JP4547118B2 - Optical head device - Google Patents

Optical head device Download PDF

Info

Publication number
JP4547118B2
JP4547118B2 JP2001315404A JP2001315404A JP4547118B2 JP 4547118 B2 JP4547118 B2 JP 4547118B2 JP 2001315404 A JP2001315404 A JP 2001315404A JP 2001315404 A JP2001315404 A JP 2001315404A JP 4547118 B2 JP4547118 B2 JP 4547118B2
Authority
JP
Japan
Prior art keywords
correction element
phase correction
voltage
resistor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001315404A
Other languages
Japanese (ja)
Other versions
JP2003123304A (en
Inventor
琢治 野村
浩一 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001315404A priority Critical patent/JP4547118B2/en
Publication of JP2003123304A publication Critical patent/JP2003123304A/en
Application granted granted Critical
Publication of JP4547118B2 publication Critical patent/JP4547118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)
  • Optical Recording Or Reproduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光ディスクや光磁気ディスクなどの光記録媒体の情報の記録・再生を行う光ヘッド装置に関する。
【0002】
【従来の技術】
光ディスクであるDVDは、同じく光ディスクであるCDに比べデジタル情報が高密度で記録されており、DVDを再生するための光ヘッド装置は、光源の波長をCDの780nmよりも短い650nmまたは635nmとしたり、対物レンズの開口数(NA)をCDの0.45よりも大きい0.6にして光ディスク面上に集光するスポット径を小さくしている。
【0003】
さらに、次世代の光記録においては光源の波長を400nm程度、NAを0.6以上とすることで、より大きな記録密度を得ることが提案されている。しかし、光源の短波長化や対物レンズの高NA化が原因で、光ディスク面が光軸に対して直角より傾くチルトの許容量や光ディスクの厚みムラの許容量が小さくなる。
【0004】
これら許容量が小さくなる理由は、光ディスクのチルトの場合にはコマ収差が発生し、光ディスクの厚みムラの場合には球面収差が発生するために、光ヘッド装置の集光特性が劣化して信号の読み取りが困難になることによる。高密度記録において、光ディスクのチルトや厚みムラに対する光ヘッド装置の許容量を拡げるためにいくつかの方式が提案されている。
【0005】
一つの方式として、通常光ディスクの接線方向と半径方向との2軸方向に移動する対物レンズのアクチュエータに、検出されたチルト角に応じて対物レンズを傾けるように傾斜用の軸を追加する方式がある。しかし、この追加方式では球面収差は補正できないことや、アクチュエータの構造が複雑になることなどの問題がある。
【0006】
また別の方式として、対物レンズと光源との間に備えた位相補正素子により波面収差を補正する方式がある。この補正方式では、アクチュエータに大幅な改造を施すことなく光ヘッド装置に素子を組み入れるだけで光ディスクのチルトの許容量や厚みムラの許容量を拡げることができる。
【0007】
例えば、位相補正素子を用いて光ディスクのチルトを補正する上記の補正方式に特開平10−20263がある。これは、位相補正素子を構成している液晶などの複屈折性材料を挟持している一対の基板のそれぞれに、電極が分割されて形成された分割電極に電圧を印加して、複屈折性材料の実質的な屈折率を光ディスクのチルト角に応じて変化させ、この屈折率の変化により発生した透過光の位相(波面)変化により、光ディスクのチルトで発生したコマ収差を補正する方式である。
【0008】
【発明が解決しようとする課題】
液晶を利用した位相補正素子で波面収差を補正するには、位相補正素子の場所により異なる電圧を印加して液晶分子の配向を変化させ、生じた屈折率分布による位相変化と補正する波面収差を相殺させる。したがって、発生させる位相変化量は液晶に印加する電圧で制御するが、位相変化の電圧依存性が急峻である場合、細かく位相変化を制御するためには、電圧の変化量を微細に制御する必要があるために、制御性が悪くなる。特に、ある種の液晶において、液晶の厚さを増加して複屈折性を高めた場合、制御電圧をほとんど変化させなくとも、位相変化量が大きくなるために、位相変化の制御性が悪くなる。
【0009】
このように制御性が悪い場合の解決方法して、電圧依存性の緩やかな特性を有する液晶材料を用いる、また液晶駆動用のより高精度な電圧発生回路を用いる方法があった。しかし、前者の場合は、液晶材料選定に制約があるとともに、他の特性とのトレードオフとなることがあり、また、後者の場合は、液晶駆動用の電圧発生回路のコスト高になる問題があった。したがって、液晶材料の特性に依存せず、また汎用の液晶駆動用の電圧発生回路を用いても、高精度に位相補正素子の位相変化を制御できる技術が望まれていた。
【0010】
【課題を解決するための手段】
本発明は、上記の課題を解決するためになされたものであり、光源と、光源からの出射光を光記録媒体上に集光させるための対物レンズと、光源と対物レンズとの間に設けられた出射光の波面を変化させる位相補正素子と、波面を変化させるための電圧を位相補正素子へ出力する制御電圧発生手段とを備えた光ヘッド装置であって、位相補正素子は一対の透明基板と、透明基板間に挟持された液晶層と、液晶層への電圧印加時に使用される、透明基板面上の分割された複数の電極とを備えており、同一透明基板上の複数の電極のうち2つ以上が第1の抵抗体を挟んで導電接続されており、さらに少なくとも1つの第1の抵抗体の一方の末端が、第2の抵抗体の一方の末端に導電接続され、かつ、第2の抵抗体の他方の末端が制御電圧発生手段のみ、に導電接続されているとともに、第1、第2の抵抗体は透明導電性薄膜により形成された薄膜抵抗であって、前記位相補正素子の透明基板上に形成され、直列接続される第1と第2の抵抗体の両末端には、制御電圧発生手段から同位相で振幅が異なる電圧が印加され、電圧の振幅を調整して収差を補正させることを特徴とする光ヘッド装置を提供する。
【0014】
また、第2の抵抗体の抵抗値は、第1の抵抗体の抵抗値の総和の0.2倍から1倍までの値を有する上記の光ヘッド装置を提供する。
【0015】
【発明の実施の形態】
図4に本発明の光ヘッド装置の原理構成の一例を示す。図4に示した光ヘッド装置はCDまたはDVDなどの光ディスク8に記録された情報を再生するためのものであり、光源である例えば半導体レーザ1から出射した光は例えばホログラムタイプの偏光ビームスプリッタ2を透過した後、コリメートレンズ3により平行光となり、位相補正素子4を透過後、4分の1波長板5を透過し、立ち上げミラー11で90°方向に反射され、アクチュエータ7に設置された対物レンズ6により光ディスク8上に集光される。集光された光は光ディスク8により反射され対物レンズ6、立ち上げミラー11、4分の1波長板5、位相補正素子4、コリメートレンズ3を順次先程とは逆に透過した後、偏光ビームスプリッタ2により回折され光検出器9に入射する。前述の半導体レーザ1からの出射光が光ディスク8により反射される際、光ディスクの面上に記録された情報により反射光は振幅変調され、光検出器9により光強度信号として記録情報を読み取ることができる。
【0016】
偏光ビームスプリッタ2は例えば偏光性のホログラムを備えており、異方性方向(屈折率に差がある方向)に偏光成分を有する光を強く回折して光検出器9に導く。光検出器9より得られる光ディスクの例えば再生信号の強度が最適となるように、位相補正素子4に向けて制御電圧発生手段である位相補正素子制御回路10により電圧が出力される。位相補正素子制御回路10より出力される電圧は、光ディスクのチルト量や厚みムラに応じた電圧であり、位相補正素子4の電極に印加する実質的に変化する電圧となる。
【0017】
次に本発明において使用する位相補正素子の構成を図2を用いて説明する。透明基板21a、21bが、例えばエポキシ系樹脂を主成分とするシール材22により接着され液晶セルを形成している。透明基板21a、21bには、ガラス、アクリル系樹脂、エポキシ系樹脂、塩化ビニル系樹脂、ポリカーボネートなどが使用できるが、耐久性などの点からガラスの基板が好ましい。したがって、以下では基板の材料としてガラスを使用する場合について説明する。
【0018】
シール材22には例えばガラス製のスペーサと、例えば樹脂の表面に金などを被膜した導電性スペーサが含有されている。ガラス基板21aの内側表面には、内側表面から電極24a、シリカなどを主成分とする絶縁膜25a、配向膜26aがこの順に、またガラス基板21bの内側表面には、内側表面から電極24b、シリカなどを主成分とする絶縁膜25b、配向膜26bがこの順に被膜されている。液晶セルの外側表面には反射防止膜が被膜されていてもよい。
【0019】
電極24aは電極引出部27でフレキシブル基板などによって位相補正素子制御回路と接続できるようパターン配線されている。また電極24bは上述の金などを被膜した導電性スペーサによりガラス基板21a上に形成された電極24aと電気的に接続しており、したがって、電極24bは電極引出部27で接続線によって位相補正素子制御回路と接続できる。図2には、電極24bと電極24aとがシール材22と接している様子が示されていないが、紙面と平行なシール材とは接しており両電極は電性スペーサを通じて電気的に接続されている。液晶セル内部には液晶が充填され液晶層23とされており、図2に示した液晶分子28は、一方向に配向されたホモジニアス配向の状態にある。使用される液晶はディスプレイなどで用いられているネマティック液晶が好ましく、ツイストしていてもよい。
【0020】
配向膜26a、bの材料としては、液晶分子28のプレチルト角が2〜10゜となれば好ましく、ポリイミド膜を図2の紙面に平行で左右方向にラビングしたものや、シリカ膜を斜め蒸着したものなどがよい。電極24a、24bの材質は透過率が高い方が望ましく、ITO膜などの透明導電膜を使用すればよい。
【0021】
以上は位相補正素子を用いて波面を変化させる機能に必要な構成を述べたが、波長板や偏光性のホログラムを位相補正素子4に積層することにより、波長板5や偏光ビームスプリッタ2の機能を位相補正素子4が併せ持つようにできる。この場合、光ヘッド装置を構成する光学部品の点数が減ることで組立、調整が簡易となり、生産性が向上して好ましい。
【0022】
また位相補正素子4に、回折格子や光源の波長により光束径を変化させるためのダイクロイック開口制限層などを積層し、またガラス基板21a、21bの外側表面上に直接形成することもでき、この場合も個々の部品を新たに追加することに比べて生産性が向上して好ましい。波長板を積層する場合には、光ディスク側のガラス基板に直接貼り合せるか、または貼り合わせたガラス基板をさらに積層すればよい。
【0023】
次に本発明における位相補正素子を用いて波面収差を補正する方法について述べる。図3はディスクチルトにより発生するコマ収差分布を示すものであり、対物レンズのNAが0.6、光ディスクの厚さ0.1mm、ディスクチルト角は1°である。
【0024】
図1は、本発明における位相補正素子の電極パターンおよび変圧用抵抗の等価回路の一例を示し、ラジアル方向(図中の上下方向)のディスクチルトにより発生したコマ収差を補正するための例である。分割された電極31〜35は位相補正素子内部の電極24a(図2)を、フォトリソグラフィー技術を用いてパターニングしたものであり、さらに電極31と電極34、および電極32と電極35は、第1の抵抗体である電極内部の配線によりおのおの導電接続されていて(太線で図示)、等電位電極になっている。また、抵抗値Rを有する変圧用抵抗36、および抵抗値Rを有する変圧用抵抗37(これら変圧用抵抗は第2の抵抗体である)は、本例の場合各2個の抵抗が直列接続されており、その両末端は位相補正素子制御回路と接続されている。図4に示す光ヘッド装置では、図1に示す電極31〜35のパターン中心点を光軸が通過するように位相補正素子を設置する。
【0025】
上述のように、位相補正素子制御回路はディスクチルト量に応じて、異なる電圧を位相補正素子に供給する。図1に示した例の場合、固定電圧をV、V、ディスクチルトに比例した補正電圧をΔVとして、電圧V+ΔVは電極32、35へ、電圧Vは電極33へ、電圧V−ΔVは電極31、34に対して出力される。一方、電圧Vの信号は液晶層を挟んで電極31〜35と対向する電極24bに印加される。
【0026】
図5は本発明における位相補正素子への印加電圧波形の一例を示す模式図である。V、V±ΔVは、同位相であるが振幅が異なっている(図5の(a)、(b)、(c))。また、Vは、Vとは逆位相の実効電圧値(時間的二乗平均根)が一定である交流波(d)か、または電圧値が一定である直流波(e)のいずれであってもよく、結果的に液晶に印加される実効電圧(電極24a、24b間の電圧)が直流成分を持たないようにすればよい。
【0027】
変圧用抵抗36、37に比べ電極32、35などを導電接続する配線の抵抗が無視できるほど小さい場合、光軸が通過する電極33には電圧Vが印加される。一方、電極33に対する電極31と34の電圧差ΔV’、および電極33に対する電極32と35の電圧差ΔV’は、位相補正素子制御回路の補正電圧ΔVが変圧用抵抗36、37により変圧され、数(1)のように表される。
【0028】
【数1】

Figure 0004547118
【0029】
したがって、本発明の位相補正素子の場合、変圧用抵抗36と37との抵抗値の比R/Rにより、位相補正素子制御回路が発生する電圧幅ΔVより小さな電圧を液晶に印加できる。
【0030】
図6は本発明における位相補正素子に対する位相差電圧特性の一例を示す図であり、1.8Vrmsを基準にし位相差ゼロとして縦軸+側は位相が遅れる方向、−側は位相が進む方向である。従来の変圧用抵抗を用いない位相補正素子の場合、位相補正素子制御回路は図6の傾きである−1λ/Vrmsで制御する必要があるが、図1に示した例においてR=Rとした場合、(1)式よりΔV’=0.5×ΔVであるため、0.5λ/Vrmsで制御できるため、制御性は向上する。
【0031】
以上は、図1に示した例を用いて本発明における位相補正素子の動作原理を説明したが、同じ原理を用いることにより電極31〜35以外の電極形状を有する位相補正素子にも適用できる。図7は一般化された本発明における位相補正素子の等価回路を示す模式図である。電極A〜A、電極B〜Bは、位相補正素子の電極24a、24b部分におのおの形成された電極であり液晶を挟んで対向している。以下、電極A〜Aに関して述べる。
【0032】
n+1個の変圧用抵抗RAt、RA1〜RAn−1、RAt’は直列接続され、各抵抗間には電極A〜Aが接続されており、両末端は位相補正素子制御回路に接続され電圧VA1、VA2が印加される。したがって、電極A〜Aには、変圧用抵抗RAt、RA1〜RAn−1、RAt’により分圧された電圧が印加され、RA1〜RAn−1とRAt、RAt’の値を適切に選ぶことにより、位相補正素子制御回路の電圧制御範囲を所望の範囲に調整できる。
【0033】
また、RA1〜RAn−1が全て同じ抵抗値の場合、電極A〜電極Aに印加される電圧は等分割の電圧であるため、各対向電極間で発生する位相変化量は等分割になる。また、電極A〜電極An−1のうちのいくつかは、VA3、VA4・・の電圧を個々に印加することもできる。しかし、VA3、VA4・・の電圧数が多くなると位相補正素子制御回路が複雑になるため好ましくなく、例えば光軸が通過する電極など、基準となる電極にのみVAkを印加することが好ましい。以上、n個の電極A〜Aの場合、2つの変圧用抵抗RAt、RAt’とn−1個の変圧抵抗RA1〜Rn−1、および最低2つの電圧VA1、VA2により位相補正素子は動作できる。
【0034】
2つのガラス基板間で、電極A〜Aと対向するm個の電極B〜Bにおいても、電極A〜Aと同様に動作させることができる。しかし、図1に示した例のように、変圧用抵抗を用いず1つの平面電極に一つの電圧を印加する構成を採ることもできる。また、変圧用抵抗を用いずm個の電極B〜B全てに対して、電圧VB1〜Vをそれぞれ印加できるよう位相補正素子制御回路を構成できる。複数の電極B〜Bとすることで、前述したコマ収差だけでなく、球面収差、非点収差など異なる複数の波面収差成分を同時に補正できる。
【0035】
電極数、電極形状、印加電圧数などは、波面収差の補正性能、位相補正素子制御回路の製作コストなどにより最適化すればよく、変圧用抵抗の抵抗値は所望の駆動電圧範囲が得られるように選択すればよい。変圧用抵抗の抵抗値は、配線などその他の部分の抵抗値に比べて大きくした方がよい。変圧用抵抗の抵抗値が小さい場合には、配線部分の電気的影響を無視できなくなるために、(1)式においても配線の影響を考慮する必要がある。場合によっては、各電極の配線長の違いなどにより電圧のバランスが崩れるなどするため好ましくない。したがって、変圧用抵抗の抵抗値は1kΩ以上にすることが好ましい。また、制御電圧幅を大きくするためには、第1の抵抗体と第2の抵抗体の比を適切にする必要がある。
ここで、第1の抵抗体の抵抗値とは図7のRAtとRAt’の和Rであり、第2の抵抗体の抵抗値はRA1〜RAn−1の総和Rとする。ここで、ΔV=VA1−VA2、電極Aと電極Aの電位差をΔV’とすると、オームの法則より制御電圧幅の拡大率βは、β=ΔV/ΔV’=1+R/R、したがって、抵抗比R/Rを0.2から1までとすると、制御電圧幅の拡大率βを1.2倍から2倍にすることができ、位相補正素子制御回路の特性面において現実的な値となり好ましい。
変圧用抵抗R、Rは位相補正素子内部に形成してもよく(点線の囲みで表わした、図7の形態1)、位相補正素子外部の位相補正素子制御回路との間の結線中に配置してもよいし(破線の囲みで表わした、図7の形態2)、変圧用抵抗Rのみ位相補正素子内部に形成し、変圧用抵抗Rを位相補正素子外部に配置してもよい。
【0036】
位相補正素子の内部に変圧用抵抗を配置する場合、透明電極24a、24bと同じ面に、所望の抵抗値が得られるよう寸法調整された薄膜抵抗を形成することで達成できる。変圧用抵抗を位相補正素子の内部に配置することにより、引き出し配線数が減る効果がある
【0037】
以上のように、本発明の光ヘッド装置を用いるとき、変圧用抵抗を上記の例のように配置することにより、実際の液晶の電圧駆動幅が狭い場合でも、位相補正素子制御回路の制御電圧幅を広げられるため、制御が容易となり、低コストの位相補正素子制御回路を使用できる。また、位相補正素子を用いることにより、コマ収差をはじめ球面収差、非点収差などの波面収差を補正できる。
【0038】
【実施例】
「例1」
本例の光ヘッド装置は、光ディスクのチルトにより発生するコマ収差を補正する位相補正素子を備えており、同じ液晶材料を用いた従来例に比べ約2倍の電圧幅で制御できるため、電圧制御精度が低い位相補正素子制御回路を用いても精度よく補正できることが特徴である。本例における位相補正素子を組み込んだ光ヘッド装置は、図4に示したものと同じである。また、位相補正素子の断面構成は図2に示したものと同じである。
【0039】
図1は本例における位相補正素子の電極パターンおよび変圧用抵抗の等価回路を示し、図2に示す電極24a部に形成されている。斜線部はITO膜により形成され分割された電極31〜35であり、ガラス基板にスパッタ法にてITO膜を形成した後、フォトリソグラフィー技術によりパターニングして形成した。同時に変圧用抵抗36、37もITO膜をパターニングして形成した。変圧用抵抗36、37は、幅50μm、長さ1mmの線状抵抗であり、抵抗値はR=R=10kΩであった。
【0040】
位相補正素子と位相補正素子制御回路はフレキシブル基板により導電接続されており、電圧V、V+ΔVおよびV−ΔVが電極24aに印加され、電圧Vb=0Vが一様な電極24bに印加された。本例では、電圧Vは1.8Vrmsであり、ΔVは発生したディスクチルト量に比例して変化する補正電圧とした。おのおのの電圧波形は図5に示すような周波数1kHzの矩形交流波であり、交流波の上下幅の中心を0Vに設定した。
【0041】
液晶による位相差の電圧特性は図6に示したものであり、-1λ/Vrmsの勾配を有している。一方、式(1)によりR=R=10kΩの場合は、ΔV’=ΔV/2であるから、位相補正素子制御回路が発生する補正電圧ΔVに対する位相差の電気特性の勾配は-0.5λ/Vrmsであり、勾配が緩やかになったため位相補正素子の電圧制御が容易になった。
【0042】
「例2」
本例の光ヘッド装置は、光ディスクの厚さムラにより生ずる球面収差を補正する位相補正素子を備えている。対物レンズは光ディスクの厚さが設計値からずれると球面収差を発生し信号の読み取り精度が低下する。この球面収差を補正する位相補正素子を図4の光ヘッド装置の位相補正素子4として組み込んだ。ただし、位相補正素子制御回路10は本例の位相補正素子用に改良されている。
【0043】
本例の位相補正素子の素子構造は図2に示したものと同じで、以下に述べる電極パターンおよび変圧用抵抗のみが異なっている。したがって位相補正素子の製造方法、構成材料などは例1と同じものを使用した。
【0044】
図8は本例における位相補正素子の電極パターンおよび変圧用抵抗の等価回路を示し、図2に示す電極24a部に形成されている。斜線部はITO膜により形成され分割された電極41〜44であり、ガラス基板にスパッタ法にてITO膜を形成した後、フォトリソグラフィー技術によりパターニングして形成した。電極41〜44は、第1の抵抗体である変圧用抵抗Rs1〜Rs3および、第2の抵抗体である変圧用抵抗Rt1、Rt2の間のA、B、C、D各点に接続されている。変圧用抵抗Rt1、Rs1〜Rs3、Rt2は直列接続され、その末端は位相補正素子制御回路に接続されている。位相補正素子制御回路は、固定電圧V、V、および光ディスクの厚さムラにより発生する球面収差量に比例した補正電圧ΔVを発生する。本例では、電圧Vは0Vとし、電圧V、V±ΔVの波形は図5に示すような周波数1kHzの矩形交流波とし、上下幅の中心を0Vに設定した。
【0045】
図9に本例の位相補正素子と位相補正素子制御回路を導電接続するために用いたフレキシブル基板52を模式的に図示した。接続部53は位相補正素子制御回路と接続される部分であり、3つのメタルランド部が露出している(図中黒塗り)。一方、位相補正素子51との接続は電極41〜44および対向電極24bに対応する5本の接続線により導電接続されており、フレキシブル基板中に設置された第1の変圧用抵抗54および第2の変圧用抵抗55が接続されている。
【0046】
図9の配線は図8の等価回路と同等であり、変圧用抵抗54は図8のRs1〜Rs3に、変圧用抵抗55はRt1、Rt2にそれぞれ対応している。変圧用抵抗54、55はフレキシブル基板上にハンダ付けされた抵抗素子であり、抵抗値はおのおの10kΩと15kΩであった。
【0047】
液晶による位相差の電圧特性は、例1と同様に図6に示したものであり、-1λ/Vrmsの勾配を有している。一方、図8におけるA点とD点の電圧差を2×ΔV’とすると、2×ΔV’=2×ΔV×(Rs1+Rs2+Rs3)/(Rt1+Rs1+Rs2+Rs3+Rt2)の関係から、Rs1=Rs2=Rs3=10kΩ、Rt1=Rt2=15kΩでは、ΔV’=ΔV/2となる。したがって、位相補正素子制御回路が発生する補正電圧ΔVに対する位相差の特性勾配は-0.5λ/Vrmsとなり、特性勾配が緩やかになったため位相補正素子の電圧制御が容易になった。
【0048】
【発明の効果】
以上説明したように、本発明の光ヘッド装置においては、位相補正素子と位相補正素子制御回路の間に設置された変圧用抵抗により、位相補正素子制御回路が発生する電圧幅より小さな電圧を位相補正素子に印加できるので、実際の液晶動作電圧幅より広い電圧幅で位相補正素子を制御できる。それにより、小さな電圧差で位相差量が急激に変化する場合においても、より大きな電圧差により位相差量を制御できるため、制御性が向上し通常の位相補正素子制御回路においても高精度で制御できる。
【図面の簡単な説明】
【図1】本発明における位相補正素子の電極パターンと変圧用抵抗の等価回路の一例を示す模式図。
【図2】本発明における位相補正素子の一例を示す断面図。
【図3】光ディスクのチルト1゜が発生したときの波面収差を示す図。
【図4】本発明の光ヘッド装置の原理構成の一例を示す概念的断面図。
【図5】本発明における位相補正素子制御回路が発生する電圧波形の一例を示す模式図、(a)V+ΔV、(b)V、(c)V−ΔV、(d)Vで、(b)と逆位相、(e)直流波。
【図6】実施例1、2などにおける位相補正素子により発生した位相変化の電圧特性を示す図。
【図7】一般化された位相補正素子の電極と変圧用抵抗の等価回路を示す模式図。
【図8】実施例2における位相補正素子の電極パターンと変圧用抵抗の等価回路を示す模式図。
【図9】実施例2における位相補正素子とフレキシブル基板を示す模式図。
【符号の説明】
1:半導体レーザ
2:偏光ビームスプリッタ
3:コリメートレンズ
4、51:位相補正素子
5:4分の1波長板
6:対物レンズ
7:アクチュエータ
8:光ディスク
9:光検出器
10:位相補正素子制御回路
11:立ち上げミラー
21a、21b:ガラス基板
22:シール材
23:液晶層
24a、24b:電極
25:絶縁膜
26:配向膜
27:電極引出部
28:液晶分子
31〜35、41〜44:電極
36、37:変圧用抵抗
52:フレキシブル基板
53:電極取り出し部
54、55変圧用抵抗[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical head device for recording / reproducing information on an optical recording medium such as an optical disk or a magneto-optical disk.
[0002]
[Prior art]
A DVD, which is an optical disk, records digital information at a higher density than a CD, which is also an optical disk, and an optical head device for reproducing a DVD has a light source wavelength of 650 nm or 635 nm, which is shorter than 780 nm of the CD. The numerical aperture (NA) of the objective lens is set to 0.6, which is larger than 0.45 of CD, so that the spot diameter focused on the optical disk surface is reduced.
[0003]
Further, in the next generation optical recording, it has been proposed to obtain a higher recording density by setting the wavelength of the light source to about 400 nm and the NA to 0.6 or more. However, due to the shorter wavelength of the light source and the higher NA of the objective lens, the allowable amount of tilt in which the optical disk surface is tilted from the right angle with respect to the optical axis and the allowable amount of uneven thickness of the optical disk are reduced.
[0004]
The reason why these allowances are small is that coma aberration occurs when the optical disk is tilted, and spherical aberration occurs when the optical disk is uneven in thickness. Due to the difficulty of reading. In high-density recording, several methods have been proposed in order to increase the allowable amount of the optical head device with respect to tilt and thickness unevenness of the optical disk.
[0005]
As one method, there is a method in which an axis for tilting is added to an objective lens actuator that normally moves in the biaxial direction of the tangential direction and the radial direction of the optical disc so that the objective lens is tilted according to the detected tilt angle. is there. However, this additional method has problems such that spherical aberration cannot be corrected and the structure of the actuator is complicated.
[0006]
As another method, there is a method in which wavefront aberration is corrected by a phase correction element provided between the objective lens and the light source. In this correction method, the allowable amount of tilt of the optical disc and the allowable amount of thickness unevenness can be increased only by incorporating an element into the optical head device without significantly modifying the actuator.
[0007]
For example, Japanese Patent Laid-Open No. 10-20263 discloses the above correction method for correcting the tilt of an optical disc using a phase correction element. This is because the voltage is applied to the divided electrodes formed by dividing the electrodes on each of the pair of substrates sandwiching the birefringent material such as liquid crystal constituting the phase correction element, and the birefringence is achieved. In this method, the substantial refractive index of the material is changed in accordance with the tilt angle of the optical disk, and the coma aberration generated by the tilt of the optical disk is corrected by the change of the phase (wavefront) of the transmitted light generated by the change of the refractive index. .
[0008]
[Problems to be solved by the invention]
In order to correct wavefront aberration with a phase correction element using liquid crystal, a different voltage is applied depending on the location of the phase correction element to change the orientation of liquid crystal molecules, and the generated phase change due to the refractive index distribution and the wavefront aberration to be corrected are corrected. To offset. Therefore, the amount of phase change to be generated is controlled by the voltage applied to the liquid crystal, but when the voltage dependence of the phase change is steep, it is necessary to finely control the amount of voltage change in order to finely control the phase change. Therefore, the controllability is deteriorated. In particular, in a certain type of liquid crystal, when the birefringence is increased by increasing the thickness of the liquid crystal, the controllability of the phase change becomes worse because the amount of phase change becomes large even if the control voltage is hardly changed. .
[0009]
As a solution for such poor controllability, there has been a method of using a liquid crystal material having a gradual voltage-dependent characteristic and a more accurate voltage generation circuit for driving the liquid crystal. However, in the former case, there are restrictions on the selection of the liquid crystal material and there may be a trade-off with other characteristics. In the latter case, there is a problem that the cost of the voltage generation circuit for driving the liquid crystal becomes high. there were. Therefore, there has been a demand for a technique that can control the phase change of the phase correction element with high accuracy without depending on the characteristics of the liquid crystal material and using a general-purpose liquid crystal driving voltage generation circuit.
[0010]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problems, and is provided between a light source, an objective lens for condensing emitted light from the light source on an optical recording medium, and the light source and the objective lens. An optical head device comprising a phase correction element for changing the wavefront of the emitted light and a control voltage generating means for outputting a voltage for changing the wavefront to the phase correction element, the phase correction element being a pair of transparent A substrate, a liquid crystal layer sandwiched between the transparent substrates, and a plurality of divided electrodes on the transparent substrate surface that are used when a voltage is applied to the liquid crystal layer. Two or more of them are conductively connected across the first resistor, and one end of at least one first resistor is conductively connected to one end of the second resistor, and the other terminal of the second resistor control voltage generating means Seen, along with being conductively connected to, the first, the second resistor comprising a thin film resistor formed by a transparent conductive thin film formed on a transparent substrate of the phase correcting element, is connected in series Provided at both ends of the first and second resistors are voltages having the same phase and different amplitude from the control voltage generating means, and adjusting the amplitude of the voltage to correct aberrations. To do.
[0014]
Further, the optical head device according to the above is provided, wherein the resistance value of the second resistor has a value from 0.2 to 1 times the sum of the resistance values of the first resistor.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 4 shows an example of the principle configuration of the optical head device of the present invention. The optical head device shown in FIG. 4 is for reproducing information recorded on an optical disk 8 such as a CD or a DVD. Light emitted from, for example, a semiconductor laser 1 as a light source is, for example, a hologram type polarization beam splitter 2. Then, the light is converted into parallel light by the collimating lens 3, transmitted through the phase correction element 4, transmitted through the quarter-wave plate 5, reflected by the rising mirror 11 in the 90 ° direction, and installed in the actuator 7. The light is condensed on the optical disk 8 by the objective lens 6. The condensed light is reflected by the optical disk 8 and sequentially passes through the objective lens 6, the rising mirror 11, the quarter-wave plate 5, the phase correction element 4, and the collimating lens 3 in the reverse order, and then the polarization beam splitter. 2 is diffracted by 2 and enters the photodetector 9. When the light emitted from the semiconductor laser 1 is reflected by the optical disk 8, the reflected light is amplitude-modulated by the information recorded on the surface of the optical disk, and the recorded information can be read as a light intensity signal by the photodetector 9. it can.
[0016]
The polarization beam splitter 2 includes, for example, a polarization hologram, and strongly diffracts light having a polarization component in the anisotropic direction (direction in which there is a difference in refractive index) and guides it to the photodetector 9. A voltage is output to the phase correction element 4 by the phase correction element control circuit 10 serving as a control voltage generation unit so that the intensity of, for example, a reproduction signal of the optical disk obtained from the photodetector 9 is optimized. The voltage output from the phase correction element control circuit 10 is a voltage corresponding to the tilt amount and thickness unevenness of the optical disk, and is a substantially changing voltage applied to the electrode of the phase correction element 4.
[0017]
Next, the configuration of the phase correction element used in the present invention will be described with reference to FIG. The transparent substrates 21a and 21b are bonded to each other by a sealing material 22 mainly composed of an epoxy resin, for example, to form a liquid crystal cell. Glass, acrylic resin, epoxy resin, vinyl chloride resin, polycarbonate, or the like can be used for the transparent substrates 21a and 21b, but a glass substrate is preferable from the viewpoint of durability. Therefore, the case where glass is used as the material of the substrate will be described below.
[0018]
The sealing material 22 contains, for example, a glass spacer and a conductive spacer in which, for example, a resin surface is coated with gold or the like. On the inner surface of the glass substrate 21a, an electrode 24a from the inner surface, an insulating film 25a mainly composed of silica and the alignment film 26a are arranged in this order, and on the inner surface of the glass substrate 21b, the electrode 24b and silica are formed from the inner surface. An insulating film 25b and an alignment film 26b whose main components are, for example, are coated in this order. An antireflection film may be coated on the outer surface of the liquid crystal cell.
[0019]
The electrode 24a is wired in a pattern so that it can be connected to the phase correction element control circuit by a flexible substrate or the like at the electrode lead-out portion 27. The electrode 24b is electrically connected to the electrode 24a formed on the glass substrate 21a by the conductive spacer coated with the above-described gold or the like. Therefore, the electrode 24b is connected to the phase correction element by the connection line at the electrode lead-out portion 27. Can be connected to the control circuit. FIG. 2 does not show that the electrode 24b and the electrode 24a are in contact with the sealing material 22, but the electrode 24b and the electrode 24a are in contact with the sealing material parallel to the paper surface, and both electrodes are electrically connected through the electric spacer. ing. The liquid crystal cell is filled with liquid crystal to form a liquid crystal layer 23, and the liquid crystal molecules 28 shown in FIG. 2 are in a homogeneous alignment state aligned in one direction. The liquid crystal used is preferably a nematic liquid crystal used in a display or the like, and may be twisted.
[0020]
As a material for the alignment films 26a and 26b, it is preferable that the pretilt angle of the liquid crystal molecules 28 is 2 to 10 °. A polyimide film that is rubbed in the horizontal direction parallel to the paper surface of FIG. Things are good. The material of the electrodes 24a and 24b is preferably high in transmittance, and a transparent conductive film such as an ITO film may be used.
[0021]
The configuration necessary for the function of changing the wavefront using the phase correction element has been described above. However, the function of the wavelength plate 5 and the polarization beam splitter 2 is obtained by laminating the wave plate and the polarization hologram on the phase correction element 4. Can be included in the phase correction element 4 together. In this case, the number of optical components constituting the optical head device is reduced, which facilitates assembly and adjustment, and is preferable because productivity is improved.
[0022]
In addition, the phase correction element 4 can be laminated with a dichroic aperture limiting layer or the like for changing the beam diameter according to the wavelength of the diffraction grating or the light source, and can be directly formed on the outer surface of the glass substrates 21a and 21b. However, it is preferable because productivity is improved as compared to adding individual parts. When laminating wave plates, they may be directly bonded to a glass substrate on the optical disc side or a laminated glass substrate may be further laminated.
[0023]
Next, a method for correcting wavefront aberration using the phase correction element of the present invention will be described. FIG. 3 shows a distribution of coma generated by the disc tilt. The NA of the objective lens is 0.6, the thickness of the optical disc is 0.1 mm, and the disc tilt angle is 1 °.
[0024]
FIG. 1 shows an example of an equivalent circuit of an electrode pattern of a phase correction element and a transformer resistor according to the present invention, and is an example for correcting coma generated by disc tilt in the radial direction (vertical direction in the figure). . The divided electrodes 31 to 35 are obtained by patterning the electrode 24a (FIG. 2) inside the phase correction element using a photolithography technique, and the electrode 31 and the electrode 34, and the electrode 32 and the electrode 35 are the first electrode. Each resistor is electrically conductively connected by wiring inside the electrode (illustrated by a thick line) to form an equipotential electrode. In addition, in the case of this example, each of two resistors is a transformer resistor 36 having a resistance value R s and a transformer resistor 37 having a resistance value R t (these transformer resistors are second resistors). They are connected in series, and both ends thereof are connected to a phase correction element control circuit. In the optical head device shown in FIG. 4, the phase correction element is installed so that the optical axis passes through the pattern center point of the electrodes 31 to 35 shown in FIG.
[0025]
As described above, the phase correction element control circuit supplies different voltages to the phase correction element according to the disc tilt amount. In the example shown in FIG. 1, the fixed voltage V a, V b, the correction voltage as a [Delta] V which is proportional to the disc tilt, the voltage V a + [Delta] V is the electrode 32, 35, the voltage V a is the electrode 33, the voltage V a− ΔV is output to the electrodes 31 and 34. On the other hand, the signal of the voltage Vb is applied to the electrode 24b facing the electrodes 31 to 35 across the liquid crystal layer.
[0026]
FIG. 5 is a schematic diagram showing an example of a voltage waveform applied to the phase correction element in the present invention. V a and V a ± ΔV have the same phase but different amplitudes ((a), (b), and (c) in FIG. 5). V b is either an AC wave (d) having an effective voltage value (temporal mean square root) having a phase opposite to that of V a or a DC wave (e) having a constant voltage value. As a result, the effective voltage applied to the liquid crystal (the voltage between the electrodes 24a and 24b) need not have a DC component.
[0027]
If the resistance of the wiring for conductive connection to an electrode 32, 35 as compared to the transformer resistor 37 is small enough to be ignored, the electrode 33 which the optical axis passes, the voltage V a is applied. On the other hand, the voltage difference ΔV ′ between the electrodes 31 and 34 with respect to the electrode 33 and the voltage difference ΔV ′ between the electrodes 32 and 35 with respect to the electrode 33 are obtained by transforming the correction voltage ΔV of the phase correction element control circuit by the transformer resistors 36 and 37. It is expressed as number (1).
[0028]
[Expression 1]
Figure 0004547118
[0029]
Therefore, in the case of the phase correction element of the present invention, a voltage smaller than the voltage width ΔV generated by the phase correction element control circuit can be applied to the liquid crystal by the ratio R s / R t of the resistance values of the transformer resistors 36 and 37.
[0030]
FIG. 6 is a diagram showing an example of a phase difference voltage characteristic with respect to the phase correction element in the present invention. The phase difference is zero with reference to 1.8 V rms , the vertical axis + side is a phase delay direction, and the − side is a phase advance direction. It is. In the case of a conventional phase correction element that does not use a transformer resistor, the phase correction element control circuit needs to be controlled at −1λ / V rms , which is the slope of FIG. 6, but in the example shown in FIG. 1, R s = R In the case of t , since ΔV ′ = 0.5 × ΔV from the equation (1), control can be performed at 0.5λ / V rms , so that controllability is improved.
[0031]
The operation principle of the phase correction element according to the present invention has been described above using the example shown in FIG. 1. However, the same principle can be used for a phase correction element having an electrode shape other than the electrodes 31 to 35. FIG. 7 is a schematic diagram showing an equivalent circuit of a generalized phase correction element according to the present invention. The electrodes A 1 to An and the electrodes B 1 to B m are electrodes formed on the electrodes 24 a and 24 b of the phase correction element, and are opposed to each other with the liquid crystal interposed therebetween. Hereinafter, described with respect to the electrode A 1 to A n.
[0032]
n + 1 resistors R At , R A1 to R An−1 , R At ′ are connected in series, and electrodes A 1 to An are connected between the resistors, and both ends are phase correction element control circuits. And voltages V A1 and V A2 are applied. Thus, the electrode A 1 to A n, transformer resistor R At, R A1 ~R An- 1, R At a voltage divided by 'is applied, R A1 ~R An-1 and R At, R By appropriately selecting the value At ′ , the voltage control range of the phase correction element control circuit can be adjusted to a desired range.
[0033]
Also, when R A1 ~R An-1 are all the same resistance value, the voltage applied to the electrodes A 1 ~ electrode A n is the voltage equal division, the phase variation generated between the counter electrodes are equal It becomes a division. Further, some of the electrodes A 2 to An n−1 may be individually applied with voltages of V A3 and V A4 . However, if the number of voltages V A3 , V A4 ... Increases , the phase correction element control circuit becomes complicated, which is not preferable. For example, it is possible to apply V Ak only to a reference electrode such as an electrode through which the optical axis passes. preferable. As described above, in the case of n electrodes A 1 to An , two transformer resistors R At and R At ′ and n−1 transformer resistors R A1 to R n−1 and at least two voltages V A1 and V A The phase correction element can operate by A2 .
[0034]
Between two glass substrates, in the electrode A 1 to A n opposite to m electrodes B 1 .about.B m, can be operated similarly to the electrodes A 1 to A n. However, as in the example shown in FIG. 1, it is possible to adopt a configuration in which one voltage is applied to one planar electrode without using a transformer resistor. In addition, the phase correction element control circuit can be configured so that the voltages V B1 to V m can be applied to all the m electrodes B 1 to B m without using the transformer resistance. By using the plurality of electrodes B 1 to B m , not only the above-described coma aberration but also a plurality of different wavefront aberration components such as spherical aberration and astigmatism can be corrected simultaneously.
[0035]
The number of electrodes, the electrode shape, the number of applied voltages, etc. may be optimized depending on the wavefront aberration correction performance, the manufacturing cost of the phase correction element control circuit, etc., and the resistance value of the transformer resistance can be obtained in the desired drive voltage range. You may choose. The resistance value of the transformer resistor is better to be larger than the resistance value of other parts such as wiring. When the resistance value of the transformer resistance is small, the electrical influence of the wiring portion cannot be ignored. Therefore, it is necessary to consider the influence of the wiring also in the equation (1). In some cases, the voltage balance is lost due to differences in the wiring length of the electrodes, which is not preferable. Therefore, the resistance value of the transformer resistor is preferably 1 kΩ or more. In order to increase the control voltage width, it is necessary to make the ratio of the first resistor and the second resistor appropriate.
Here, the resistance value of the first resistor is the sum R t of R At and R At ′ in FIG. 7, and the resistance value of the second resistor is the sum R s of R A1 to R An−1. To do. Here, ΔV = V A1 -V A2, ' When, the magnification beta of the control voltage range from Ohm's law, β = ΔV / ΔV' a potential difference of the electrodes A 1 and the electrode A n ΔV = 1 + R t / R s , therefore, if the resistance ratio R t / R s is from 0.2 to 1, the enlargement ratio β of the control voltage width can be increased from 1.2 to 2 times, and the characteristic aspect of the phase correction element control circuit It is preferable because it is a realistic value.
The resistances R t and R s for voltage transformation may be formed inside the phase correction element (form 1 of FIG. 7 represented by a dotted line), and during connection with the phase correction element control circuit outside the phase correction element may be arranged in (expressed in dashed boxes, embodiment 2 of FIG. 7), only the transformer resistor R s formed inside the phase correction element, the transformer resistor R t be placed on the phase correcting element outside Also good.
[0036]
When the resistance for transformation is arranged inside the phase correction element, it can be achieved by forming a thin film resistor whose dimensions are adjusted so as to obtain a desired resistance value on the same surface as the transparent electrodes 24a and 24b. By arranging the resistance for transformation inside the phase correction element, there is an effect of reducing the number of lead wires.
[0037]
As described above, when the optical head device of the present invention is used, the control voltage of the phase correction element control circuit can be obtained even when the actual voltage driving width of the liquid crystal is narrow by arranging the transformer resistors as in the above example. Since the width can be widened, control becomes easy and a low-cost phase correction element control circuit can be used. Further, by using the phase correction element, wavefront aberration such as coma aberration, spherical aberration, astigmatism and the like can be corrected.
[0038]
【Example】
"Example 1"
The optical head device of this example includes a phase correction element that corrects coma generated by tilting the optical disk and can be controlled with a voltage width approximately twice that of the conventional example using the same liquid crystal material. It is characterized in that correction can be performed with high accuracy even by using a phase correction element control circuit with low accuracy. The optical head device incorporating the phase correction element in this example is the same as that shown in FIG. The cross-sectional configuration of the phase correction element is the same as that shown in FIG.
[0039]
FIG. 1 shows an equivalent circuit of the electrode pattern of the phase correction element and the transformer resistance in this example, and is formed on the electrode 24a portion shown in FIG. The hatched portions are electrodes 31 to 35 formed and divided by an ITO film. The ITO film was formed on a glass substrate by a sputtering method and then patterned by a photolithography technique. At the same time, the transformer resistors 36 and 37 were formed by patterning the ITO film. The transformer resistors 36 and 37 were linear resistors having a width of 50 μm and a length of 1 mm, and the resistance value was R s = R t = 10 kΩ.
[0040]
The phase correction element and the phase correction element control circuit are conductively connected by a flexible substrate, and the voltages V a , V a + ΔV and V a −ΔV are applied to the electrode 24a, and the voltage Vb = 0V is applied to the uniform electrode 24b. It was done. In this example, the voltage V a is 1.8V rms, [Delta] V was corrected voltage that varies in proportion to the amount of disc tilt generated. Each voltage waveform is a rectangular AC wave with a frequency of 1 kHz as shown in FIG. 5, and the center of the vertical width of the AC wave is set to 0V.
[0041]
The voltage characteristics of the phase difference due to the liquid crystal are shown in FIG. 6 and have a gradient of −1λ / V rms . On the other hand, when R t = R s = 10 kΩ according to the equation (1), ΔV ′ = ΔV / 2, and therefore the gradient of the electrical characteristic of the phase difference with respect to the correction voltage ΔV generated by the phase correction element control circuit is −0. Since it was 0.5λ / V rms and the gradient became gentle, voltage control of the phase correction element became easy.
[0042]
"Example 2"
The optical head device of this example includes a phase correction element that corrects spherical aberration caused by thickness unevenness of the optical disk. When the thickness of the optical disk deviates from the designed value, the objective lens generates spherical aberration and the signal reading accuracy is lowered. A phase correction element for correcting this spherical aberration was incorporated as the phase correction element 4 of the optical head device of FIG. However, the phase correction element control circuit 10 is improved for the phase correction element of this example.
[0043]
The element structure of the phase correcting element of this example is the same as that shown in FIG. 2, and only the electrode pattern and the transformer resistance described below are different. Therefore, the same manufacturing method and constituent materials for the phase correction element as in Example 1 were used.
[0044]
FIG. 8 shows an equivalent circuit of the electrode pattern of the phase correction element and the transformer resistance in this example, and is formed on the electrode 24a portion shown in FIG. The hatched portions are electrodes 41 to 44 formed and divided by an ITO film. The ITO film was formed on a glass substrate by a sputtering method and then patterned by a photolithography technique. The electrodes 41 to 44 are respectively A, B, C, and D between the transformation resistors R s1 to R s3 that are the first resistors and the transformation resistors R t1 and R t2 that are the second resistors. It is connected to the. The transformer resistors R t1 , R s1 to R s3 , and R t2 are connected in series, and the ends thereof are connected to the phase correction element control circuit. The phase correction element control circuit generates a correction voltage ΔV that is proportional to the fixed voltages V a and V b and the amount of spherical aberration that occurs due to the thickness unevenness of the optical disk. In this example, the voltage Vb is 0 V, the waveforms of the voltages V a and V a ± ΔV are rectangular AC waves with a frequency of 1 kHz as shown in FIG. 5, and the center of the vertical width is set to 0 V.
[0045]
FIG. 9 schematically shows the flexible substrate 52 used for conductively connecting the phase correction element of this example and the phase correction element control circuit. The connection portion 53 is a portion connected to the phase correction element control circuit, and three metal land portions are exposed (black in the figure). On the other hand, the connection with the phase correction element 51 is conductively connected by five connection lines corresponding to the electrodes 41 to 44 and the counter electrode 24b, and the first transformer resistor 54 and the second resistor installed in the flexible substrate. The transformer resistance 55 is connected.
[0046]
The wiring in FIG. 9 is equivalent to the equivalent circuit in FIG. 8, the transformer resistor 54 corresponds to R s1 to R s3 in FIG. 8, and the transformer resistor 55 corresponds to R t1 and R t2 . Transformer resistors 54 and 55 are resistive elements soldered on a flexible substrate, and the resistance values were 10 kΩ and 15 kΩ, respectively.
[0047]
The voltage characteristic of the phase difference due to the liquid crystal is as shown in FIG. 6 as in Example 1, and has a gradient of −1λ / V rms . On the other hand, if the voltage difference between point A and point D in FIG. 8 is 2 × ΔV ′, 2 × ΔV ′ = 2 × ΔV × (R s1 + R s2 + R s3 ) / (R t1 + R s1 + R s2 + R s3 + R t2 ) From the relationship, ΔV ′ = ΔV / 2 when R s1 = R s2 = R s3 = 10 kΩ and R t1 = R t2 = 15 kΩ. Therefore, the characteristic gradient of the phase difference with respect to the correction voltage ΔV generated by the phase correction element control circuit is −0.5λ / V rms , and since the characteristic gradient becomes gentle, voltage control of the phase correction element becomes easy.
[0048]
【The invention's effect】
As described above, in the optical head device of the present invention, a voltage smaller than the voltage width generated by the phase correction element control circuit is applied to the phase by the transformer resistance installed between the phase correction element and the phase correction element control circuit. Since it can be applied to the correction element, the phase correction element can be controlled with a voltage width wider than the actual liquid crystal operating voltage width. As a result, even if the phase difference changes suddenly with a small voltage difference, the phase difference amount can be controlled with a larger voltage difference, so controllability is improved and control is performed with high accuracy even in a normal phase correction element control circuit. it can.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of an equivalent circuit of an electrode pattern of a phase correction element and a transformer resistance in the present invention.
FIG. 2 is a cross-sectional view showing an example of a phase correction element in the present invention.
FIG. 3 is a diagram showing wavefront aberration when a tilt of 1 ° occurs in an optical disc.
FIG. 4 is a conceptual cross-sectional view showing an example of the principle configuration of the optical head device of the present invention.
FIG. 5 is a schematic diagram illustrating an example of a voltage waveform generated by the phase correction element control circuit according to the present invention, (a) V a + ΔV, (b) V a , (c) V a −ΔV, (d) V a And (b) a reverse phase, (e) a direct current wave.
FIG. 6 is a diagram illustrating voltage characteristics of a phase change generated by a phase correction element in Examples 1 and 2;
FIG. 7 is a schematic diagram showing an equivalent circuit of a generalized phase correction element electrode and a transformer resistance.
FIG. 8 is a schematic diagram showing an equivalent circuit of an electrode pattern of a phase correction element and a transformer resistance in Example 2.
9 is a schematic diagram showing a phase correction element and a flexible substrate in Example 2. FIG.
[Explanation of symbols]
1: Semiconductor laser 2: Polarizing beam splitter 3: Collimating lens 4, 51: Phase correction element 5: Quarter wavelength plate 6: Objective lens 7: Actuator 8: Optical disk 9: Photo detector 10: Phase correction element control circuit 11: Raising mirror 21a, 21b: Glass substrate 22: Sealing material 23: Liquid crystal layer 24a, 24b: Electrode 25: Insulating film 26: Alignment film 27: Electrode extraction part 28: Liquid crystal molecules 31-35, 41-44: Electrode 36, 37: Resistance for transformation 52: Flexible substrate 53: Electrode extraction part 54, 55 Resistance for transformation

Claims (2)

光源と、光源からの出射光を光記録媒体上に集光させるための対物レンズと、光源と対物レンズとの間に設けられた出射光の波面を変化させる位相補正素子と、波面を変化させるための電圧を位相補正素子へ出力する制御電圧発生手段とを備えた光ヘッド装置であって、
位相補正素子は一対の透明基板と、透明基板間に挟持された液晶層と、液晶層への電圧印加時に使用される、透明基板面上の分割された複数の電極とを備えており、
同一透明基板上の複数の電極のうち2つ以上が第1の抵抗体を挟んで導電接続されており、さらに少なくとも1つの第1の抵抗体の一方の末端が、第2の抵抗体の一方の末端に導電接続され、かつ、第2の抵抗体の他方の末端が制御電圧発生手段のみ、に導電接続されているとともに、第1、第2の抵抗体は透明導電性薄膜により形成された薄膜抵抗であって、
前記位相補正素子の透明基板上に形成され、直列接続される第1と第2の抵抗体の両末端には、制御電圧発生手段から同位相で振幅が異なる電圧が印加され、電圧の振幅を調整して収差を補正させることを特徴とする光ヘッド装置。
A light source, an objective lens for condensing the emitted light from the light source on the optical recording medium, a phase correction element for changing the wavefront of the emitted light provided between the light source and the objective lens, and the wavefront are changed. A control voltage generating means for outputting a voltage to the phase correction element,
The phase correction element includes a pair of transparent substrates, a liquid crystal layer sandwiched between the transparent substrates, and a plurality of divided electrodes on the transparent substrate surface that are used when a voltage is applied to the liquid crystal layer.
Two or more of the plurality of electrodes on the same transparent substrate are conductively connected with the first resistor interposed therebetween, and one end of at least one first resistor is connected to one of the second resistors. The other end of the second resistor is conductively connected only to the control voltage generating means , and the first and second resistors are formed of a transparent conductive thin film. A thin film resistor,
Voltages having different amplitudes in the same phase are applied from both ends of the first and second resistors formed on the transparent substrate of the phase correction element and connected in series from the control voltage generating means. An optical head device characterized in that an aberration is corrected by adjustment.
第2の抵抗体の抵抗値は、第1の抵抗体の抵抗値の総和の0.2倍から1倍までの値を有する請求項1記載の光ヘッド装置。  2. The optical head device according to claim 1, wherein the resistance value of the second resistor has a value from 0.2 to 1 times the sum of the resistance values of the first resistor.
JP2001315404A 2001-10-12 2001-10-12 Optical head device Expired - Fee Related JP4547118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001315404A JP4547118B2 (en) 2001-10-12 2001-10-12 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001315404A JP4547118B2 (en) 2001-10-12 2001-10-12 Optical head device

Publications (2)

Publication Number Publication Date
JP2003123304A JP2003123304A (en) 2003-04-25
JP4547118B2 true JP4547118B2 (en) 2010-09-22

Family

ID=19133575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001315404A Expired - Fee Related JP4547118B2 (en) 2001-10-12 2001-10-12 Optical head device

Country Status (1)

Country Link
JP (1) JP4547118B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4552556B2 (en) * 2004-08-04 2010-09-29 旭硝子株式会社 Liquid crystal lens element and optical head device
EP1785991A4 (en) * 2004-08-04 2009-01-07 Asahi Glass Co Ltd Liquid crystal lens element and optical head
JP4501611B2 (en) * 2004-09-15 2010-07-14 旭硝子株式会社 Liquid crystal lens element and optical head device
KR100619400B1 (en) * 2004-08-31 2006-09-12 엘지전자 주식회사 Liquid device
JP4796343B2 (en) * 2005-07-05 2011-10-19 シチズンホールディングス株式会社 Liquid crystal optical element, camera using the same, and optical pickup device
JP2007248986A (en) * 2006-03-17 2007-09-27 Citizen Holdings Co Ltd Liquid crystal aberration correction element and manufacturing method thereof
JP2009181142A (en) * 2009-05-20 2009-08-13 Citizen Holdings Co Ltd Liquid crystal aberration correction element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553089A (en) * 1991-08-27 1993-03-05 Hitachi Ltd Focusing mechanism
JP2000235727A (en) * 1998-12-15 2000-08-29 Matsushita Electric Ind Co Ltd Optical device, optical head using same and optical recording and reproducing device
JP2001084631A (en) * 1999-09-09 2001-03-30 Asahi Glass Co Ltd Optical head device
JP2001125058A (en) * 1999-10-29 2001-05-11 Asahi Glass Co Ltd Liquid crystal sealed element and optical head device
JP2001167470A (en) * 1999-06-22 2001-06-22 Matsushita Electric Ind Co Ltd Liquid crystal driving device, optical head and optical disk device
WO2001048748A1 (en) * 1999-12-24 2001-07-05 Koninklijke Philips Electronics N.V. Optical wavefront modifier

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553089A (en) * 1991-08-27 1993-03-05 Hitachi Ltd Focusing mechanism
JP2000235727A (en) * 1998-12-15 2000-08-29 Matsushita Electric Ind Co Ltd Optical device, optical head using same and optical recording and reproducing device
JP2001167470A (en) * 1999-06-22 2001-06-22 Matsushita Electric Ind Co Ltd Liquid crystal driving device, optical head and optical disk device
JP2001084631A (en) * 1999-09-09 2001-03-30 Asahi Glass Co Ltd Optical head device
JP2001125058A (en) * 1999-10-29 2001-05-11 Asahi Glass Co Ltd Liquid crystal sealed element and optical head device
WO2001048748A1 (en) * 1999-12-24 2001-07-05 Koninklijke Philips Electronics N.V. Optical wavefront modifier
JP2003518639A (en) * 1999-12-24 2003-06-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Optical wavefront changer

Also Published As

Publication number Publication date
JP2003123304A (en) 2003-04-25

Similar Documents

Publication Publication Date Title
EP1785991A1 (en) Liquid crystal lens element and optical head
US6480454B1 (en) Optical element, optical head using the optical element, and optical recording and reproducing apparatus using the optical element
KR100740481B1 (en) Optical head
JP4915028B2 (en) Optical head device
JP4547118B2 (en) Optical head device
JP2002319172A (en) Optical head device
JP4695739B2 (en) Optical element and optical head and optical recording / reproducing apparatus using the same
JP4082072B2 (en) Optical head device
JP4281168B2 (en) Optical head device
JP4082085B2 (en) Optical head device
JP4449239B2 (en) Optical head device
JP5005850B2 (en) Optical head device
JP4207550B2 (en) Optical head device
JP4436069B2 (en) Liquid crystal optical element and optical device
US8254238B2 (en) Optical information recording/ reproducing apparatus and optical information recording and reproducing method
JP4479134B2 (en) Optical head device
JP4085527B2 (en) Optical head device
WO2004079436A1 (en) Optical attenuator and optical head device
JP2002133697A (en) Optical head device
JP4254455B2 (en) Optical head device
JP2001143309A (en) Optical head device
JP2011181177A (en) Optical head device
JP4459651B2 (en) Optical pickup device and optical information recording / reproducing device
JP2002014314A (en) Optical element, optical head and optical recording and reproducing device
JP2011150787A (en) Liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070814

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071019

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees