JP4551153B2 - Method for producing metal-containing carbon material and metal-containing carbon material - Google Patents

Method for producing metal-containing carbon material and metal-containing carbon material Download PDF

Info

Publication number
JP4551153B2
JP4551153B2 JP2004222510A JP2004222510A JP4551153B2 JP 4551153 B2 JP4551153 B2 JP 4551153B2 JP 2004222510 A JP2004222510 A JP 2004222510A JP 2004222510 A JP2004222510 A JP 2004222510A JP 4551153 B2 JP4551153 B2 JP 4551153B2
Authority
JP
Japan
Prior art keywords
metal
carbon material
carbon
group
fullerene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004222510A
Other languages
Japanese (ja)
Other versions
JP2005139061A (en
Inventor
栄一 中村
雅敏 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004222510A priority Critical patent/JP4551153B2/en
Publication of JP2005139061A publication Critical patent/JP2005139061A/en
Application granted granted Critical
Publication of JP4551153B2 publication Critical patent/JP4551153B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、金属粒子を含有する炭素材料の製造方法及び金属粒子を含有する炭素材料に関するものである。   The present invention relates to a method for producing a carbon material containing metal particles and a carbon material containing metal particles.

金属粒子を含有する炭素材料は、化学反応の触媒、燃料電池材料や電池の電極材などの電子材料として用いられる。一般に、金属粒子が小さくなると材料としての効率が高くなるが、特に、ナノサイズになると、量子サイズ効果により従来見られなかった新しい機能を発現できる可能性が指摘されており、金属微粒子が高分散した炭素材料の製造を目的とした研究が行われている。   Carbon materials containing metal particles are used as electronic materials such as chemical reaction catalysts, fuel cell materials and battery electrode materials. In general, the smaller the metal particles, the higher the efficiency of the material. In particular, it has been pointed out that when nano-sized, the quantum size effect may give rise to new functions that were not seen before, and the metal fine particles are highly dispersed. Research has been conducted for the purpose of manufacturing the carbon materials.

その製造法としては、金属コロイドを炭素材料表面に担持させる方法、金属を炭素材料表面に蒸着する方法、金属イオンを含浸等により炭素材料に担持させてから水素などの還元剤又は電気化学手法により金属イオンを還元して金属微粒子に変換する方法などが知られている。
また、Mo、Fe,W等のイオンを吸着させたイオン交換樹脂を加熱処理して炭化させ、金属微粒子を含有する炭素材料が得られたことが報告されている(非特許文献1参照)。
粉体及び粉末冶金、第45巻p.806(1998)
The production method includes a method in which a metal colloid is supported on the surface of a carbon material, a method in which a metal is deposited on the surface of the carbon material, a metal ion supported on the carbon material by impregnation, etc. A method of reducing metal ions to convert them into metal fine particles is known.
Further, it has been reported that an ion exchange resin adsorbing ions such as Mo, Fe, and W is heat-treated and carbonized to obtain a carbon material containing metal fine particles (see Non-Patent Document 1).
Powder and powder metallurgy, Vol. 45, p. 806 (1998)

しかしながら、以上の方法は、重量あたりの金属含有率が低く、その性能が十分でなかったり、金属の種類及び含有量によっては金属粒子サイズを十分に制御した炭素材料を得ることが困難であったりして、実用面で十分とは言えなかった。そのため、金属粒子がナノサイズに制御され、かつ高密度に存在する炭素材料の新たな製造方法が求められていた。   However, the above method has a low metal content per weight and its performance is not sufficient, or depending on the type and content of metal, it is difficult to obtain a carbon material in which the metal particle size is sufficiently controlled. Therefore, it could not be said that it was practically sufficient. Therefore, there has been a demand for a new method for producing a carbon material in which metal particles are controlled to a nano size and exist at high density.

本発明者らは、フラーレンないしはその誘導体のフラーレン骨格を有する化合物の金属錯体を加熱処理して炭化させることにより、多量のナノサイズの金属が高分散している炭素材料が得られることを見出し、本発明を完成させた。すなわち、本発明の要旨は、フラーレン骨格を有する金属錯体を加熱して炭化させることを特徴とする金属粒子を含有する炭素材料の製造方法に存する。   The present inventors have found that a carbon material in which a large amount of nano-sized metal is highly dispersed can be obtained by heating and carbonizing a metal complex of a compound having a fullerene skeleton of fullerene or a derivative thereof, The present invention has been completed. That is, the gist of the present invention resides in a method for producing a carbon material containing metal particles, characterized in that a metal complex having a fullerene skeleton is heated and carbonized.

本発明の製造方法で得られる炭素材料は樹脂中に混合したり、バインダーと混合して基材上に塗布することにより、例えば燃料電池の電極、導電材料その他の用途に供することができる。また、原料として用いるフラーレン骨格を有する金属錯体は、一般にベンゼンやトルエンのような芳香族炭化水素などの有機溶媒に対して実用的な溶解性、具体的にはおよそ0.1mg/mL以上の溶解性、を有するため、溶液として塗布することにより任意の形状の基材に担持させることができる。従って、本発明によれば、任意の形状の基材上に金属粒子を高度に分散させて含有する炭素材料の皮膜を形成することができる。   The carbon material obtained by the production method of the present invention can be used in, for example, fuel cell electrodes, conductive materials, and the like by being mixed in a resin or mixed with a binder and coated on a substrate. In addition, a metal complex having a fullerene skeleton used as a raw material is generally practically soluble in an organic solvent such as an aromatic hydrocarbon such as benzene or toluene, specifically about 0.1 mg / mL or more. Therefore, it can be carried on a substrate of any shape by applying it as a solution. Therefore, according to the present invention, it is possible to form a film of a carbon material containing highly dispersed metal particles on a substrate having an arbitrary shape.

以下、本発明の代表的な内容を具体的に説明するが、この発明は、以下の実施の形態に限定されるものではなく。その要旨の範囲内で種々に変更して実施することができる。
先ず、本発明の製造方法に用いる原料としてのフラーレン骨格を有する金属錯体について説明する。
Hereinafter, representative contents of the present invention will be specifically described. However, the present invention is not limited to the following embodiments. Various modifications can be made within the scope of the gist.
First, a metal complex having a fullerene skeleton as a raw material used in the production method of the present invention will be described.

フラーレンとは、炭素原子が球状またはラグビーボール状に配置して形成される閉殻構造の炭素クラスターであり、その炭素数は通常60〜120である。具体例としては、C60(いわゆるバックミンスター・フラーレン)、C70、C76、C78、C82、C84、C90、C94及びC96等の炭素クラスターが挙げられる。本発明で用いる金属錯体は、このフラーレンの骨格構造を有しており、該骨格に対して、1つ以上の金属原子が配位結合している化合物である。本発明で用いる金属錯体の骨格となるフラーレン骨格は特に限定されないが、反応原料としての入手の容易さから、C60又はC70が好ましい。なお、本発明で用いる金属錯体は、上記のような無置換フラーレンの金属錯体であってもよいが、加熱処理後に目的以外の元素が残存しないような付加基を有するフラーレンであってもよい。このような付加基としては、炭素、酸素、水素を主成分とした付加基が良く、具体的には、炭素原子を含む有機基、水素原子、水酸基などが挙げられる。付加基が炭素原子を含む場合、炭素数は通常1〜20、特に1〜10が好ましい。また、加熱による炭化に際して金属原子同士の反応が比較的遅くなり、金属を含有する微粒子へと制御しやすい点で、付加基が金属原子を立体的に保護する位置についているものが特に好ましい。 Fullerene is a closed-shell carbon cluster formed by arranging carbon atoms in a spherical or rugby ball shape, and the number of carbon atoms is usually 60 to 120. Specific examples include carbon clusters such as C 60 (so-called buckminster fullerene), C 70 , C 76 , C 78 , C 82 , C 84 , C 90 , C 94 and C 96 . The metal complex used in the present invention is a compound having the fullerene skeleton structure and one or more metal atoms coordinated to the skeleton. Although the fullerene skeleton used as the skeleton of the metal complex used in the present invention is not particularly limited, C 60 or C 70 is preferable because it is easily available as a reaction raw material. The metal complex used in the present invention may be an unsubstituted fullerene metal complex as described above, or may be a fullerene having an additional group that does not leave an element other than the target after heat treatment. As such an addition group, an addition group mainly composed of carbon, oxygen, and hydrogen is preferable, and specific examples include an organic group containing a carbon atom, a hydrogen atom, and a hydroxyl group. When an addition group contains a carbon atom, carbon number is 1-20 normally, and especially 1-10 are preferable. In addition, it is particularly preferred that the additional group is located at a position where the metal atom is sterically protected from the viewpoint that the reaction between metal atoms becomes relatively slow during carbonization by heating and the metal-containing fine particles can be easily controlled.

このうち、フラーレン骨格上にシクロペンタジエニル構造を有するもので、特に下記式(2)のRの位置に付加基があるものが最も好ましい。すなわち、例えばJ. Am. Chem. Soc. 1996, 118, 12850などに製造法が開示されている下記式(2)の部分構造を有するフラーレンおよびその誘導体は、シクロペンタジエニル部位で金属に配位できるので良い。   Of these, those having a cyclopentadienyl structure on the fullerene skeleton, particularly those having an additional group at the R position in the following formula (2) are most preferred. That is, for example, fullerene having a partial structure of the following formula (2) and a derivative thereof disclosed in J. Am. Chem. Soc. 1996, 118, 12850 and the like are distributed to a metal at a cyclopentadienyl site. It ’s good because I can rank.

(式中、C〜C10はフラーレン骨格上の炭素原子を表わし、複数のRはそれぞれ独立して炭化後に炭素材料中に炭素以外の元素として残存しない付加基を表わす。)
この部分構造を、フラーレン骨格上に1個〜2個、より好ましくは1個有する化合物が、特に好ましい化合物である。
炭化後に炭素材料中に炭素以外の元素として残存しない付加基Rは、上述の炭化後に残存しない付加基である。。
(In the formula, C 1 to C 10 each represent a carbon atom on the fullerene skeleton, and each of a plurality of R's independently represents an additional group that does not remain as an element other than carbon in the carbon material after carbonization.)
A compound having 1 to 2, more preferably 1 partial structure on the fullerene skeleton is a particularly preferable compound.
The additional group R that does not remain as an element other than carbon in the carbon material after carbonization is an additional group that does not remain after carbonization. .

付加基として好ましい炭素原子を含む有機基は、ヘテロ原子を含んでいてもよい炭化水素基である。ヘテロ原子を含んでいてもよい炭化水素基としては、具体的に、メチル基、エチル基、プロピル基、イソプロピル基等の直鎖又は分岐の鎖状アルキル基、ビニル基、プロペニル基、ヘキセニル基等の直鎖又は分岐の鎖状アルケニル基、エチニル基、メチルエチニル基等のアルキニル基などの脂肪族基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の環状アルキル基;シクロペンテニル基、シクロヘキセニル基等の環状アルケニル基;フルフリル基等の複素環基;フェニル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基等が挙げられる。これらはそれぞれ、アルコキシ基、水酸基、カルボキシル基などの炭素、水素、酸素原子を主成分とする炭素数1〜6の置換基で更に置換されていてもよい。なかでも好ましいものは、置換基を有していてもよい脂肪族基又はアリール基であり、特に好ましいのは、置換基を有していてもよいメチル基又は置換基を有していてもよいフェニル基であり、最も好ましいものはメチル基又はフェニル基である。上記の部分構造において、複数存在するRは、同一であっても異なっていてもよいが、同一であるほうが合成しやすい点で好ましい。   The organic group containing a carbon atom that is preferable as an addition group is a hydrocarbon group that may contain a hetero atom. Specific examples of the hydrocarbon group that may contain a hetero atom include a linear or branched chain alkyl group such as a methyl group, an ethyl group, a propyl group, and an isopropyl group, a vinyl group, a propenyl group, and a hexenyl group. An aliphatic group such as an alkynyl group such as a straight chain or branched chain alkenyl group, an ethynyl group or a methylethynyl group; a cyclic alkyl group such as a cyclopropyl group, a cyclopentyl group or a cyclohexyl group; a cyclopentenyl group or a cyclohexenyl group Cyclic alkenyl groups; heterocyclic groups such as furfuryl groups; aryl groups such as phenyl groups and naphthyl groups; aralkyl groups such as benzyl groups and phenethyl groups. Each of these may be further substituted with a C1-C6 substituent mainly composed of carbon, hydrogen, and oxygen atoms such as an alkoxy group, a hydroxyl group, and a carboxyl group. Among these, an aliphatic group or an aryl group which may have a substituent is preferable, and a methyl group or a substituent which may have a substituent is particularly preferable. A phenyl group, most preferred is a methyl group or a phenyl group. In the above partial structure, a plurality of R may be the same or different, but the same R is preferable in that it is easy to synthesize.

本発明で原料として用いる金属錯体は、上記のフラーレンないしはその誘導体に金属を配位させたものであり、その代表的なものとしては下記式(1)で表される部分構造を有しているものが挙げられる。   The metal complex used as a raw material in the present invention is obtained by coordinating a metal to the above fullerene or a derivative thereof, and has a partial structure represented by the following formula (1) as a typical one. Things.

(式中、Mは金属原子、LはMの配位子、nは0〜5の整数、C〜C10はフラーレン骨格上の炭素原子を表わし、複数のRはそれぞれ独立して炭化後に炭素材料中に炭素以外の元素として残存しない付加基を表わす。)
Mは、本発明の方法で得られる炭素材料に含有させたい任意の典型金属及び遷移金属の原子である。炭素材料の想定される用途から、Mは通常6族〜11族の遷移金属の原子が用いられる。具体的には、Cr、Mo、Mn、Re、Fe、Ru、Co、Rh、Ir、Os、Ni、Pd、Pt、Cuが挙げられる。なかでも好ましいのはFe、Ru、Os、Co、Rh、Ir、Ni、Pd、Ptのような8族〜10族の原子であり、特に好ましいのはRu、Os、Rh、Ir、Pd、Ptのような第5周期以上の8族〜10族の原子である。
(In the formula, M is a metal atom, L is a ligand of M, n is an integer of 0 to 5, C 1 to C 10 are carbon atoms on the fullerene skeleton, and a plurality of R are independently carbonized. (This represents an additional group that does not remain as an element other than carbon in the carbon material.)
M is an atom of any typical metal and transition metal desired to be contained in the carbon material obtained by the method of the present invention. In view of the intended use of the carbon material, M is usually a group 6-11 transition metal atom. Specific examples include Cr, Mo, Mn, Re, Fe, Ru, Co, Rh, Ir, Os, Ni, Pd, Pt, and Cu. Among these, atoms of Group 8 to Group 10 such as Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, and Pt are preferable, and Ru, Os, Rh, Ir, Pd, and Pt are particularly preferable. It is an atom of Group 8 to Group 10 having a fifth period or more.

Lは、Mの配位子であり、炭素数1〜10であるものが好ましい。また、炭素、水素、酸素からなるものが、熱処理後に炭素以外の元素が残存しないため好ましい。配位子Lの具体例としては、メチル、エチル、ブチルなどのアルキル基、アセテート、ベンゾエートなどのカルボン酸残基、エチレン、プロピレン、ブタジエン、アクリル酸エチル、酢酸ビニルなどのη2またはη4型オレフィン配位子、アリル、クロチル等のη3−アリル型配位子、シクロペンタジエニル(以下Cpと表すことがある)、インデニル、ペンタジエニルなどのη5配位子、アセチルアセトナートなどのジケトン型配位子、一酸化炭素等があげられる。特に好ましいのはη3−アリル型配位子及びη5配位子である。 L is a ligand for M, preferably having 1 to 10 carbon atoms. Moreover, what consists of carbon, hydrogen, and oxygen is preferable since elements other than carbon do not remain after heat treatment. Specific examples of the ligand L include alkyl groups such as methyl, ethyl and butyl, carboxylic acid residues such as acetate and benzoate, and η 2 or η 4 type such as ethylene, propylene, butadiene, ethyl acrylate and vinyl acetate. Olefin ligands, η 3 -allyl type ligands such as allyl and crotyl, η 5 ligands such as cyclopentadienyl (hereinafter sometimes referred to as Cp), indenyl and pentadienyl, and diketones such as acetylacetonate Type ligands, carbon monoxide and the like. Particularly preferred are η 3 -allyl type ligand and η 5 ligand.

Lは、フラーレン骨格を有する金属錯体が安定であれば、必ずしも必要ではなく、nは0〜5である。nが2以上である場合、互いのLは同一であっても異なっていてもよいが、同一である方が合成しやすい点で好ましい。
この式(1)で表される部分構造を有するフラーレン金属錯体は、シクロペンタジエニル金属錯体であるため安定である。また、金属原子がRによって立体的に保護されているので、加熱による炭化に際して金属原子同士の反応が比較的遅くなり、金属を目的とする微粒子へと制御しやすい。
L is not necessarily required if the metal complex having a fullerene skeleton is stable, and n is 0 to 5. When n is 2 or more, each L may be the same or different, but the same L is preferable in terms of easy synthesis.
The fullerene metal complex having the partial structure represented by the formula (1) is stable because it is a cyclopentadienyl metal complex. In addition, since the metal atoms are sterically protected by R, the reaction between the metal atoms is relatively slow during carbonization by heating, and it is easy to control the metal to the intended fine particles.

以下に、フラーレン骨格を有する金属錯体の具体例を示す。   Specific examples of metal complexes having a fullerene skeleton are shown below.

本発明で用いるフラーレン骨格を有する金属錯体は、一般に芳香族炭化水素類等の有機溶媒に可溶であり、また、フラーレン骨格に結合している基や金属Mの配位子Lを種々変えることで、各種有機溶媒に戴する溶解性を変化させることができる。このため、有機溶媒に溶解して基材に塗布したのち熱処理することにより、基材上に含金属炭素材料の皮膜を形成することもできる。   The metal complex having a fullerene skeleton used in the present invention is generally soluble in an organic solvent such as aromatic hydrocarbons, and variously changes the group bonded to the fullerene skeleton and the ligand L of the metal M. Thus, the solubility of various organic solvents can be changed. For this reason, the film of a metal-containing carbon material can also be formed on a base material by melt | dissolving in an organic solvent, apply | coating to a base material, and heat-processing.

本発明では、フラーレン骨格を有する金属錯体としては、通常フラーレン骨格1個に対して金属原子が1個〜2個、重量比に換算すると通常金属を5重量%以上、好ましくは6重量%以上含有するものを用いる。
次に、本発明で原料として用いるフラーレン骨格を有する金属錯体の製法について説明する。
フラーレン骨格を有する金属錯体は常法により製造することができる。以下に製法の例を示すが、本発明で用いるフラーレン骨格を有する金属錯体の製法はこのものに限定されるものではない。通常は、まず、フラーレンまたはその誘導体をカリウムt−ブトキシド、ナトリウムメトキシドなどのアルカリ金属を含む塩基と反応させ、フラーレンまたはその誘導体のアルカリ金属塩を生成させる。次いで、得られたアルカリ金属塩と、金属Mを含む化合物を反応させることにより、フラーレン骨格を有する金属錯体を得ることができる。
In the present invention, the metal complex having a fullerene skeleton usually contains 1 to 2 metal atoms with respect to one fullerene skeleton, and usually contains 5% by weight or more, preferably 6% by weight or more when converted to a weight ratio. Use what you want.
Next, a method for producing a metal complex having a fullerene skeleton used as a raw material in the present invention will be described.
A metal complex having a fullerene skeleton can be produced by a conventional method. Although the example of a manufacturing method is shown below, the manufacturing method of the metal complex which has a fullerene skeleton used by this invention is not limited to this. Usually, fullerene or a derivative thereof is first reacted with a base containing an alkali metal such as potassium t-butoxide or sodium methoxide to produce an alkali metal salt of fullerene or a derivative thereof. Next, a metal complex having a fullerene skeleton can be obtained by reacting the obtained alkali metal salt with a compound containing metal M.

金属Mを含む化合物は、BF4,PF6,SbF5,ClO4などを対アニオンとして有するカチオン性の錯体であっても、塩化物やフッ化物などのハロゲン化物や、トシレートやアセテートのような酸残基などの脱離基を1個以上有する中性の錯体であってもよい。金属Mを含む化合物が有機配位子を有する場合、この配位子の少なくとも一部は、通常、生成物であるフラーレン骨格を有する金属錯体中の金属M上の配位子Lとしてそのまま導入される。 Even if the compound containing the metal M is a cationic complex having BF 4 , PF 6 , SbF 5 , ClO 4 or the like as a counter anion, a halide such as chloride or fluoride, or a tosylate or acetate It may be a neutral complex having one or more leaving groups such as acid residues. When the compound containing the metal M has an organic ligand, at least a part of the ligand is usually introduced as a ligand L on the metal M in the metal complex having a fullerene skeleton as a product. The

フラーレンまたはその誘導体とアルカリ金属塩との反応および金属Mの導入反応は、通常、テトラヒドロフランなどのエーテル系溶媒中、室温で、金属塩化と金属錯体化の反応を連続して行う。この反応の反応条件は、通常、以下の通りであるが、この条件に限定されるわけではない。原料のフラーレンまたはその誘導体の濃度は、1〜10mg/mLである。フラーレンまたはその誘導体に対する塩基のモル比は、1.0〜1.5である。Mを含む化合物のフラーレンまたはその誘導体のアルカリ金属塩に対するモル比は、1.0〜3.0である。反応時間は、いずれの段階も、数分から1時間程度である。NH4Cl水溶液またはエタノールなどのアルコール類を添加して反応を停止させたあと、シリカゲルカラムを通すことで無機物を除去し、粗生成物を得る。必要に応じてカラムクロマトグラフィーやHPLC(高速液体クロマトグラフィー)分離、結晶化などで精製を行う。 In the reaction of fullerene or a derivative thereof with an alkali metal salt and the introduction reaction of the metal M, the reaction of metal chloride and metal complexation is usually carried out continuously in an ether solvent such as tetrahydrofuran at room temperature. The reaction conditions for this reaction are usually as follows, but are not limited to these conditions. The concentration of the raw material fullerene or a derivative thereof is 1 to 10 mg / mL. The molar ratio of base to fullerene or a derivative thereof is 1.0 to 1.5. The molar ratio of the compound containing M to the alkali metal salt of fullerene or a derivative thereof is 1.0 to 3.0. The reaction time is from several minutes to about 1 hour at any stage. After adding NH 4 Cl aqueous solution or alcohol such as ethanol to stop the reaction, the inorganic substance is removed by passing through a silica gel column to obtain a crude product. If necessary, purification is performed by column chromatography, HPLC (high performance liquid chromatography) separation, crystallization, or the like.

上記した特に好ましい構造のフラーレン金属錯体は、以下の反応式に例示するように、対応するフラーレン骨格を有する水素体を塩基と反応させてカリウム塩を生成した後、遷移金属のカチオン性錯体を作用させることにより得ることができる。   The fullerene metal complex having the particularly preferred structure described above is obtained by reacting a hydrogen body having a corresponding fullerene skeleton with a base to form a potassium salt, and then reacting with a cationic complex of a transition metal as illustrated in the following reaction formula. Can be obtained.

一方、特開2002−241389号公報には、対応するフラーレン骨格を有する臭素体を経由してフラーレン骨格を有する金属錯体を製造する方法が示されており、この公報に記載されている公知の方法で合成することも可能である。
フラーレン骨格を有する金属錯体は、1種類のみ用いてもよいが、複数の金属を有する炭素材料を目的とする場合等には2種類以上を混合して用いてもよい。また、金属含量を調節するため、又はフラーレン骨格の構造を調節するために、炭化後に炭素材料中に炭素以外の元素として残存しない他の炭素材や有機化合物等を添加してもよい。
On the other hand, Japanese Patent Application Laid-Open No. 2002-241389 discloses a method for producing a metal complex having a fullerene skeleton via a bromine body having a corresponding fullerene skeleton, and a known method described in this publication It is also possible to synthesize with.
Only one type of metal complex having a fullerene skeleton may be used. However, when a carbon material having a plurality of metals is intended, two or more types may be mixed and used. In order to adjust the metal content or the structure of the fullerene skeleton, other carbon materials or organic compounds that do not remain as elements other than carbon in the carbon material after carbonization may be added.

他の炭素材としては、活性炭、グラファイト、カーボンブラックなどの一般的に用いられる炭素材の他、フラーレン、フラーレン誘導体なども用いることができる。フラーレン又はフラーレン誘導体を用いる場合、フラーレン金属錯体とフラーレン又はフラーレン誘導体の混合物を溶液として扱うことができるため、基板上に塗布することができるほか、この均一溶液を乾燥することで分子レベルでの混合が可能となるため、特に好ましい。
次に、本発明の製造方法について説明する。本発明の炭素粒子は、上述のフラーレン骨格を有する金属錯体を加熱して炭化させることにより得ることができる。ここで、1〜複数個の該金属錯体から本発明の炭素粒子1つが得られる。
As other carbon materials, fullerenes, fullerene derivatives, etc. can be used in addition to commonly used carbon materials such as activated carbon, graphite, and carbon black. When fullerene or fullerene derivatives are used, a mixture of fullerene metal complexes and fullerenes or fullerene derivatives can be handled as a solution, so that it can be applied on a substrate and mixed at the molecular level by drying this uniform solution. Is particularly preferable.
Next, the manufacturing method of this invention is demonstrated. The carbon particles of the present invention can be obtained by heating and carbonizing the above metal complex having a fullerene skeleton. Here, one carbon particle of the present invention is obtained from one to a plurality of the metal complexes.

金属錯体の加熱処理は、原料錯体の安定性や錯体中の金属の種類に応じた適切な条件で行うが、通常、500℃以上、好ましくは600℃以上で行う。加熱温度が低すぎると炭化が十分に進行しない。逆に加熱温度が高すぎると複数の金属錯体分子中にある金属原子の凝集が顕著になり、そのために得られる炭素材料の金属粒子径が大きくなってしまう傾向にあるので、加熱温度の上限は1000℃以下であるのが好ましい。   The heat treatment of the metal complex is performed under appropriate conditions depending on the stability of the raw material complex and the type of metal in the complex, but is usually 500 ° C. or higher, preferably 600 ° C. or higher. If the heating temperature is too low, carbonization does not proceed sufficiently. Conversely, if the heating temperature is too high, the aggregation of metal atoms in a plurality of metal complex molecules becomes prominent, and the resulting metal material tends to increase in particle diameter, so the upper limit of the heating temperature is It is preferable that it is 1000 degrees C or less.

加熱時間は、フラーレン骨格を有する金属錯体が炭化されるまで行えばよいが、通常、数分〜数時間程度である。X線回折(XRD)測定を行い、フラーレン骨格由来のピークが観測されない状態を、炭化が終了している状態とみなし、この状態になるまで加熱を継続する。
加熱処理は、不活性雰囲気下、すなわち、気相中に酸素分子などの原料と反応する物質が実質的に存在しない気相雰囲気、具体的には反応する物質が原料に対し1モル%以下である雰囲気下で行うのが好ましい。通常は、窒素、ヘリウム、アルゴンなどの不活性ガス雰囲気下で行う。
The heating time may be performed until the metal complex having a fullerene skeleton is carbonized, but is usually about several minutes to several hours. X-ray diffraction (XRD) measurement is performed, and a state in which no peak derived from the fullerene skeleton is observed is regarded as a state in which carbonization is completed, and heating is continued until this state is reached.
The heat treatment is performed under an inert atmosphere, that is, a gas phase atmosphere in which a substance that reacts with the raw material such as oxygen molecules is not substantially present in the gas phase, specifically, the reacting substance is 1 mol% or less with respect to the raw material. It is preferable to carry out under a certain atmosphere. Usually, it is performed in an inert gas atmosphere such as nitrogen, helium, or argon.

加熱処理時の圧力は、通常、常圧であるが、加圧または減圧状態で行ってもよい。また、雰囲気は、フロー系でも閉鎖系でもよいが、フロー系のほうが好ましい。
本発明の方法により得られる金属粒子を含有する炭素材料の炭素部分は、通常、加熱処理によりフラーレン骨格構造が壊れ、アモルファスまたは、種々の程度に結晶化したグラファイトである。
金属粒子を含有する炭素材料中の金属量は、用いる原料及び反応条件により異なるが、通常5wt%以上、好ましくは10wt%以上であり、通常50wt%以上、好ましくは30wt%以下である。
また、このようにして得られた本発明の炭素材料は、実質的に原料由来の炭素と金属から構成されるが、本発明の優れた効果を損なわない範囲で、その他の元素を不純物として含んでいてもよい。
The pressure during the heat treatment is usually normal pressure, but it may be performed under pressure or reduced pressure. The atmosphere may be a flow system or a closed system, but the flow system is preferred.
The carbon portion of the carbon material containing the metal particles obtained by the method of the present invention is usually amorphous or graphite that has been crystallized to various degrees because the fullerene skeleton structure is broken by heat treatment.
The amount of metal in the carbon material containing metal particles varies depending on the raw materials and reaction conditions used, but is usually 5 wt% or more, preferably 10 wt% or more, and usually 50 wt% or more, preferably 30 wt% or less.
In addition, the carbon material of the present invention obtained in this way is substantially composed of carbon and metal derived from raw materials, but contains other elements as impurities as long as the excellent effects of the present invention are not impaired. You may go out.

金属粒子を含有する炭素材料中の金属粒子の大きさは、金属の種類と量およびフラーレン骨格に付加している付加基の種類と位置等によって異なるが、平均粒子径は、通常20nm以下、好ましくは10nm以下である。粒子があまりに大きすぎると、それぞれの用途に対して金属粒子の機能が十分に発現せず好ましくない。特に、金属がルテニウムの場合、条件によっては平均粒子径2nm以下という極めて小さいサイズの金属粒子を含有した炭素材料が得られる。この炭素材料の想定される用途からして、金属粒子の平均粒子径は小さい方が好ましい。   The size of the metal particles in the carbon material containing the metal particles varies depending on the type and amount of the metal and the type and position of the additional group added to the fullerene skeleton, but the average particle size is usually 20 nm or less, preferably Is 10 nm or less. If the particles are too large, the function of the metal particles is not sufficiently exhibited for each application, which is not preferable. In particular, when the metal is ruthenium, a carbon material containing metal particles with an extremely small size of an average particle diameter of 2 nm or less can be obtained depending on conditions. In view of the intended use of the carbon material, it is preferable that the average particle size of the metal particles is small.

金属粒子の平均粒子径は、透過型電子顕微鏡(TEM)、X線回折(XRD)などにより決定される。TEMで測定する場合は、50000倍〜5000000倍の倍率で金属粒子少なくとも50個の直径を測定し、その平均値を求める。また、金属の平均粒子径をXRD測定結果から算出する場合は、CuKα線を用いて測定を行い、金属に対応するピークのプロファイルフィッティングを行い、得られた半値巾から、Sherrer式を用いて結晶子サイズを決定する。Sherrer式による結晶子サイズの求め方は、理学電機株式会社発行の「X線回折ハンドブック」p.78〜83に基づいて、Sherrer定数K=0.9として算出する。   The average particle diameter of the metal particles is determined by a transmission electron microscope (TEM), X-ray diffraction (XRD), or the like. When measuring with TEM, the diameter of at least 50 metal particles is measured at a magnification of 50000 to 5000000 times, and the average value is obtained. Moreover, when calculating the average particle diameter of a metal from a XRD measurement result, it measures using a CuK alpha ray, performs the profile fitting of the peak corresponding to a metal, and uses the Scherrer formula from the obtained half value width. Determine the child size. See “X-ray Diffraction Handbook” published by Rigaku Corporation, p. Based on 78 to 83, calculation is made assuming that the Scherrer constant K = 0.9.

上記2つの方法のうち、一般的にはより精密に粒子径を測定できるTEM観察による方法で平均粒子径が決定されるが、Sherrer式が適用可能な1nm〜100nmの金属粒子については、より簡便なXRDによる方法で決定することもできる。また、粒子サイズが極めて小さくTEMで粒子が観測できない場合、XRD測定により1nm以上の大きさの結晶粒子がないことを確認することもできる。なお、TEM観察とXRD測定とで平均粒子径の値が異なる場合は、少なくとも一方の測定方法により得られる平均粒子径の値が上述の範囲に含まれればよい。   Of the above two methods, the average particle size is generally determined by a method based on TEM observation that can measure the particle size more precisely. However, for metal particles of 1 nm to 100 nm to which the Serrer equation can be applied, it is more convenient. It can also be determined by a method based on XRD. In addition, when the particle size is extremely small and particles cannot be observed by TEM, it can be confirmed by XRD measurement that there are no crystal particles having a size of 1 nm or more. In addition, when the value of an average particle diameter differs by TEM observation and XRD measurement, the value of the average particle diameter obtained by at least one measuring method should just be contained in the above-mentioned range.

金属粒子の形状は、金属種によって異なるが、TEMで観察すると、通常、球形に近い形状である。
本発明で得られる金属が高分散した炭素材料の炭素部分の構造は、用いる原料の金属種や錯体の構造、加熱処理温度等により異なる。通常、炭素部分はアモルファスであるが、比較的高い温度、具体的には800℃以上の高温で処理すると、金属の種類によっては炭素部分の一部または大部分がグラファイト構造を示す場合がある。これはパラジウムや鉄などの錯体を原料とした場合にみられ、特に鉄の錯体が原料の場合に顕著に見られる。
The shape of the metal particles varies depending on the metal species, but when observed with a TEM, the shape is usually close to a sphere.
The structure of the carbon portion of the carbon material in which the metal obtained in the present invention is highly dispersed varies depending on the metal species of the raw material used, the structure of the complex, the heat treatment temperature, and the like. Usually, the carbon portion is amorphous, but if it is treated at a relatively high temperature, specifically, a high temperature of 800 ° C. or higher, part or most of the carbon portion may exhibit a graphite structure depending on the type of metal. This is seen when a complex such as palladium or iron is used as a raw material, and is particularly noticeable when an iron complex is a raw material.

炭素部分がグラファイト構造となる条件で、加熱の際の熱挙動を熱重量示差熱分析計(TG−DTA)で観測すると、炭素部分がアモルファスになる場合には見られない重量変化を伴わない急激な発熱が観測される。この発熱温度は、錯体の種類により異なるが、例えばFe(η5−Me560)(η5−Cp)錯体を原料とした場合では、850℃付近に観測される。この発熱温度において急激にグラファイト構造が形成されていると考えられ、その際、金属微粒子が触媒として働いているものと推察される。
炭素部分のグラファイト構造をTEMにより観測すると、原料や加熱温度により異なるが、数層〜20層程度のグラファイト層により形成される特徴的な層状構造として見ることができる。グラファイト構造の大部分は屈曲して閉殻構造を形成し、閉殻構造の大きさは通常その最外核の長径がおよそ50〜150nmである。この閉殻構造は金属粒子を取り巻いた形、金属粒子を含まない中空体の両者が観察されるが、通常後者が主である。このことは、触媒としてグラファイト構造の形成に関与すると考えられる金属粒子は動いて、触媒的にグラファイト閉殻構造の形成に関与していることを示唆するものと考えられる。また、炭素部分にはごく希にカーボンナノチューブが観察されることもある。
また、本発明で得られる金属が高分散した炭素材料は、それぞれ金属を担持した触媒として各種合成反応の触媒となるほか、MとしてPtを用いた場合は、燃料電池の材料として、MとしてCo、Niを用いた場合は、記憶材料素子としての用途が考えられ、さらに、MとしてRuを用いた場合は微細な金属粒子が炭素中に分散したものが得られるので、それぞれ好ましい。
When the thermal behavior during heating is observed with a thermogravimetric differential thermal analyzer (TG-DTA) under the condition that the carbon portion has a graphite structure, the carbon portion becomes abrupt without a weight change that is not seen when the carbon portion becomes amorphous. A fever is observed. Although this exothermic temperature differs depending on the type of complex, for example, when an Fe (η 5 -Me 5 C 60 ) (η 5 -Cp) complex is used as a raw material, it is observed at around 850 ° C. It is considered that a graphite structure is rapidly formed at this exothermic temperature, and it is assumed that the metal fine particles act as a catalyst at that time.
When the graphite structure of the carbon portion is observed with a TEM, it can be seen as a characteristic layered structure formed by several to 20 graphite layers, although it varies depending on the raw material and the heating temperature. Most of the graphite structure is bent to form a closed shell structure, and the size of the closed shell structure is usually about 50 to 150 nm in the major axis of the outermost core. In this closed shell structure, both a shape surrounding metal particles and a hollow body not containing metal particles are observed, but the latter is usually the main. This is considered to suggest that the metal particles considered to be involved in the formation of the graphite structure as a catalyst move and are catalytically involved in the formation of the graphite closed shell structure. In addition, carbon nanotubes may be observed very rarely in the carbon portion.
In addition, the carbon material in which the metal obtained in the present invention is highly dispersed serves as a catalyst for various synthetic reactions as a catalyst supporting the metal, and when Pt is used as M, as a fuel cell material, Co as M When Ni is used, it can be used as a memory material element, and when Ru is used as M, fine metal particles dispersed in carbon are obtained.

以下に、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超えない限り、これらにより限定されるものではない。
(実施例1)
[Ru(η5−Me560)(η5−Cp)の合成]
式(2)においてRが全てメチル基であるフラーレン誘導体C60Me5Hを200mg(0.251mmol)含有するテトラヒドロフラン(THF)サスペンジョン40.0cm3に、1mol/LのtBuOKのTHF溶液0.30cm3を室温で加えた。この溶液に、215mg(0.497mmol)の[RuCp(CH3CN)]PF6を3回に分けて加えた。これを室温で10分間撹拌した後、エタノールを1cm3加えて反応を停止させた。溶媒を留去した後、得られた粗生成物をCS2/トルエンに溶解し、シリカゲルカラムを通した。HPLC[Buckyprep(Nacalai Tesque 社製20mm×250mm)]による分取、及びCS2/EtOH混合溶媒からの再結晶により、空気中で安定な赤色微結晶133mg(収率55%)を得た。
Examples The present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples as long as the gist of the invention is not exceeded.
Example 1
[Synthesis of Ru (η 5 -Me 5 C 60 ) (η 5 -Cp)]
The fullerene derivative C 60 Me 5 H R are all methyl groups in tetrahydrofuran (THF) suspension 40.0Cm 3 containing 200 mg (0.251 mmol) in equation (2), THF solution 0 t BuOK in 1 mol / L. 30 cm 3 was added at room temperature. To this solution, 215 mg (0.497 mmol) [RuCp (CH 3 CN)] PF 6 was added in three portions. After stirring this at room temperature for 10 minutes, 1 cm 3 of ethanol was added to stop the reaction. After the solvent was distilled off, the resulting crude product was dissolved in CS 2 / toluene and passed through a silica gel column. Separation by HPLC [Buckyprep (Nacalai Tesque 20 mm × 250 mm)] and recrystallization from a CS 2 / EtOH mixed solvent gave 133 mg (yield 55%) of red microcrystals stable in air.

得られた赤色微結晶の測定結果は次の通り。
1H−NMR(400MHz、CDCl3) δ2.26(s,15H)、 5.15(s、5H);13C−NMR(100MHz、CDCl3) δ31.06(5C)、50.20(5C)、71.35(5C)、97.78(5C)、143.12(10C)、144.28(10C)、146.97(5C)、147.92(10C)、148.18(5C)、154.62(10C);IR(neat νC-H/cm-1 2960(m)、2915(m)、2851(m);HR−APCI−MS(+) m/z found 963.0687、calcd for C7021Ru([M+H]+):963.0687.
以上の分析よりこのものの化学式はRu(η5−Me560)(η5−Cp)であると同定され、これから算出されるRu含量は10.5wt%であった。
The measurement result of the obtained red microcrystal is as follows.
1 H-NMR (400 MHz, CDCl 3 ) δ 2.26 (s, 15H), 5.15 (s, 5H); 13 C-NMR (100 MHz, CDCl 3 ) δ 31.06 (5C), 50.20 (5C) ), 71.35 (5C), 97.78 (5C), 143.12 (10C), 144.28 (10C), 144.97 (5C), 147.92 (10C), 148.18 (5C) 154.62 (10C); IR (neat ν CH / cm −1 2960 (m), 2915 (m), 2851 (m); HR-APCI-MS (+) m / z found 963.0687, calcd for C 70 H 21 Ru ([M + H] +): 963.0687.
From the above analysis, the chemical formula of this product was identified as Ru (η 5 -Me 5 C 60 ) (η 5 -Cp), and the Ru content calculated therefrom was 10.5 wt%.

[Ru含有炭素材料の製造]
上記で得られたRu(η5−Me560)(η5−Cp)錯体を流速100ml/mlのN2雰囲気下、TG−DTA装置を用いて10℃/minの昇温速度で室温から900℃まで加熱し、含金属炭素材料を生成させた。室温から900℃までの加熱で、25wt%の重量減少が観測され、これから算出される含金属炭素材料中のRu含有量は14.0wt%であった。冷却後、生成した含金属炭素材料である黒色粉末を取り出し、粉砕してTEMによる観察を行った。TEM写真を図1〜3に示す。図3で観察されるRu金属粒子150個の平均粒子径は1.5nmと非常に小さく、高度に分散しているのがわかった。
[Production of Ru-containing carbon material]
The Ru (η 5 -Me 5 C 60 ) (η 5 -Cp) complex obtained above was room temperature at a rate of temperature increase of 10 ° C./min using a TG-DTA apparatus in an N 2 atmosphere at a flow rate of 100 ml / ml. To 900 ° C. to produce a metal-containing carbon material. With heating from room temperature to 900 ° C., a weight loss of 25 wt% was observed, and the Ru content in the metal-containing carbon material calculated from this was 14.0 wt%. After cooling, the produced black powder, which is a metal-containing carbon material, was taken out, pulverized, and observed with a TEM. A TEM photograph is shown in FIGS. The average particle diameter of 150 Ru metal particles observed in FIG. 3 was as very small as 1.5 nm, indicating that they were highly dispersed.

(実施例2)
[Ru含有炭素材料の製造]
Ru(η5−Me560)(η5−Cp)錯体の加熱温度を700℃までとした以外は、実施例1と同様に行った。室温から700℃までの加熱において、21wt%の重量減少が観測され、これから算出される含金属炭素材料中のRu含有量は13.3wt%であった。冷却後、残存した黒色粉末を取り出し、XRD測定を行ったところ、グラファイトおよびフラーレンに由来するピークも、Ru金属の結晶に対応するピーク(38、42、44、58度)も観測されなかった。このことから、Ru金属は単原子あるいは数原子程度の集合体としてアモルファス状の炭素中に高度に分散していると推定された。
(Example 2)
[Production of Ru-containing carbon material]
The same procedure as in Example 1 was performed except that the heating temperature of the Ru (η 5 -Me 5 C 60 ) (η 5 -Cp) complex was changed to 700 ° C. In heating from room temperature to 700 ° C., a weight loss of 21 wt% was observed, and the Ru content in the metal-containing carbon material calculated from this was 13.3 wt%. After cooling, the remaining black powder was taken out and subjected to XRD measurement. As a result, neither peaks derived from graphite and fullerene nor peaks (38, 42, 44, and 58 degrees) corresponding to Ru metal crystals were observed. From this, it was estimated that Ru metal was highly dispersed in amorphous carbon as an aggregate of a single atom or several atoms.

(実施例3)
[Fe(η5−Me560)(η5−Cp)の合成]
特開2002−241389号公報の実施例4に従い、Me560−FeCpを合成した。
[Fe含有炭素材料の製造]
このFe(η5−Me560)(η5−Cp)錯体(Fe含量6.10%)を流速100ml/mlのN2雰囲気下、TG−DTA装置を用いて、10℃/minの昇温速度で室温から700℃まで加熱した。室温から700℃までの加熱において21wt%の重量減少が観測され、これから算出される含金属炭素材料中のFe含有量は7.71wt%であった。冷却後、生成した黒色粉末を取り出し、粉砕してTEMによる観察を行った。TEM写真を図4〜5に示す。図4で観察されるFe金属粒子100個の平均粒子径は10nmであり、高分散しているのがわかった。
(Example 3)
[Synthesis of Fe (η 5 -Me 5 C 60 ) (η 5 -Cp)]
Patent in accordance with Example 4 of 2002-241389 JP, was synthesized Me 5 C 60 -FeCp.
[Production of Fe-containing carbon material]
This Fe (η 5 -Me 5 C 60 ) (η 5 -Cp) complex (Fe content 6.10%) was added at 10 ° C./min using a TG-DTA apparatus in an N 2 atmosphere at a flow rate of 100 ml / ml. It heated from room temperature to 700 degreeC with the temperature increase rate. In heating from room temperature to 700 ° C., a 21 wt% weight reduction was observed, and the Fe content in the metal-containing carbon material calculated from this was 7.71 wt%. After cooling, the produced black powder was taken out, crushed and observed with TEM. TEM photographs are shown in FIGS. The average particle diameter of 100 Fe metal particles observed in FIG. 4 was 10 nm, which was found to be highly dispersed.

(実施例4)
[Pt(η5−C60Me5)(η3−methallyl)の合成]
60Me5Hを50.4mg(63.2μmol)含有するTHFサスペンジョン5.0cm3に、1mol/LのtBuOKのTHF溶液69.6μLを室温で加えた。この暗赤橙色溶液に、[PtCl(η3−methallyl)]219.9mg(34.8μmol)を加えた。
Example 4
[Synthesis of Pt (η 5 -C 60 Me 5 ) (η 3 -methyl)]
To a THF suspension (5.0 cm 3 ) containing 50.4 mg (63.2 μmol) of C 60 Me 5 H, 69.6 μL of 1 mol / L t BuOK in THF was added at room temperature. To this dark red-orange solution, 19.9 mg (34.8 μmol) of [PtCl (η 3 -methyl)] 2 was added.

これを室温で10分間撹拌した後、NH4Cl飽和水溶液を1cm3加えて反応を停止させた。この溶液をトルエンで希釈し、水で洗浄した。有機相をMgSO4で乾燥して減圧下濃縮した。HPLC[Buckyprep(Nacalai Tesque 社製,20mm×250mm)]により分取し、Pt(η5−C60Me5)(η3−methallyl)の赤橙色微結晶を4.3mg(収率6.5%)得た。また副生物として、C60Me5(CH2C(Me)=CH2)を5.2mg(収率9.7%)を赤橙色微結晶として得た。 After stirring this at room temperature for 10 minutes, 1 cm 3 of a saturated aqueous solution of NH 4 Cl was added to stop the reaction. The solution was diluted with toluene and washed with water. The organic phase was dried over MgSO 4 and concentrated under reduced pressure. Fractionated by HPLC [Buckyprep (Nacalai Tesque, 20 mm × 250 mm)], 4.3 mg (yield 6.5) of red-orange microcrystals of Pt (η 5 -C 60 Me 5 ) (η 3 -methyl). %)Obtained. As a by-product, 5.2 mg (9.7% yield) of C 60 Me 5 (CH 2 C (Me) ═CH 2 ) was obtained as red-orange microcrystals.

Pt(η5-C60Me5) (η3-methallyl):1H−NMR(400 MHz、CDCl3) δ2.38(s,15H),2.66(s with satellite, Jpt-H=27.2Hz、3H),3.06(s with satellite、Jpt-H=111.6 Hz、2H)、4.40 (s with satellite、Jpt-H=63.6Hz、2H);13C−NMR(100MHz、CDCl3)δ23.52 (1C), 31.35 (satellite, Jpt-C = 20.7 Hz, 5C), 33.22 (2C), 52.05 (5C), 92.60 (1C), 118.23 (5C), 144.34 (10C), 146.21 (10C), 147.40 (5C), 148.47 (10C), 149.28 (5C), 155.26(10C); IR (NEAT, cm-1) ν2959 (m), 2916 (m), 2852 (m), 1729 (m), 1454 (m), 1439(s), 1417 (m), 1378 (w), 1367 (m), 1264 (m), 1237 (m), 1213 (m), 1199 (m), 1156(m), 1136 (m), 1111 (w), 1074 (w), 1036 (w), 1021 (m), 967 (w), 950 (w), 942 (w), 904 (m), 835 (m), 806 (m), 752 (s), 729 (s), 685 (s), 670 (m), 658 (s); UV-vis(toluene/2-propanol = 7/3) λmax 285, 356 (shoulder), 393, 460 (shoulder); APCI-MS (+) m/z = 1045 (M+); HR-APCI-MS (-) m/z; found: 1045.1314; calcd for C69H22Pt (M-): 1045.1375.
以上の分析よりこのものの化学式はPt(η5−C60Me5)(η3−methallyl)であると同定され、これから算出されるPt含量は18.7wt%であった。
Pt (η 5 -C 60 Me 5 ) (η 3 -methallyl): 1 H-NMR (400 MHz, CDCl 3 ) δ2.38 (s, 15H), 2.66 (s with satellite, J pt-H = 27.2Hz 3H), 3.06 (s with satellite, J pt-H = 111.6 Hz, 2H), 4.40 (s with satellite, J pt-H = 63.6 Hz, 2H); 13 C-NMR (100 MHz, CDCl 3 ) δ23. 52 (1C), 31.35 (satellite, J pt-C = 20.7 Hz, 5C), 33.22 (2C), 52.05 (5C), 92.60 (1C), 118.23 (5C), 144.34 (10C), 146.21 (10C), 147.40 (5C), 148.47 (10C), 149.28 (5C), 155.26 (10C); IR (NEAT, cm -1 ) ν2959 (m), 2916 (m), 2852 (m), 1729 (m), 1454 ( m), 1439 (s), 1417 (m), 1378 (w), 1367 (m), 1264 (m), 1237 (m), 1213 (m), 1199 (m), 1156 (m), 1136 ( m), 1111 (w), 1074 (w), 1036 (w), 1021 (m), 967 (w), 950 (w), 942 (w), 904 (m), 835 (m), 806 ( m), 752 (s), 729 (s), 685 (s), 670 (m), 658 (s); UV-vis (toluene / 2-propanol = 7/3) λ max 285, 356 (shoulder) , 393, 460 (shoulder); APCI-MS (+) m / z = 1045 (M +); HR-APCI-MS (-) m / z; found: 1045.1314; calcd for C 69 H 22 Pt (M - ): 1045.1375.
From the above analysis, the chemical formula of this product was identified as Pt (η 5 -C 60 Me 5 ) (η 3 -methyl), and the Pt content calculated therefrom was 18.7 wt%.

[Pt含有炭素材料の製造]
上記で得られたPt(η5−C60Me5)(η3−methallyl)錯体を、流速100ml/mlのN2雰囲気下、TG−DTA装置を用いて10℃/minの昇温速度で室温から900℃まで加熱した。室温から900℃までの加熱で、29wt%の重量減少が観測され、これから算出される含金属炭素材料中のPt含有量は26.3wt%であった。冷却後、生成した黒色粉末を取り出し、XRD測定を行ったところ、白金金属に対応する40度及び46度にシャープなピークが観測された。これらのピークからScherrer式を用いて決定された白金の平均粒子径は、7nmであった。また、白金金属以外の結晶格子に対応するピークは観測されず、炭素部位はアモルファス状であることが示唆された。
[Production of Pt-containing carbon material]
The Pt (η 5 -C 60 Me 5 ) (η 3 -methyl) complex obtained above was heated at a rate of 10 ° C./min using a TG-DTA apparatus in an N 2 atmosphere at a flow rate of 100 ml / ml. Heated from room temperature to 900 ° C. With heating from room temperature to 900 ° C., a weight loss of 29 wt% was observed, and the Pt content in the metal-containing carbon material calculated from this was 26.3 wt%. After cooling, the produced black powder was taken out and subjected to XRD measurement, and sharp peaks corresponding to platinum metal were observed at 40 degrees and 46 degrees. The average particle diameter of platinum determined from these peaks using the Scherrer equation was 7 nm. In addition, no peak corresponding to a crystal lattice other than platinum metal was observed, suggesting that the carbon site is amorphous.

(実施例5)
[Pd(η5−C60Ph5)(η3−allyl)の合成]
60Ph5Hを100mg(90.3μmol)含有するTHFサスペンジョン10.0cm3に、1mol/LのtBuOKのTHF溶液99.3μLを室温で加えた。この暗赤橙色溶液に[PdCl(η3−allyl)]2を18.2mg(49.7μmol)を加えた。これを室温で10分間撹拌した後、NH4Cl飽和水溶液1.0cm3を加えて反応を停止させた。この溶液をトルエンで希釈し、水で洗浄した。有機相をMgSO4で乾燥して減圧下濃縮した。HPLCによる分取[Buckyprep(Nacalai Tesque Co.,20mm×250mm)]により、Pd(η5−C60Ph5)(η3−allyl)の濃赤色結晶54.3mg(収率48%)を得た。
(Example 5)
[Synthesis of Pd (η 5 -C 60 Ph 5 ) (η 3 -allyl)]
To a THF suspension 10.0 cm 3 containing 100 mg (90.3 μmol) of C 60 Ph 5 H, 99.3 μL of a 1 mol / L t BuOK solution in THF was added at room temperature. To this dark red-orange solution, 18.2 mg (49.7 μmol) of [PdCl (η 3 -allyl)] 2 was added. After stirring this at room temperature for 10 minutes, 1.0 cm 3 of a saturated aqueous NH 4 Cl solution was added to stop the reaction. The solution was diluted with toluene and washed with water. The organic phase was dried over MgSO 4 and concentrated under reduced pressure. Preparative HPLC [Buckyprep (Nacalai Tesque Co., 20 mm × 250 mm)] yielded 54.3 mg (yield 48%) of dark red crystals of Pd (η 5 -C 60 Ph 5 ) (η 3 -allyl). It was.

Pd(η5-C60Ph5) (η3-allyl): 1H−NMR (400 MHz, CDCl3) δ2.09 (d, 3J = 11.2 Hz, 2H), 3.08 (d, 3J = 6.4 Hz, 2H), 4.70 (tt, 3J = 11.2 Hz, 3J = 6.4 Hz, 1H), 7.16-7.20 (m, 15H), 7.77-7.79 (m, 10H); 13C−NMR (100 MHz, CDCl3)δ57.64 (2C), 59.07 (5C), 100.13 (1C), 120.73 (5C), 127.26 (5C), 127.73 (10C), 128.19 (10C), 143.43 (10C), 143.96 (10C), 145.40 (10C), 146.71 (5C), 147.66 (5C), 148.62 (5C), 152.22 (10C); IR (NEAT, cm-1) ν 3055 (m), 3027 (m), 2999 (w), 2921 (m), 2855 (m), 2350 (w), 2336 (w), 2216 (w), 2191 (w), 1959 (m), 1942 (m), 1887 (m), 1872 (m), 1798 (m), 1596 (s), 1589 (m), 1575 (m), 1491 (s), 1457 (s), 1444 (s), 1419 (m), 1378 (w), 1346 (w), 1332 (w), 1326 (w), 1284 (m), 1267 (m), 1237 (m), 1218 (m), 1200 (m), 1180 (m), 1156 (m), 1107 (m), 1071 (m), 1053 (m), 1030 (s), 1012 (m), 960(s), 950 (w), 928 (w), 910 (m), 893 (m), 836 (m), 761 (m), 743 (m), 733 (m), 711 (m), 691 (s), 685 (s), 664 (m); UV-vis (1.0 x 10-5 mol・L-1 in CH2Cl2) λmax (ε) 260 (115000), 280 (94600, shoulder), 340 (43400, shoulder), 356 (39000, shoulder), 396 (18200); APCI-MS (+) m/z = 1252 (M+); Anal Calcd for C93H30Pd・0.5C7H8: C, 89.18; H, 2.64. Found: C, 89.28; H, 2.90.
以上の分析よりこのものの化学式はPd(η5−C60Ph5)(η3−allyl)であると同定され、これから算出されるPd含量は8.50wt%であった。
Pd (η 5 -C 60 Ph 5 ) (η 3 -allyl): 1 H-NMR (400 MHz, CDCl 3 ) δ2.09 (d, 3 J = 11.2 Hz, 2H), 3.08 (d, 3 J = 6.4 Hz, 2H), 4.70 (tt, 3 J = 11.2 Hz, 3 J = 6.4 Hz, 1H), 7.16-7.20 (m, 15H), 7.77-7.79 (m, 10H); 13 C-NMR (100 MHz , CDCl 3 ) δ57.64 (2C), 59.07 (5C), 100.13 (1C), 120.73 (5C), 127.26 (5C), 127.73 (10C), 128.19 (10C), 143.43 (10C), 143.96 (10C) , 145.40 (10C), 146.71 (5C), 147.66 (5C), 148.62 (5C), 152.22 (10C); IR (NEAT, cm -1 ) ν 3055 (m), 3027 (m), 2999 (w), 2921 (m), 2855 (m), 2350 (w), 2336 (w), 2216 (w), 2191 (w), 1959 (m), 1942 (m), 1887 (m), 1872 (m), 1798 (m), 1596 (s), 1589 (m), 1575 (m), 1491 (s), 1457 (s), 1444 (s), 1419 (m), 1378 (w), 1346 (w), 1332 (w), 1326 (w), 1284 (m), 1267 (m), 1237 (m), 1218 (m), 1200 (m), 1180 (m), 1156 (m), 1107 (m), 1071 (m), 1053 (m), 1030 (s), 1012 (m), 960 (s), 950 (w), 928 (w), 910 (m), 893 (m), 836 (m), 761 (m), 743 (m), 733 (m), 711 (m), 691 (s), 685 (s), 664 (m); UV-vis (1.0 x 10 -5 mol ・ L -1 in CH 2 Cl 2 ) λ max (ε) 260 (115 000), 280 (94600, shoulder), 340 (43400, shoulder), 356 (39000, shoulder), 396 (18200); APCI-MS (+) m / z = 1252 (M + ); Anal Calcd for C 93 H 30 Pd ・ 0.5C 7 H 8 : C, 89.18; H, 2.64. Found: C, 89.28; H, 2.90.
From the above analysis, the chemical formula of this product was identified as Pd (η 5 -C 60 Ph 5 ) (η 3 -allyl), and the Pd content calculated therefrom was 8.50 wt%.

[Pd含有炭素材料の製造]
上記で得られたPd(η5−C60Ph5)(η3−allyl)錯体を流速100ml/mlのN2雰囲気下、TG−DTA装置を用いて10℃/minの昇温速度で室温から900℃まで加熱した。室温から900℃までの加熱で、30wt%の重量減少が観測され、これから算出される含金属炭素材料中のPd含有量は12.1wt%であった。冷却後、生成した黒色粉末を取り出し、XRD測定を行ったところ、Pd金属のピーク(40、47、60度)のみが観測された。これらのピークに対しScherrer式から決定されたPd金属の平均粒子径は30nmであった。また、Pd金属以外の結晶格子に対応するピークは観測されず、炭素部位はアモルファス状であることが示唆された。このサンプルについてTEMによる観察を行った。Pd金属粒子100個の粒子径を測定したところ、粒子径10〜40nm(平均粒子径30nm)であった。
また、この炭素材料のPd金属部分のTEM写真を図6に示す。図6より炭素部分の構造はほぼ全体的にアモルファスであるが、Pd金属の表面部分のみに8〜10層程度のグラファイト構造が成長している様子が観測された。グラファイト構造が存在するもののその割合はごく僅かであるため、XRDによる分析ではグラファイトに対応するピークが観測されなかったものと考えられる。
[Production of Pd-containing carbon material]
The Pd (η 5 -C 60 Ph 5 ) (η 3 -allyl) complex obtained above was used at room temperature at a temperature increase rate of 10 ° C./min using a TG-DTA apparatus in an N 2 atmosphere at a flow rate of 100 ml / ml. To 900 ° C. By heating from room temperature to 900 ° C., a weight loss of 30 wt% was observed, and the Pd content in the metal-containing carbon material calculated from this was 12.1 wt%. After cooling, the produced black powder was taken out and subjected to XRD measurement. As a result, only Pd metal peaks (40, 47, 60 degrees) were observed. The average particle diameter of Pd metal determined from the Scherrer equation for these peaks was 30 nm. In addition, no peak corresponding to a crystal lattice other than Pd metal was observed, suggesting that the carbon site is amorphous. This sample was observed by TEM. When the particle diameter of 100 Pd metal particles was measured, it was 10 to 40 nm (average particle diameter 30 nm).
Moreover, the TEM photograph of the Pd metal part of this carbon material is shown in FIG. Although the structure of the carbon part is almost entirely amorphous from FIG. 6, it was observed that a graphite structure of about 8 to 10 layers grew only on the surface part of the Pd metal. Since the ratio of the graphite structure is very small, it is considered that a peak corresponding to graphite was not observed in the analysis by XRD.

(実施例6)
[Fe(η5−Me560)(η5−Cp)の合成]
特開2002−241389号公報の実施例4に従い、Fe(η5−Me560)(η5−Cp)錯体を合成した。
[Fe含有炭素材料の製造]
このFe(η5−Me560)(η5−Cp)錯体(Fe含量6.10wt%)を流速100ml/mlのN雰囲気下、TG−DTA装置を用いて、10℃/minの昇温速度で室温から900℃まで加熱した。室温から900℃までの加熱において17wt%の重量減少が観測され、これから算出される含金属炭素材料中のFe含有量は7.35wt%であった。また860℃付近に実施例1〜5では観測されなかった鋭い発熱ピークが観測された。冷却後、生成した黒色粉末を取り出し、粉砕してTEMによる観察を行った。TEM写真を図7〜9に示す。
図7等で観察されるFe金属粒子50個の粒子径は10〜100nm(平均粒子径50nm)であり、実施例3のFe金属粒子の平均粒子径(10nm)よりも大きく、粒子が成長していることがわかる。また、図7および8より、炭素部分は屈曲した数層〜20層程度のグラファイト層がランダムに存在したグラファイト構造を形成していた。このグラファイト構造は屈曲部が多く、このグラファイト構造で形成された中空の閉殻構造部分が多く存在することが観察された。1つの閉殻構造における最外殻部分の長径は50〜200nmのものが多く観察された。この構造は、熱処理によって成長したFe粒子が触媒となり、Fe粒子の周囲でグラファイト構造が成長した結果と考えられる。
(Example 6)
[Synthesis of Fe (η 5 -Me 5 C 60 ) (η 5 -Cp)]
Patent in accordance with Example 4 of 2002-241389 JP, was synthesized Fe (η 5 -Me 5 C 60 ) (η 5 -Cp) complex.
[Production of Fe-containing carbon material]
This Fe (η 5 -Me 5 C 60 ) (η 5 -Cp) complex (Fe content 6.10 wt%) was added at 10 ° C./min using a TG-DTA apparatus in an N 2 atmosphere at a flow rate of 100 ml / ml. It heated from room temperature to 900 degreeC with the temperature increase rate. A weight loss of 17 wt% was observed during heating from room temperature to 900 ° C., and the Fe content in the metal-containing carbon material calculated from this was 7.35 wt%. Further, a sharp exothermic peak that was not observed in Examples 1 to 5 was observed near 860 ° C. After cooling, the produced black powder was taken out, pulverized and observed by TEM. TEM photographs are shown in FIGS.
The particle diameter of 50 Fe metal particles observed in FIG. 7 and the like is 10 to 100 nm (average particle diameter 50 nm), which is larger than the average particle diameter (10 nm) of the Fe metal particles of Example 3, and the particles grow. You can see that 7 and 8, the carbon portion formed a graphite structure in which several to 20 bent graphite layers were randomly present. It was observed that this graphite structure had many bent portions and that there were many hollow closed shell structures formed by this graphite structure. Many of the outermost shells in one closed shell structure were observed to have a major axis of 50 to 200 nm. This structure is considered to be the result of the growth of the graphite structure around the Fe particles by the Fe particles grown by the heat treatment as a catalyst.

実施例1で得られた含金属炭素材料のTEM写真TEM photograph of metal-containing carbon material obtained in Example 1 実施例1で得られた含金属炭素材料のTEM写真TEM photograph of metal-containing carbon material obtained in Example 1 実施例1で得られた含金属炭素材料のTEM写真TEM photograph of metal-containing carbon material obtained in Example 1 実施例3で得られた含金属炭素材料のTEM写真TEM photograph of metal-containing carbon material obtained in Example 3 実施例3で得られた含金属炭素材料のTEM写真TEM photograph of metal-containing carbon material obtained in Example 3 実施例6で得られた含金属炭素材料のTEM写真TEM photograph of metal-containing carbon material obtained in Example 6 実施例6で得られた含金属炭素材料のTEM写真TEM photograph of metal-containing carbon material obtained in Example 6 実施例6で得られた含金属炭素材料のTEM写真TEM photograph of metal-containing carbon material obtained in Example 6 実施例6で得られた含金属炭素材料のTEM写真TEM photograph of metal-containing carbon material obtained in Example 6

Claims (6)

フラーレン骨格を有する金属錯体を加熱して炭化させることを特徴とする金属粒子を含有する炭素材料の製造方法。   A method for producing a carbon material containing metal particles, characterized by heating and carbonizing a metal complex having a fullerene skeleton. フラーレン骨格を有する金属錯体がフラーレン骨格上にシクロペンタジエニル構造を有することを特徴とする請求項1に記載の金属粒子を含有する炭素材料の製造方法。   The method for producing a carbon material containing metal particles according to claim 1, wherein the metal complex having a fullerene skeleton has a cyclopentadienyl structure on the fullerene skeleton. フラーレン骨格を有する金属錯体が下記式(1)に示す部分構造を有することを特徴とする請求項1又は2に記載の金属粒子を含有する炭素材料の製造方法。
(式中、Mは金属原子、LはMの配位子、nは0〜5の整数、C〜C10はフラーレン骨格上の炭素原子を表わし、複数のRはそれぞれ独立して炭化後に炭素材料中に炭素以外の元素として残存しない付加基を表わす。)
The method for producing a carbon material containing metal particles according to claim 1 or 2, wherein the metal complex having a fullerene skeleton has a partial structure represented by the following formula (1).
(In the formula, M is a metal atom, L is a ligand of M, n is an integer of 0 to 5, C 1 to C 10 are carbon atoms on the fullerene skeleton, and a plurality of R are independently carbonized. (This represents an additional group that does not remain as an element other than carbon in the carbon material.)
加熱を不活性雰囲気下で行うことを特徴とする請求項1ないし3の何れかに記載の金属粒子を含有する炭素材料の製造方法。   The method for producing a carbon material containing metal particles according to any one of claims 1 to 3, wherein heating is performed in an inert atmosphere. 加熱温度が500〜1000℃であることを特徴とする請求項1ないし4のいずれかに記載の金属粒子を含有する炭素材料の製造方法。   The method for producing a carbon material containing metal particles according to any one of claims 1 to 4, wherein the heating temperature is 500 to 1000 ° C. 請求項1ないし5のいずれかに記載の製造方法により得られることを特徴とする金属粒子を含有する炭素材料
A carbon material containing metal particles obtained by the production method according to claim 1 .
JP2004222510A 2003-10-16 2004-07-29 Method for producing metal-containing carbon material and metal-containing carbon material Expired - Fee Related JP4551153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222510A JP4551153B2 (en) 2003-10-16 2004-07-29 Method for producing metal-containing carbon material and metal-containing carbon material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003356816 2003-10-16
JP2004222510A JP4551153B2 (en) 2003-10-16 2004-07-29 Method for producing metal-containing carbon material and metal-containing carbon material

Publications (2)

Publication Number Publication Date
JP2005139061A JP2005139061A (en) 2005-06-02
JP4551153B2 true JP4551153B2 (en) 2010-09-22

Family

ID=34702927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222510A Expired - Fee Related JP4551153B2 (en) 2003-10-16 2004-07-29 Method for producing metal-containing carbon material and metal-containing carbon material

Country Status (1)

Country Link
JP (1) JP4551153B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5145494B2 (en) * 2007-02-08 2013-02-20 国立大学法人鳥取大学 Metal negative electrode for lithium ion secondary battery, method for producing the same and lithium ion secondary battery using the same

Also Published As

Publication number Publication date
JP2005139061A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
US8048821B2 (en) Catalyst composition for the synthesis of thin multi-walled carbon nanotube and its manufacturing method
CN111203278B (en) Metal complex catalyst for catalyzing hydrochlorination of acetylene as well as preparation method and application thereof
Velazquez-Hernandez et al. Electrochemical valorization of crude glycerol in alkaline medium for energy conversion using Pd, Au and PdAu nanomaterials
Zhang et al. Atomically dispersed iron cathode catalysts derived from binary ligand-based zeolitic imidazolate frameworks with enhanced stability for PEM fuel cells
KR20190072580A (en) A process for producing a catalyst containing an intermetallic compound and a catalyst prepared by the process
KR20110041381A (en) The preparation method of scaffold materials-transition metal hydride complexes and intermediates therefor
Shaikh et al. Highly active mixed Au–Pd nanoparticles supported on RHA silica through immobilised ionic liquid for suzuki coupling reaction
Huang et al. Two-step etching fabrication of tunable ternary rhombic dodecahedral nanoframes for enhanced oxygen reduction electrocatalysis
CN111468163B (en) Two-dimensional iron monatomic catalyst, preparation thereof and application thereof in production of ethylene by reducing 1,2-dichloroethane
Belousov et al. Synthesis and catalytic hydrogenation activity of Pd and bimetallic Au–Pd nanoparticles supported on high-porosity carbon materials
Daniels et al. Intermetallic Nanocatalysts from Heterobimetallic Group 10–14 Pyridine-2-Thiolate Precursors
CN110665546A (en) Noble metal/amino MOFs selective hydrogenation catalyst, preparation method and application thereof
JP5540279B2 (en) Method for producing metal nanoparticles and method for producing metal nanoparticle dispersion solution
Amirsardari et al. Controlled attachment of ultrafine iridium nanoparticles on mesoporous aluminosilicate granules with carbon nanotubes and acetyl acetone
JPH02303541A (en) Production of high-surface area metal-deposited catalyst
JP4551153B2 (en) Method for producing metal-containing carbon material and metal-containing carbon material
Nindakova et al. Asymmetric transfer hydrogenation of carbonyl compounds catalyzed by rhodium nanoparticles
CN114106052B (en) Tetranuclear platinum carboxylate, synthesis method and application thereof in preparation of platinum black
CN113117724B (en) Recoverable supported Au52Cu72 (SR) 55 cluster catalyst and application thereof
Willocq et al. Anchoring of Ru–Pt and Ru–Au Clusters onto a Phosphane‐Functionalized Carbon Support
US20050008558A1 (en) Fullerene derivatives and processes for producing the same
JP4211682B2 (en) Fullerene derivative and method for producing the same
KR100907459B1 (en) Complex of ionic liquid-silica support containing immobilized metallic nanoparticles and method for immobilizing metallic nanoparticles thereto
JP2021084896A (en) Novel dendrimer having alkyl shell structure and production method of metal sub-nanoparticle
Ostrovsky et al. Photochemically modified ATO NPs as conductive support of Pt electrocatalysts for proton exchange membrane fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070202

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100709

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees