭化水素系燃料としては、メタンやガソリンなどの炭化水素の他、メタノール等のアルコールやエーテル、あるいはアルデヒドなど、所定の高温下で水蒸気改質反応を進行することにより水素リッチガスを生成することができるものであれば、種々の炭化水素化合物を用いることができる。
【0014】
本発明の燃料改質装置において、
前記流体は水であって、
前記冷却手段において前記一酸化炭素選択酸化部を冷却するのに用いられた前記水を、前記改質器に対して、該改質器内で水蒸気の状態となるように供給する水供給手段をさらに備え、
前記改質器は、前記炭化水素系燃料と前記水とを用いて、水蒸気改質反応によって水素リッチガスを生成することとしてもよい。
【0015】
また、本発明の水素製造方法において、
前記流体は水であり、
前記(a)工程は、前記(c−1)工程で前記一酸化炭素選択酸化触媒を冷却するのに用いた水と、前記炭化水素系燃料とを反応させて、水蒸気改質反応によって水素リッチガスを生成する工程であることとしてもよい。
【0016】
このような構成とすれば、水蒸気改質反応に供される水は、水素リッチガスとの間で熱交換を行なうと共に、一酸化炭素選択酸化触媒を冷却することによって、予め昇温しているため、水蒸気改質反応に供する際に水を加熱するのに要する熱を削減し、エネルギ効率を向上させることができる。すなわち、改質触媒上で水蒸気改質反応を進行させる際には、供給する水は、これを気化させると共に、水蒸気改質反応の反応温度に対応する所定の温度にまで昇温させる必要があるが、この気化および昇温に要する熱を削減することができる。
【0017】
このような本発明の燃料改質装置において、昇温した前記流体は、気液二相状態となって前記冷却手段において前記一酸化炭素選択酸化部を冷却することとしてもよい。
【0018】
また、本発明の水素製造方法において、前記(c−1)工程は、前記(b)工程で昇温することにより気液二相状態となった前記流体を用いて、前記一酸化炭素選択酸化触媒の冷却を行なうこととしてもよい。
【0019】
このような本発明の燃料改質装置および水素製造方法によれば、気液二相状態の流体は熱容量が大きく、温度変化を伴うことなく所定量の熱をやり取りできるため、過冷却を防止しつつ一酸化炭素選択酸化触媒を充分に冷却することができ、一酸化炭素選択酸化触媒を所望の温度範囲に保つことが容易となる。
【0020】
さらに、本発明の燃料改質装置において、前記改質器において前記改質反応が進行する温度は、前記一酸化炭素選択酸化部において前記一酸化炭素選択酸化反応が進行する温度よりも高いこととしてもよい。
【0021】
また、本発明の水素製造方法において、前記(a)工程において前記改質反応が進行する温度は、前記(c)工程において前記一酸化炭素選択酸化反応が進行する温度よりも高いこととしてもよい。
【0022】
このような構成とすれば、改質反応で得られた水素リッチガスとの間で熱交換する際に流体を充分に昇温させることができ、一酸化炭素選択酸化触媒の過冷却を容易に防止することができる。
【0023】
さらに、本発明の燃料改質装置において、
一酸化炭素と水とから二酸化炭素と水素とを生じるシフト反応を進行する触媒を備え、前記熱交換部を経由した水素リッチガスの供給を受けて、前記シフト反応を進行することで前記水素リッチガス中の一酸化炭素濃度を低減するシフト部をさらに備え、
前記一酸化炭素選択酸化部は、前記シフト部で一酸化炭素濃度が低減された水素リッチガスの供給を受けることとしてもよい。
【0024】
また、本発明の水素製造方法において、
(d)一酸化炭素と水とから二酸化炭素と水素とを生じるシフト反応によって、前記(c)工程に先立って、前記(b)工程で降温させた前記水素リッチガス中の一酸化炭素濃度を低減する工程を、さらに備えることとしてもよい。
【0025】
上記した本発明の燃料改質装置において、
前記改質器において前記改質反応が進行する温度は600℃以上であり、
前記シフト部において前記シフト反応が進行する温度は200℃から400℃の範囲内であり、
前記一酸化炭素選択酸化部において前記一酸化炭素選択酸化反応が進行する温度は100℃から200℃の範囲内であることとしてもよい。
【0026】
また、上記した本発明の水素製造方法において。
前記(a)工程において前記改質反応が進行する温度は600℃以上であり、
前記(d)工程において前記シフト反応が進行する温度は200℃から400℃の範囲内であり、
前記(c)工程において前記一酸化炭素選択酸化反応が進行する温度は100℃から200℃の範囲内であることとしてもよい。
【0027】
このような構成とすれば、改質反応の温度とシフト反応の温度との差が充分に大きいため、改質反応によって生成された水素リッチガスを、シフト反応に先立って所定の流体との間で熱交換によって降温させる際に、流体を充分に昇温させることができる。また、一酸化炭素選択酸化反応の温度は、上記改質反応の反応温度よりも充分に低いため、昇温した上記流体によって、過冷却を防止しつつ一酸化炭素選択酸化触媒を冷却する動作を容易に行なうことができる。
【0028】
本発明の燃料改質装置において、前記炭化水素系燃料は、天然ガスまたはガソリンであることとしても良い。
【0029】
また、本発明の水素製造方法において、前記炭化水素系燃料は、天然ガスまたはガソリンであることとしてもよい。
【0030】
天然ガスおよびガソリンは、これらを燃料として水蒸気改質反応を行なう際の反応温度が充分に高いため、改質ガスとの間で熱交換することによって、一酸化炭素選択酸化触媒を冷却するための流体を、充分に昇温させておくことが可能となり、過冷却を防止しつつ一酸化炭素選択酸化触媒を冷却する動作を容易に行なうことができる。
【0031】
本発明の燃料電池は、電気化学反応により起電力を得る燃料電池を備える燃料電池装置であって、
請求項1ないし7いずれか記載の燃料改質装置を備え、
前記燃料電池は、前記燃料改質装置が生成した水素を用いて前記電気化学反応を進行することを要旨とする。
【0032】
このような本発明の燃料電池によれば、本発明の燃料改質装置を備えることにより、充分に一酸化炭素濃度が低減された水素リッチガスを安定して燃料電池に供給することができるため、燃料電池が備える触媒が一酸化炭素によって被毒するおそれがなく、燃料電池の性能が一酸化炭素に起因して損なわれることがない。
【0033】
本発明の燃料改質装置の暖機方法は、
改質反応を促進する改質触媒を備える改質器と、水素に優先して一酸化炭素を酸化する一酸化炭素選択酸化反応を促進する一酸化炭素選択酸化触媒を備える一酸化炭素選択酸化部とを備え、前記改質器において前記改質反応によって炭化水素系原燃料から水素リッチガスを生成し、前記一酸化炭素選択酸化部において前記一酸化炭素選択酸化反応によって前記水素リッチガスの一酸化炭素濃度を低減する燃料改質装置の暖機方法であって、
(a)前記改質器に所定のガスを供給しつつ、該改質器を加熱する工程と、
(b)前記(a)工程で加熱された前記改質器から排出される加熱されたガスと、所定の流体との間で熱交換を行なわせ、前記流体を昇温させる工程と、
(c)前記(b)工程で昇温させた前記流体を用いて、前記一酸化炭素選択酸化部を加熱する工程と
を備えることを要旨とする。
【0034】
このような燃料改質装置の暖機方法によれば、加熱されて改質器から排出されるガスとの間で熱交換を行なわせた流体を用いて、一酸化炭素選択酸化部を加熱するため、一酸化炭素選択酸化部を、より早く所望の温度にまで昇温させることができ、燃料改質装置の暖機に要する時間を短縮することができる。燃料改質装置において、改質器は、ガスの流れにおいて一酸化炭素選択酸化部よりも上流に位置する部材であり、改質器から加熱されたガスが排出されると、これが一酸化炭素選択酸化部に伝えられて一酸化炭素選択酸化部を昇温させるが、上記流体を用いることにより、上流側の改質器の熱を、より効果的に下流側の一酸化炭素選択酸化部に伝えることができ、一酸化炭素選択酸化部の暖機に要する時間を短縮することができる。
【0035】
【発明の実施の形態】
以上説明した本発明の構成・作用を一層明らかにするために、本発明の実施の形態を、実施例に基づき以下の順序で説明する。
1.燃料電池装置10の全体構成
2.CO選択酸化部の冷却に関わる構成
3.燃料電池装置10の始動時の動作
4.第2実施例の燃料電池装置110
【0036】
(1)燃料電池装置10の全体構成:
図1は、本発明の好適な一実施例である燃料電池装置10の構成の概略を表わすブロック図である。燃料電池装置10は、天然ガスを貯蔵する燃料タンク20、水を貯蔵する水タンク22、天然ガス中の硫黄分を除去する脱硫器24、燃焼ガスを発生するバーナ28、バーナ28を併設した蒸発部26、改質反応により水素リッチガスを生成する改質器30、改質器30から排出される水素リッチガスを降温させる熱交換部32、水素リッチガス中の一酸化炭素(CO)濃度をシフト反応により低減するシフト部34、水素リッチガス中の一酸化炭素濃度を酸化反応により低減するCO選択酸化部36、電気化学反応により起電力を得る燃料電池40、空気を圧縮して燃料電池40に供給するブロワ38、コンピュータにより構成される制御部50を主な構成要素とする。以下、それぞれの構成要素について順に説明する。
【0037】
燃料タンク20に貯蔵される天然ガスは、脱硫器24およびバーナ28に供給される。燃料タンク20と脱硫器24とを接続する燃料流路60には弁25が設けられており、上記燃料流路60から分岐してバーナ28に通じる分岐路61には弁21が設けられている。弁25,21は、制御部50に接続されており、制御部50から出力される信号によって駆動され、脱硫器24およびバーナ28に供給される天然ガスの量を制御する。
【0038】
脱硫器24は、供給された天然ガス中に添加されているメルカプタン等の付臭剤に含まれる硫黄分の除去を行う。硫黄分は、改質器30が備える改質触媒の活性を低下させて改質反応を阻害してしまうため、燃料電池装置10においては、改質器30に先だって脱硫器24を設けて硫黄分の除去を行なう。脱硫器24で硫黄分が除去された脱硫ガスは、燃料流路63を介して蒸発部26に供給される。
【0039】
また、上記燃料流路63には、水タンク22から供給される水が通過する流路である水流路62が接続している。水流路を62を通過する水は、この接続部において、燃料流路63を通過する脱硫ガスと混合されて、脱硫ガスと共に蒸発部26に供給される。水流路62にはポンプ23が設けられている。このポンプ23は、制御部50に接続されており、制御部50から出力される信号によって駆動され、水流路62を介して蒸発部26に供給する水量を調節する。なお、水流路62を通過して、燃料流路63で上記脱硫ガスと合流する水は、脱硫ガスと合流するのに先立って熱交換部32およびCO選択酸化部36を経由して、これら熱交換部32およびCO選択酸化部36を冷却するための冷媒として働くが、この冷却の動作については後に詳しく説明する。
【0040】
蒸発部26は、水タンク22から供給される水を気化させる装置であり、上記したように脱硫ガスと水の供給を受けて、水蒸気と脱硫ガスからなる混合気体と成し、これを所定の温度に昇温して排出する。蒸発部26から排出された上記混合気体は、燃料ガス流路64を介して改質器30に供給される。蒸発部26には、水を気化させるための熱源としてバーナ28が併設されている。バーナ28は、燃焼のための燃料を、燃料電池40のアノード側および燃料タンク20から供給される。燃料電池40は、天然ガス中のメタンを改質器30で改質して生成した水素リッチガスを燃料ガスとして電気化学反応を行なうが、燃料電池40に供給されたすべての水素が電気化学反応において消費されるわけではなく、消費されずに残った水素を含む燃料排ガスは燃料排出路78に排出される。バーナ28は、この燃料排出路78に接続して燃料排ガスの供給を受け、消費されずに残った水素を完全燃焼させて燃料の利用率の向上を図っている。通常はこのような排燃料だけではバーナ28における燃焼反応のための燃料として不足するため、この不足分に相当する燃料、および燃料電池装置10の起動時のように燃料電池40から排燃料の供給を受けられないときの、バーナ28における燃焼反応のための燃料は、既述した分岐路61を介して、燃料タンク20から供給される。
【0041】
改質器30は、供給された脱硫ガスと水蒸気とからなる上記混合気体を改質して、水素リッチな燃料ガスを生成する。天然ガスの主成分はメタンであり、改質器30では、水蒸気改質反応によってメタンから水素を生成する。以下に、メタンの水蒸気改質反応を表わす反応式を示す。
【0042】
CH4+2H2O → 4H2+CO2−165.13(kJ/mol) …(1)
CH4+H2O → CO+3H2−206.2(kJ/mol) …(2)
CO+H2O → CO2+H2+40.5(kJ/mol) …(3)
【0043】
メタンの水蒸気改質反応が進行する際には、まず(2)式に示したメタンの分解反応が進行し、メタンは水(水蒸気)と反応して一酸化炭素と水素とを生じる。ここで生じた一酸化炭素は、(3)式に示したシフト反応に従って水と反応して二酸化炭素と水素とを生じ、全体として(1)式に示した反応が進行する。また、本実施例では、改質器30にはブロワ31が併設されており、改質器30にはブロワ31より空気(酸素)が供給される。そこで、改質器30では、この酸素を利用して、以下の(4)式に示すメタンの部分酸化反応や、(5)式に示す一酸化炭素の酸化反応や、(6)式に示す水素の酸化反応が進行する。
【0044】
CH4+(1/2)O2 → CO+2H2+44(kJ/mol) …(4)
CO+(1/2)O2 → CO2+279.5(kJ/mol) …(5)
2+(1/2)O2 → H2O+240(kJ/mol) …(6)
【0045】
(1)式に示したように、メタンの水蒸気改質反応は吸熱反応であり、反応を進行させるためには熱を加える必要があるが、本実施例では、改質器30に空気を供給することによって、改質器30内で上記(4)〜(6)式に示した酸化反応を進行させ、これらの酸化反応で生じた熱を上記水蒸気改質反応で利用している。
【0046】
ここで、(5)式の反応は、(2)式に示したメタンの分解反応や(4)式に示したメタンの部分酸化反応で生じた一酸化炭素を、酸化する反応である。また、(6)式の反応は、(1)〜(4)式に示した反応で生じた水素を、酸化することで消費する反応である。(4)〜(5)式に示した各々の酸化反応が進行する程度は、改質器30に供給する空気の量を調節することで制御することができる。本実施例の改質器30では、(1)式に示したメタンの水蒸気改質反応に要する熱と酸化反応で生じる熱とのバランスをとりつつ、水素が消費されてしまう(6)式の酸化反応が過剰に進行しないように、供給する空気量を調節している。
【0047】
改質器30は、既述した水蒸気改質反応や酸化反応を促進する活性を有する改質触媒を備えている。改質触媒としては、例えば、ロジウム触媒や白金・イリジウム合金触媒などの貴金属系の触媒や、ニッケル触媒などを用いることができる。改質器30内で上記改質触媒を保持する形状としては、種々のものを選択可能であるが、例えば、この改質触媒を担持して粒子状に成形されたペレットを改質器の内部に充填することとしてもよいし、あるいは、改質器をハニカム状に形成してその表面に上記改質触媒を担持させることとしてもよい。本実施例の改質器30では、ハニカム上に改質触媒を担持することとした。
【0048】
なお、上記改質触媒上で進行する反応は、触媒温度を所定の温度範囲に維持することによって充分に高い活性を得ることができる。上記改質触媒は、いずれも、既述した反応を促進する充分な活性を示す温度が600℃以上である。したがって、蒸発部26では、水を気化させて水蒸気と脱硫ガスとから成る混合気体を生成する際には、改質器30における反応温度である600℃以上の所定の温度に対応するように混合気体を充分に昇温して、これを改質器30側に排出する。
【0049】
図1に示した本実施例の燃料電池装置10では、改質器30にブロワ31を併設して改質器30に空気を供給し、酸化反応で生じる熱によって水蒸気改質反応で要する熱を賄うこととしたが、改質器30では酸化反応を行なわず、水蒸気改質反応のみによって水素を生成することとしても良い。このような構成とする場合には、水蒸気改質反応で要する熱を供給するために、改質器30にヒータなどの加熱装置を設ければよい。あるいは、改質器30で酸化反応を進行させる場合にも、水蒸気改質反応は部分酸化反応よりも水素を生成する効率が高いため、水蒸気改質反応をより多く進行させることとし、供給する空気(酸素)量、すなわち進行する酸化反応量を抑えて、不足する熱を上記したような加熱装置によって補うこととしても良い。あるいは、蒸発部26において混合気体をより高い温度にまで昇温し、水蒸気改質反応で要する熱を蒸発部26側から補うこととしても良い。
【0050】
改質器30で生成された水素リッチガスな燃料ガスは、ガス流路65を介して熱交換部32に供給され、ここで降温された後、ガス流路66を介してシフト部34に供給される。シフト部34は、この水素リッチガス中の一酸化炭素濃度を低減する装置である。すなわち、改質器30において、脱硫ガスと水蒸気とから成る混合気体を用いて、既述した反応によって生成される水素リッチガスは、所定量(10%程度)の一酸化炭素を含んでいるが、シフト部34においてこの水素リッチガス中の一酸化炭素濃度の低減が低減される。
【0051】
シフト部34は、既述した(3)式に示したシフト反応を進行させることによって一酸化炭素濃度を低減する装置であり、シフト反応を促進する触媒を備えている。このようなシフト反応を促進する触媒としては、銅を備える銅系触媒、あるいは、鉄を備える鉄系触媒などを用いることができる。このような触媒のもとでは、シフト反応は、200℃〜400℃の温度範囲において良好に進行する。
既述したように、改質器30における反応温度は600℃以上であり、改質器30から排出される水素リッチガスの温度はこの反応温度に対応する高い温度となっているため、本実施例の燃料電池装置10では、改質器30とシフト部34との間に熱交換部32を設け、この熱交換部32において水素リッチガスの温度を充分に降温させた後にシフト部34に供給している。熱交換部32における水素リッチガスの冷却に関わる構成については、後に詳しく説明する。
【0052】
なお、シフト反応は、(3)式に示したように発熱反応であるが、本実施例では、熱交換部32において水素リッチガスの温度を充分に低下させることによって、発熱反応であるシフト反応が進行しても、シフト部34内を上記望ましい温度範囲内に保つことを可能にしている。もとより、シフト部34において冷却手段をさらに設け、シフト部34内の温度を調節する構成とすることも可能である。シフト部34で一酸化炭素濃度が低減された水素リッチガスは、流路67を介してCO選択酸化部36に供給される。
【0053】
CO選択酸化部36は、シフト部34から供給された水素リッチガス中の一酸化炭素濃度を、さらに低減するための装置である。すなわち、シフト部34では、水素リッチガス中の一酸化炭素濃度は数%程度まで低減されるが、CO選択酸化部36では、一酸化炭素濃度を数ppm程度にまで低減する。CO選択酸化部36で進行する反応は、水素リッチガスに豊富に含まれる水素に優先して、一酸化炭素を酸化する一酸化炭素選択酸化反応である。CO選択酸化部36には、一酸化炭素の選択酸化触媒である白金触媒、ルテニウム触媒、パラジウム触媒、金触媒、あるいはこれらを第1元素とした合金触媒を担持した担体が充填されている。このような一酸化炭素選択酸化触媒のもとでは、反応温度を100℃〜200℃に保つことで、一酸化炭素選択酸化反応は良好に進行する。
【0054】
なお、CO選択酸化部36で進行する一酸化炭素選択酸化反応で要する酸素を供給するために、CO選択酸化部36には、ブロワ37が併設されている。ブロワ37は、外部から空気を取り込んでこれを圧縮し、CO選択酸化部36に供給する。ブロワ37は制御部50に接続しており、CO選択酸化部36に供給される空気(酸素)量は、制御部50によって調節される。
【0055】
なお、CO選択酸化部36で進行する一酸化炭素選択酸化反応は、(5)式に示した反応であり、これは発熱反応である。したがって、CO選択酸化部36は、内部温度(触媒温度)を上記した望ましい反応温度に保つために、内部に熱交換部39を備えている。熱交換部39によるCO選択酸化部36の冷却に関わる構成については、後に詳しく説明する。
【0056】
CO選択酸化部36で上記のように一酸化炭素濃度が下げられた水素リッチガスは、燃料ガス流路68によって燃料電池40に導かれ、燃料ガスとしてアノード側における電池反応に供される。燃料電池40で電池反応に供された後の燃料排ガスは、既述したように燃料排出路78に排出されてバーナ28に導かれ、この燃料排ガス中に残っている水素が燃焼のための燃料として消費される。一方、燃料電池40のカソード側における電池反応に関わる酸化ガスは、制御部50から駆動信号を出力されるブロワ38によって、酸化ガス流路69を介して圧縮空気として供給される。電池反応に用いられた残りの酸化排ガスは、外部に排出される。
【0057】
燃料電池40は、固体高分子電解質型の燃料電池であり、電解質膜、アノード、カソード、およびセパレータとを備える単セルを複数積層して構成されている。電解質膜は、例えばフッ素系樹脂などの固体高分子材料で形成されたプロトン伝導性のイオン交換膜である。アノードおよびカソードは、共に炭素繊維を織成したカーボンクロスにより形成されている。また、電解質膜と、アノードあるいはカソードとの間には、電気化学反応を促進する触媒を備える触媒層が設けられている。このような触媒としては、白金、あるいは白金と他の金属から成る合金が用いられる。セパレータは、カーボンを圧縮してガス不透過とした緻密質カーボンや、耐食性に優れた金属など、ガス不透過性を有する導電性部材により形成されている。また、このセパレータは、上記アノードおよびカソードとの間に、燃料ガスおよび酸化ガスの流路を形成する。燃料電池40は、燃料ガスとしての水素リッチガスと酸化ガスとしての圧縮空気とを上記流路に供給されて、電気化学反応を進行することで起電力を発生する。燃料電池40が生じた電力は、燃料電池40に接続される所定の負荷に供給される。以下に、燃料電池40で進行する電気化学反応を示す。(7)式はアノード側における反応、(8)式はカソード側における反応を示し、電池全体では(9)式に示す反応が進行する。
【0058】
2 → 2H++2e- …(7)
(1/2)O2+2H++2e- → H2O …(8)
2+(1/2)O2 → H2O …(9)
【0059】
制御部50は、マイクロコンピュータを中心とした論理回路として構成され、詳しくは、予め設定された制御プログラムに従って所定の演算などを実行するCPU54と、CPU54で各種演算処理を実行するのに必要な制御プログラムや制御データ等が予め格納されたROM56と、同じくCPU54で各種演算処理をするのに必要な各種データが一時的に読み書きされるRAM58と、燃料電池装置10が備える各種センサからの検出信号や、燃料電池に接続された負荷に関わる情報などを入力すると共に、CPU54での演算結果に応じて既述した各ブロワや弁などに駆動信号を出力する入出力ポート52等を備える。制御部50は、このように各種の信号を入出力することによって、燃料電池装置10全体の運転状態を制御する。
【0060】
(2)CO選択酸化部の冷却に関わる構成:
次に、上記燃料電池装置10が備えるCO選択酸化部36における冷却に関わる構成について説明する。水タンク22に貯蔵された水を蒸発部26に導く水流路62は、燃料流路63に接続するのに先立って、熱交換部32および熱交換部39を経由し、水流路62内を通過する水は、熱交換部32を通過する水素リッチガス、および、CO選択酸化部36との間で熱交換を行ない、これらを冷却する冷媒として働く。
【0061】
熱交換部32は、改質器30において改質反応によって天然ガスから生成された水素リッチガスを、シフト部34に供給するのにふさわしい温度にまで降温させる装置である。既述したように、改質器30は、その内部温度を600℃以上の所定の温度に保つことによって、改質反応の活性を充分に高く確保しているため、改質器30からは、600℃程度の高温のガスが排出される。シフト部34で進行するシフト反応は、シフト部34の内部温度を200℃〜400℃の範囲にある所定の温度に保つことで高い活性を示すため、あまり高い温度のガスが供給されると、シフト部34の内部温度が上記温度範囲を超えてしまい、シフト反応の活性の低下や非所望の反応の増加、あるいはシフト反応を促進する触媒の劣化を引き起こすおそれがある。そのため、シフト部34に先立って熱交換部32を設け、水流路62内を通過する水との間の熱交換によって水素リッチガスの温度を充分に低下させた後に、水素リッチガスをシフト部34におけるシフト反応に供している。熱交換部32において水素リッチガスとの間で熱交換することによって、水流路62内を通過する水は昇温する。
【0062】
既述したように水流路62は、CO選択酸化部36内において熱交換部39を形成しており、熱交換部39を形成する流路内を通過する水と、CO選択酸化部36の内部(に設けられた一酸化炭素選択酸化触媒)との間で、熱交換が可能となっている。一酸化炭素選択酸化反応は発熱反応であるが、上記熱交換部39において冷却水との間で熱交換を行なうことによって、CO選択酸化部36は、その内部を望ましい温度範囲に保ち、一酸化炭素選択酸化反応の活性を充分に高く維持している。
【0063】
熱交換部32および熱交換部39において実行される熱交換の効率は、熱交換部の形状や、熱交換部が備える冷却水流路を通過する冷却水の流量や、冷却水と周囲との温度差などによって定まる。本実施例の燃料電池装置10では、定常状態で燃料電池40を運転しているときには、所望量の燃料ガスを生成するために蒸発部26を介して改質器30に供給すべき量の水を水流路62内に通過させると、熱交換部32を経由する水素リッチガスは、シフト反応に供するのに適した温度にまで(例えば、200℃程度にまで)充分に降温される。また、このとき、水流路62内を通過する水(冷却水)は、水素リッチガスとの間の熱交換によって昇温して、気液二相状態(すなわち、沸騰水の状態)となって熱交換部39に供給され、CO選択酸化部36を冷却する。もとより、熱交換部39を通過する冷却水において気液二相状態を保つための構成、例えば、熱交換部32における冷却水の昇温状態に応じて、熱交換部32内の水流路を通過する冷却水の流量を制御する構成などを、さらに設けることとしても良い。
【0064】
以上のように構成された本実施例の燃料電池装置10によれば、CO選択酸化部36の冷却は熱交換部32を経由した冷却水によって行なっており、この冷却水は、改質器30から排出された水素リッチガスとの間で熱交換を行なうことで昇温しているため、CO選択酸化部36を冷却しすぎてしまうのを防止することができる。改質器30で生成されてCO選択酸化部36に供給される水素リッチガスの量や、熱交換部39を通過する冷却水の量が変動するときには、CO選択酸化部36の内部温度が冷却される程度も変動するが、充分に高い温度の水素リッチガスによって予め暖められた冷却水を用いてCO選択酸化部36の冷却を行なうことにより、過冷却を防ぐことができる。すなわち、水素リッチガス量や冷却水量が変動する場合にも、CO選択酸化部36において一時的あるいは部分的に内部温度が低下しすぎるのを防止することができる。したがって、CO選択酸化部36において一酸化炭素選択酸化反応の活性を常に充分に高く維持することができ、一酸化炭素濃度を充分に低減した水素リッチガスを安定して燃料電池40に供給することができる。
【0065】
特に本実施例では、熱交換部32において水素リッチガスとの間で熱交換させることによって、CO選択酸化部36を冷却する冷却水を気液二相状態としており、気液二相状態にある冷却水は、熱容量が液体や気体に比べて大きいため、CO選択酸化部36の内部を所望の温度範囲に保つ動作を、より容易にすることができる。すなわち、液体(水)や気体(水蒸気)を冷媒として用いる場合には、温度が異なる物質との間で熱交換を行なうと、冷媒自身の温度が直ちに昇降してしまうが、気液二相状態にある冷却水は、100℃の温度状態を保ったまま、周囲(熱交換の対象となる物質)との間で所定量の熱のやり取りを行なうことができる。
【0066】
CO選択酸化部36の望ましい運転温度は、既述したように100℃〜200℃の温度範囲にあるが、本実施例のように、熱交換部32において熱交換して気液二相状態(沸騰水の状態)となっている冷却水を用いてCO選択酸化部36の冷却を行なうことによって、CO選択酸化部36の内部温度を常に100℃以上に保ち、一酸化炭素選択酸化反応の活性を充分に維持することができる。すなわち、CO選択酸化部36において気液二相状態の冷却水を用いる場合には、CO選択酸化部36において進行する一酸化炭素選択酸化反応の状態が変動するなど何らかの原因で、CO選択酸化部36における発熱量が低下してCO選択酸化部36の内部温度が低下したときにも、周囲の温度が100℃よりも下がり始めると、100℃の状態を保つ冷媒から熱が与えられるため、一酸化炭素選択酸化触媒の活性が低下してしまうのを防止することができる。
【0067】
なお、一酸化炭素選択酸化触媒の温度が100℃よりも低下したときには、一酸化炭素選択酸化反応の活性が低下するだけでなく、CO選択酸化部36内で水蒸気が凝縮し、生じた凝縮水が触媒の表面を覆って、触媒の性能を低下させるおそれがある。本実施例のように気液二相状態の冷却水を用いてCO選択酸化部36を冷却する場合には、液状の冷却水を用いる場合のように過冷却になるおそれがなく、CO選択酸化部36の内部温度を常に100℃以上に保ち、凝縮水の生成に起因する不都合を防止することが可能となる。
【0068】
さらに、気液二相状態の冷却水は、気体を冷媒として用いる場合に比べてはるかに熱交換効率が高いため、CO選択酸化部36の冷却を充分に行なうことができる。したがって、水素リッチガスや冷却水の流量が変動する場合にも、CO選択酸化部36の内部温度が非所望の高温(200℃以上)になってしまうのを抑えることができる。また、このように、CO選択酸化部36の内部を所望の温度範囲内に保つ動作が容易になることにより、熱交換部39の構成をよりコンパクトにすることが可能となる。
【0069】
改質器30が備える改質触媒や、シフト部34に備えられてシフト反応を促進する触媒や、CO選択酸化部36が備える一酸化炭素選択酸化触媒は、用いる触媒の種類によって望ましい温度範囲(活性が充分に高くなる温度範囲)が異なる。本実施例では、改質器30,シフト部34,CO選択酸化部36における反応温度は、それぞれ、600℃以上,200〜400℃,100〜200℃となっている。このように、改質器よりも反応温度が低いシフト部に水素リッチガスを供給するのに先立って、冷却水との間で熱交換を行なうことによって水素リッチガスを降温させると共に、上記熱交換によって昇温した冷却水を用いて、シフト部よりもさらに低い反応温度で発熱反応が進行するCO選択酸化部36を冷却することにより、装置全体で効率よく熱交換を行なわせることができる。
【0070】
また、上記実施例では、改質器30から排出された改質ガスおよびCO選択酸化部36を冷却するための冷却水として、改質器30で進行する水蒸気改質反応に供する水を用いるため、改質器30に供給するのに先立って蒸発部26で水を加熱するのに要するエネルギを削減できるという効果を奏する。すなわち、蒸発部26は、改質器30に供給するのに先立って、水を気化・昇温させるための部材であるが、蒸発部26に供給される水は、熱交換部32を経由することで気液二相状態となり、熱交換部39を経由することでさらに加熱されているため、蒸発部26において水を気化させるために消費するエネルギを、大きく削減することができ、装置全体のエネルギ効率を向上させることができる。
【0071】
上記実施例では、燃料ガス中の一酸化炭素濃度を充分に低減するために、また、一酸化炭素濃度を低減する際に水素生成の効率が低下してしまうのを抑えるために、改質器30とCO選択酸化部36との間にシフト部34を設けた。すなわち、シフト反応は、(3)式に示したように一酸化炭素が反応する際に水素を生成するが、CO選択酸化部36で進行する一酸化炭素の酸化反応は、(5)式に示したように水素の生成を伴わない反応であるため、水素リッチガス中の一酸化炭素を低減する際には、酸化反応よりもシフト反応を利用する方が、水素濃度をより多く確保することができる。また、CO選択酸化部36では水素に優先して一酸化炭素が酸化されるものの、一酸化炭素の酸化反応をより多く進行させようとすると、それに伴って水素が酸化される量も増大し、水素リッチガス中の水素濃度の低下を引き起こすおそれがある。したがって、上記実施例では、水素の生成を伴うシフト反応によって一酸化炭素濃度をある程度低減させた後に、一酸化炭素選択酸化反応によって、より充分に一酸化炭素濃度を低減している。ここで、改質器30で生成される改質ガス中の一酸化炭素濃度が充分に低い場合には、シフト部34を設けないこととしても良い。この場合にも、改質器30の運転温度がCO選択酸化部36の運転温度よりも充分に高いならば、CO選択酸化部36に供給するのに先立って改質ガスを降温させる熱交換部32を設け、熱交換部32を経由することで昇温した冷却水を用いてCO選択酸化部36の冷却を行なうことにより、既述した効果を得ることができる。
【0072】
また、上記実施例では、CO選択酸化部36を冷却する冷却水は、気液二相状態であることとしたが、異なる構成としても良い。例えば、水流路62内を加圧して、加圧水を用いて、熱交換部32および熱交換部39で水素リッチガスや一酸化炭素選択酸化触媒の冷却を行なうこととしても良い。気液二相状態の冷却水を冷媒として用いるならば、冷媒の熱容量を充分に大きくすると共に、CO選択酸化部36の内部温度を容易に100℃以上に保つことができて望ましいが、このように異なる構成としても、改質器30で昇温した水素リッチガスとの間で熱交換して昇温した冷媒によってCO選択酸化部36を冷却することによって、既述した効果を得ることができる。
【0073】
また、上記実施例では、シフト部34に供給するのに先立って水素リッチガスを充分に降温することとして、シフト部34冷却のための特別な構造を設けなかったが、シフト部34において、さらに冷却のための構成を設けることとしても良い。
【0074】
(3)燃料電池装置10の起動時の動作:
上記した説明では、燃料電池40が定常運転を行なうときの、水素リッチガスやCO選択酸化部36の冷却に関する動作について述べたが、上記実施例の燃料電池装置10は、その起動時において、既述した冷却に関わる構成を利用して、より速やかに暖機を行なうことができる。すなわち、燃料電池装置の起動時には、加熱されたガスが上流側から供給されることによって、上流側の部材から順次暖機が進行するが、本実施例の燃料電池装置10では、このような加熱ガスによって上流側から暖機が進行する他に、既述した冷却水によって下流側の部材を積極的に暖機することができる。以下に、燃料電池装置10における起動時の暖機の動作について説明する。
【0075】
燃料電池装置10の起動時には、まず、燃料タンク20から、バーナ28および蒸発部26に対して天然ガスの供給が開始され、水タンク22から水流路62を介して蒸発部26に対して水の供給が開始される。天然ガスの供給が開始されると、バーナ28では、速やかに燃焼が開始され、燃料流路63を介して供給される天然ガスおよび水の加熱が行なわれる。バーナ28の燃焼によって、蒸発部26は直ちに昇温して、蒸発部26では充分に昇温した混合気体が生成されるようになる。
【0076】
蒸発部26から改質器30に対して、充分に昇温した混合気体が供給されるようになると、この混合気体によって改質器30の内部が加熱される。さらに、改質器30に対してブロワ31より圧縮空気を供給すると、改質器30内部では、触媒の温度上昇に伴って、次第にメタンの酸化反応が進行するようになり、この酸化反応で生じた熱によってさらに改質器30の内部が暖められる。
【0077】
このように暖機が進行する改質器30を通過した昇温ガス(改質器30の暖機状態に応じて改質反応が進行したガス)が、熱交換部32,シフト部34,CO選択酸化部36と通過すると、これらの部材は上記昇温ガスによって順次暖められて、これら改質器30よりも下流の部材においても、上流側から順次暖機が進行する。なお、蒸発部26の上流に設けた脱硫器24には、起動時のための加熱装置を設けておくこととすれば、脱硫器24において脱硫を行なう動作を、より速く定常状態にすることができる。
【0078】
このように、燃料電池装置の起動時には、上流側の部材から順次暖機が進行するが、本実施例の燃料電池装置10では、水タンク22から蒸発部26に水を供給する流路が、熱交換部32および熱交換部39を経由しているため、上流側で発生した熱が、ガスを介することなく、冷却水によって下流側のCO選択酸化部36に伝えられる。すなわち、燃料電池装置10の起動時に改質器30から上記昇温ガスが排出されるようになると、熱交換部32において、熱交換部32内を通過する冷却水と昇温ガスとの間で熱交換が行なわれ、昇温ガスによって暖められた冷却水がCO選択酸化部36に供給され、CO選択酸化部36の暖機を進行させる。
【0079】
したがって、本実施例の燃料電池装置10によれば、各部材を順次通過するガスのみによって暖機を行なう場合よりも速くCO選択酸化部36の暖機を行なうことができ、燃料電池装置10全体の暖機をより速く完了することができる。上流側から伝えられるガスのみによって暖機を行なう場合には、改質器30の暖機がある程度進行して改質器30から充分に昇温したガスが排出されるようになり、さらに、この昇温したガスによってシフト部34が暖められ、ある程度昇温したガスがシフト部34から排出されるようになって初めて、CO選択酸化部36の暖機が開始される。これに対し、本実施例の燃料電池装置10では、改質器30からある程度昇温したガスが排出されるようになると、このガスによって熱交換部32で暖められた冷却水が、CO選択酸化部36の熱交換部39に伝えられて、CO選択酸化部36の暖機を開始する。そのため、シフト部34の暖機が完了する頃には、CO選択酸化部36の暖機も進行しており、燃料電池装置10全体の暖機がより速く完了する。
【0080】
このように、本実施例の燃料電池装置10は、定常運転時にCO選択酸化部36を冷却するために設けた構成によって、起動時にはCO選択酸化部36の暖機を促進することができる。本実施例では、特に、所定の高温部との間の熱交換によって昇温した冷却水を用いてCO選択酸化部36の暖機を行なう際に、暖機運転の早い段階で昇温する改質器30から排出されるガスが有する熱を利用するため、燃料電池装置10の暖機時間を短縮する効果を顕著に得ることができる。また、CO選択酸化部36の暖機を行なう際に、通常の暖機運転を行なっている改質器30から排出されるガスを用いるため、特別な熱源を必要とせず、CO選択酸化部36の暖機を促進することによって燃料電池装置10におけるエネルギ効率の低下を引き起こすおそれもない。
【0081】
なお、このようにCO選択酸化部36の暖機を行なう際には、CO選択酸化部36の内部温度(触媒温度)を所定の温度センサによって検出し、触媒が酸化反応を促進する活性がある程度高くなる温度にまで内部温度が昇温したときには、ブロワ37を駆動してCO選択酸化部36に圧縮空気を供給し、酸化反応を進行させることによって、CO選択酸化部36の暖機をさらに促進することとしても良い。
【0082】
また、図1に示した燃料電池装置10では、暖機を開始したときから、熱交換部32および熱交換部39を経由した冷却水は、そのまま蒸発部26に供給して、脱硫器24を経由した天然ガスと共に混合ガスとして改質器30に供給することとしたが、少なくとも改質器30の暖機がある程度進行するまでは、改質器30には水を供給せず、改質器30では酸化反応のみを行なわせることとしても良い。このような構成とする場合には、冷却水は、改質器30の暖機がある程度進行するまでは、蒸発部26に供給することなく熱交換部32とCO選択酸化部36との間を循環させることとすればよい。このような構成を第2実施例とし、第2実施例の燃料電池装置110を、図2に示す。
【0083】
(4)第2実施例の燃料電池装置110:
第2実施例の燃料電池装置110は、燃料電池装置10とほぼ同様の構成を有しており、共通する部材には同じ番号を付して、詳しい説明は省略する。燃料電池装置110では、水タンク22に貯蔵した水を蒸発部26に供給する水流路62は、ポンプ70と、弁72,74と、弁72,74間を連通させるバイパス流路76とを備えている。ポンプ70および弁72,74は、制御部50に接続されており、制御部50から出力される駆動信号に従って駆動される。燃料電池装置110が定常運転を行なうときには、弁72,74が切り替えられて、水タンク22に貯蔵された水は、燃料電池装置10と同様に、熱交換部32および熱交換部39を冷却水として経由して蒸発部26に供給され、バイパス流路76を水が流通することはない。
【0084】
燃料電池装置110の起動時には、弁72,74が切り替えられて、弁72,74間がバイパス流路76を介して連通すると共に、弁72,74のそれぞれによって、熱交換部32と水タンク22、および、熱交換部39と蒸発部26の間で、水流路62における水の流れが遮断される。また、このとき、ポンプ70が駆動される。これによって、水流路62は、バイパス流路76を経由する閉じた流路を形成し、この流路内の水(冷却水)は、水タンク22から新たに汲み出されたり、蒸発部26に供給されることなく、熱交換部32および熱交換部39の間を循環する。
【0085】
また、このとき、蒸発部26には水が供給されず、改質器30には、脱硫器24を経由し蒸発部26で昇温したガスと、ブロワ31からの圧縮空気とが供給されることにより、改質器30ではメタンの酸化反応が進行する。したがって、改質触媒は、蒸発部26から供給されるガスが有する熱に加えて、酸化反応で生じる熱によってもさらに加熱される。改質触媒が昇温するにつれて改質器30からは温度の高いガスが排出されるようになり、このガスによって、下流のシフト部34などが暖められる。また、改質器30から温度の高いガスが排出されるようになると、このガスは、熱交換部32において、上記閉じた流路内を循環する水との間で熱交換してこれを昇温させる。昇温した水は、上記水流路内を循環しつつ、熱交換部39を通過することでCO選択酸化部36を暖める。
【0086】
起動時にこのような動作を実行する燃料電池装置110では、改質器30、CO選択酸化部36、上記閉じた流路などに温度センサを設けておき、各部の暖機状態を監視し、暖機がある程度進んだ時点で弁72,74を切り替えて、水タンク22に貯蔵された水が、熱交換部32,39を経由して蒸発部26に供給されるように、水の流れを変更すればよい。
【0087】
以上のように構成された第2実施例の燃料電池装置110によれば、第1実施例の燃料電池装置10と同様に、定常運転を行なうときには、改質ガスで暖められた冷却水を用いてCO選択酸化部36を冷却することによる既述した効果が得られると共に、起動時には、熱交換部32を経由することで暖められた冷却水を用いてCO選択酸化部36の暖機を促進する既述した効果を得ることができる。
さらに、起動時には、冷却水の流路は閉じた流路とし、熱交換部32と熱交換部39との間を冷却水が循環する構成としているため、上記閉じた流路内を循環する冷却水は、熱交換部32でガスから与えら得る熱が蓄積することによってより速やかに昇温し、CO選択酸化部36を暖機する効果を高めることができる。
【0088】
また、ある程度暖機が進行するまでは蒸発部26に水を供給しないため、蒸発部26に水の供給を始めるまでは、バーナ28から蒸発部26に供給される熱は、水の気化のために用いられることが無く、脱硫器24を経由して供給された天然ガスを直ちに充分に昇温させることができ、改質器30の暖機をより速やかに行なうことができる。さらに、蒸発部26に水の供給を始めるまでは、改質器30において、吸熱反応である水蒸気改質反応が進行することが無く、発熱反応である酸化反応のみが進行するため、改質器30の暖機に要する時間をより短縮することができる。
【0089】
なお、既述した第1および第2実施例では、天然ガスは燃料タンク20に貯蔵し、水は水タンク22に貯蔵することとしたが、異なる構成とすることもできる。例えば、燃料流路60を、燃料タンク20に代えて、商用ガスとして供給される天然ガスの供給ラインに接続することとしてもよい。同様に、水流路62を、水タンク22に代えて水の供給ラインに接続することとしてもよい。本実施例のように改質のための燃料および水をタンクに貯蔵する場合には、燃料電池装置を電気自動車などの移動体に搭載して、燃料電池40を移動体の駆動用電源として用いることができる。
【0090】
また、既述した実施例では、改質反応に供する燃料として天然ガスを用いたが、異なる燃料を用いることとしても良い。例えば、ガソリンなど、水蒸気改質反応によって水素を生成可能な他種の炭化水素系燃料を用いることができる。改質器で進行する改質反応の反応温度が充分に高く、改質器から排出される水素リッチガスを降温させた後に下流側の部材に供給する構成であれば、改質器から排出される水素リッチガスとの間で熱交換して昇温した冷媒を用いてCO選択酸化部を冷却することによって、既述した効果を得ることができる。特に、天然ガスやガソリンは、改質反応の温度が600℃以上と高く、改質器から排出される水素リッチガスとの間で熱交換させることによって、冷却水を容易に気液二相状態とすることができて望ましい。
【0091】
また、既述した第1および第2実施例では、CO選択酸化部36から排出される水素リッチガスを、燃料ガスとして固体高分子型燃料電池に供給することとしたが、異なる種類の燃料電池に水素リッチガスを供給することとしても良い。本発明を適用することで、CO選択酸化部における一酸化炭素選択酸化触媒を望ましい温度範囲に保つ動作がより容易となり、充分に一酸化炭素濃度が低い水素リッチガスを常に燃料電池に供給することが可能となるため、白金などの貴金属触媒を備える燃料電池において、一酸化炭素に起因して電池性能が低下してしまうのを抑えることができる。さらに、本発明の燃料改質装置が水素リッチガスを供給する装置は、燃料電池に限るものではなく、水素を消費する他種の装置に対して水素リッチガスを供給することとしてもよい。
【0092】
以上本発明の実施例について説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々なる様態で実施し得ることは勿論である。
【図面の簡単な説明】
【図1】本発明の好適な一実施例である燃料電池装置10の構成の概略を表わす説明図である。
【図2】燃料電池装置110の構成の概略を表わす説明図である。
【符号の説明】
10,110…燃料電池装置
20…燃料タンク
21,25…弁
22…水タンク
23,70…ポンプ
24…脱硫器
26…蒸発部
28…バーナ
30…改質器
31,37,38…ブロワ
32,39…熱交換部
34…シフト部
36…CO選択酸化部
40…燃料電池
50…制御部
52…入出力ポート
54…CPU
56…ROM
58…RAM
60…燃料流路
61…分岐路
62…水流路
63…燃料流路
64…燃料ガス流路
65,66…ガス流路
67…流路
68…燃料ガス流路
69…酸化ガス流路
72,74…弁
76…バイパス流路
78…燃料排出路

Claims (11)

  1. 炭化水素系燃料を改質して水素を生成する燃料改質装置であって、
    改質反応を促進する改質触媒を備え、前記炭化水素系燃料の供給を受けて、改質反応を進行して水素リッチガスを生成する改質器と、
    前記改質器から排出される前記水素リッチガスと所定の流体との間で熱交換を行なわせ、前記水素リッチガスを降温させると共に前記流体を昇温させる熱交換部と、
    一酸化炭素と水とから二酸化炭素と水素とを生じるシフト反応を進行する触媒を備え、前記熱交換部を経由した水素リッチガスの供給を受けて、前記改質反応よりも反応温度が低い前記シフト反応を進行することで、前記水素リッチガス中の一酸化炭素濃度を低減するシフト部と、
    水素に優先して一酸化炭素を酸化する一酸化炭素選択酸化反応を促進する一酸化炭素選択酸化触媒を備え、前記シフト部で一酸化炭素濃度が低減された水素リッチガスの供給を受けて、前記シフト反応よりも反応温度が低い前記一酸化炭素選択酸化反応を進行することで前記水素リッチガス中の一酸化炭素濃度を低減する一酸化炭素選択酸化部と、
    昇温した前記流体を用いて、前記一酸化炭素選択酸化部の冷却を行なう冷却手段と
    を備える燃料改質装置。
  2. 請求項1記載の燃料改質装置であって、
    前記流体は水であり、
    前記一酸化炭素選択酸化部において前記一酸化炭素選択酸化反応が進行する温度は100℃から200℃の範囲内であり、
    昇温した前記水は、気液二相状態となって前記冷却手段において前記一酸化炭素選択酸化部を冷却することを特徴とする
    燃料改質装置。
  3. 請求項記載の燃料改質装置であって
    記冷却手段において前記一酸化炭素選択酸化部を冷却するのに用いられた前記水を、前記改質器に対して、該改質器内で水蒸気の状態となるように供給する水供給手段をさらに備え、
    前記改質器は、前記炭化水素系燃料と前記水とを用いて、水蒸気改質反応によって水素リッチガスを生成することを特徴とする
    燃料改質装置。
  4. 請求項2または3記載の燃料改質装置であって、
    前記改質器において前記改質反応が進行する温度は600℃以上であり、
    前記シフト部において前記シフト反応が進行する温度は200℃から400℃の範囲内であ
    料改質装置。
  5. 前記炭化水素系燃料は、天然ガスまたはガソリンである
    請求項1ないしいずれか記載の燃料改質装置。
  6. 炭化水素系燃料を改質して水素を生成する水素製造方法であって、
    (a)改質反応を進行して、前記炭化水素系燃料から水素リッチガスを生成する工程と、
    (b)前記水素リッチガスと所定の流体との間で熱交換を行なわせ、前記水素リッチガスを降温させると共に前記流体を昇温させる工程と、
    (c)前記改質反応よりも反応温度が低く、一酸化炭素と水とから二酸化炭素と水素とを生じるシフト反応によって、前記(b)工程で降温させた前記水素リッチガス中の一酸化炭素濃度を低減する工程と、
    )水素に優先して一酸化炭素を酸化する一酸化炭素選択酸化反応を促進する一酸化炭素選択酸化触媒を用いて、前記シフト反応よりも反応温度が低い前記一酸化炭素選択酸化反応によって、前記(c)工程で一酸化炭素濃度を低減させた水素リッチガス中の一酸化炭素濃度を低減する工程と
    を備え、
    前記()工程は、
    −1)前記(b)工程で昇温させた前記流体を用いて、前記一酸化炭素選択酸化触媒の冷却を行なう工程を備える
    水素製造方法。
  7. 請求項6記載の水素製造方法であって、
    前記流体は水であり、
    前記(d)工程において前記一酸化炭素選択酸化反応が進行する温度は100℃から200℃の範囲内であり、
    前記(d−1)工程は、前記(b)工程で昇温することにより気液二相状態となった前記水を用いて、前記一酸化炭素選択酸化触媒の冷却を行なうことを特徴とする
    水素製造方法。
  8. 請求項記載の水素製造方法であって
    記(a)工程は、前記(−1)工程で前記一酸化炭素選択酸化触媒を冷却するのに用いた水と、前記炭化水素系燃料とを反応させて、水蒸気改質反応によって水素リッチガスを生成する工程である
    水素製造方法。
  9. 請求項7または8記載の水素製造方法であって、
    前記(a)工程において前記改質反応が進行する温度は600℃以上であり、
    前記()工程において前記シフト反応が進行する温度は200℃から400℃の範囲内であ
    素製造方法。
  10. 前記炭化水素系燃料は、天然ガスまたはガソリンである
    請求項ないしいずれか記載の水素製造方法。
  11. 電気化学反応により起電力を得る燃料電池を備える燃料電池装置であって、
    請求項1ないしいずれか記載の燃料改質装置を備え、
    前記燃料電池は、前記燃料改質装置が生成した水素を用いて前記電気化学反応を進行する
    燃料電池装置。
JP2000234796A 2000-08-02 2000-08-02 燃料改質装置および水素製造方法 Expired - Fee Related JP4556305B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000234796A JP4556305B2 (ja) 2000-08-02 2000-08-02 燃料改質装置および水素製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000234796A JP4556305B2 (ja) 2000-08-02 2000-08-02 燃料改質装置および水素製造方法

Publications (2)

Publication Number Publication Date
JP2002047002A JP2002047002A (ja) 2002-02-12
JP4556305B2 true JP4556305B2 (ja) 2010-10-06

Family

ID=18727119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000234796A Expired - Fee Related JP4556305B2 (ja) 2000-08-02 2000-08-02 燃料改質装置および水素製造方法

Country Status (1)

Country Link
JP (1) JP4556305B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100445197C (zh) 2001-03-28 2008-12-24 大阪瓦斯株式会社 一氧化碳去除方法、燃料改质***的运行方法、一氧化碳去除器及具有该一氧化碳去除器的燃料改质***、过滤器
JP2004014174A (ja) * 2002-06-04 2004-01-15 Nissan Motor Co Ltd 燃料電池システム
US7548683B2 (en) * 2004-01-26 2009-06-16 Modine Manufacturing Company Coolant conditioning system and method for a fuel processing subsystem
JP5298375B2 (ja) * 2009-04-28 2013-09-25 Jx日鉱日石エネルギー株式会社 燃料電池用改質装置
JP5520013B2 (ja) * 2009-11-20 2014-06-11 Jx日鉱日石エネルギー株式会社 燃料電池システム
KR101293856B1 (ko) 2011-10-07 2013-08-07 현대하이스코 주식회사 물 예열 온도 상승을 통하여 개질 효율이 우수한 연료전지용 개질기

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08190924A (ja) * 1995-01-12 1996-07-23 Mitsubishi Heavy Ind Ltd 燃料電池発電装置及び燃料電池を用いた発電システム
JPH10182103A (ja) * 1996-12-20 1998-07-07 Toyota Motor Corp 一酸化炭素選択酸化装置及び燃料改質装置並びに燃料電池システム
JPH11246878A (ja) * 1998-03-05 1999-09-14 Sanyo Electric Co Ltd 一酸化炭素除去器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3743118B2 (ja) * 1997-06-03 2006-02-08 ダイキン工業株式会社 燃料電池発電システム
JP2000016802A (ja) * 1998-07-03 2000-01-18 Ishikawajima Harima Heavy Ind Co Ltd 一酸化炭素除去器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08190924A (ja) * 1995-01-12 1996-07-23 Mitsubishi Heavy Ind Ltd 燃料電池発電装置及び燃料電池を用いた発電システム
JPH10182103A (ja) * 1996-12-20 1998-07-07 Toyota Motor Corp 一酸化炭素選択酸化装置及び燃料改質装置並びに燃料電池システム
JPH11246878A (ja) * 1998-03-05 1999-09-14 Sanyo Electric Co Ltd 一酸化炭素除去器

Also Published As

Publication number Publication date
JP2002047002A (ja) 2002-02-12

Similar Documents

Publication Publication Date Title
JP4515253B2 (ja) 燃料電池システム
JP4000608B2 (ja) 水素製造充填装置および電気自動車
JP4830197B2 (ja) 燃料改質装置
JP3874334B2 (ja) 燃料電池システム
JPH111302A (ja) 燃料改質方法と燃料改質装置ならびに該燃料改質装置を備えた燃料電池装置
JPH07315801A (ja) 高純度水素製造システム、高純度水素の製造方法及び燃料電池システム
CN102177086A (zh) 氢生成装置、燃料电池***以及氢生成装置的运行方法
JP4556305B2 (ja) 燃料改質装置および水素製造方法
JP4259203B2 (ja) 燃料改質装置および燃料電池システム
JP2004220949A (ja) 固体高分子形燃料電池付改質装置システム及びその運転方法
JP5032025B2 (ja) 液体燃料固体高分子型電池システムとその停止方法
JP4357306B2 (ja) 燃料改質装置および燃料電池システム
JP2007165130A (ja) 燃料電池システム及び燃料電池システムの制御方法
US8628887B2 (en) Fuel cell with low water consumption
JP3697955B2 (ja) 触媒燃焼器およびその昇温方法
JP2008130266A (ja) 燃料電池システムにおける凝縮水の循環方法
JPH10297903A (ja) 燃料改質装置
JP4799827B2 (ja) 燃料電池システム
JP2001151502A (ja) 燃料改質装置
JP4534278B2 (ja) 燃料電池装置
JP2003212508A (ja) 改質システムの水供給制御方法
JP3753055B2 (ja) 気液分離装置
JP4176130B2 (ja) 燃料電池発電システム
JP4610906B2 (ja) 燃料電池発電システム及び燃料電池発電システムの起動方法
JP2002154806A (ja) 燃料改質装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees