JP2002029747A - Method for producing aqueous titanium tetrachloride solution and apparatus therefor - Google Patents

Method for producing aqueous titanium tetrachloride solution and apparatus therefor

Info

Publication number
JP2002029747A
JP2002029747A JP2000203492A JP2000203492A JP2002029747A JP 2002029747 A JP2002029747 A JP 2002029747A JP 2000203492 A JP2000203492 A JP 2000203492A JP 2000203492 A JP2000203492 A JP 2000203492A JP 2002029747 A JP2002029747 A JP 2002029747A
Authority
JP
Japan
Prior art keywords
titanium tetrachloride
aqueous solution
water
titanium
reaction system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000203492A
Other languages
Japanese (ja)
Other versions
JP3734688B2 (en
Inventor
Matsuhide Horikawa
松秀 堀川
Atsushi Matsuda
敦司 松田
Tsuneo Kamiya
恒雄 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2000203492A priority Critical patent/JP3734688B2/en
Publication of JP2002029747A publication Critical patent/JP2002029747A/en
Application granted granted Critical
Publication of JP3734688B2 publication Critical patent/JP3734688B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for producing a high purity aqueous titanium tetrachloride solution of stable quality on an industrial scale while preventing the generation of hydrochloric acid gas and the deposition of solid matter due to heat generation. SOLUTION: (a) Titanium tetrachloride is fed into water in a reaction vessel 1 and reacted with the water, (b) when titanium oxide hydrate deposits, it is dissolved, and (c) an aqueous titanium tetrachloride solution is formed by separately and simultaneously feeding titanium tetrachloride and water. In at least the step (c), the electric conductivity of the aqueous titanium tetrachloride solution is measured with sensors S1 and S2 attached to a circulation system 4 or the specific gravity of the solution is measured and the amount of titanium tetrachloride and/or water to be fed is controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、四塩化チタン水溶
液の製造方法及び装置に関し、詳しくは、生成した四塩
化チタン水溶液の電気伝導度の測定、更には生成した四
塩化チタン水溶液の比重の測定を通して、高純度でかつ
品質の安定した四塩化チタン水溶液を、工業的規模にお
いて、より安全で、効率良く製造する方法及び装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing an aqueous solution of titanium tetrachloride, and more particularly to the measurement of the electric conductivity of an aqueous solution of titanium tetrachloride and the measurement of the specific gravity of the aqueous solution of titanium tetrachloride. The present invention relates to a method and an apparatus for producing a titanium tetrachloride aqueous solution having high purity and stable quality on an industrial scale more safely and efficiently.

【0002】[0002]

【従来の技術】四塩化チタンは古くから、クロール法に
よる金属チタンの中間原料、或いは酸化チタンの中間原
料として利用されている。しかし、四塩化チタンは反応
性が高く、空気中の酸素或いは水分と接触すると白煙を
出し激しく反応するため、窒素など不活性ガス雰囲気中
で取り扱わねばならない。そのため、四塩化チタンは、
酸素或いは水分を嫌うプロセスにおいて或いは汎用工業
製品の製造以外の用途については、大気中でも安定で取
り扱いが容易な四塩化チタン水溶液の形で広く利用され
ている。例えば、近年開発が盛んにおこなわれている光
触媒用などの酸化チタンの原料であるアルコキシチタン
などの有機チタン化合物の原料、パール顔料の原料、そ
の他各種チタン化合物の中間原料など近年その需要は伸
びつつある。
2. Description of the Related Art Titanium tetrachloride has long been used as an intermediate raw material of titanium metal or an intermediate raw material of titanium oxide by the Kroll method. However, titanium tetrachloride is highly reactive, emits white smoke when it comes into contact with oxygen or moisture in the air, and reacts violently. Therefore, it must be handled in an inert gas atmosphere such as nitrogen. Therefore, titanium tetrachloride
For applications other than production of general-purpose industrial products in processes that dislike oxygen or moisture, it is widely used in the form of an aqueous titanium tetrachloride solution that is stable and easy to handle even in the atmosphere. For example, in recent years, the demand for organic titanium compounds such as alkoxytitanium, which is a raw material for titanium oxide for photocatalysts, etc., which are being actively developed in recent years, raw materials for pearl pigments, and intermediate raw materials for various titanium compounds has been increasing in recent years. is there.

【0003】四塩化チタン水溶液は、一般に四塩化チタ
ンを水或いは塩酸水溶液と接触し反応させることにより
製造されるが、その際の発熱が著しく、部分的に80℃
以上に過熱され酸化チタンの水和物が析出し、その後も
析出物が溶解せず、そのため四塩化チタン水溶液の製造
が困難となる。また、四塩化チタン水溶液は酸性である
ため、その反応容器は樹脂など耐酸性材料を用いるが、
上記発熱により反応容器の劣化が激しく、コストアップ
の原因であった。更には、上記反応の際、塩酸ガスが激
しく多量に発生するため、その処理の問題また労働環境
上の問題もあった。
[0003] An aqueous solution of titanium tetrachloride is generally produced by contacting titanium tetrachloride with water or an aqueous solution of hydrochloric acid and reacting the solution.
The hydrate of titanium oxide precipitates due to the above heating, and the precipitate does not dissolve thereafter, which makes it difficult to produce an aqueous solution of titanium tetrachloride. Also, since the titanium tetrachloride aqueous solution is acidic, the reaction vessel uses an acid-resistant material such as a resin,
Due to the heat generation, the reaction vessel was severely deteriorated, which caused an increase in cost. Furthermore, during the above-mentioned reaction, hydrochloric acid gas is generated in a large amount intensely, so that there is a problem in its treatment and a problem in working environment.

【0004】上記のような問題を避けるためには、四塩
化チタン中に水を少量ずつ滴下するか、或いは水中に四
塩化チタンを少量ずつ滴下し、発熱及び塩酸ガスの発生
を抑制しながら四塩化チタン水溶液を調製するが、この
ような水若しくは四塩化チタンを少量ずつ滴下する方法
では、工業的規模の生産性が低くコストアップとなる。
In order to avoid the above-mentioned problems, water is dropped into titanium tetrachloride little by little, or titanium tetrachloride is dropped into water little by little, while suppressing heat generation and generation of hydrochloric acid gas. Although a titanium chloride aqueous solution is prepared, such a method of dropping water or titanium tetrachloride little by little results in low productivity on an industrial scale and high cost.

【0005】また、特開平52−70999号公報に
は、四塩化チタン水溶液の連続製造方法についての困難
さが記載され、四塩化チタンに水を添加する場合には、
水添過程で現れる粘稠性の塩基性生成物の分散溶解、発
生する塩酸ガスの処理等撹拌装置に工夫を要し、又公害
防止設備の配慮を要する等の為添加する水の量は著しく
制限され、それ以上の添加を行うと、生成する塩基性生
成物により四塩化チタン表面が覆われ、水の均一な混合
が阻害され、爆発的な反応が起こり易く、塩酸ガスの発
生も多く、容器の破損及び作業員への危険性が増大する
との記載がある。逆に、水に四塩化チタンを添加する場
合にも、添加初期の温度が低い間は、四塩化チタンの加
水分解が起こり、コロイド状酸化チタン水和物の生成が
認められ、使用に不適当な場合も起こる可能性が大であ
る。しかし、塩酸水溶液、或いはあらかじめ調整した四
塩化チタン水溶液を溶媒に使用すれば、この加水分解に
よる影響はおさえられるが、水添の場合と同様四塩化チ
タンの添加注入口の閉塞が起こりやすいので、反応容器
に強力な撹拌機を取り付けると共に、前記した閉塞対策
を講じなければならないとしている。このように、四塩
化チタン水溶液に製造には、強力な撹拌装置や析出する
塩基性生成物による添加注入口の閉塞防止対策、発生す
る塩酸ガスによる公害対策等を必要とし、又添加速度の
規制による生産性の制限の点から安全且つ容易にして、
経済的な装置の開発が望まれるとして、ここでは、四塩
化チタンを添加するに際し用いる溶媒に、噴流を形成
し、ここに四塩化チタンを添加する四塩化チタン水溶液
の連続製造方法を開示している。噴流による分散力を利
用して反応容器に撹拌機を取り付ける必要性を排除し、
又噴流形成装置内に生じる吸引力により、四塩化チタン
を注入するため、閉塞防止対策が不要であり、そして発
生する塩酸ガスの装置外への漏れもなくその対策が不要
になるというものである。
[0005] Further, Japanese Patent Application Laid-Open No. 52-70999 describes difficulties in a continuous production method of an aqueous solution of titanium tetrachloride. When water is added to titanium tetrachloride,
The mixing and dispersing of the viscous basic product appearing in the hydrogenation process, the treatment of the generated hydrochloric acid gas, etc. require a device for stirring, and the amount of water added is remarkable due to the need for consideration of pollution prevention equipment. If the addition is restricted, the addition of more than that will cover the titanium tetrachloride surface with the generated basic product, impeding uniform mixing of water, easily causing an explosive reaction, and generating a lot of hydrochloric acid gas, There is a statement that the damage to the container and the danger to workers will increase. Conversely, when titanium tetrachloride is added to water, hydrolysis of titanium tetrachloride occurs and the formation of colloidal titanium oxide hydrate is observed while the initial temperature of addition is low, which is unsuitable for use. It is very likely that this will happen. However, if an aqueous solution of hydrochloric acid or an aqueous solution of titanium tetrachloride prepared in advance is used as a solvent, the influence of this hydrolysis can be suppressed, but as in the case of hydrogenation, the addition and injection port of titanium tetrachloride tends to be clogged. It is said that a strong stirrer must be attached to the reaction vessel, and that the above-mentioned blockage countermeasures must be taken. As described above, production of an aqueous titanium tetrachloride solution requires a strong stirring device, measures to prevent the addition inlet from being blocked by a basic product that precipitates, measures to prevent pollution due to hydrochloric acid gas generated, and the like, and also regulates the rate of addition. Safe and easy in terms of productivity limitations due to
As the development of an economical device is desired, here, a solvent used when adding titanium tetrachloride, a jet is formed, and a continuous production method of titanium tetrachloride aqueous solution in which titanium tetrachloride is added is disclosed. I have. Eliminates the need to attach a stirrer to the reaction vessel using the dispersion force of the jet,
In addition, since titanium tetrachloride is injected by the suction force generated in the jet forming device, measures for preventing blockage are not required, and the generated hydrochloric acid gas does not leak to the outside of the device, and the measures are not required. .

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ような従来方法では、塩酸ガスは反応溶液に溶解し塩酸
ガスの外部への発生は改善されるが、発熱は制御でき
ず、また酸化チタン水和物の膜が反応溶液の表面に生成
し、反応を継続することは困難であった。また、製造す
る四塩化チタン水溶液のチタン或いは塩素濃度などの品
質を制御し、安定した品質の四塩化チタン水溶液を製造
することが困難であった。更に、噴流を形成するための
設備を必要とし、そのコントロール及び保守も面倒であ
った。
However, in the above-mentioned conventional method, hydrochloric acid gas is dissolved in the reaction solution, and the generation of hydrochloric acid gas to the outside is improved. However, heat generation cannot be controlled, and titanium oxide water is difficult to control. A hydrate film was formed on the surface of the reaction solution, and it was difficult to continue the reaction. Further, it has been difficult to control the quality of the titanium tetrachloride aqueous solution to be produced, such as the concentration of titanium or chlorine, and to produce a titanium tetrachloride aqueous solution of stable quality. In addition, equipment for forming the jet was required, and its control and maintenance were cumbersome.

【0007】更に、上述したように四塩化チタン水溶液
は液相法による酸化チタン微粒子の製造の原料として利
用されるが、近年酸化チタン微粒子は、誘電体物質であ
るチタン酸バリウムなど電子材料の原料、チタン酸リチ
ウムなどの電池材料の原料、或いは光照射で励起される
ことにより生じる酸化チタンの光触媒作用また親水性機
能を利用した機能性材料などに利用されつつあり、高純
度が要求される。しかしながら、そのような高純度の酸
化チタンを得るためには高純度の四塩化チタン水溶液が
必要となり、従来方法では、未溶解固形分が残留するた
め、所望純度のものが得られなかった。
Further, as described above, an aqueous solution of titanium tetrachloride is used as a raw material for producing titanium oxide fine particles by a liquid phase method. In recent years, titanium oxide fine particles have been used as a raw material for electronic materials such as barium titanate which is a dielectric substance. , A raw material of a battery material such as lithium titanate, or a functional material utilizing a photocatalytic action or a hydrophilic function of titanium oxide generated by being excited by light irradiation, and is required to have high purity. However, in order to obtain such high-purity titanium oxide, a high-purity titanium tetrachloride aqueous solution is required. In the conventional method, undissolved solid content remains, and thus, a desired-purity titanium oxide cannot be obtained.

【0008】従って、本発明の課題は、四塩化チタン水
溶液の製造において、上記従来技術に残された、塩酸ガ
スの発生、発熱による固形物析出の問題を解決し、さら
に連続製造において製品の品質を効率良く制御し、高純
度でかつ品質の安定した四塩化チタン水溶液を工業的規
模で効率良く製造する方法を提供することにある。換言
すれば、四塩化チタンを四塩化チタン水溶液にする場合
に、四塩化チタンを溶解・加水分解する際、多量の発熱
(分解・溶解)や塩化水素ガスの発生があり、またチタ
ン水和物の膜が生成して反応できない場合もあり、これ
らを防止するため、四塩化チタンを溶解する時に溶液を
冷却したり、投入部での局所反応を避けるために四塩化
チタンの滴下量を絞る必要があり、多量の四塩化チタン
を投入・溶解することが困難であったことに鑑み、本発
明はより安全で、効率的な、高純度でかつ品質の安定し
た四塩化チタン水溶液を工業的規模で製造する方法を開
発することを課題とするものである。
Accordingly, an object of the present invention is to solve the problems of generation of hydrochloric acid gas and precipitation of solids due to heat generation, which remain in the above prior art, in the production of an aqueous solution of titanium tetrachloride. The present invention is to provide a method for efficiently producing a titanium tetrachloride aqueous solution having high purity and stable quality on an industrial scale with high efficiency. In other words, when titanium tetrachloride is converted to an aqueous solution of titanium tetrachloride, a large amount of heat is generated (decomposition / dissolution) and hydrogen chloride gas is generated when titanium tetrachloride is dissolved and hydrolyzed, and titanium hydrate is also used. In some cases, it is necessary to cool down the solution when dissolving titanium tetrachloride or to reduce the amount of titanium tetrachloride to avoid local reaction in the charging section. In view of the fact that it was difficult to introduce and dissolve a large amount of titanium tetrachloride, the present invention provides a safer, more efficient, higher-purity and more stable titanium tetrachloride aqueous solution on an industrial scale. It is an object of the present invention to develop a method of manufacturing by using the method.

【0009】[0009]

【課題を解決するための手段】かかる実情において、本
発明者らは鋭意検討を行った結果、四塩化チタンと水と
の反応により生成する化合物の化学的特性を利用し、あ
る特定の条件及び制御方法を用いて製造することにより
効率良く、高純度でかつ品質の安定した四塩化チタン水
溶液を工業的規模で製造する方法を見出し、本発明を完
成するに至った。すなわち、最初に述べたように、Ti
Cl4は水との反応性が著しく、水分と接触すると多量
の熱を発生し、塩酸とTin(OH)mClxで表すこ
とのできる化合物となる。Ti(iv)の酸性溶液中で
の溶存状態についてはTi1+とTiO2+の両者が考えら
れるが、酸塩基滴定法によりTiO2+の形で存在してい
ると云われている。また、pH<1の塩酸酸性溶液中で
はTiO2+の他、ポリカチオンとして[(TiO)
8(OH)124+が存在していると云われている。塩化
物イオンを含む水溶液中では、Ti(iv)は、TiO
(OH25 2+のアクアイオンの形で存在しており、この
ようなチタニルイオンTiO2+(配位水分子を省略)は
遊離水素イオンの濃度低下と共にポリカチオン[(Ti
O)8(OH)124+に変わり、pH1付近からは逐次
TiO(OH)2となって析出物は[(TiO)(O
H)2]nの形(酸化チタン水和物)で重合析出すると
云われている。本発明者は、この化学平衡を利用して、
初期溶解は塩酸濃度の低い水溶液相で行い(この段階で
酸化チタン水和物が析出することがある)、更にTiC
4の加水分解を進め、分解発生するHCl濃度を増加
させ、同時にこの際の発熱を利用して、[(TiO)
(OH)2]nの析出が起こってもそれをを再溶解させ
る方法が有益と判断した。すなわち、従来の方法では、
酸化チタン水和物が析出すると品質に悪影響を与えまた
水和物の膜形成により反応継続を困難にしていたため、
初期段階での酸化チタン水和物の析出を防止すべく、第
1段階反応温度をある程度下げたり、水ではなく塩酸水
溶液中に四塩化チタンを供給するという対策がとられて
いた。しかしながら、そうした対策を為さずとも、反応
溶液中の塩素濃度を制御し、また四塩化チタンと水の反
応熱を利用することにより、反応初期段階(第1段階反
応)では加熱或いは塩酸を使用せず、酸化チタン水和物
を析出した場合にはこれを溶解し(第2段階反応)、そ
の後四塩化チタンと水を同時に供給し(第3段階反
応)、発生する反応熱を吸収し、かつ固形物の析出を抑
えることにより、最終的に品質の高い四塩化チタン水溶
液を工業規模で製造することができることが判明したも
のである。
Under such circumstances, the present inventors have conducted intensive studies and as a result, have taken advantage of the chemical properties of the compound formed by the reaction between titanium tetrachloride and water to obtain specific conditions and conditions. The present inventors have found a method for efficiently producing a titanium tetrachloride aqueous solution having high purity and stable quality by using a control method on an industrial scale, and have completed the present invention. That is, as mentioned earlier, Ti
Cl 4 has a remarkable reactivity with water, generates a large amount of heat upon contact with water, and becomes a compound that can be represented by hydrochloric acid and Tin (OH) mClx. Regarding the dissolved state of Ti (iv) in an acidic solution, both Ti 1+ and TiO 2+ can be considered, but it is said that it exists in the form of TiO 2+ by an acid-base titration method. In addition, in a hydrochloric acid solution having a pH <1, besides TiO 2 + , [(TiO)
8 (OH) 12 ] 4+ is said to be present. In an aqueous solution containing chloride ions, Ti (iv) becomes TiO
(OH 2 ) 5 2+ aqua ions exist, and such titanyl ions TiO 2+ (coordination water molecules are omitted) decrease in concentration of free hydrogen ions and polycation [(Ti
O) 8 (OH) 12 ] 4+ , and from around pH 1, it becomes TiO (OH) 2 sequentially and the precipitate is [(TiO) (O
H) 2 ] n (titanium oxide hydrate). The present inventor has used this chemical equilibrium to
Initial dissolution is performed in an aqueous solution phase having a low hydrochloric acid concentration (titanium oxide hydrate may precipitate at this stage).
promote hydrolysis of l 4, increasing the HCl concentration to decompose generated, by utilizing the heat generated during the same time, [(TiO)
Even if precipitation of (OH) 2 ] n occurred, a method of re-dissolving it was determined to be useful. That is, in the conventional method,
Precipitation of titanium oxide hydrate adversely affected the quality and the formation of a hydrate film made it difficult to continue the reaction.
In order to prevent the precipitation of titanium oxide hydrate in the initial stage, measures have been taken to lower the reaction temperature in the first stage to some extent or to supply titanium tetrachloride not in water but in an aqueous hydrochloric acid solution. However, even without taking such measures, by controlling the chlorine concentration in the reaction solution and utilizing the heat of reaction of titanium tetrachloride and water, heating or using hydrochloric acid in the initial stage of the reaction (first-stage reaction). When titanium oxide hydrate is precipitated without dissolving it, it is dissolved (second stage reaction), and then titanium tetrachloride and water are simultaneously supplied (third stage reaction) to absorb the generated heat of reaction, Further, it has been found that by suppressing the precipitation of solids, it is possible to finally produce a high-quality aqueous solution of titanium tetrachloride on an industrial scale.

【0010】特に、この目的のためには、少なくとも第
3段階反応において生成した四塩化チタン水溶液の電気
伝導度の測定、更には第3段階反応において生成した四
塩化チタン水溶液の比重の測定を通しての品質制御が有
益であることを確認した。
[0010] In particular, for this purpose, at least the measurement of the electrical conductivity of the aqueous solution of titanium tetrachloride produced in the third stage reaction and the measurement of the specific gravity of the aqueous solution of titanium tetrachloride produced in the third stage reaction are carried out. Quality control was found to be beneficial.

【0011】かくして、本発明の四塩化チタン水溶液の
製造方法は、(イ)水中に四塩化チタンを供給すること
により四塩化チタンと水を接触、反応させ、四塩化チタ
ン水溶液を生成し、(ロ)酸化チタン水和物が析出した
場合には、四塩化チタンを水1モルに対し0.1モル/
時間以上で供給することにより反応系の塩素濃度を3モ
ル/L以上として前記析出した酸化チタン水和物を反応
系に溶解させ、四塩化チタン水溶液の生成を継続し、
(ハ)その後、酸化チタン水和物を溶解させた反応系に
四塩化チタンと水を独立にかつ同時に供給することによ
り酸化チタン水和物の析出を回避しつつ所要量の四塩化
チタン水溶液を生成し、この際(イ)〜(ハ)の少なく
とも(ハ)において、生成した四塩化チタン水溶液の電
気伝導度を測定し、望ましくは同時に(ハ)において生
成した四塩化チタン水溶液の比重を測定することによ
り、測定した四塩化チタン水溶液の電気伝導度及び望ま
しくは四塩化チタン水溶液の比重に基づいて、四塩化チ
タン及び/又は水の供給量を制御することを特徴とす
る。要するに、本発明は、生成した四塩化チタン水溶液
の電気伝導度の測定を通して初期溶解時に発生する析出
物の発生を抑制し、たとえ析出しても溶解熱を利用し、
再溶解させること、及び溶解時の四塩化チタン滴下部で
の部分過熱による加水分解固形物の析出を防止するこ
と、加えて第3段階反応において、生成した四塩化チタ
ン水溶液の電気伝導度の測定、更には生成した四塩化チ
タン水溶液の比重の測定を通しての品質制御を行うこと
をポイントとする。
Thus, the method for producing an aqueous solution of titanium tetrachloride according to the present invention comprises the steps of: (a) supplying titanium tetrachloride in water to contact and react titanium tetrachloride with water to produce an aqueous solution of titanium tetrachloride; B) When titanium oxide hydrate is precipitated, titanium tetrachloride is added in an amount of 0.1 mol / mol per 1 mol of water.
By supplying over a period of time, the chlorine concentration of the reaction system is adjusted to 3 mol / L or more to dissolve the precipitated titanium oxide hydrate in the reaction system, and to continue the production of an aqueous titanium tetrachloride solution;
(C) Thereafter, titanium tetrachloride and water are independently and simultaneously supplied to the reaction system in which the titanium oxide hydrate is dissolved, so that a required amount of the titanium tetrachloride aqueous solution is added while avoiding precipitation of the titanium oxide hydrate. At this time, in at least (c) of (a) to (c), the electrical conductivity of the generated titanium tetrachloride aqueous solution is measured, and desirably at the same time, the specific gravity of the titanium tetrachloride aqueous solution generated in (c) is measured. By doing so, the supply amount of titanium tetrachloride and / or water is controlled based on the measured electric conductivity of the titanium tetrachloride aqueous solution and preferably the specific gravity of the titanium tetrachloride aqueous solution. In short, the present invention suppresses the generation of precipitates generated at the time of initial dissolution through the measurement of the electric conductivity of the generated titanium tetrachloride aqueous solution, even if the precipitation, utilizing the heat of dissolution,
Redissolving and preventing precipitation of hydrolyzed solids due to partial overheating at the titanium tetrachloride dropping part during dissolution; in addition, measurement of the electrical conductivity of the aqueous solution of titanium tetrachloride generated in the third stage reaction The point is to perform quality control by measuring the specific gravity of the produced titanium tetrachloride aqueous solution.

【0012】生成した四塩化チタン水溶液に空気又は不
活性ガスを接触させることにより四塩化チタン水溶液中
の塩素濃度を制御することができる。前記四塩化チタン
の純度が99.99重量%以上であることが好ましい。
The concentration of chlorine in the titanium tetrachloride aqueous solution can be controlled by bringing air or an inert gas into contact with the generated titanium tetrachloride aqueous solution. It is preferable that the purity of the titanium tetrachloride is 99.99% by weight or more.

【0013】さらに本発明は、四塩化チタン及び水それ
ぞれの供給管を設置した水−四塩化チタン反応系を構成
する反応槽と、該反応系を通して生成した四塩化チタン
水溶液を循環させるための循環装置とを備え、四塩化チ
タンと水を接触、反応させることにより、四塩化チタン
水溶液を生成し、酸化チタン水和物が析出した場合に
は、反応系に溶解させ、その後、酸化チタン水和物を溶
解させた反応系に四塩化チタンと水を独立にかつ同時に
供給することにより四塩化チタン水溶液を生成する四塩
化チタン水溶液の製造装置において、前記循環装置の途
中に設けられ、そして前記四塩化チタン及び水それぞれ
の供給管に設けられた流量制御弁にそれぞれ接続された
電気伝導度測定用のセンサー及び好ましくは四塩化チタ
ン水溶液の比重を測定するためのセンサーを備え、測定
した四塩化チタン水溶液の電気伝導度及び好ましくは四
塩化チタン水溶液の比重に基づいて、四塩化チタン及び
/又は水の供給量を制御することを特徴とする四塩化チ
タン水溶液の製造装置を提供する。
Further, the present invention provides a reaction tank constituting a water-titanium tetrachloride reaction system provided with respective supply pipes for titanium tetrachloride and water, and a circulation for circulating an aqueous solution of titanium tetrachloride generated through the reaction system. A titanium tetrachloride aqueous solution is produced by contacting and reacting titanium tetrachloride and water, and when titanium oxide hydrate precipitates, the titanium oxide hydrate is dissolved in the reaction system. An apparatus for producing an aqueous titanium tetrachloride solution by independently and simultaneously supplying titanium tetrachloride and water to a reaction system in which the substance is dissolved, provided in the middle of the circulation device, A sensor for measuring electric conductivity and preferably a specific gravity of an aqueous solution of titanium tetrachloride are connected to flow rate control valves provided in respective supply pipes of titanium chloride and water. For controlling the supply of titanium tetrachloride and / or water based on the measured electrical conductivity of the aqueous solution of titanium tetrachloride and preferably the specific gravity of the aqueous solution of titanium tetrachloride. An apparatus for producing a titanium aqueous solution is provided.

【0014】尚、本発明において、「酸化チタン水和
物」とは、[(TiO)(OH)2]nで表される酸化
チタン水和物或いは水酸化チタン又は含水酸化チタン、
その誘導体を包括して呼ぶものとする。
In the present invention, the term “titanium oxide hydrate” refers to a titanium oxide hydrate represented by [(TiO) (OH) 2 ] n, titanium hydroxide or hydrous titanium oxide,
Its derivatives shall be referred to collectively.

【0015】[0015]

【発明の実施の形態】以下、本発明を更に詳しく説明す
る。 (イ.第1段階反応)実質上無水の四塩化チタンは比重
1.726の無色透明な液体である。本発明の四塩化チ
タン水溶液は、先ず水中に四塩化チタンを供給し、四塩
化チタンと水を接触、反応させ、水−四塩化チタン反応
系において四塩化チタン水溶液の生成を開始する。この
とき、白色の酸化チタン水和物の固形物が一部析出する
ことがある。水中に四塩化チタンを水1モルに対し0.
05〜0.3モル/時間で供給する。このとき反応系の
塩素濃度は、0.1モル/L未満、特には0.05〜
0.1モル/Lとすることが望ましい。初期溶解は塩酸
濃度の低い水溶液相で実施する。具体的な接触及び反応
方法は、反応容器内に水を装入しておき、攪拌機で流動
させるか、或いは反応容器に循環ポンプを組み込んだ循
環流路のような循環装置を設け、水を循環させ流動させ
ておくことが望ましい。このように流動させた水中に四
塩化チタンを供給することにより、発生する塩酸ガスの
発生を抑制することができ、また酸化チタン水和物など
の析出物を再溶解させることが可能となる。特には、後
者の反応容器に反応溶液を循環させる方法において、循
環速度を大きくし、更に循環系をある程度加圧状態とし
発生する塩酸ガスの反応系外への放出を抑制することに
より、反応の際発生する塩酸ガスを反応溶液に再溶解さ
せることが望ましい。このとき反応系のpHは1以上で
あることが望ましく、特に望ましくはpH1〜2であ
る。具体的には、供給する四塩化チタンの量で制御する
が、通常水1モルに対し四塩化チタンは0.05〜0.
3モルである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. (A. First step reaction) Substantially anhydrous titanium tetrachloride is a colorless and transparent liquid having a specific gravity of 1.726. In the titanium tetrachloride aqueous solution of the present invention, titanium tetrachloride is first supplied into water, and the titanium tetrachloride and water are brought into contact with each other to react with each other. At this time, a solid of white titanium oxide hydrate may partially precipitate. Titanium tetrachloride is added to water in an amount of 0.1 mol per mol of water.
It is fed at from 0.5 to 0.3 mol / h. At this time, the chlorine concentration of the reaction system is less than 0.1 mol / L, particularly 0.05 to
Desirably, it is 0.1 mol / L. The initial dissolution is performed in an aqueous phase having a low hydrochloric acid concentration. The specific contact and reaction method is as follows: water is charged in the reaction vessel and fluidized by a stirrer, or a circulating device such as a circulation flow path incorporating a circulation pump in the reaction vessel is provided to circulate the water. It is desirable to let it flow. By supplying titanium tetrachloride to the fluidized water, generation of hydrochloric acid gas can be suppressed, and precipitates such as titanium oxide hydrate can be redissolved. In particular, in the latter method of circulating the reaction solution in the reaction vessel, the circulation speed is increased, the circulation system is further pressurized to a certain degree, and the release of the generated hydrochloric acid gas to the outside of the reaction system is suppressed. It is desirable that the hydrochloric acid gas generated at this time be redissolved in the reaction solution. At this time, the pH of the reaction system is desirably 1 or more, and particularly desirably 1 to 2. Specifically, it is controlled by the amount of titanium tetrachloride to be supplied. Usually, titanium tetrachloride is used in an amount of 0.05 to 0.1 mol per mol of water.
3 moles.

【0016】このように、本発明では、反応初期段階で
ある第1段階反応での反応系の塩素濃度を制御すること
により、塩酸ガスの発生を抑え、発熱を抑制することが
できる。また、この第1段階反応時の温度は20〜50
℃の範囲で制御する。
As described above, in the present invention, generation of hydrochloric acid gas can be suppressed and heat generation can be suppressed by controlling the chlorine concentration of the reaction system in the first stage reaction which is the initial stage of the reaction. The temperature during the first stage reaction is 20 to 50.
Control within ° C.

【0017】本発明では、上記第1段階反応において生
成した反応系の四塩化チタン水溶液の電気伝導度を断続
的或いは連続的に測定し、供給する四塩化チタンの量を
制御する。即ち、四塩化チタン水溶液中の電気伝導度を
測定することにより、該水溶液中の塩素濃度を測定し、
上述したような最適の塩素濃度になるように供給する四
塩化チタンの量の制御を行う。具体的には、反応容器内
或いは循環系の反応装置においては循環経路の途中に電
気伝導度測定用のセンサーを装入し、予め電気伝導度と
塩素濃度の相関関係を設定したうえで、これに基いて四
塩化チタン供給量を制御する。このとき四塩化チタンの
供給量制御はマニュアルで行ってもよいが、連続製造で
あるので、四塩化チタンの供給口に自動制御装置を設置
し、電気伝導計の信号を検知しこれらの自動制御装置と
連動させることにより制御することが望ましい。
In the present invention, the electric conductivity of the titanium tetrachloride aqueous solution of the reaction system generated in the first stage reaction is measured intermittently or continuously, and the amount of titanium tetrachloride supplied is controlled. That is, by measuring the electrical conductivity in the titanium tetrachloride aqueous solution, the chlorine concentration in the aqueous solution was measured,
The amount of titanium tetrachloride to be supplied is controlled so as to have the optimum chlorine concentration as described above. Specifically, a sensor for measuring electric conductivity is inserted in the reaction vessel or in the circulation system in the circulation system, and a correlation between the electric conductivity and the chlorine concentration is set in advance. The supply amount of titanium tetrachloride is controlled based on the above. At this time, the supply control of titanium tetrachloride may be performed manually, but since it is a continuous production, an automatic control device is installed at the supply port of titanium tetrachloride to detect the signal of the electric conductivity meter and control these automatically. It is desirable to control by linking with the device.

【0018】電気伝導度と塩素濃度との関係に基づい
て、四塩化チタン水溶液中の電気伝導度を測定すること
により、該水溶液中の塩素濃度を測定し、上述したよう
な最適の塩素濃度になるように供給する四塩化チタンの
量の制御を行う。これにより、理想的には、白色の酸化
チタン水和物の固形物の析出を防止することが可能とな
る。反応の初期に発生する塩酸蒸気を回収して水溶液に
溶解させ、そのときに発生する溶解熱を利用することが
有益である。
By measuring the electric conductivity in the titanium tetrachloride aqueous solution based on the relationship between the electric conductivity and the chlorine concentration, the chlorine concentration in the aqueous solution is measured, and the optimum chlorine concentration as described above is obtained. The amount of titanium tetrachloride to be supplied is controlled so as to be as small as possible. Thereby, it is ideally possible to prevent the precipitation of a solid substance of white titanium oxide hydrate. It is beneficial to collect the hydrochloric acid vapor generated at the beginning of the reaction and dissolve it in the aqueous solution, and to utilize the heat of dissolution generated at that time.

【0019】(ロ.第2段階反応:必要に応じ実施す
る)第1段階反応において、白色の酸化チタン水和物の
固形物が一部析出することがある。この場合には、四塩
化チタンを水1モルに対し0.1モル/時間以上で供給
することにより反応系の塩素濃度を3モル/L以上と
し、前記析出した酸化チタン水和物を溶解させる。この
ように、本発明では、第2段階反応で供給する四塩化チ
タンの量により、反応系の塩素濃度を増加させる。具体
的には、四塩化チタンを水1モルに対し0.1モル/時
間以上、好ましくは0.15〜0.3モル/時間で供給
することにより反応系の塩素濃度を3モル/L以上、好
ましくは3〜6モル/Lとする。更に、このとき最終的
な四塩化チタンの供給量は、水1モルに対し0.1〜1
モルである。第2段階反応での反応系の温度は40〜6
5℃、好ましくは50〜60℃の範囲に制御する。酸化
チタン水和物を溶解し均一溶液とした時点で、第2反応
段階を終了する。この第2反応段階においても、第1段
階と同様に、生成した反応系の四塩化チタン水溶液の電
気伝導度を断続的又は連続的に測定し、供給する四塩化
チタンの量を制御することが望ましい。初期溶解時に発
生する析出物の溶解熱を利用し、再溶解させ、そして溶
解時の四塩化チタン滴下部での部分過熱による加水分解
固形物の析出を防止することが重要である。このように
本発明では、上記第1段階反応に続く、第2段階反応
で、四塩化チタンの供給速度を上げ、反応系の塩素濃度
を上昇させ、またある程度反応熱により反応系の温度を
上昇させ常温以上の温度で反応を継続させることによ
り、第1段階反応で固形物が析出してもそれを再溶解さ
せ、品質の良い四塩化チタン水溶液を製造することが可
能となる。
(B. Second-stage reaction: carried out as necessary) In the first-stage reaction, a white solid of titanium oxide hydrate may partially precipitate. In this case, by supplying titanium tetrachloride at a rate of 0.1 mol / hour or more per 1 mol of water, the chlorine concentration of the reaction system is adjusted to 3 mol / L or more, and the precipitated titanium oxide hydrate is dissolved. . Thus, in the present invention, the chlorine concentration of the reaction system is increased by the amount of titanium tetrachloride supplied in the second stage reaction. Specifically, the chlorine concentration of the reaction system is 3 mol / L or more by supplying titanium tetrachloride at a rate of 0.1 mol / hour or more, preferably 0.15 to 0.3 mol / hour with respect to 1 mol of water. , Preferably 3 to 6 mol / L. Further, at this time, the final supply amount of titanium tetrachloride is 0.1 to 1 per mole of water.
Is a mole. The temperature of the reaction system in the second stage reaction is 40 to 6
Control is performed at 5 ° C, preferably within a range of 50 to 60 ° C. When the titanium oxide hydrate is dissolved to form a homogeneous solution, the second reaction step is completed. Also in this second reaction stage, similarly to the first stage, it is possible to control the amount of titanium tetrachloride to be supplied by intermittently or continuously measuring the electric conductivity of the generated titanium tetrachloride aqueous solution of the reaction system. desirable. It is important to utilize the heat of dissolution of the precipitate generated during the initial dissolution to redissolve the precipitate, and to prevent precipitation of the hydrolyzed solid due to partial overheating at the dropping portion of titanium tetrachloride during the dissolution. Thus, in the present invention, in the second stage reaction following the first stage reaction, the supply rate of titanium tetrachloride is increased, the chlorine concentration of the reaction system is increased, and the temperature of the reaction system is increased to some extent by the reaction heat. By continuing the reaction at a temperature equal to or higher than normal temperature, even if a solid is deposited in the first-stage reaction, the solid is redissolved and a high-quality aqueous solution of titanium tetrachloride can be produced.

【0020】また、第1段階反応と同様、上記反応の際
にも反応系の水溶液を攪拌機で流動させるか、或いは反
応容器に循環装置を設け生成した水溶液を循環させ流動
させながら、四塩化チタンを供給することが望ましい。
In the same manner as in the first step reaction, titanium tetrachloride is used in the above reaction, while the aqueous solution of the reaction system is made to flow with a stirrer, or a circulating device is provided in the reaction vessel to circulate and make the generated aqueous solution flow. It is desirable to supply

【0021】(ハ.第3段階反応)上記のように第1段
階反応で一旦酸化チタン水和物を析出させ、必要に応
じ、第2段階反応で該酸化チタン水和物を溶解し均一溶
液とした後、四塩化チタンと水を独立にかつ同時に反応
系に供給し、連続的に四塩化チタン水溶液を製造する。
このとき、第1段階反応で析出した固形物が残存してい
ると更に析出が促進され、所定の品質の四塩化チタンが
得られないので、第2段階反応で十分に固形物が溶解し
たことを確認した後、四塩化チタンと水を供給すること
が望ましい。供給する四塩化チタン及び水の量は、製造
する最終的な四塩化チタン水溶液の濃度及び製造量によ
り任意であるが、四塩化チタンを反応前に反応系に装入
した水1モルに対し0.1モル/時間以上、好ましくは
0.15〜0.3モル/時間である。また、供給する四
塩化チタンと水の量比は、四塩化チタン1モルに対し、
水1〜30モル、好ましくは5〜25モル、特に好まし
くは8〜20モルである。また、この際の反応系の温度
は40〜65℃、好ましくは50〜60℃の範囲に制御
する。この条件の下で、酸化チタン水和物の析出を回避
しつつ所要量の四塩化チタン水溶液を生成することがで
きる。このように、四塩化チタンと同時に水を反応系に
供給することにより、反応系の温度の上昇を制御するこ
とができ、結果として均一な品質の良好な四塩化チタン
水溶液の連続製造が可能となる。
(C. Third Step Reaction) As described above, the titanium oxide hydrate is once precipitated in the first step reaction, and if necessary, the titanium oxide hydrate is dissolved in the second step reaction to form a homogeneous solution. After that, titanium tetrachloride and water are independently and simultaneously supplied to the reaction system to continuously produce an aqueous titanium tetrachloride solution.
At this time, if the solids precipitated in the first-stage reaction remain, the precipitation is further promoted, and titanium tetrachloride of a predetermined quality cannot be obtained. After confirming, it is desirable to supply titanium tetrachloride and water. The amounts of titanium tetrachloride and water to be supplied are arbitrary depending on the concentration and the production amount of the final titanium tetrachloride aqueous solution to be produced, but 0 mol per 1 mol of water charged into the reaction system before the reaction. 0.1 mol / hour or more, preferably 0.15 to 0.3 mol / hour. The amount ratio of titanium tetrachloride and water to be supplied is 1 mol of titanium tetrachloride,
The amount of water is 1 to 30 mol, preferably 5 to 25 mol, particularly preferably 8 to 20 mol. In this case, the temperature of the reaction system is controlled in the range of 40 to 65 ° C, preferably 50 to 60 ° C. Under these conditions, a required amount of aqueous solution of titanium tetrachloride can be generated while avoiding precipitation of titanium oxide hydrate. Thus, by supplying water to the reaction system simultaneously with titanium tetrachloride, it is possible to control the rise in the temperature of the reaction system, and as a result, it is possible to continuously produce an aqueous titanium tetrachloride solution of uniform quality and good quality. Become.

【0022】上記反応は、第1段階反応と同様、反応系
の水溶液を攪拌機で流動させるか、或いは反応容器に循
環装置を設け生成した水溶液を循環させ流動させなが
ら、四塩化チタンと水を供給することが望ましい。
In the above reaction, as in the first stage reaction, titanium tetrachloride and water are supplied while the aqueous solution of the reaction system is caused to flow by a stirrer or a circulating device is provided in the reaction vessel to circulate and flow the generated aqueous solution. It is desirable to do.

【0023】先にも述べたように、本発明では第1段階
反応から、必要に応じ第2段階反応を経て、上記の四塩
化チタンと水を同時に供給して四塩化チタン水溶液を連
続的に製造する第3段階反応まで、反応溶液の流動速度
を、例えば循環方法などを採用して大きくして、更に循
環系をある程度加圧状態とし発生する塩酸ガスの反応系
外への放出を抑制することにより、反応の際発生する塩
酸ガスを反応溶液に再溶解させることが望ましい。反応
系がある程度開放系で、発生する塩酸ガスを反応系外に
放出すると、反応系の塩素濃度あついはpHの制御が困
難となるばかりでなく、作業環境の面でも問題である
が、このような反応を行うことにより、pH制御が容易
となり、固形物の析出及び再溶解が容易であり、効率よ
くかつ安全に製造を行うことが可能となる。
As described above, in the present invention, the above-mentioned titanium tetrachloride and water are simultaneously supplied by supplying the above-mentioned titanium tetrachloride and water simultaneously from the first-stage reaction to the second-stage reaction if necessary. Until the third stage of the reaction, the flow rate of the reaction solution is increased by, for example, a circulation method, and the circulation system is further pressurized to a certain degree to suppress the release of hydrochloric acid gas generated outside the reaction system. Thus, it is desirable that hydrochloric acid gas generated during the reaction is redissolved in the reaction solution. If the reaction system is an open system to some extent and the generated hydrochloric acid gas is released to the outside of the reaction system, not only is it difficult to control the chlorine concentration and pH of the reaction system, but also there is a problem in terms of the working environment. By performing such a reaction, pH control becomes easy, precipitation and re-dissolution of solid matter are easy, and production can be performed efficiently and safely.

【0024】従来の方法では、酸化チタン水和物が析出
すると品質に悪影響を与えると考えられていたため、初
期段階での酸化チタン水和物の析出を防止するため、反
応系を冷却したり、水ではなく塩酸水溶液中に四塩化チ
タンを供給するという方法がとられていた。しかしなが
ら、上記のように本発明では、反応溶液中の塩素濃度を
制御し、また四塩化チタンと水の反応熱を利用すること
により、反応初期の第1段階反応では加熱或いは塩酸を
使用せず、酸化チタン水和物が析出しても、これを第2
段階反応で溶解し、その後第3段階反応では、四塩化チ
タンと水を同時に供給し、発生する反応熱を吸収し、か
つ固形物の析出を抑え、最終的に品質の高い四塩化チタ
ン水溶液を工業規模で製造することができるのである。
In the conventional method, it was thought that the precipitation of titanium oxide hydrate would adversely affect the quality. Therefore, in order to prevent the precipitation of titanium oxide hydrate in the initial stage, the reaction system was cooled, A method has been adopted in which titanium tetrachloride is supplied not in water but in an aqueous hydrochloric acid solution. However, as described above, in the present invention, by controlling the chlorine concentration in the reaction solution and utilizing the heat of reaction between titanium tetrachloride and water, the first stage reaction at the beginning of the reaction does not require heating or using hydrochloric acid. , Even if titanium oxide hydrate precipitates,
In the third step reaction, titanium tetrachloride and water are simultaneously supplied to absorb the generated reaction heat and suppress the precipitation of solids. Finally, a high quality titanium tetrachloride aqueous solution is dissolved. It can be manufactured on an industrial scale.

【0025】上述したように第1段階反応及び第2段階
反応の際と同様に、本発明では第3段階反応の間、生成
した反応系の四塩化チタン水溶液の電気伝導度を断続的
又は連続的に検知し、該水溶液中の塩素濃度を測定し、
これに基いて供給する四塩化チタン及び水の量を制御す
る。具体的には、反応容器内或いは循環系の反応装置に
おいては循環経路の途中に電気伝導度測定用のセンサー
を装入し、予め電気伝導度と塩素濃度の相関関係を設定
したうえで、これに基いて四塩化チタン及び水の供給量
を制御する。このとき四塩化チタン及び水の供給量制御
はマニュアルで行ってもよいが、連続製造であるので、
四塩化チタン及び水の供給口に自動制御装置を設置し、
電気伝導計の信号を検知しこれらの自動制御装置と連動
させることにより制御することが望ましい。
As described above, similarly to the case of the first-stage reaction and the second-stage reaction, in the present invention, during the third-stage reaction, the electric conductivity of the aqueous titanium tetrachloride solution of the reaction system is intermittently or continuously changed. Detection, measure the chlorine concentration in the aqueous solution,
Based on this, the amounts of titanium tetrachloride and water to be supplied are controlled. Specifically, a sensor for measuring electric conductivity is inserted in the reaction vessel or in the circulation system in the circulation system, and a correlation between the electric conductivity and the chlorine concentration is set in advance. To control the supply amounts of titanium tetrachloride and water. At this time, the supply of titanium tetrachloride and water may be controlled manually, but since it is a continuous production,
Install an automatic control device at the supply port of titanium tetrachloride and water,
It is desirable to control by detecting the signal of the electric conductivity meter and linking it with these automatic control devices.

【0026】さらに本発明では、上記のように電気伝導
度による塩素濃度制御と同時に、第3段階反応で生成し
た四塩化チタン水溶液の比重を断続的或いは連続的に検
知することにより、四塩化チタン水溶液中のチタン濃度
を測定し、四塩化チタン及び/又は水の供給量を制御す
ることが望ましい。塩素濃度のみではなくチタン濃度を
連続製造中に制御することにより、所望の品質の四塩化
チタン水溶液を安定して製造することが可能となる。
Further, according to the present invention, the specific gravity of the aqueous solution of titanium tetrachloride generated in the third stage reaction is intermittently or continuously detected simultaneously with the control of the chlorine concentration by the electric conductivity as described above. It is desirable to measure the titanium concentration in the aqueous solution and control the supply amount of titanium tetrachloride and / or water. By controlling not only the chlorine concentration but also the titanium concentration during continuous production, it is possible to stably produce a titanium tetrachloride aqueous solution of desired quality.

【0027】比重の測定は、循環経路に介装させたオリ
フィス前後の圧力損失を測定することで求めることがで
きる。四塩化チタン水溶液中のチタン濃度と比重の関係
は既知であるので、第3段階反応で生成した四塩化チタ
ン水溶液の比重を断続的或いは連続的に検知することに
より、四塩化チタン水溶液中のチタン濃度を測定し、そ
れにより最適のチタン濃度を維持するように四塩化チタ
ン及び/又は水の供給量を制御することができる。
The specific gravity can be measured by measuring the pressure loss before and after the orifice interposed in the circulation path. Since the relationship between the titanium concentration and the specific gravity in the titanium tetrachloride aqueous solution is known, the specific gravity of the titanium tetrachloride aqueous solution generated in the third-step reaction is detected intermittently or continuously, so that the titanium in the titanium tetrachloride aqueous solution is detected. The concentration can be measured, thereby controlling the supply of titanium tetrachloride and / or water to maintain an optimal titanium concentration.

【0028】本発明の方法で用いられる四塩化チタンは
なるべく不純物の少ない高純度のものが好ましく、具体
的には四塩化チタンの純度が99.99重量%以上、好
ましくは99.995重量%以上であり、不純物成分と
して、Al、Fe、Vがそれぞれ1ppm以下、Si及
びSnがそれぞれ10ppm以下である。また水につい
てもなるべく不純物の少ない高純度のものが好ましく、
具体的には、イオン交換水などの精製水を使用すること
が望ましい。こうした高純度四塩化チタンは市販品とし
て入手することができる。
The titanium tetrachloride used in the method of the present invention is preferably high in purity with as few impurities as possible. Specifically, the purity of titanium tetrachloride is 99.99% by weight or more, preferably 99.995% by weight or more. And Al, Fe, and V are each 1 ppm or less, and Si and Sn are each 10 ppm or less as impurity components. Also, as for water, high-purity water with few impurities is preferable,
Specifically, it is desirable to use purified water such as ion-exchanged water. Such high-purity titanium tetrachloride can be obtained as a commercial product.

【0029】(ニ.チタン或いは塩素濃度の調整)上記
のように製造した四塩化チタン水溶液を断続的或いは連
続的に反応系より抜き出し四塩化チタン水溶液を製造す
るが、該水溶液中のチタン或いは塩素濃度を調整する場
合、製造した四塩化チタン水溶液に空気又は不活性ガス
を接触させることもできる。具体的には、製造した四塩
化チタン水溶液に空気又は不活性ガスを吹き込む操作
(曝気)を行う。曝気方法としては、四塩化チタン水溶
液中に空気又は不活性ガスを供給するノズルを浸漬させ
てバブリングする方法、また四塩化チタン水溶液を、充
填物を充填したカラムの上部から導入し、該カラムの下
部から空気或いは不活性ガスを導入し、接触させ曝気す
る方法などが採用される。また、このとき接触させる空
気或いは不活性ガスの量は、最終製品とする四塩化チタ
ン水溶液中の塩素濃度、またチタン濃度により異なる
が、通常四塩化チタン水溶液1kgに対して、接触させ
る空気或いは不活性ガスの量は通常10〜200L、好
ましくは30〜100Lである。曝気により、四塩化チ
タン水溶液中のチタン或いは塩素濃度を調整することが
できる。
(D. Adjustment of titanium or chlorine concentration) The titanium tetrachloride aqueous solution produced as described above is intermittently or continuously withdrawn from the reaction system to produce a titanium tetrachloride aqueous solution. When adjusting the concentration, air or an inert gas can be brought into contact with the produced titanium tetrachloride aqueous solution. Specifically, an operation (aeration) of blowing air or an inert gas into the produced titanium tetrachloride aqueous solution is performed. As an aeration method, a method of immersing a nozzle for supplying air or an inert gas in an aqueous solution of titanium tetrachloride and performing bubbling, or introducing an aqueous solution of titanium tetrachloride from the top of a column filled with the packing material, A method in which air or an inert gas is introduced from the lower portion and brought into contact with and aerated, or the like is employed. The amount of air or inert gas contacted at this time varies depending on the chlorine concentration and titanium concentration in the titanium tetrachloride aqueous solution as the final product. The amount of the active gas is usually 10 to 200 L, preferably 30 to 100 L. The concentration of titanium or chlorine in the aqueous solution of titanium tetrachloride can be adjusted by aeration.

【0030】以上、本発明により製造される四塩化チタ
ン水溶液の組成は、Tiが5〜20重量%、好ましくは
10〜18重量%、Clが25〜40重量%、好ましく
は28〜37重量%である。比重は、1.2〜1.6で
ある。四塩化チタン水溶液は、水の量により形態は異な
るが、安定なオルトチタン酸の塩酸水溶液、Tin(O
H)mClxで表される化合物及びTiO2・xH2Oの
塩酸水溶液と考えることができる。
As described above, the composition of the titanium tetrachloride aqueous solution produced according to the present invention is such that Ti is 5 to 20% by weight, preferably 10 to 18% by weight, Cl is 25 to 40% by weight, preferably 28 to 37% by weight. It is. The specific gravity is 1.2 to 1.6. Although the form of the titanium tetrachloride aqueous solution varies depending on the amount of water, a stable hydrochloric acid aqueous solution of orthotitanic acid, Tin (O
H) It can be considered as a compound represented by mClx and an aqueous solution of TiO 2 .xH 2 O in hydrochloric acid.

【0031】また、本発明に従えば、四塩化チタン水溶
液中の不純物成分として、Al、Fe、V、Si、Sn
をそれぞれ1ppm以下にコントロールすることがで
き、前述した誘電体物質であるチタン酸バリウムなど電
子材料の原料、チタン酸リチウムなどの電池材料の原
料、或いは光照射で励起されることにより生じる酸化チ
タンの光触媒作用また親水性機能を利用した機能性材料
など各種応用製品用途に好適に使用できる。
Further, according to the present invention, Al, Fe, V, Si, Sn
Can be controlled to 1 ppm or less, respectively, and a raw material of an electronic material such as barium titanate which is a dielectric substance described above, a raw material of a battery material such as lithium titanate, or a titanium oxide generated by being excited by light irradiation. It can be suitably used for various applied products such as functional materials utilizing photocatalysis and hydrophilic functions.

【0032】以下、本発明の四塩化チタン水溶液の製造
方法の一例を図1の四塩化チタン水溶液連続製造装置の
流れ図を参照して具体的に説明する。
An example of the method for producing an aqueous solution of titanium tetrachloride according to the present invention will be specifically described below with reference to the flow chart of the continuous production apparatus for aqueous solution of titanium tetrachloride of FIG.

【0033】反応系を構成する反応槽1には、水及び四
塩化チタンそれぞれの供給管2、3が設置される。反応
槽1には、反応系の水或いは生成した四塩化チタン水溶
液を循環させるため循環ポンプPを組み込んだ循環経路
から成る循環装置4が装備され、循環装置の途中には冷
却器5が設置される。四塩化チタンの供給管の反応槽手
前に窒素ガス或いは乾燥空気をパージするためのパージ
管6が設置されている。窒素ガス或いは乾燥空気による
パージは、四塩化チタンの供給管の投入口の反応物によ
る閉塞を防止するのに効果的である。循環装置の途中
に、好ましくは反応槽に戻る手前の循環経路内に電気伝
導度測定用のセンサーS1と四塩化チタン水溶液の比重
を測定するためのセンサーS2を設置する。センサーS
1及びS2は、個別に水及び四塩化チタンそれぞれの供
給管2、3に設けられた流量制御弁V1、V2にそれぞ
れ接続される。更に、反応槽1には、生成した四塩化チ
タン水溶液をオーバーフローにより抜き出すオーバーフ
ロー管7が設けられる。必要に応じ、四塩化チタン水溶
液中の四塩化チタン或いは塩素濃度を調整するために、
抜き出した四塩化チタン水溶液は、曝気槽8に移送され
る。曝気槽8には、製造した四塩化チタン水溶液と曝気
ガスを接触させるための気液分離充填カラム9が設置さ
れる。四塩化チタン水溶液を充填物を充填した充填カラ
ムの上部から導入し、曝気槽8の底部から充填カラムの
下部を通して空気或いは不活性ガスを導入し、四塩化チ
タン水溶液と接触させる。更に、気液分離充填カラムか
らの曝気ガスを処理する排ガス処理装置10を設置す
る。最終製品としての四塩化チタン水溶液が曝気槽8か
ら回収される。
In the reaction tank 1 constituting the reaction system, supply pipes 2 and 3 for water and titanium tetrachloride are provided. The reaction tank 1 is equipped with a circulating device 4 comprising a circulating path incorporating a circulating pump P for circulating water of the reaction system or the generated aqueous solution of titanium tetrachloride, and a cooler 5 is provided in the middle of the circulating device. You. A purge pipe 6 for purging nitrogen gas or dry air is provided in front of the reaction vessel of the titanium tetrachloride supply pipe. Purging with nitrogen gas or dry air is effective in preventing the inlet of the supply pipe of titanium tetrachloride from being blocked by reactants. A sensor S1 for measuring electric conductivity and a sensor S2 for measuring the specific gravity of the aqueous solution of titanium tetrachloride are preferably provided in the circulation path before returning to the reaction tank, in the middle of the circulation device. Sensor S
1 and S2 are individually connected to flow control valves V1 and V2 respectively provided in supply pipes 2 and 3 for water and titanium tetrachloride. Further, the reaction tank 1 is provided with an overflow pipe 7 for extracting the generated aqueous solution of titanium tetrachloride by overflow. If necessary, to adjust the concentration of titanium tetrachloride or chlorine in the aqueous solution of titanium tetrachloride,
The extracted titanium tetrachloride aqueous solution is transferred to the aeration tank 8. The aeration tank 8 is provided with a gas-liquid separation packed column 9 for bringing the produced titanium tetrachloride aqueous solution into contact with an aeration gas. An aqueous solution of titanium tetrachloride is introduced from the top of the packed column filled with the packing material, and air or an inert gas is introduced from the bottom of the aeration tank 8 through the bottom of the packed column to be brought into contact with the aqueous solution of titanium tetrachloride. Further, an exhaust gas treatment device 10 for treating aerated gas from the gas-liquid separation packed column is installed. An aqueous titanium tetrachloride solution as a final product is recovered from the aeration tank 8.

【0034】操作において、先ず、反応槽に水を装入
し、循環ポンプにより循環経路を通して循環させる。水
の温度は0〜30℃の範囲とされる。次いで四塩化チタ
ンを供給し、四塩化チタン水溶液の生成を開始する。
(第1段階反応)。四塩化チタン水溶液中の電気伝導度
をセンサーS1により測定することにより、該水溶液中
の塩素濃度を測定し、上述したような最適の塩素濃度に
なるように供給する四塩化チタンの量の制御を行う。更
に、四塩化チタンを供給し、反応槽内の温度を50〜6
0℃に制御し、酸化チタン水和物の固形物の析出が起こ
っても、反応系の塩素濃度を3モル/L以上にしてそれ
を再溶解させる(第2段階反応)。ここでも、センサー
S1により四塩化チタン水溶液中の電気伝導度を測定す
ることにより、該水溶液中の塩素濃度を測定し、上述し
たような最適の塩素濃度になるように供給する四塩化チ
タンの量の制御を行う。その後、四塩化チタン及び水を
反応槽に供給し(第3段階反応)、生成した四塩化チタ
ンをオーバーフロー管を通じて連続的に曝気槽に抜き出
す。ここでも、センサーS1により四塩化チタン水溶液
中の電気伝導度を測定することにより、該水溶液中の塩
素濃度を測定し、上述したような最適の塩素濃度になる
ように供給する四塩化チタンの量の制御を行う。上記の
ように電気伝導度による塩素濃度制御と同時に、センサ
ーS2により、第3段階反応で生成した四塩化チタン水
溶液の比重を断続的或いは連続的に検知することによ
り、四塩化チタン水溶液中のチタン濃度を測定し、四塩
化チタン及び/又は水の供給量を制御する。電気伝導度
による塩素濃度制御は、第1〜3段階反応の少なくとも
第3段階反応において実施される。温度コントロールは
原料供給量と冷却器とにより行う。曝気槽底部から、エ
アーを供給し、抜き出した四塩化チタン水溶液を曝気
し、所望の濃度の最終製品四塩化チタン水溶液を得る。
第1段階反応から、第2段階反応を経て、上記の四塩化
チタンと水を同時に供給して四塩化チタン水溶液を連続
的に製造する第3段階反応まで、反応溶液の流動速度
を、例えば循環方法などを採用して大きくして、更に循
環系をある程度加圧状態とし発生する塩酸ガスの反応系
外への放出を抑制することにより、反応の際発生する塩
酸ガスを反応溶液に再溶解させることが望ましい。
In operation, first, water is charged into a reaction tank and circulated through a circulation path by a circulation pump. The temperature of the water is in the range 0-30 ° C. Next, titanium tetrachloride is supplied to start the production of the titanium tetrachloride aqueous solution.
(First stage reaction). By measuring the electric conductivity in the titanium tetrachloride aqueous solution by the sensor S1, the chlorine concentration in the aqueous solution is measured, and the control of the amount of titanium tetrachloride supplied so as to have the optimum chlorine concentration as described above is performed. Do. Further, titanium tetrachloride is supplied, and the temperature in the reaction vessel is set to 50 to 6
The temperature is controlled at 0 ° C., and even if a solid of titanium oxide hydrate precipitates, the chlorine concentration in the reaction system is adjusted to 3 mol / L or more to redissolve it (second stage reaction). Here, too, by measuring the electric conductivity in the titanium tetrachloride aqueous solution by the sensor S1, the chlorine concentration in the aqueous solution is measured, and the amount of titanium tetrachloride supplied so as to have the optimum chlorine concentration as described above. Control. Thereafter, titanium tetrachloride and water are supplied to the reaction tank (third stage reaction), and the generated titanium tetrachloride is continuously extracted to the aeration tank through an overflow pipe. Here, too, by measuring the electric conductivity in the titanium tetrachloride aqueous solution by the sensor S1, the chlorine concentration in the aqueous solution is measured, and the amount of titanium tetrachloride supplied so as to have the optimum chlorine concentration as described above. Control. As described above, at the same time as controlling the chlorine concentration by the electric conductivity, the specific gravity of the aqueous solution of titanium tetrachloride generated in the third step reaction is intermittently or continuously detected by the sensor S2, so that the titanium in the aqueous solution of titanium tetrachloride is detected. The concentration is measured to control the supply of titanium tetrachloride and / or water. The control of the chlorine concentration by the electric conductivity is performed in at least the third step reaction of the first to third step reactions. Temperature control is performed by the raw material supply amount and the cooler. Air is supplied from the bottom of the aeration tank to aerate the extracted titanium tetrachloride aqueous solution to obtain a final product titanium tetrachloride aqueous solution having a desired concentration.
From the first-stage reaction to the third-stage reaction through which the titanium tetrachloride and water are simultaneously supplied to continuously produce an aqueous titanium tetrachloride solution through the second-stage reaction, the flow rate of the reaction solution is, for example, circulated. By adopting a method and so on, the circulation system is further pressurized to some extent and the release of hydrochloric acid gas generated outside the reaction system is suppressed, so that the hydrochloric acid gas generated during the reaction is redissolved in the reaction solution. It is desirable.

【0035】上記のように、本発明の方法によれば、塩
酸ガスの発生、発熱による固形物析出の問題を解決し、
高純度でかつ品質の安定した四塩化チタン水溶液を工業
的規模で安全に且つ効率的に製造することができる。
As described above, according to the method of the present invention, the problem of the generation of hydrochloric acid gas and the solid deposition due to heat generation is solved.
An aqueous titanium tetrachloride solution having high purity and stable quality can be produced safely and efficiently on an industrial scale.

【0036】[0036]

【実施例】以下、本発明を実施例及び比較例により更に
具体的に説明する。なお、これは単に例示であって、本
発明を制限するものではない。
The present invention will be described below more specifically with reference to examples and comparative examples. Note that this is merely an example and does not limit the present invention.

【0037】(実施例1:四塩化チタン供給量50L/
時間(第1〜第3段階反応))反応槽に水を40L装入
し、100L/分で循環させ、反応槽中に四塩化チタン
供給管の窒素ガスパージ管から窒素ガスを流しながら、
四塩化チタンを50L/時間で30分間供給することに
より、第1段階反応を実施した。反応中、四塩化チタン
の反応固形物が析出した。更に、四塩化チタンを50L
/時間で30分供給し、反応系の塩素濃度を4モル/
L、そして温度を55℃とし、析出した固形物を再溶解
させた(第2段階反応)。しかしながら、センサーS1
(オルガノ社製;電気伝導度計BB−5A型)により四
塩化チタン水溶液中の電気伝導度を測定することによ
り、該水溶液中の塩素濃度を測定し、最適の塩素濃度に
なるように供給する四塩化チタンの量の制御を行うこと
により、四塩化チタンの反応固形物の析出を防止するこ
とができた。反応液が淡黄色の透明な四塩化チタン水溶
液となったことを確認し、四塩化チタンを50L/時間
そして水を72L/時間でそれぞれ連続供給した(第3
段階反応)。このとき反応系の温度を50〜55℃の範
囲に制御した。上記のように電気伝導度による塩素濃度
制御と同時に、センサーS2(横河電機社製;ダイヤフ
ラムシール付差圧伝送器EJA118型)により、第3
段階反応で生成した四塩化チタン水溶液の比重を断続的
或いは連続的に検知することにより、四塩化チタン水溶
液中のチタン濃度を測定し、四塩化チタン及び/又は水
の供給量を制御した。反応槽からオーバーフローした四
塩化チタン水溶液を回収した。このとき、製造した四塩
化チタン水溶液の収量は128kg/時間であり、その
組成は、Tiが16.6重量%、Clが34.5重量
%、真比重1.58g/mLであった。
Example 1 Titanium tetrachloride supply rate 50 L /
Time (1st to 3rd stage reaction)) 40 L of water was charged into the reaction tank, circulated at 100 L / min, and while flowing nitrogen gas from the nitrogen gas purge pipe of the titanium tetrachloride supply pipe into the reaction tank,
The first stage reaction was performed by supplying titanium tetrachloride at 50 L / hour for 30 minutes. During the reaction, a reaction solid of titanium tetrachloride precipitated. In addition, 50L of titanium tetrachloride
/ Hour for 30 minutes, and the chlorine concentration of the reaction system is 4 mol /
L, and the temperature was set to 55 ° C., and the precipitated solid was redissolved (second stage reaction). However, the sensor S1
By measuring the electric conductivity in an aqueous solution of titanium tetrachloride with an electric conductivity meter (manufactured by Organo Corporation; electric conductivity meter BB-5A), the chlorine concentration in the aqueous solution is measured and supplied so as to have an optimum chlorine concentration. By controlling the amount of titanium tetrachloride, it was possible to prevent the deposition of a reaction solid of titanium tetrachloride. After confirming that the reaction solution was a pale yellow transparent titanium tetrachloride aqueous solution, titanium tetrachloride was continuously supplied at 50 L / hour and water was continuously supplied at 72 L / hour (third).
Step reaction). At this time, the temperature of the reaction system was controlled in the range of 50 to 55 ° C. At the same time as controlling the chlorine concentration by the electric conductivity as described above, the sensor S2 (manufactured by Yokogawa Electric Corporation; differential pressure transmitter EJA118 type with a diaphragm seal) performs the third control.
The titanium concentration in the titanium tetrachloride aqueous solution was measured by intermittently or continuously detecting the specific gravity of the titanium tetrachloride aqueous solution generated in the step reaction, and the supply amount of titanium tetrachloride and / or water was controlled. The titanium tetrachloride aqueous solution overflowing from the reaction tank was recovered. At this time, the yield of the produced titanium tetrachloride aqueous solution was 128 kg / hour, and the composition was 16.6% by weight of Ti, 34.5% by weight of Cl, and 1.58 g / mL of true specific gravity.

【0038】(実施例2:乾燥エアーを6m3/時間で
曝気)実施例1と同様にして製造した四塩化チタン水溶
液を曝気槽に導入し、乾燥エアーを6m3/時間で吹き
込むことにより四塩化チタン水溶液を曝気して四塩化チ
タン水溶液を製造した。このとき、製造した四塩化チタ
ン水溶液の収量は127kg/時間であり、その組成
は、Tiが16.5重量%、Clが32.0重量%、真
比重1.57g/mLであった。センサーS1による電
気伝導度による塩素濃度制御と同時に、センサーS2に
より、第3段階反応で生成した四塩化チタン水溶液の比
重を断続的或いは連続的に検知することにより、四塩化
チタン水溶液中のチタン濃度を測定し、四塩化チタン及
び/又は水の供給量を制御した。
(Example 2: Aeration of dry air at 6 m 3 / hour) An aqueous titanium tetrachloride solution produced in the same manner as in Example 1 was introduced into an aeration tank, and dry air was blown at 6 m 3 / hour. The aqueous titanium chloride solution was aerated to produce an aqueous titanium tetrachloride solution. At this time, the yield of the produced titanium tetrachloride aqueous solution was 127 kg / hour, and the composition thereof was 16.5% by weight of Ti, 32.0% by weight of Cl, and 1.57 g / mL of true specific gravity. At the same time as controlling the chlorine concentration by the electric conductivity by the sensor S1, the specific gravity of the aqueous solution of titanium tetrachloride generated in the third-stage reaction is intermittently or continuously detected by the sensor S2, so that the titanium concentration in the aqueous solution of titanium tetrachloride is detected. Was measured, and the supply amounts of titanium tetrachloride and / or water were controlled.

【0039】(実施例3:乾燥エアー12m3/時間で
曝気)曝気の際、乾燥エアーを12m3/時間で吹き込
んだ以外は実施例2と同様に四塩化チタン水溶液を製造
した。センサーS1による電気伝導度による塩素濃度制
御と同時に、センサーS2により、第3段階反応で生成
した四塩化チタン水溶液の比重を断続的或いは連続的に
検知することにより、四塩化チタン水溶液中のチタン濃
度を測定し、四塩化チタン及び/又は水の供給量を制御
した。このときの四塩化チタン水溶液の収量は124k
g/時間、組成は、Tiが16.6重量%、Clが2
9.5重量%、真比重1.57g/mLであった。
[0039]: During (Example 3 Drying Air 12m 3 / time, aeration) aeration, the drying air than blown at 12m 3 / time was prepared analogously to the aqueous titanium tetrachloride solution as in Example 2. At the same time as controlling the chlorine concentration by the electric conductivity by the sensor S1, the specific gravity of the aqueous solution of titanium tetrachloride generated in the third-stage reaction is intermittently or continuously detected by the sensor S2, so that the titanium concentration in the aqueous solution of titanium tetrachloride is detected. Was measured, and the supply amounts of titanium tetrachloride and / or water were controlled. At this time, the yield of the titanium tetrachloride aqueous solution was 124 k.
g / hr, composition is 16.6% by weight of Ti, 2% of Cl
It was 9.5% by weight and the true specific gravity was 1.57 g / mL.

【0040】(実施例4:四塩化チタン供給量60L/
時間(第1〜第3段階反応)、乾燥エアー9m3/時間
で曝気)四塩化チタンの供給量を、第1段階反応から第
3段階反応まで60L/時間としそして乾燥エアー9m
3/時間による曝気を行った以外は実施例1と同様に四
塩化チタン水溶液を製造した。センサーS1による電気
伝導度による塩素濃度制御と同時に、センサーS2によ
り、第3段階反応で生成した四塩化チタン水溶液の比重
を断続的或いは連続的に検知することにより、四塩化チ
タン水溶液中のチタン濃度を測定し、四塩化チタン及び
/又は水の供給量を制御した。このときの四塩化チタン
水溶液の収量は149kg/時間、組成は、Tiが1
7.1重量%、Clが33.5重量%、真比重1.62
g/mLであった。
Example 4 Titanium tetrachloride supply rate 60 L /
Time (first to third stage reaction), aeration at 9 m 3 / hour of dry air) The supply amount of titanium tetrachloride was 60 L / hour from the first stage reaction to the third stage reaction and 9 m 3 of dry air
An aqueous titanium tetrachloride solution was produced in the same manner as in Example 1 except that aeration was performed at 3 / hour. At the same time as controlling the chlorine concentration by the electric conductivity by the sensor S1, the specific gravity of the aqueous solution of titanium tetrachloride generated in the third-stage reaction is intermittently or continuously detected by the sensor S2, so that the titanium concentration in the aqueous solution of titanium tetrachloride is detected. Was measured, and the supply amounts of titanium tetrachloride and / or water were controlled. At this time, the yield of the titanium tetrachloride aqueous solution was 149 kg / hour, and the composition was as follows.
7.1% by weight, Cl is 33.5% by weight, true specific gravity 1.62
g / mL.

【0041】(実施例5:水供給量144L/時間)連
続供給の際の水の供給量を144L/時間とした以外は
実施例1と同様に四塩化チタン水溶液を製造した。セン
サーS1による電気伝導度による塩素濃度制御と同時
に、センサーS2により、第3段階反応で生成した四塩
化チタン水溶液の比重を断続的或いは連続的に検知する
ことにより、四塩化チタン水溶液中のチタン濃度を測定
し、四塩化チタン及び/又は水の供給量を制御した。こ
のときの四塩化チタン水溶液の収量は214kg/時
間、組成は、Tiが10.0重量%、Clが29.1重
量%であった。
Example 5 Water Supply Amount 144 L / Hour A titanium tetrachloride aqueous solution was produced in the same manner as in Example 1, except that the water supply amount during continuous supply was 144 L / hour. At the same time as controlling the chlorine concentration by the electric conductivity by the sensor S1, the specific gravity of the aqueous solution of titanium tetrachloride generated in the third-stage reaction is intermittently or continuously detected by the sensor S2, so that the titanium concentration in the aqueous solution of titanium tetrachloride is detected. Was measured, and the supply amounts of titanium tetrachloride and / or water were controlled. At this time, the yield of the titanium tetrachloride aqueous solution was 214 kg / hour, and the composition was 10.0% by weight of Ti and 29.1% by weight of Cl.

【0042】(比較例1)第2段階反応の際の四塩化チ
タンの供給量を10L/時間で30分とし、反応系の塩
素濃度を2モル/Lとした以外は、実施例1と同様に四
塩化チタン水溶液を製造した。センサーS1による電気
伝導度による塩素濃度制御もセンサーS2による四塩化
チタン水溶液の比重によるチタン濃度制御も行わなかっ
た。その結果、第1段階反応で析出した酸化チタン水和
物は溶解せず、この固形物を除去した最終的な四塩化チ
タン水溶液の収量は80kg/時間にしかならなかっ
た。
Comparative Example 1 Same as Example 1 except that the supply amount of titanium tetrachloride in the second stage reaction was 10 L / hour for 30 minutes and the chlorine concentration of the reaction system was 2 mol / L. To produce an aqueous solution of titanium tetrachloride. Neither the chlorine concentration control by the electric conductivity by the sensor S1 nor the titanium concentration control by the specific gravity of the titanium tetrachloride aqueous solution by the sensor S2 was performed. As a result, the titanium oxide hydrate precipitated in the first-stage reaction did not dissolve, and the final yield of the titanium tetrachloride aqueous solution from which this solid was removed was only 80 kg / hour.

【0043】[0043]

【発明の効果】以上説明したように、本発明の四塩化チ
タン水溶液の製造方法によれば、塩酸ガスの発生、発熱
による固形物析出の問題を解決し、効率良く、高純度で
かつ品質の安定した四塩化チタン水溶液を工業的規模で
製造することができる。実施例及び比較例からわかるよ
うに、本発明は、センサーによる電気伝導度による塩素
濃度制御及び四塩化チタン水溶液の比重によるチタン濃
度制御を通して固形物を含有しない良質の四塩化チタン
水溶液を高い収率で製造することを可能ならしめる。
As described above, according to the method for producing an aqueous solution of titanium tetrachloride of the present invention, the problem of the generation of hydrochloric acid gas and the precipitation of solids due to heat generation is solved, and high efficiency, high purity and high quality are achieved. A stable aqueous solution of titanium tetrachloride can be produced on an industrial scale. As can be seen from the examples and comparative examples, the present invention provides a high-quality aqueous solution of titanium tetrachloride containing no solids through control of chlorine concentration by electric conductivity using a sensor and control of titanium concentration by specific gravity of the aqueous solution of titanium tetrachloride. It is possible to manufacture with.

【図面の簡単な説明】[Brief description of the drawings]

【図1】四塩化チタン水溶液の連続製造装置の概略図で
ある。
FIG. 1 is a schematic diagram of an apparatus for continuously producing an aqueous solution of titanium tetrachloride.

【符号の説明】[Explanation of symbols]

1 反応槽 2、3 水、四塩化チタン供給管 V1、V2 流量制御弁 P 循環ポンプ 4 循環装置 S1 電気伝導度測定用センサー S2 四塩化チタン水溶液の比重測定用センサー 5 冷却器 6 パージ管 7 オーバーフロー管 8 曝気槽 9 気液分離充填カラム 10 排ガス処理装置 DESCRIPTION OF SYMBOLS 1 Reaction tank 2, 3 Water, titanium tetrachloride supply pipe V1, V2 Flow control valve P Circulation pump 4 Circulation device S1 Sensor for electric conductivity measurement S2 Sensor for specific gravity measurement of titanium tetrachloride aqueous solution 5 Cooler 6 Purge pipe 7 Overflow Pipe 8 Aeration tank 9 Gas-liquid separation packed column 10 Exhaust gas treatment device

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 (イ)水中に四塩化チタンを供給するこ
とにより四塩化チタンと水を接触、反応させ、四塩化チ
タン水溶液を生成し、(ロ)酸化チタン水和物が析出し
た場合には、四塩化チタンを水1モルに対し0.1モル
/時間以上で供給することにより反応系の塩素濃度を3
モル/L以上として前記析出した酸化チタン水和物を反
応系に溶解させ、四塩化チタン水溶液の生成を継続し、
(ハ)その後、酸化チタン水和物を溶解させた反応系に
四塩化チタンと水を独立にかつ同時に供給することによ
り酸化チタン水和物の析出を回避しつつ所要量の四塩化
チタン水溶液を生成し、この際(イ)〜(ハ)の少なく
とも(ハ)において、生成した四塩化チタン水溶液の電
気伝導度を測定し、測定した四塩化チタン水溶液の電気
伝導度に基づいて、四塩化チタン及び/又は水の供給量
を制御することを特徴とする四塩化チタン水溶液の製造
方法。
1. (a) When titanium tetrachloride is supplied to water to contact and react with titanium tetrachloride to produce a titanium tetrachloride aqueous solution, and (b) when titanium oxide hydrate precipitates. Is to control the chlorine concentration of the reaction system to 3
The precipitated titanium oxide hydrate is dissolved in the reaction system at a mole / L or more, and the production of the titanium tetrachloride aqueous solution is continued,
(C) Thereafter, titanium tetrachloride and water are independently and simultaneously supplied to the reaction system in which the titanium oxide hydrate is dissolved, so that a required amount of the titanium tetrachloride aqueous solution is added while avoiding precipitation of the titanium oxide hydrate. At this time, in at least (c) of (a) to (c), the electric conductivity of the produced titanium tetrachloride aqueous solution is measured, and based on the measured electric conductivity of the titanium tetrachloride aqueous solution, titanium tetrachloride is produced. And / or controlling the supply amount of water.
【請求項2】 (イ)水中に四塩化チタンを供給するこ
とにより四塩化チタンと水を接触、反応させ、四塩化チ
タン水溶液を生成し、(ロ)酸化チタン水和物が析出し
た場合には、四塩化チタンを水1モルに対し0.1モル
/時間以上で供給することにより反応系の塩素濃度を3
モル/L以上として前記析出した酸化チタン水和物を反
応系に溶解させ、四塩化チタン水溶液の生成を継続し、
(ハ)その後、酸化チタン水和物を溶解させた反応系に
四塩化チタンと水を独立にかつ同時に供給することによ
り酸化チタン水和物の析出を回避しつつ所要量の四塩化
チタン水溶液を生成し、この際(イ)〜(ハ)の少なく
とも(ハ)において、生成した四塩化チタン水溶液の電
気伝導度を測定すると同時に、(ハ)において生成した
四塩化チタン水溶液の比重を測定し、測定した四塩化チ
タン水溶液の電気伝導度及び四塩化チタン水溶液の比重
に基づいて、四塩化チタン及び/又は水の供給量を制御
することを特徴とする四塩化チタン水溶液の製造方法。
2. (a) When titanium tetrachloride and water are contacted and reacted by supplying titanium tetrachloride into water to produce an aqueous solution of titanium tetrachloride, and (b) when titanium oxide hydrate precipitates. Is to control the chlorine concentration of the reaction system to 3 by supplying titanium tetrachloride at a rate of 0.1 mol / hour or more per 1 mol of water.
The precipitated titanium oxide hydrate is dissolved in the reaction system at a mole / L or more, and the production of the titanium tetrachloride aqueous solution is continued,
(C) Thereafter, titanium tetrachloride and water are independently and simultaneously supplied to the reaction system in which the titanium oxide hydrate is dissolved, so that a required amount of the titanium tetrachloride aqueous solution is added while avoiding precipitation of the titanium oxide hydrate. At this time, in at least (c) of (a) to (c), the electric conductivity of the generated titanium tetrachloride aqueous solution is measured, and at the same time, the specific gravity of the titanium tetrachloride aqueous solution generated in (c) is measured. A method for producing a titanium tetrachloride aqueous solution, comprising controlling the supply amount of titanium tetrachloride and / or water based on the measured electric conductivity of the titanium tetrachloride aqueous solution and the specific gravity of the titanium tetrachloride aqueous solution.
【請求項3】 (ハ)の後、(ニ)生成した四塩化チタ
ン水溶液に空気又は不活性ガスを接触させることにより
四塩化チタン水溶液中の塩素濃度を制御することを特徴
とする請求項1乃至2に記載の四塩化チタン水溶液の製
造方法。
3. After (c), the chlorine concentration in the titanium tetrachloride aqueous solution is controlled by bringing air or an inert gas into contact with the generated titanium tetrachloride aqueous solution. 3. The method for producing an aqueous solution of titanium tetrachloride according to any one of claims 1 to 2.
【請求項4】 前記四塩化チタンの純度が99.99重
量%以上であることを特徴とする請求項1〜3いずれか
に記載の四塩化チタン水溶液の製造方法。
4. The method for producing an aqueous solution of titanium tetrachloride according to claim 1, wherein the purity of the titanium tetrachloride is 99.99% by weight or more.
【請求項5】 四塩化チタン及び水それぞれの供給管を
設置した水−四塩化チタン反応系を構成する反応槽と、
該反応系を通して生成した四塩化チタン水溶液を循環さ
せるための循環装置とを備え、四塩化チタンと水を接
触、反応させることにより、四塩化チタン水溶液を生成
し、酸化チタン水和物が析出した場合には、反応系に溶
解させ、その後、酸化チタン水和物を溶解させた反応系
に四塩化チタンと水を独立にかつ同時に供給することに
より四塩化チタン水溶液を生成する四塩化チタン水溶液
の製造装置において、前記循環装置の途中に設けられ、
そして前記四塩化チタン及び水それぞれの供給管に設け
られた流量制御弁にそれぞれ接続された電気伝導度測定
用のセンサーを備え、測定した四塩化チタン水溶液の電
気伝導度に基づいて、四塩化チタン及び/又は水の供給
量を制御することを特徴とする四塩化チタン水溶液の製
造装置。
5. A reaction tank constituting a water-titanium tetrachloride reaction system provided with respective supply pipes for titanium tetrachloride and water;
A circulation device for circulating the aqueous solution of titanium tetrachloride generated through the reaction system is provided, and by contacting and reacting titanium tetrachloride and water, an aqueous solution of titanium tetrachloride is generated, and titanium oxide hydrate is precipitated. In this case, the titanium tetrachloride aqueous solution is dissolved in the reaction system, and then the titanium tetrachloride and water are separately and simultaneously supplied to the reaction system in which the titanium oxide hydrate is dissolved to form a titanium tetrachloride aqueous solution. In the manufacturing apparatus, provided in the middle of the circulation device,
And a sensor for measuring electric conductivity connected to a flow control valve provided in a supply pipe for each of the titanium tetrachloride and water, and a titanium tetrachloride based on the measured electric conductivity of the titanium tetrachloride aqueous solution. And / or controlling the supply amount of water.
【請求項6】 四塩化チタン及び水それぞれの供給管を
設置した水−四塩化チタン反応系を構成する反応槽と、
該反応系を通して生成した四塩化チタン水溶液を循環さ
せるための循環装置とを備え、四塩化チタンと水を接
触、反応させることにより、四塩化チタン水溶液を生成
し、酸化チタン水和物が析出した場合には、反応系に溶
解させ、その後、酸化チタン水和物を溶解させた反応系
に四塩化チタンと水を独立にかつ同時に供給することに
より四塩化チタン水溶液を生成する四塩化チタン水溶液
の製造装置において、前記循環装置の途中に設けられ、
そして前記四塩化チタン及び水それぞれの供給管に設け
られた流量制御弁にそれぞれ接続された電気伝導度測定
用のセンサー及び四塩化チタン水溶液の比重を測定する
ためのセンサーを備え、測定した四塩化チタン水溶液の
電気伝導度及び四塩化チタン水溶液の比重に基づいて、
四塩化チタン及び/又は水の供給量を制御することを特
徴とする四塩化チタン水溶液の製造装置。
6. A reaction tank constituting a water-titanium tetrachloride reaction system provided with respective supply pipes for titanium tetrachloride and water;
A circulation device for circulating the aqueous solution of titanium tetrachloride generated through the reaction system is provided, and by contacting and reacting titanium tetrachloride and water, an aqueous solution of titanium tetrachloride is generated, and titanium oxide hydrate is precipitated. In this case, the titanium tetrachloride aqueous solution is dissolved in the reaction system, and then the titanium tetrachloride and water are separately and simultaneously supplied to the reaction system in which the titanium oxide hydrate is dissolved to form a titanium tetrachloride aqueous solution. In the manufacturing apparatus, provided in the middle of the circulation device,
A sensor for measuring electric conductivity and a sensor for measuring the specific gravity of the aqueous solution of titanium tetrachloride, which are respectively connected to the flow control valves provided in the supply pipes for the titanium tetrachloride and water, respectively, are provided. Based on the electrical conductivity of the titanium aqueous solution and the specific gravity of the titanium tetrachloride aqueous solution,
An apparatus for producing an aqueous solution of titanium tetrachloride, wherein the supply amount of titanium tetrachloride and / or water is controlled.
【請求項7】 四塩化チタン水溶液中の塩素濃度を制御
するため、生成した四塩化チタン水溶液に空気又は不活
性ガスを接触させる曝気槽を更に有することを特徴とす
る請求項5乃至6に記載の四塩化チタン水溶液の製造装
置。
7. The aeration tank according to claim 5, further comprising an aeration tank for bringing air or an inert gas into contact with the produced titanium tetrachloride aqueous solution in order to control the chlorine concentration in the titanium tetrachloride aqueous solution. For producing titanium tetrachloride aqueous solution.
JP2000203492A 2000-07-05 2000-07-05 Method and apparatus for producing aqueous titanium tetrachloride solution Expired - Lifetime JP3734688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000203492A JP3734688B2 (en) 2000-07-05 2000-07-05 Method and apparatus for producing aqueous titanium tetrachloride solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000203492A JP3734688B2 (en) 2000-07-05 2000-07-05 Method and apparatus for producing aqueous titanium tetrachloride solution

Publications (2)

Publication Number Publication Date
JP2002029747A true JP2002029747A (en) 2002-01-29
JP3734688B2 JP3734688B2 (en) 2006-01-11

Family

ID=18700890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000203492A Expired - Lifetime JP3734688B2 (en) 2000-07-05 2000-07-05 Method and apparatus for producing aqueous titanium tetrachloride solution

Country Status (1)

Country Link
JP (1) JP3734688B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179118A (en) * 2003-12-19 2005-07-07 Toho Catalyst Co Ltd Method for manufacturing aqueous titanium tetrachloride solution
US20100065736A1 (en) * 2006-06-20 2010-03-18 E. I. Du Pont De Nemours And Company Method for quantification of analytes in a titanium, tin or silicon tetrachloride sample

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179118A (en) * 2003-12-19 2005-07-07 Toho Catalyst Co Ltd Method for manufacturing aqueous titanium tetrachloride solution
JP4553233B2 (en) * 2003-12-19 2010-09-29 東邦チタニウム株式会社 Method for producing aqueous titanium tetrachloride solution
US20100065736A1 (en) * 2006-06-20 2010-03-18 E. I. Du Pont De Nemours And Company Method for quantification of analytes in a titanium, tin or silicon tetrachloride sample
US8309361B2 (en) * 2006-06-20 2012-11-13 E I Du Pont De Nemours And Company Method for quantification of analytes in a titanium, tin or silicon tetrachloride sample

Also Published As

Publication number Publication date
JP3734688B2 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
US6306361B1 (en) Method for manufacturing photocatalytic anatase titanium dioxide powder
US8574450B2 (en) Method for preparing iron oxides
US20100226851A1 (en) Low temperature process for producing nano-sized titanium dioxide particles
US6827916B2 (en) Method of making silica
US20070154384A1 (en) Titanium dioxide nanopowder manufacturing process
EP2844411B1 (en) Process for the production of crystalline titanium powder
US20040232087A1 (en) Method for treating aqueous systems with locally generated chlorine dioxide
CA2147829A1 (en) Improved tio2 manufacturing process
US8454929B2 (en) Continuous process for preparation of calcium thiosulfate liquid solution
US9643851B2 (en) Method for producing trichlorosilane
CN104190423A (en) Preparation method of spherical alpha-Fe2O3
JP3734688B2 (en) Method and apparatus for producing aqueous titanium tetrachloride solution
JP3734687B2 (en) Method for producing aqueous titanium tetrachloride solution
CA1212076A (en) Process and a device for the production of chlorine dioxide
CN107033096A (en) The synthetic method of the chlorobenzene diozaiole of 2 sulfydryl 6
CN107750236A (en) High-purity synthesis fluorite, prepare its method and apparatus
JPH03128366A (en) Preparation of trichloroisocyanuric acid
JP3865455B2 (en) Method for producing germane
CN109467089A (en) A kind of method for preparing polysilicon
JP4553233B2 (en) Method for producing aqueous titanium tetrachloride solution
US20070009423A1 (en) Apparatus and Methods For Producing Calcium Chloride, and Compositions and Products Made Therefrom
US3954952A (en) Continuous chemical process for the manufacture of sodium and potassium peroxydisulfate
AU2019202878B1 (en) Method of making an inorganic platinum compound
JP2985362B2 (en) Method for producing aqueous manganese bromide solution
JPH0656408A (en) Production of sodium hydrosulfide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051019

R150 Certificate of patent or registration of utility model

Ref document number: 3734688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term