JP4553233B2 - Method for producing aqueous titanium tetrachloride solution - Google Patents

Method for producing aqueous titanium tetrachloride solution Download PDF

Info

Publication number
JP4553233B2
JP4553233B2 JP2003422307A JP2003422307A JP4553233B2 JP 4553233 B2 JP4553233 B2 JP 4553233B2 JP 2003422307 A JP2003422307 A JP 2003422307A JP 2003422307 A JP2003422307 A JP 2003422307A JP 4553233 B2 JP4553233 B2 JP 4553233B2
Authority
JP
Japan
Prior art keywords
titanium tetrachloride
organic solvent
solution
water
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003422307A
Other languages
Japanese (ja)
Other versions
JP2005179118A (en
Inventor
安則 吉塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2003422307A priority Critical patent/JP4553233B2/en
Publication of JP2005179118A publication Critical patent/JP2005179118A/en
Application granted granted Critical
Publication of JP4553233B2 publication Critical patent/JP4553233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、四塩化チタン水溶液の製造方法に関するものであり、詳しくは、高純度で且つ品質の安定した四塩化チタン水溶液を、工業的に安全且つ効率よく製造する方法に関するものである。   The present invention relates to a method for producing a titanium tetrachloride aqueous solution, and more particularly to a method for industrially producing a highly pure and stable titanium tetrachloride aqueous solution with high safety and efficiency.

四塩化チタンは古くから、クロール法による金属チタンの中間原料、あるいは酸化チタンの中間原料として利用されている。しかし、四塩化チタンは反応性が高く、空気中の酸素あるいは水分と接触すると白煙を出し激しく反応するため、窒素など不活性ガス雰囲気中で取り扱わねばならない。そのため、四塩化チタンは、酸素あるいは水分を嫌うプロセスにおいてあるいは汎用工業製品の製造以外の用途については、大気中でも安定で取り扱いが容易な四塩化チタン水溶液の形で広く利用されている。例えば、近年開発が盛んに行なわれている光触媒用などの酸化チタンの原料であるアルコキシチタンなどの有機チタン化合物の原料、パール顔料の原料、酸化チタンやチタン酸バリウムなどの高純度が要求される電子材料の原料、その他各種チタン化合物の中間原料などが挙げられ、近年その需要は伸びつつある。   Titanium tetrachloride has long been used as an intermediate raw material for titanium metal by the crawl method or an intermediate raw material for titanium oxide. However, titanium tetrachloride is highly reactive and produces white smoke when it comes into contact with oxygen or moisture in the air, so it must react in an inert gas atmosphere such as nitrogen. Therefore, titanium tetrachloride is widely used in the form of an aqueous solution of titanium tetrachloride that is stable in the atmosphere and easy to handle for applications other than the production of general-purpose industrial products in processes that dislike oxygen or moisture. For example, raw materials for organic titanium compounds such as alkoxy titanium, which is a raw material of titanium oxide for photocatalysts that have been actively developed in recent years, raw materials for pearl pigments, high purity such as titanium oxide and barium titanate are required. The raw materials for electronic materials and other intermediate materials for various titanium compounds can be mentioned, and the demand for these materials has been increasing in recent years.

四塩化チタン水溶液は、一般に四塩化チタンを水あるいは塩酸水溶液と接触し反応させることにより製造されるが、その際の発熱が著しく、部分的に過熱されるために、酸化チタン水和物等の析出物を生じる。該析出物は水には溶解しないため、四塩化チタンの注入口の閉塞等を発生させ、四塩化チタン水溶液の製造が困難となる。また、四塩化チタン水溶液は酸性であるため、その反応容器は樹脂など耐酸性材料を用いるが、上記発熱により反応容器の劣化が激しく、コストアップの原因になっていた。さらには、上記反応の際、塩酸ガスが激しく多量に発生するため、その処理の問題や労働環境上の問題もあった。   A titanium tetrachloride aqueous solution is generally produced by contacting titanium tetrachloride with water or a hydrochloric acid aqueous solution and reacting it. However, since the heat generation at that time is remarkable and partially overheated, titanium oxide hydrate, etc. A precipitate is formed. Since the precipitate does not dissolve in water, the titanium tetrachloride inlet is blocked, making it difficult to produce a titanium tetrachloride aqueous solution. In addition, since the aqueous solution of titanium tetrachloride is acidic, an acid-resistant material such as a resin is used for the reaction vessel. However, the reaction vessel is severely deteriorated due to the heat generation, which causes an increase in cost. Furthermore, since a large amount of hydrochloric acid gas is generated vigorously during the above reaction, there are problems in its treatment and problems in the working environment.

なお、本発明において、「酸化チタン水和物」とは、[(TiO)(OH)]nで表される酸化チタン水和物、水酸化チタン又は含水酸化チタン、あるいはその誘導体を包括して呼ぶものとする。 In the present invention, “titanium oxide hydrate” includes titanium oxide hydrate, titanium hydroxide or hydrous titanium oxide represented by [(TiO) (OH) 2 ] n, or derivatives thereof. Shall be called.

上記のような問題を避ける方法としては、四塩化チタン中に水を少量ずつ滴下するか、あるいは水中に四塩化チタンを少量ずつ滴下し、発熱及び塩酸ガスの発生を抑制しながら四塩化チタン水溶液を調製する方法が挙げられるが、このような方法では、工業的規模の生産性が低く、コストアップの原因となる。   As a method of avoiding the above problems, water is added dropwise to titanium tetrachloride in small amounts, or titanium tetrachloride is dropped in small amounts in water to suppress generation of heat and hydrochloric acid gas. In such a method, productivity on an industrial scale is low, which causes an increase in cost.

また、特開昭52−70999号公報には、四塩化チタン水溶液の連続製造方法についての困難さが記載され、四塩化チタンに水を添加する場合には、水添過程で現れる粘稠性の塩基性生成物の分散溶解、発生する塩酸ガスの処理等撹拌装置に工夫を要し、又公害防止設備の配慮を要する等のため添加する水の量は著しく制限され、それ以上の添加を行うと、生成する塩基性生成物により四塩化チタン表面が覆われ、水の均一な混合が阻害され、爆発的な反応が起こり易く、塩酸ガスの発生も多く、容器の破損及び作業員への危険性が大であるとの記載がある。逆に、水に四塩化チタンを添加する場合にも、添加初期の温度が低い間は、四塩化チタンの加水分解が起こり、コロイド状酸化チタン水和物の生成が認められ、使用に不適当な場合も起こる可能性が大である。しかし、塩酸水溶液、あるいはあらかじめ調整した四塩化チタン水溶液を溶媒に使用すれば、この加水分解による影響はおさえられるが、水添の場合と同様四塩化チタンの添加注入口の閉塞が起こりやすいので、反応容器に強力な撹拌機を取り付けると共に、前記した閉塞対策を講じなければならないとしている。このように、四塩化チタン水溶液の製造には、強力な撹拌装置や析出する塩基性生成物による添加注入口の閉塞防止対策、発生する塩酸ガスによる公害対策等を必要とし、又添加速度の規制による生産性の制限の点から安全且つ容易にして、経済的な装置の開発が望まれるとして、ここでは、四塩化チタンを添加するに際し用いる溶媒に、噴流を形成し、ここに四塩化チタンを添加する四塩化チタン水溶液の連続製造方法を開示している。噴流による分散力を利用して反応容器に撹拌機を取り付ける必要性を排除し、又噴流形成装置内に生じる吸引力により、四塩化チタンを注入するため、閉塞防止対策が不要であり、そして発生する塩酸ガスの装置外への漏れもなくその対策が不要になるというものである。   Japanese Patent Application Laid-Open No. 52-70999 describes the difficulty of a continuous production method of an aqueous solution of titanium tetrachloride. When water is added to titanium tetrachloride, the viscous properties appearing in the hydrogenation process are described. The amount of water to be added is remarkably limited due to the need to devise the stirrer such as dispersion and dissolution of basic products, treatment of generated hydrochloric acid gas, and consideration of pollution prevention equipment. Add more than that. The surface of the titanium tetrachloride is covered with the basic product to be formed, the uniform mixing of water is obstructed, explosive reactions are likely to occur, hydrochloric acid gas is often generated, the container is damaged and danger to workers. There is a description that sex is great. Conversely, when titanium tetrachloride is added to water, while the initial temperature is low, titanium tetrachloride is hydrolyzed, and formation of colloidal titanium oxide hydrate is observed, which is inappropriate for use. There is a great possibility that this will happen. However, if a hydrochloric acid aqueous solution or a pre-adjusted titanium tetrachloride aqueous solution is used as a solvent, the influence of this hydrolysis can be suppressed, but as with hydrogenation, the titanium tetrachloride addition inlet tends to be clogged. A powerful stirrer is attached to the reaction vessel, and the above-mentioned measures against clogging must be taken. Thus, the production of an aqueous solution of titanium tetrachloride requires a powerful stirrer, measures to prevent clogging of the addition inlet due to the precipitated basic product, and measures against pollution caused by the generated hydrochloric acid gas. Since it is desired to develop an apparatus that is safe, easy, and economical in terms of productivity limitations, a jet is formed in the solvent used for adding titanium tetrachloride. A continuous production method of an aqueous titanium tetrachloride solution to be added is disclosed. Eliminates the need to attach a stirrer to the reaction vessel using the dispersion force generated by the jet, and injects titanium tetrachloride by the suction force generated in the jet forming device. There is no leakage of hydrochloric acid gas to the outside of the device, and no countermeasures are required.

しかしながら、上記従来方法では、塩酸ガスは反応溶液に溶解し塩酸ガスの外部への発生は改善されるが、発熱は制御できず、また酸化チタン水和物の膜が反応溶液の表面に生成し、反応を継続することは困難であった。また、製造する四塩化チタン水溶液の品質を制御することも困難であった。更に、噴流を形成するための設備を必要とし、そのコントロール及び保守も面倒であった。   However, in the above conventional method, hydrochloric acid gas dissolves in the reaction solution and generation of hydrochloric acid gas to the outside is improved, but heat generation cannot be controlled, and a film of titanium oxide hydrate is formed on the surface of the reaction solution. It was difficult to continue the reaction. In addition, it is difficult to control the quality of the aqueous titanium tetrachloride solution to be produced. Furthermore, equipment for forming the jet was required, and its control and maintenance were troublesome.

更に、上述したように四塩化チタン水溶液は液相法による酸化チタン微粒子の製造の原料として利用されるが、近年酸化チタン微粒子は、誘電体物質であるチタン酸バリウムなど電子材料の原料、チタン酸リチウムなどの電池材料の原料、光増感型太陽電池用の酸化チタン原料、あるいは光照射で励起されることにより生じる酸化チタンの光触媒作用また親水性機能を利用した機能性材料などに利用されつつあり、高純度が要求される。しかしながら、そのような高純度の酸化チタンを得るためには高純度の四塩化チタン水溶液が必要となり、上記従来方法では、未溶解固形分が残留するため、所望純度のものが得られなかった。   Furthermore, as described above, the aqueous solution of titanium tetrachloride is used as a raw material for producing titanium oxide fine particles by a liquid phase method. While being used as a raw material for battery materials such as lithium, a titanium oxide raw material for photosensitized solar cells, or a functional material utilizing the photocatalytic action or hydrophilic function of titanium oxide generated by excitation by light irradiation Yes, high purity is required. However, in order to obtain such high-purity titanium oxide, a high-purity titanium tetrachloride aqueous solution is required, and in the above conventional method, an undissolved solid content remains, so that the desired purity cannot be obtained.

このような問題を解決するために、特開2002−29746号公報では、(イ)水中に四塩化チタンを供給することにより四塩化チタンと水を接触、反応させ、四塩化チタン水溶液を生成しつつ酸化チタン水和物を析出させ、(ロ)次いで、四塩化チタンを水1モルに対し0.1モル/時間以上で供給することにより反応系の塩素濃度を3モル/L以上として前記析出した酸化チタン水和物を反応系に溶解させ、四塩化チタン水溶液の生成を継続し、(ハ)その後、酸化チタン水和物を溶解させた反応系に四塩化チタンと水を独立にかつ同時に供給することにより酸化チタン水和物などの析出を回避しつつ所要量の四塩化チタン水溶液を生成することを特徴とする四塩化チタン水溶液の製造方法が開示されている。しかしながら、この方法においても、初期反応の温度や四塩化チタンの供給量、さらにその後の反応系での塩素濃度など微妙な操業面でのコントロールが必要となり、実際に酸化チタン水和物等の固形物が析出し、排ガス配管や製品排出管などの閉塞が起きてしまうという問題が残されていた。
特開昭52−70999号公報 特開2002−29746号公報
In order to solve such problems, in Japanese Patent Laid-Open No. 2002-29746, (i) by supplying titanium tetrachloride into water, titanium tetrachloride and water are brought into contact with each other to react with each other, thereby generating an aqueous solution of titanium tetrachloride. Titanium oxide hydrate was deposited while (b) Next, titanium tetrachloride was supplied at a rate of 0.1 mol / hr or more per 1 mol of water, whereby the chlorine concentration of the reaction system was set to 3 mol / L or more. The titanium oxide hydrate was dissolved in the reaction system and the formation of the titanium tetrachloride aqueous solution was continued. (C) Thereafter, titanium tetrachloride and water were separately and simultaneously added to the reaction system in which the titanium oxide hydrate was dissolved. Disclosed is a method for producing a titanium tetrachloride aqueous solution, which is characterized in that a required amount of titanium tetrachloride aqueous solution is generated while avoiding precipitation of titanium oxide hydrate and the like by supplying. However, this method also requires delicate operational control such as the initial reaction temperature, titanium tetrachloride supply amount, and the chlorine concentration in the subsequent reaction system. There remains a problem that the deposits occur and the exhaust pipe and the product discharge pipe are blocked.
JP-A 52-70999 JP 2002-29746 A

従って、本発明の課題は、四塩化チタン水溶液の製造において、上記従来技術に残された、塩酸ガスの発生、発熱による固形物析出の問題を解決し、高純度且つ品質の安定した四塩化チタン水溶液を効率よく工業的規模で製造する方法を提供することにある。   Accordingly, an object of the present invention is to solve the problems of generation of hydrochloric acid gas and precipitation of solid matter due to heat generation, which are left in the above-mentioned prior art in the production of an aqueous solution of titanium tetrachloride. The object is to provide a method for efficiently producing an aqueous solution on an industrial scale.

かかる実情において、本発明者らは鋭意検討を行った結果、四塩化チタンを有機溶媒に溶解させれば、(1)四塩化チタンが有機溶媒に溶媒和し、四塩化チタン分子の周りに有機溶媒分子を存在させることができるので、水の添加時に、水分子が四塩化チタン分子と直接接触することなく、急激な反応を防ぐことができ、(2)水を添加してから、水分子が四塩化チタン分子に接触するまでに、一定の時間がかかるので、水分子を該有機溶媒全体に分散させてから、四塩化チタンと接触させることが可能となり、有機溶媒全体で発熱が起こり、局部過熱が起こらず、(3)有機溶媒溶液全体で発熱が起こるので、温度コントロールが容易となることから、酸化チタン水和物等の局部過熱に起因した固形物の析出及び塩素ガスの発生を防止することができることを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have conducted intensive studies. As a result, if titanium tetrachloride is dissolved in an organic solvent, (1) titanium tetrachloride is solvated in the organic solvent, and the organic compound is surrounded around the titanium tetrachloride molecule. Since solvent molecules can be present, when water is added, the water molecules do not come into direct contact with the titanium tetrachloride molecules, preventing rapid reaction. (2) After adding water, water molecules Since it takes a certain amount of time to contact the titanium tetrachloride molecule, the water molecule can be dispersed in the whole organic solvent and then contacted with the titanium tetrachloride, and the whole organic solvent generates heat, Since local overheating does not occur, and (3) heat generation occurs in the entire organic solvent solution, temperature control becomes easy, so precipitation of solids and generation of chlorine gas due to local overheating of titanium oxide hydrate etc. To prevent It found that it is theft, which resulted in the completion of the present invention.

すなわち、本発明(1)は、四塩化チタンと、脂肪族炭化水素化合物、芳香族炭化水素化合物、ハロゲン含有脂肪族炭化水素化合物、ハロゲン含有芳香族炭化水素化合物及びシリコンオイルから選ばれる1種又は2種以上の有機溶媒を混合して四塩化チタン濃度1〜80重量%の四塩化チタンの有機溶媒溶液を得る工程と、
該四塩化チタンの有機溶媒溶液と、該四塩化チタン1モルに対し5〜30モルの水とを四塩化チタン水溶液が生成するように接触させる接触工程と、
前記接触工程の後に、四塩化チタン水溶液と回収有機溶媒の分離を行なう分離工程を有することを特徴とする四塩化チタン水溶液の製造方法を提供するものである。
That is, the present invention (1) includes titanium tetrachloride and one or more selected from aliphatic hydrocarbon compounds, aromatic hydrocarbon compounds, halogen-containing aliphatic hydrocarbon compounds, halogen-containing aromatic hydrocarbon compounds, and silicon oil. A step of mixing two or more organic solvents to obtain an organic solvent solution of titanium tetrachloride having a titanium tetrachloride concentration of 1 to 80% by weight ;
Contacting the organic solvent solution of the titanium tetrachloride with 5 to 30 moles of water per mole of the titanium tetrachloride so that an aqueous titanium tetrachloride solution is formed ;
The present invention provides a method for producing an aqueous titanium tetrachloride solution, comprising a separation step of separating the aqueous solution of titanium tetrachloride and the recovered organic solvent after the contacting step .

また、本発明(2)は、前記本発明(1)の接触工程において、水の比重に対する有機溶媒溶液の比重の比を、略1とする四塩化チタン水溶液の製造方法を提供するものである。   Moreover, this invention (2) provides the manufacturing method of the titanium tetrachloride aqueous solution which makes ratio of specific gravity of the organic solvent solution with respect to the specific gravity of water substantially 1 in the contact process of the said invention (1). .

また、本発明(3)は、前記本発明(1)又は(2)の接触工程の後に、2層分離により四塩化チタン水溶液と回収有機溶媒の分離を行なう2層分離工程を、更に有する四塩化チタン水溶液の製造方法を提供するものである。   The present invention (3) further includes a two-layer separation step of separating the aqueous solution of titanium tetrachloride and the recovered organic solvent by two-layer separation after the contacting step of the present invention (1) or (2). A method for producing an aqueous titanium chloride solution is provided.

また、本発明(4)は、前記本発明(3)の2層分離工程により得た前記回収有機溶媒を、前記本発明(3)の有機溶媒として再使用する四塩化チタン水溶液の製造方法を提供するものである。   In addition, the present invention (4) is a method for producing a titanium tetrachloride aqueous solution in which the recovered organic solvent obtained by the two-layer separation step of the present invention (3) is reused as the organic solvent of the present invention (3). It is to provide.

本発明の四塩化チタンの製造方法によれば、急激な反応及び局部過熱を防ぐことができ、また、温度コントロールが容易となるので、酸化チタン水和物等の固形物の析出及び塩素ガスの発生を防止することができる。従って、高純度且つ品質の安定した四塩化チタン水溶液を、効率良く工業的規模で製造することが可能となる。   According to the method for producing titanium tetrachloride of the present invention, rapid reaction and local overheating can be prevented, and since temperature control is facilitated, precipitation of solids such as titanium oxide hydrate and chlorine gas Occurrence can be prevented. Accordingly, it is possible to efficiently produce a titanium tetrachloride aqueous solution having a high purity and a stable quality on an industrial scale.

本発明に係る接触工程は、四塩化チタンの有機溶媒溶液と水とを接触させる工程であり、該工程を行なうことにより、チタン成分が有機溶媒層から水層へ移動し、四塩化チタン水溶液が生成する。   The contact step according to the present invention is a step of bringing an organic solvent solution of titanium tetrachloride into contact with water. By performing this step, the titanium component moves from the organic solvent layer to the aqueous layer, and the aqueous solution of titanium tetrachloride is obtained. Generate.

本発明に係る四塩化チタンは、不純物の少ない高純度のものほど好ましく、具体的には、四塩化チタンの純度が、好ましくは99.99重量%以上であり、特に好ましくは99.995重量%以上である。また、該四塩化チタンの不純物の含有量は、アルミニウム、鉄、及びバナジウムがそれぞれ1ppm以下、ケイ素及びスズがそれぞれ10ppm以下である。また、該四塩化チタンとして、市販のものを用いることができる。   Titanium tetrachloride according to the present invention is preferably as high purity as less impurities. Specifically, the purity of titanium tetrachloride is preferably 99.99% by weight or more, particularly preferably 99.995% by weight. That's it. The content of impurities in the titanium tetrachloride is 1 ppm or less for aluminum, iron, and vanadium, and 10 ppm or less for silicon and tin, respectively. A commercially available titanium tetrachloride can be used.

本発明に係る有機溶媒としては、四塩化チタンに対して反応性がなく且つ相溶性があり、水に対して相溶性がないものであれば特に制限されないが、好ましくは、脂肪族炭化水素化合物、芳香族炭化水素化合物、ハロゲン含有脂肪族炭化水素化合物、ハロゲン含有芳香族炭化水素化合物及び有機ケイ素化合物である。具体的には、脂肪族炭化水素化合物としては、ペンタン、ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、イソデカン、シクロヘキサン及びこれらの混合物、芳香族炭化水素化合物としては、流動パラフィン、ベンゼン、トルエン、キシレン、エチルベンゼン及びこれらの混合物、ハロゲン含有脂肪族炭化水素化合物としては、塩化メチレン、ハロゲン含有芳香族炭化水素化合物としては、クロロベンゼン及びジクロロベンゼン、有機ケイ素化合物としては、ジメチルポリシロキサン等のシリコンオイル等が挙げられる。また、該有機溶媒の比重は、1.2g/ml以下であることが、接触工程後の四塩化チタン水溶液との分離が容易となる点で好ましく、1.0g/ml以下であることが特に好ましい。また、該有機溶媒の沸点は、50℃以上であり、好ましくは80℃以上、特に好ましくは100℃以上である。また該有機溶媒は1種単独で又は2種以上組み合わせて使用することができる。   The organic solvent according to the present invention is not particularly limited as long as it is not reactive and compatible with titanium tetrachloride, and is not compatible with water, but is preferably an aliphatic hydrocarbon compound. An aromatic hydrocarbon compound, a halogen-containing aliphatic hydrocarbon compound, a halogen-containing aromatic hydrocarbon compound and an organosilicon compound. Specifically, as the aliphatic hydrocarbon compound, pentane, hexane, heptane, octane, isooctane, decane, isodecane, cyclohexane and a mixture thereof, and as the aromatic hydrocarbon compound, liquid paraffin, benzene, toluene, xylene, Ethylbenzene and mixtures thereof, halogen-containing aliphatic hydrocarbon compounds include methylene chloride, halogen-containing aromatic hydrocarbon compounds include chlorobenzene and dichlorobenzene, and organic silicon compounds include silicon oils such as dimethylpolysiloxane. It is done. Further, the specific gravity of the organic solvent is preferably 1.2 g / ml or less from the viewpoint of easy separation from the titanium tetrachloride aqueous solution after the contact step, and particularly preferably 1.0 g / ml or less. preferable. The boiling point of the organic solvent is 50 ° C. or higher, preferably 80 ° C. or higher, particularly preferably 100 ° C. or higher. Moreover, this organic solvent can be used individually by 1 type or in combination of 2 or more types.

本発明に係る四塩化チタンの有機溶媒溶液は、当該四塩化チタンと当該有機溶媒を混合することにより、調製することができる。該四塩化チタンの有機溶媒溶液中の四塩化チタンの濃度は、1〜80重量%であり、好ましくは5〜50重量%、特に好ましくは5〜25重量%である。該濃度が1重量%未満だと、四塩化チタン水溶液の生成速度が遅く、また、反応容器が大きくなるので、工業的に効率が悪い。一方、該濃度が80重量%を超えると、水と接触させた時に急激な温度上昇が起こる。   The organic solvent solution of titanium tetrachloride according to the present invention can be prepared by mixing the titanium tetrachloride and the organic solvent. The concentration of titanium tetrachloride in the organic solvent solution of titanium tetrachloride is 1 to 80% by weight, preferably 5 to 50% by weight, particularly preferably 5 to 25% by weight. When the concentration is less than 1% by weight, the production rate of the titanium tetrachloride aqueous solution is slow, and the reaction vessel becomes large, so that it is industrially inefficient. On the other hand, when the concentration exceeds 80% by weight, a rapid temperature rise occurs when contacted with water.

当該四塩化チタンの有機溶媒溶液を調製する際、水に四塩化チタンを直接添加した場合のような加水分解反応は起こらないので、激しい発熱を伴うことはない。   When preparing the organic solvent solution of titanium tetrachloride, a hydrolysis reaction does not occur as in the case where titanium tetrachloride is directly added to water, so there is no intense heat generation.

また、水の比重に対する当該四塩化チタンの有機溶媒溶液の比重の比を、略1とすること、すなわち、四塩化チタンの有機溶媒溶液の比重を水とほぼ等しくすることが、後記接触工程において、水との接触効率が高まる点で好ましい。このことにより、四塩化チタン水溶液の製造効率が向上する。該四塩化チタンの有機溶媒溶液の比重は、有機溶媒中に溶解させる四塩化チタンの濃度により、調整することができる。   In the contact step described below, the ratio of the specific gravity of the organic solvent solution of titanium tetrachloride to the specific gravity of water is approximately 1, that is, the specific gravity of the organic solvent solution of titanium tetrachloride is substantially equal to that of water. It is preferable in that the contact efficiency with water is increased. This improves the production efficiency of the aqueous titanium tetrachloride solution. The specific gravity of the organic solvent solution of titanium tetrachloride can be adjusted by the concentration of titanium tetrachloride dissolved in the organic solvent.

本発明の接触工程においては、比重の小さい前記有機溶媒を用い、且つ水との比重の比ができる限り1に近くなるように四塩化チタンを溶解させた四塩化チタンの有機溶媒溶液を用いることが、接触効率が高く且つ接触工程後の四塩化チタン水溶液の分離が容易なので、製造効率が高まる点で、特に好ましい。   In the contacting step of the present invention, an organic solvent solution of titanium tetrachloride in which titanium tetrachloride is dissolved so that the specific gravity ratio with water is as close to 1 as possible is used using the organic solvent having a small specific gravity. However, since the contact efficiency is high and separation of the aqueous titanium tetrachloride solution after the contact step is easy, it is particularly preferable in terms of increasing production efficiency.

本発明に係る水は、不純物の少ない高純度のものが好ましく、具体的には、イオン交換水、蒸留水等の精製水を用いることができる。   The water according to the present invention is preferably highly purified with few impurities. Specifically, purified water such as ion-exchanged water or distilled water can be used.

当該四塩化チタンの有機溶媒溶液と水とを接触させる方法としては、特に制限されず、例えば、(1)四塩化チタンの有機溶媒溶液と水とを、同時に反応槽に投入する方法、(2)ラインミキサーにより同時に接触させる方法、(3)予め四塩化チタンの有機溶媒溶液を反応槽に投入し、これに水を添加する方法、(4)予め水を反応槽に投入し、これに四塩化チタンの有機溶媒溶液を添加する方法等が挙げられる。該方法のうち、(1)〜(3)の方法が、生成する四塩化チタン水溶液のpHが調整し易い点で、好ましい。また、(1)、(3)又は(4)の方法において、反応槽中で四塩化チタンの有機溶媒溶液と水を接触させる際に、攪拌機等により攪拌することが好ましい。また、(1)の方法の場合は、四塩化チタンの有機溶媒溶液と水とを反応槽に投入しながら、四塩化チタンの有機溶媒溶液と水の混合物を反応槽から抜き出すこと、(2)の方法の場合は、ラインミキサーで接触工程を行なった後の該混合物を、別途設けた分離槽に移送することにより、連続的に四塩化チタン水溶液の製造を行なうことができる。   The method of bringing the titanium tetrachloride organic solvent solution into contact with water is not particularly limited. For example, (1) the method of simultaneously adding the titanium tetrachloride organic solvent solution and water into the reaction vessel, (2 ) A method of contacting them simultaneously with a line mixer, (3) A method of adding an organic solvent solution of titanium tetrachloride to a reaction vessel in advance and adding water to the reaction vessel, and (4) A method of adding water to the reaction vessel in advance. Examples thereof include a method of adding an organic solvent solution of titanium chloride. Among these methods, the methods (1) to (3) are preferable in that the pH of the aqueous titanium tetrachloride solution to be generated can be easily adjusted. In the method (1), (3) or (4), it is preferable to stir with an agitator or the like when the organic solvent solution of titanium tetrachloride is brought into contact with water in the reaction vessel. In the case of the method (1), the mixture of the organic solvent of titanium tetrachloride and water is withdrawn from the reaction tank while the organic solvent solution of titanium tetrachloride and water are put into the reaction tank, (2) In the case of this method, the aqueous solution of titanium tetrachloride can be continuously produced by transferring the mixture after the contact step with the line mixer to a separate separation tank.

当該四塩化チタンの有機溶媒溶液と水との接触割合は、四塩化チタン1モルに対し、水が5〜30モルであり、好ましくは7〜25モル、特に好ましくは10〜20モルである。該接触割合が、5モル未満だと、四塩化チタンの有機溶媒溶液中に四塩化チタンが残存するので製造効率が悪く、30モルを超えると、四塩化チタン水溶液の濃度が低く成り過ぎる。   The contact ratio between the titanium tetrachloride organic solvent solution and water is 5 to 30 mol, preferably 7 to 25 mol, particularly preferably 10 to 20 mol, with respect to 1 mol of titanium tetrachloride. When the contact ratio is less than 5 moles, titanium tetrachloride remains in the organic solvent solution of titanium tetrachloride, so that the production efficiency is poor, and when it exceeds 30 moles, the concentration of the titanium tetrachloride aqueous solution becomes too low.

当該接触工程を行なう温度は、10〜90℃であり、好ましくは20〜80℃、特に好ましくは40〜70℃である。該温度が、10℃未満だと、チタン成分が有機溶媒層から水層への移動する速度が遅くなり生産性が低下し、90℃を超えると、酸化チタン水和物等の固形物の析出が起こり易くなる。   The temperature at which the contacting step is performed is 10 to 90 ° C, preferably 20 to 80 ° C, and particularly preferably 40 to 70 ° C. When the temperature is less than 10 ° C., the rate at which the titanium component moves from the organic solvent layer to the aqueous layer is slowed down, resulting in a decrease in productivity. When the temperature exceeds 90 ° C., precipitation of solids such as titanium oxide hydrate. Is likely to occur.

このように、当該四塩化チタンの有機溶媒溶液と水が接触することにより、四塩化チタンと水が反応し、チタン成分は有機溶媒層から水層へ移動し、四塩化チタン水溶液が生成する。この時、該四塩化チタン水溶液のpHは、2以下であり、好ましくは1以下である。該pHが2を超えると、酸化チタン水和物等の固形物の析出が起こり易くなる。   Thus, when the organic solvent solution of titanium tetrachloride and water come into contact with each other, titanium tetrachloride reacts with water, the titanium component moves from the organic solvent layer to the aqueous layer, and a titanium tetrachloride aqueous solution is generated. At this time, the pH of the titanium tetrachloride aqueous solution is 2 or less, preferably 1 or less. When the pH exceeds 2, precipitation of solids such as titanium oxide hydrate tends to occur.

当該接触工程後、更に、2層分離工程を行なうことにより、生成した四塩化チタン水溶液を、有機溶媒と分離することができる。   After the contact step, the resulting titanium tetrachloride aqueous solution can be separated from the organic solvent by performing a two-layer separation step.

当該2層分離工程は、四塩化チタンの移動により生成した四塩化チタン水溶液(以後、水層とも記載)、四塩化チタンが水層に移動したことにより四塩化チタンの濃度が低下した有機溶媒層(以後、回収有機溶媒層とも記載)の比重の差により、水層と回収有機溶媒層を分離する工程である。比重が1より小さい前記有機溶媒、例えば、n−ヘプタンの場合は、回収有機溶媒層が上層、水層が下層となる。   The two-layer separation step includes an aqueous solution of titanium tetrachloride produced by the movement of titanium tetrachloride (hereinafter also referred to as an aqueous layer), an organic solvent layer in which the concentration of titanium tetrachloride has decreased due to the movement of titanium tetrachloride to the aqueous layer. This is a step of separating the aqueous layer and the recovered organic solvent layer by the difference in specific gravity (hereinafter also referred to as the recovered organic solvent layer). In the case of the organic solvent having a specific gravity of less than 1, for example, n-heptane, the recovered organic solvent layer is the upper layer and the aqueous layer is the lower layer.

また、当該2層分離工程は、前記接触工程を行った反応槽で行うこと、又は接触工程により得られる水層と回収有機溶媒層の混合物を、別途設けた分離槽に抜き出して行なうことができる。   The two-layer separation step can be performed in the reaction tank in which the contact step has been performed, or the mixture of the aqueous layer and the recovered organic solvent layer obtained in the contact step can be extracted into a separate separation tank. .

当該2層分離工程で得られる回収有機溶媒は、前記接触工程に用いる前記有機溶媒として再使用することができる。この時、抜き出した該回収有機溶媒の温度が、前記接触工程の温度範囲より高い場合は、熱交換器等を通すことにより冷却してから再使用することができる。また、前記接触工程において除熱を積極的に行なうために、回収有機溶媒を接触工程の温度範囲よりさらに低い温度に冷却して再使用することもできる。   The recovered organic solvent obtained in the two-layer separation step can be reused as the organic solvent used in the contact step. At this time, when the temperature of the extracted organic solvent extracted is higher than the temperature range of the contact step, it can be reused after being cooled by passing it through a heat exchanger or the like. Further, in order to positively remove heat in the contact step, the recovered organic solvent can be cooled to a temperature lower than the temperature range of the contact step and reused.

本発明の製造方法により得られる四塩化チタン水溶液の組成は、チタンが1〜20重量%、好ましくは2〜18重量%であり、塩素が5〜40重量%、好ましくは10〜37重量%である。また、該四塩化チタン水溶液は、水の量により形態は異なるが、安定なオルトチタン酸の塩酸水溶液、Ti(OH)Clで表される化合物及びTiO2・xH2Oの塩酸水溶液と考えることができる。 The composition of the aqueous solution of titanium tetrachloride obtained by the production method of the present invention is 1-20% by weight of titanium, preferably 2-18% by weight, and 5-40% by weight of chlorine, preferably 10-37% by weight. is there. Further, the aqueous solution of titanium tetrachloride varies depending on the amount of water, but a stable hydrochloric acid solution of orthotitanic acid, a compound represented by Ti n (OH) m Cl x , and a hydrochloric acid aqueous solution of TiO 2 · xH 2 O Can be considered.

本発明の四塩化チタン水溶液の製造方法によれば、該四塩化チタン水溶液中の不純物成分であるアルミニウム、鉄、バナジウム、ケイ素及びスズの含有量を、いずれも1ppm以下にコントロールすることができる。従って、該四塩化チタン水溶液は、前記したチタン酸バリウムなど電子材料の原料、チタン酸リチウム等の電池材料の原料、あるいは光照射で励起されることにより生じる酸化チタンの光触媒作用また親水性機能を利用した機能性材料等の各種応用製品用途に好適に使用することができる。   According to the method for producing a titanium tetrachloride aqueous solution of the present invention, the contents of aluminum, iron, vanadium, silicon and tin, which are impurity components in the titanium tetrachloride aqueous solution, can all be controlled to 1 ppm or less. Therefore, the titanium tetrachloride aqueous solution has the above-mentioned photocatalytic action and hydrophilic function of titanium oxide generated by excitation of light by irradiating with a raw material of electronic materials such as barium titanate, a raw material of battery materials such as lithium titanate. It can be suitably used for various application products such as functional materials used.

次に、本発明の四塩化チタン水溶液の製造方法を、図1又は図2を参照して更に具体的に説明する。図1は、本発明の製造方法をバッチ式で行なう場合の実施形態の一例を示すフロー図である。図1中、反応槽1の上部には、水供給管3、排ガス管9、四塩化チタン供給管4及び回収有機溶媒抜出管6の一方が接続された混合槽2が接続されている。また、反応槽1には、四塩化チタンの有機溶媒溶液と水とを均一に接触させるための攪拌機が具備されている。さらに、反応槽1の側部の上部に有機溶媒を抜き出すための回収有機溶媒抜出管6の他方と、その下部に最終製品としての四塩化チタン水溶液を抜き出すための四塩化チタン水溶液抜出管7が接続され、該回収有機溶媒抜出管6又は四塩化チタン水溶液抜出管7には定量ポンプ8a又は8bが設置されている。また、該回収有機溶媒抜出管6の途中には、反応槽1から抜出した有機溶媒を必要に応じて冷却するための熱交換器10が設置され、有機溶媒を供給するための有機溶媒供給管5が接続されている。   Next, the method for producing an aqueous titanium tetrachloride solution of the present invention will be described more specifically with reference to FIG. 1 or FIG. FIG. 1 is a flow chart showing an example of an embodiment when the production method of the present invention is performed in a batch manner. In FIG. 1, a mixing tank 2 to which one of a water supply pipe 3, an exhaust gas pipe 9, a titanium tetrachloride supply pipe 4 and a recovered organic solvent extraction pipe 6 is connected is connected to the upper part of the reaction tank 1. The reaction vessel 1 is equipped with a stirrer for bringing the organic solvent solution of titanium tetrachloride and water into uniform contact. Furthermore, the other part of the recovered organic solvent extraction pipe 6 for extracting the organic solvent to the upper part of the side part of the reaction tank 1 and the titanium tetrachloride aqueous solution extraction pipe for extracting the titanium tetrachloride aqueous solution as the final product to the lower part thereof. 7 is connected, and a metering pump 8 a or 8 b is installed in the recovered organic solvent extraction pipe 6 or the titanium tetrachloride aqueous solution extraction pipe 7. In addition, a heat exchanger 10 for cooling the organic solvent extracted from the reaction tank 1 as necessary is installed in the middle of the recovered organic solvent extraction pipe 6 to supply an organic solvent for supplying the organic solvent. A tube 5 is connected.

図1中、先ず混合槽2に、四塩化チタン供給管4から四塩化チタンを、有機溶媒供給管5及び回収有機溶媒抜出管6を経て有機溶媒を投入し、混合して均一な四塩化チタンの有機溶媒溶液を調製する。次いで、所定量の該四塩化チタンの有機溶媒溶液を反応槽1に投入して、更に所定量の水を水供給管3から供給する。このとき水の温度は0〜30℃の範囲である。その後攪拌しながら接触工程を行い、四塩化チタン水溶液を生成させる。接触工程が完了した後、攪拌を止め、静置し、回収有機溶媒層11と四塩化チタン水溶液層12の2層に分離させる。そして、四塩化チタン水溶液を四塩化チタン水溶液抜出管7より抜き出し製品とする。抜出した四塩化チタン水溶液は必要に応じて窒素ガスや空気に曝気し、四塩化チタン水溶液中の塩酸濃度を調整するとともに、溶存する有機溶媒を除去する。また、回収有機溶媒を回収有機溶媒抜出管6から抜き出し、混合槽2に投入することにより、該回収有機溶媒を再使用することができる。   In FIG. 1, first, titanium tetrachloride is introduced into the mixing tank 2 from the titanium tetrachloride supply pipe 4, and the organic solvent is introduced through the organic solvent supply pipe 5 and the recovered organic solvent extraction pipe 6. Prepare an organic solvent solution of titanium. Next, a predetermined amount of the organic solvent solution of titanium tetrachloride is charged into the reaction tank 1, and a predetermined amount of water is supplied from the water supply pipe 3. At this time, the temperature of water is in the range of 0 to 30 ° C. Thereafter, a contact step is performed with stirring to produce an aqueous titanium tetrachloride solution. After the contact step is completed, the stirring is stopped, the mixture is allowed to stand, and the recovered organic solvent layer 11 and the titanium tetrachloride aqueous solution layer 12 are separated into two layers. The titanium tetrachloride aqueous solution is extracted from the titanium tetrachloride aqueous solution extraction tube 7 to obtain a product. The extracted titanium tetrachloride aqueous solution is aerated with nitrogen gas or air as necessary to adjust the hydrochloric acid concentration in the titanium tetrachloride aqueous solution and remove the dissolved organic solvent. Further, the recovered organic solvent can be reused by extracting the recovered organic solvent from the recovered organic solvent extraction pipe 6 and putting it in the mixing tank 2.

また、反応槽1での攪拌速度を調整すれば、四塩化チタンの有機溶媒溶液及び水を、連続的に反応槽1に供給し、且つ生成する四塩化チタン水溶液を反応槽1から連続的に抜き出すと同時に、回収有機溶媒を連続的に抜き出すことにより、連続的な四塩化チタン水溶液の製造を行うことができる。   Moreover, if the stirring speed in the reaction tank 1 is adjusted, the organic solvent solution of titanium tetrachloride and water are continuously supplied to the reaction tank 1, and the generated titanium tetrachloride aqueous solution is continuously supplied from the reaction tank 1. Simultaneously withdrawing, the recovered organic solvent is continuously withdrawn, whereby a continuous aqueous solution of titanium tetrachloride can be produced.

また、図2は、本発明の製造方法を連続式で行なう場合の実施形態の一例を示すフロー図である。ラインミキサー33には、水供給管23、四塩化チタン供給管24及び回収有機溶媒抜出管26の一方が接続された混合槽22が接続されており、該ラインミキサー33は、分離槽34の側面の中央部に接続している。また、該分離槽34の側部の上部に回収有機溶媒を抜き出すための回収有機溶媒抜出管26の他方と、下部に最終製品としての四塩化チタン水溶液を抜き出すための四塩化チタン水溶液抜出管27が接続され、該回収有機溶媒抜出管26又は四塩化チタン抜出管27には定量ポンプ28a又は28bが設置されている。また、該回収有機溶媒抜出管26の途中には、分離槽34から抜出した回収有機溶媒を必要に応じて冷却するための熱交換器20が設置され、有機溶媒を供給するための有機溶媒供給管5が接続されている。また、ラインミキサー34には、水と四塩化チタンの有機溶媒溶液を均一に接触させるための内部フィンや螺旋板が内設されている。   Moreover, FIG. 2 is a flowchart which shows an example of embodiment in the case of performing the manufacturing method of this invention by a continuous type. The line mixer 33 is connected to a mixing tank 22 to which one of a water supply pipe 23, a titanium tetrachloride supply pipe 24 and a recovered organic solvent extraction pipe 26 is connected. The line mixer 33 is connected to the separation tank 34. Connected to the center of the side. Also, the other side of the recovered organic solvent extraction pipe 26 for extracting the recovered organic solvent at the upper part of the side portion of the separation tank 34 and the extraction of the aqueous solution of titanium tetrachloride for extracting the titanium tetrachloride aqueous solution as the final product at the lower part. A pipe 27 is connected, and a metering pump 28 a or 28 b is installed in the recovered organic solvent extraction pipe 26 or the titanium tetrachloride extraction pipe 27. Further, a heat exchanger 20 for cooling the recovered organic solvent extracted from the separation tank 34 as necessary is installed in the middle of the recovered organic solvent extraction pipe 26, and the organic solvent for supplying the organic solvent A supply pipe 5 is connected. Further, the line mixer 34 is provided with internal fins and a spiral plate for uniformly bringing water into contact with the organic solvent solution of titanium tetrachloride.

図2中、予め混合槽22に、四塩化チタン供給管24から四塩化チタンを、有機溶媒供給管25及び回収有機溶媒抜出管26を経て有機溶媒を投入し、混合して四塩化チタンの有機溶媒溶液を調製し、該四塩化チタンの有機溶媒溶液と、水を、ラインミキサー33に連続的に供給する。このとき水の温度は0〜30℃の範囲である。そして、ラインミキサー33中で接触工程を行ない、得た四塩化チタンの有機溶媒溶液と水の混合物を、分離槽34に移送する。該分離槽34中で、回収有機溶媒層31と四塩化チタン水溶液層は2層に分離され、四塩化チタン水溶液抜出管27から四塩化チタン水溶液を抜き出し製品とし、回収有機溶媒抜出管26から回収有機溶媒を抜き出し、混合槽2に投入し、該回収有機溶媒を再使用する。四塩化チタン水溶液及び回収有機溶媒は、分離槽34から、連続的に抜き出すことができるので、図2のフローを用いて本発明の製造方法を行なえば、連続的に四塩化チタン水溶液を製造することができる。   In FIG. 2, titanium tetrachloride is introduced into the mixing tank 22 in advance from the titanium tetrachloride supply pipe 24, and the organic solvent is introduced through the organic solvent supply pipe 25 and the recovered organic solvent extraction pipe 26. An organic solvent solution is prepared, and the organic solvent solution of titanium tetrachloride and water are continuously supplied to the line mixer 33. At this time, the temperature of water is in the range of 0 to 30 ° C. Then, a contact process is performed in the line mixer 33, and the obtained mixture of titanium tetrachloride with an organic solvent solution and water is transferred to the separation tank 34. In the separation tank 34, the recovered organic solvent layer 31 and the titanium tetrachloride aqueous solution layer are separated into two layers. The titanium tetrachloride aqueous solution is extracted from the titanium tetrachloride aqueous solution extraction tube 27, and the recovered organic solvent extraction tube 26 is obtained. The recovered organic solvent is extracted from the mixture, put into the mixing tank 2, and the recovered organic solvent is reused. Since the aqueous solution of titanium tetrachloride and the recovered organic solvent can be continuously extracted from the separation tank 34, the aqueous solution of titanium tetrachloride is continuously produced by carrying out the production method of the present invention using the flow of FIG. be able to.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

(実施例)
図2に示すフローを有する製造装置を用いて、四塩化チタン水溶液の製造を行なった。予め混合槽22に四塩化チタンを20L、n−ヘプタンを100L投入し、四塩化チタンの有機溶媒溶液を調製した。該四塩化チタンの有機溶媒溶液を560L/時間でラインミキサー33に連続的に供給し、同時に水を400L/時間でラインミキサー33に連続的に供給して接触工程を行なった。次いで接触工程により得た四塩化チタンの有機溶媒溶液と水の混合物を分離槽34に移送し、回収有機溶媒層と四塩化チタン水溶液層に分離させた。分離槽34から、四塩化チタン水溶液を、400L/時間で連続的に抜出し、最終製品とした。また、分離槽34から、回収n−ヘプタンを400L/時間で連続的に抜出し、熱交換器で20℃に冷却後、400L/時間で混合槽22に供給し、同時に四塩化チタンを160L/時間で連続的に混合槽22に供給した。以上の条件で四塩化チタン水溶液の連続製造を10時間行った。
(Example)
A titanium tetrachloride aqueous solution was manufactured using a manufacturing apparatus having the flow shown in FIG. In advance, 20 L of titanium tetrachloride and 100 L of n-heptane were charged into the mixing tank 22 in advance to prepare an organic solvent solution of titanium tetrachloride. The organic solvent solution of titanium tetrachloride was continuously supplied to the line mixer 33 at 560 L / hour, and at the same time, water was continuously supplied to the line mixer 33 at 400 L / hour to perform the contact step. Subsequently, the mixture of the organic solvent solution of titanium tetrachloride and water obtained by the contact process was transferred to the separation tank 34 and separated into a recovered organic solvent layer and a titanium tetrachloride aqueous solution layer. The titanium tetrachloride aqueous solution was continuously extracted from the separation tank 34 at 400 L / hour to obtain a final product. Further, the recovered n-heptane is continuously extracted from the separation tank 34 at 400 L / hour, cooled to 20 ° C. with a heat exchanger, and then supplied to the mixing tank 22 at 400 L / hour, and at the same time, titanium tetrachloride is 160 L / hour. And continuously fed to the mixing tank 22. Under the above conditions, the titanium tetrachloride aqueous solution was continuously produced for 10 hours.

その結果、10時間の連続製造後のラインミキサー33内及び分離槽34内には、固形物の析出はなかった。また、四塩化チタン水溶液の最終製品中にも固形物はなく、品質の良い四塩化チタン水溶液であった。該四塩化チタン水溶液中のチタン含有量は10.1重量%、塩素含有量は29.5重量%であった。この時、四塩化チタン水溶液の製造速度は、平均610kg/時間であった。
(比較例)
図1に示すフローを有する製造装置を用いて、四塩化チタン水溶液の製造を行なった。先ず水供給管3から反応槽1に水を50L投入した。次に、四塩化チタンを四塩化チタン供給管4及び混合槽2を経て、直接反応槽1に160L/時間で供給し、攪拌を行なった。10分経過したところで、水を400L/時間で反応槽1に供給しながら、生成した四塩化チタン水溶液を、反応槽1から400L/時間で抜出した。以上の条件で四塩化チタンの連続製造を行った。その結果、1時間経過した時点で、四塩化チタン水溶液中に白色の固形物が大量に発生したため運転を中止した。
As a result, no solid matter was precipitated in the line mixer 33 and the separation tank 34 after 10 hours of continuous production. Moreover, there was no solid substance in the final product of the titanium tetrachloride aqueous solution, and the titanium tetrachloride aqueous solution had good quality. The titanium content in the titanium tetrachloride aqueous solution was 10.1% by weight, and the chlorine content was 29.5% by weight. At this time, the production rate of the titanium tetrachloride aqueous solution was an average of 610 kg / hour.
(Comparative example)
The titanium tetrachloride aqueous solution was manufactured using the manufacturing apparatus which has the flow shown in FIG. First, 50 L of water was charged into the reaction tank 1 from the water supply pipe 3. Next, titanium tetrachloride was supplied directly to the reaction tank 1 through the titanium tetrachloride supply pipe 4 and the mixing tank 2 at 160 L / hour and stirred. When 10 minutes passed, the aqueous titanium tetrachloride solution was withdrawn from the reaction tank 1 at 400 L / hour while supplying water to the reaction tank 1 at 400 L / hour. Under the above conditions, titanium tetrachloride was continuously produced. As a result, when 1 hour passed, a large amount of white solid was generated in the aqueous titanium tetrachloride solution, so the operation was stopped.

四塩化チタン水溶液の製造をバッチ式で行なう場合のフロー図である。It is a flowchart in the case of manufacturing a titanium tetrachloride aqueous solution batchwise. 四塩化チタン水溶液の製造を連続式で行なう場合のフロー図である。It is a flowchart in the case of manufacturing a titanium tetrachloride aqueous solution by a continuous type.

符号の説明Explanation of symbols

1 反応槽
2、22 混合槽
3、23 水供給管
4、24 四塩化チタン供給管
5、25 有機溶媒供給管
6、26 回収有機溶媒抜出管
7、27 四塩化チタン水溶液抜出管
8a、8b、28a、28b 定量ポンプ
10、20 熱交換器
11、31 回収有機溶媒層
12、32 四塩化チタン水溶液層
33 ラインミキサー
34 分離槽
DESCRIPTION OF SYMBOLS 1 Reaction tank 2,22 Mixing tank 3,23 Water supply pipe 4,24 Titanium tetrachloride supply pipe 5,25 Organic solvent supply pipe 6,26 Recovery organic solvent extraction pipe 7,27 Titanium tetrachloride aqueous solution extraction pipe 8a, 8b, 28a, 28b Metering pump 10, 20 Heat exchanger 11, 31 Recovery organic solvent layer 12, 32 Titanium tetrachloride aqueous solution layer 33 Line mixer 34 Separation tank

Claims (6)

四塩化チタンと、脂肪族炭化水素化合物、芳香族炭化水素化合物、ハロゲン含有脂肪族炭化水素化合物、ハロゲン含有芳香族炭化水素化合物及びシリコンオイルから選ばれる1種又は2種以上の有機溶媒を混合して四塩化チタン濃度1〜80重量%の四塩化チタンの有機溶媒溶液を得る工程と、
該四塩化チタンの有機溶媒溶液と、該四塩化チタン1モルに対し5〜30モルの水とを四塩化チタン水溶液が生成するように接触させる接触工程と、
前記接触工程の後に、四塩化チタン水溶液と回収有機溶媒の分離を行なう分離工程を有することを特徴とする四塩化チタン水溶液の製造方法。
Mixing titanium tetrachloride with one or more organic solvents selected from aliphatic hydrocarbon compounds, aromatic hydrocarbon compounds, halogen-containing aliphatic hydrocarbon compounds, halogen-containing aromatic hydrocarbon compounds and silicon oil A step of obtaining an organic solvent solution of titanium tetrachloride having a titanium tetrachloride concentration of 1 to 80% by weight ;
Contacting the organic solvent solution of the titanium tetrachloride with 5 to 30 moles of water per mole of the titanium tetrachloride so that an aqueous titanium tetrachloride solution is formed ;
A method for producing an aqueous titanium tetrachloride solution, comprising a separation step of separating the aqueous titanium tetrachloride solution and the recovered organic solvent after the contacting step .
前記有機溶媒が、ペンタン、ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、イソデカン、シクロヘキサン及びこれらの混合物;流動パラフィン、ベンゼン、トルエン、キシレン、エチルベンゼン及びこれらの混合物;塩化メチレン;クロロベンゼン及びジクロロベンゼン並びにジメチルポリシロキサンから選ばれる1種又は2種以上であることを特徴とする請求項1記載の四塩化チタン水溶液の製造方法。 The organic solvent is pentane, hexane, heptane, octane, isooctane, decane, isodecane, cyclohexane and mixtures thereof; liquid paraffin, benzene, toluene, xylene, ethylbenzene and mixtures thereof; methylene chloride; chlorobenzene and dichlorobenzene and dimethylpoly The method for producing an aqueous titanium tetrachloride solution according to claim 1, wherein the aqueous solution is one or more selected from siloxane . 前記四塩化チタンの有機溶媒溶液と水との接触は、(1)両者を同時に反応槽に投入する方法、(2)両者をラインミキサーにより同時に接触させる方法、(3)予め四塩化チタンの有機溶媒溶液を反応槽に投入し、これに水を添加する方法および(4)予め水を反応槽に投入し、これに四塩化チタンの有機溶媒溶液を添加する方法のいずれかであることを特徴とする請求項1又は2に記載の四塩化チタン水溶液の製造方法。The contact between the organic solvent solution of titanium tetrachloride and water is as follows: (1) a method in which both are put into a reaction tank at the same time, (2) a method in which both are simultaneously contacted by a line mixer, and (3) an organic solution of titanium tetrachloride in advance. It is one of a method of adding a solvent solution to a reaction vessel and adding water thereto, and (4) a method of adding water to the reaction vessel in advance and adding an organic solvent solution of titanium tetrachloride thereto. The method for producing an aqueous titanium tetrachloride solution according to claim 1 or 2. 前記接触工程において、水の比重に対する有機溶媒溶液の比重の比を、略1とすることを特徴とする請求項1〜3いずれか1項記載の四塩化チタン水溶液の製造方法。   The method for producing an aqueous titanium tetrachloride solution according to any one of claims 1 to 3, wherein, in the contacting step, a ratio of a specific gravity of the organic solvent solution to a specific gravity of water is approximately 1. 前記分離工程が、2層分離により四塩化チタン水溶液と回収有機溶媒の分離を行なう2層分離工程であることを特徴とする請求項1〜4いずれか1項記載の四塩化チタン水溶液の製造方法。 The separation step, two layers four manufacturing method of a titanium chloride aqueous solution according to any one of the preceding claims, characterized in that a two-layer separation step for separating the recovered organic solvent with titanium tetrachloride aqueous solution by separation . 前記2層分離工程により得た前記回収有機溶媒を、前記有機溶媒として再使用することを特徴とする請求項5記載の四塩化チタン水溶液の製造方法。   The method for producing an aqueous titanium tetrachloride solution according to claim 5, wherein the recovered organic solvent obtained by the two-layer separation step is reused as the organic solvent.
JP2003422307A 2003-12-19 2003-12-19 Method for producing aqueous titanium tetrachloride solution Expired - Fee Related JP4553233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003422307A JP4553233B2 (en) 2003-12-19 2003-12-19 Method for producing aqueous titanium tetrachloride solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003422307A JP4553233B2 (en) 2003-12-19 2003-12-19 Method for producing aqueous titanium tetrachloride solution

Publications (2)

Publication Number Publication Date
JP2005179118A JP2005179118A (en) 2005-07-07
JP4553233B2 true JP4553233B2 (en) 2010-09-29

Family

ID=34783223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003422307A Expired - Fee Related JP4553233B2 (en) 2003-12-19 2003-12-19 Method for producing aqueous titanium tetrachloride solution

Country Status (1)

Country Link
JP (1) JP4553233B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112239224A (en) * 2019-07-16 2021-01-19 中国石油化工股份有限公司 Method for recovering titanium tetrachloride

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270999A (en) * 1976-12-09 1977-06-13 Fuji Chitan Kogyo Kk Continuous manufacturing process for titanium tetrachloride solusion
JPH0230622A (en) * 1988-05-23 1990-02-01 Amoco Corp Method and apparatus for recovering high purity toluene, hexane, titanium tetrachloride and tetrahydrofuran from mixture
JPH11171544A (en) * 1997-08-20 1999-06-29 Showa Denko Kk Titanium-containing material and its production
WO1999058451A1 (en) * 1998-05-14 1999-11-18 Showa Denko Kabushiki Kaisha Titanium oxide sol, thin film, and processes for producing these
JP2002029746A (en) * 2000-07-05 2002-01-29 Toho Titanium Co Ltd Method for producing aqueous titanium tetrachloride solution
JP2002029747A (en) * 2000-07-05 2002-01-29 Toho Titanium Co Ltd Method for producing aqueous titanium tetrachloride solution and apparatus therefor
WO2002049963A1 (en) * 2000-12-19 2002-06-27 Idemitsu Kosan Co., Ltd. Titanium compound, aqueous solution containing titanium, and process for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270999A (en) * 1976-12-09 1977-06-13 Fuji Chitan Kogyo Kk Continuous manufacturing process for titanium tetrachloride solusion
JPH0230622A (en) * 1988-05-23 1990-02-01 Amoco Corp Method and apparatus for recovering high purity toluene, hexane, titanium tetrachloride and tetrahydrofuran from mixture
JPH11171544A (en) * 1997-08-20 1999-06-29 Showa Denko Kk Titanium-containing material and its production
WO1999058451A1 (en) * 1998-05-14 1999-11-18 Showa Denko Kabushiki Kaisha Titanium oxide sol, thin film, and processes for producing these
JP2002029746A (en) * 2000-07-05 2002-01-29 Toho Titanium Co Ltd Method for producing aqueous titanium tetrachloride solution
JP2002029747A (en) * 2000-07-05 2002-01-29 Toho Titanium Co Ltd Method for producing aqueous titanium tetrachloride solution and apparatus therefor
WO2002049963A1 (en) * 2000-12-19 2002-06-27 Idemitsu Kosan Co., Ltd. Titanium compound, aqueous solution containing titanium, and process for producing the same

Also Published As

Publication number Publication date
JP2005179118A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
US7780931B2 (en) Preparation for Tio2 powders from a waste liquid containing titanium compounds
EP1194379B1 (en) Processing titaniferous ore to titanium dioxide pigment
US5976403A (en) Organoalkali compounds and their preparation
FR2596302A1 (en) PROCESS FOR TREATING CONTAMINATED CHLOROSILANES
NL8004489A (en) METHOD FOR PREPARING TITAN COMPOUNDS USING A REDUCING AGENT
JPS6241165B2 (en)
JP4553233B2 (en) Method for producing aqueous titanium tetrachloride solution
CN101687136A (en) removal of contaminants from by-product acids
JP2013237664A (en) Method of utilizing fluoroalkyl iodide
JP6762205B2 (en) Titanium compound recovery method, titanium oxide production method and alkali titanate production method
US3436184A (en) Process for recovering phosphorus from sludge
JP3734687B2 (en) Method for producing aqueous titanium tetrachloride solution
EP2265548B1 (en) Method for hydrolyzing metallic salts with emulsions
JP3734688B2 (en) Method and apparatus for producing aqueous titanium tetrachloride solution
NL8006505A (en) PROCESS FOR PREPARING A STABLE TITANO OXIDE SULPHATE SOLUTION.
JP2008519750A (en) Production of TiO2 powder from waste liquid containing titanium compound
US20220162068A1 (en) Processes useful in the manufacture of cyclododecasulfur
KR830002446B1 (en) Method for producing titanium compound
NO811842L (en) DISSOLUTION OF ALKYL SODIUM COMPOUNDS AND PROCEDURES FOR PRODUCING THEREOF
JP2003128594A (en) Method for recovering organic solvent
JPS6141343B2 (en)
JP2002068718A (en) Method for manufacturing free hydroxylamine aqueous solution at high yield
CN1754630A (en) Hydrolysis method for lithium slag from lithium alkyl synthesis
CN117509719A (en) Method for preparing rutile type titanium dioxide from waste denitration catalyst
CN113636590A (en) Method for purifying non-metal impurities in titanium-containing filtrate

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20061115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees