JP4546428B2 - カーボンナノチューブのマトリックスの製造方法 - Google Patents

カーボンナノチューブのマトリックスの製造方法 Download PDF

Info

Publication number
JP4546428B2
JP4546428B2 JP2006198687A JP2006198687A JP4546428B2 JP 4546428 B2 JP4546428 B2 JP 4546428B2 JP 2006198687 A JP2006198687 A JP 2006198687A JP 2006198687 A JP2006198687 A JP 2006198687A JP 4546428 B2 JP4546428 B2 JP 4546428B2
Authority
JP
Japan
Prior art keywords
catalyst
mask
matrix
film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006198687A
Other languages
English (en)
Other versions
JP2007031271A (ja
Inventor
亮 劉
守善 ▲ハン▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Hongfujin Precision Industry Shenzhen Co Ltd
Publication of JP2007031271A publication Critical patent/JP2007031271A/ja
Application granted granted Critical
Publication of JP4546428B2 publication Critical patent/JP4546428B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/844Growth by vaporization or dissociation of carbon source using a high-energy heat source, e.g. electric arc, laser, plasma, e-beam

Description

本発明は、カーボンナノチューブのマトリックスの製造方法に関し、特に、成長方向が制御可能なカーボンナノチューブのマトリックスの製造方法に関する。
カーボンナノチューブは、新型の炭素材料であり、日本の研究員イイジマよって1991年に発見された。カーボンナノチューブは特有の電気特性を有するので、ナノ集積回路、単分子素子などの研究及び開発に重要な地位を占める。現在、カーボンナノチューブの特性を利用して、実験室に電界放出チューブやNORゲート型の部材などを製造できる。しかし、電子素子の量産及び実用に対応して、カーボンナノチューブの成長の位置、方向、寸法、螺旋度の制御を可能にすることが必要となる。
それに対応して、非特許文献1に、触媒パターン(Patterned Catalyst)によってカーボンナノチューブを成長させる方法が記載されている。また、非特許文献2に、カーボンナノチューブのマトリックスを基材に対し垂直となるように成長させる方法が記載されている。さらに、非特許文献3に、基材の形状を制御することによって、カーボンナノチューブを三次元の基材の各表面に対し垂直となるように成長させる方法が記載されている。
しかし、上述の方法によれば、カーボンナノチューブを異なる方向に向けて成長させるように制御することができない。
これに対し、非特許文献4に、電界効果を利用して、カーボンナノチューブを電界の方向に向けて成長させる方法が提案されている。また、非特許文献5に、カーボンナノチューブを磁界の方向に向けて成長させる方法が提案されている。
「Self−Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties」、Shoushan Fan著、「Science」、第283巻、第512−514頁 、1999年 「Synthesis of Large Arrays of Well−Aligned Carbon Nanotubes on Glass」、Z.F.Ren著、「Science」第282巻、第1105−1107頁、1998年 「Organized Assembly of Carbon Nanotubes」、B.Q.Wei著、「Nature」第416巻、第495−496頁、2002年 「Lateral Growth of Aligned Multiwalled Carbon Nanotubes under Electric Field」、Yoon−Taek Jang著、「Solid State Communications」、第126巻、第305−308頁、2003年 「Control of Growth Orientation for Carbon Nanotubes」、Ki−Hong Lee著、「Applied Physics Letters」、第79巻、第1701号、2001年
しかし、上述の方法は、部材の数量が増加し、電界及び磁界の特性が原因で局部のカーボンナノチューブを異なる成長方向に向けて成長させることが実現できないという課題がある。
従って、前記課題を解決するために、カーボンナノチューブのマトリックスを異なる成長方向に成長させることができるカーボンナノチューブのマトリックスの成長方法を提供することを本発明の目的とする。
本発明に係るカーボンナノチューブのマトリックスの成長方法は、マスクを有する基材を準備する段階と、前記マスクの一部を遮るように前記基材の上方に触媒スパッタ装置を設置し、前記触媒スパッタ装置から飛び出した触媒が前記基材に堆積されて触媒膜が形成される段階と、前記マスクを除去して、前記触媒膜の最良の成長区域を測定する段階と、前記触媒膜が形成された前記基材を焼鈍しをする段階と、炭素を含むガスを導入し、前記最良の成長区域から離れて異なる方向に向けて湾曲するようにカーボンナノチューブのマトリックスを前記触媒膜に成長させる段階と、を含む。
前記基材に焼鈍しをする前に、前記基材に形成された触媒膜は、前記マスクに近い端部から前記マスクから遠い端部まで次第に厚くなる台形の形状に形成され、前記台形の触媒膜のある厚さは前記最良の成長区域の厚さに接近する
前記マスクは厚膜フォトレジスト、犠牲層に形成された金属又は金属の酸化物、金属の窒化物のいずれか一種である。
また、前記触媒膜の最良の成長区域を測定する段階は、マスクを有する基材に触媒を堆積させて次第に厚くなる触媒膜を形成する段階と、前記触媒膜にカーボンナノチューブのマトリックスを成長させる段階と、前記カーボンナノチューブのマトリックスにおける最高のカーボンナノチューブの成長位置を前記触媒膜の最良の成長区域として測定する段階と、含む。
従来技術と比べて、本発明に係るカーボンナノチューブのマトリックスの成長方法は、基材の形状の変化が必要なく、電界を利用せずに、触媒スパッタ装置及びマスクを利用して、基材に次第に厚くなる台形の触媒膜を堆積し、異なる方向に向けてカーボンナノチューブのマトリックスを成長させることができる。従って、本発明に利用の設備が便利で、製造工程を簡単にする。本発明によって得られるカーボンナノチューブのマトリックスを電気素子として利用すれば、電気装置の部材の数量が減少し、多種の電気装置に利用されることができる。
(実施例1)
以下、図1乃至図6を参照して、本発明の実施例1に係るカーボンナノチューブのマトリックスの成長方法について説明する。
図1を参照して、基材10を準備する。この基材10はシリコン、ガラス、金属などのうちいずれか一種から成るものであるが、本実施例においてはシリコンである。前記基材10の一端にマスク40を設置する。前記マスク40は厚膜フォトレジスト、犠牲層に形成された金属又は金属の酸化物、金属の窒化物などのいずれか一種である。前記マスク40の上方に、線形の触媒スパッタ装置20を配置する。前記マスク40は、ある程度の厚さが形成され、前記触媒スパッタ装置20の一部を遮るように構成される。前記マスク40は立方体、長方体、円柱体などのいずれかで形成されてもよいが、本実施例では長方体に形成される。さらに、前記マスク40は複数の孔を有する板材である場合、前記基材10に貼り付けるように設けられればよい。
さらに、前記マスク40は前記基材10に垂直な側面42を有する。前記マスク40の厚さは、前記触媒スパッタ装置20から飛び出した触媒の原子の平均自由行程より小さく設定される。前記触媒の原子の平均自由行程Sは次式を満足する。
Figure 0004546428
ここで、dは前記触媒原子の直径とされ、pは前記触媒堆積工程における気体圧力とされ、kはボルツマン定数(1.38066×10−23 J/K (Joule per kelvin))であり、Tは前記触媒堆積工程における気体温度である。従って、例えば、前記気体温度が0℃、前記気体圧力が1Paとされれば、Fe触媒原子の平均自由行程は5.5×10−3mになる。
前記触媒スパッタ装置20からの触媒は前記基材10に均一的に堆積させるために、前記触媒スパッタ装置20と前記基材10との離間距離は前記触媒スパッタ装置20からの触媒原子の平均自由行程の十倍より大きくするように、前記触媒スパッタ装置20を前記基材10の上方に設置する。前記マスク40は所定の厚さを有し、前記触媒スパッタ装置20の一部を遮るので、前記触媒スパッタ装置20から飛びした触媒は前記マスク40で遮られ前記基材10の一端に堆積し、前記マスク40から離れる方向に沿って、次第に厚くなる台形の触媒膜30が形成される。前記触媒はFe、Co、Ni又はそれらの合金のうちいずれか一種であってもよいが、本実施例ではFeを触媒として利用する。従って、前記触媒膜30は、基材10のマスク40に近い一端に、より薄い部分が形成され、該薄い部分の厚さが1nm〜10nmであり、マスク40から遠い一端に、より厚い部分が形成され、該厚い部分の厚さが5nm〜20nmである。
前記触媒スパッタ装置20が動作する場合、該触媒スパッタ装置20は前記基材10に相対して静止し、又は前記基材10と平行な方向に沿って移動する。例えば、前記触媒スパッタ装置20が紙面に垂直な方向に設置される場合、該触媒スパッタ装置20は前記基材10に対向して、紙面に垂直な方向に移動し、前記側面42の左側に大面積の台形の触媒膜30が形成される。また、前記触媒スパッタ装置20としては点状の触媒スパッタ装置が利用できる。点状の触媒スパッタ装置を利用することにより、前記基材10に大面積の台形の触媒膜を形成することができる。
本実施例において、前記触媒膜30の厚さT(λ)は次式を満足する。
Figure 0004546428
ここで、λは触媒膜30から前記側面42までの距離とされ、Tは前記マスク40が設置されない場合に、前記基板10に堆積して形成された触媒膜の厚さとされ、hは前記マスク40の厚さとされる。
式(2)から分かるように、前記触媒膜30は前記側面42に最も近い部分の厚さがT/2、前記側面42までの距離が前記マスク40の厚さより大きい部分の厚さがTになる。また、前記触媒膜30の厚さが変化する部分の幅が前記マスク40の高さの2倍程度である場合、即ち、λが0〜2hとされる場合、前記触媒膜30の厚さ方向での変化が著しく見られる。従って、前記の効果を得るために、前記マスク40の側辺により形成される陰は、カーボンナノチューブを成長させようとする領域を完全に遮るように設置される。例えば、前記マスク40の厚さが0.1μm〜10mmとされる場合、前記陰の長さは0.2μm〜20mmにすればよい。前記陰の範囲は、触媒スパッタ装置20を光源と仮想する場合、該光源からの光がマスク40によって基材10に形成される陰が強く遮られる部分と定義される。
図2を参照すると、前記マスク40を除去した後、カーボンナノチューブの成長方向を制御するために、前記触媒膜30の最良の成長区域32を測定する。前記触媒膜30は一端から他端まで薄くなって形成される。また、この触媒膜30において、カーボンナノチューブを所定のCVD条件及び最適の速度で成長させる場所は最良の成長区域と定義される。ここで言う最良の成長区域は次のような実験で獲得できる。即ち、第一段階では、マスクを用いて基材に触媒を堆積して、次第に厚くなる触媒膜を形成する。ここで、前記触媒膜は最良の区域の程度に達するために、十分に厚く形成しなければならない。第二段階では、所定のCVD条件で前記触媒にカーボンナノチューブのマトリックスを成長させる。第三段階では、顕微鏡で見る時、触媒膜において、最高のカーボンナノチューブが形成された場所が所定のCVD条件で得られた最良の成長区域と定義される。前記触媒膜に最良の厚さで形成される位置に合わせてなる区域が最良の区域と定義される。本実施例においては、シリコン基材に鉄を触媒として堆積して触媒膜30を形成する。前記触媒膜30の最良の厚さが5nmと測定される場合、前記5nmに形成された場所は最良の区域32と定義される。カーボンナノチューブは、前記最良の成長区域32に最大の速度で最も高く成長され、前記最良の成長区域32より厚くなっても薄くなっても、カーボンナノチューブの成長の速度は低下する。また、本実施例において、前記触媒膜30の厚さは3nm〜15nmにすることができる。
図3を参照すると、前記触媒膜30にパターンが形成される。本実施例において、リソグラフィー(Lithography)技術により触媒のパターンを形成して、前記触媒膜30にフォトレジストを塗布し、所定のパターンにより露光して現像し、酸溶剤を用いて保護されない触媒膜及びフォトレジストを除去して、前記所定のパターンと同様な、台形の触媒領域33及び34を形成する。前記触媒領域33及び34は100nm〜100μmに形成される。前記触媒膜30を堆積する時、複数の孔を有する板材をマスク40として利用すれば、前記触媒膜30を堆積した後、前記リソグラフィー技術により触媒のパターンを形成することができる。このようにすれば、除去の工程により所定の厚さを有する触媒のパターンが得られる。また、所定のカーボンナノチューブのマトリックスの成長方向により、前記最良の区域32の一側に前記触媒のパターンが設けられる。
図4を参照すると、前記触媒領域33及び34が形成された前記基材10を300℃で焼鈍しして、前記触媒領域34及び36を酸化させ、表面が酸化された、ナノレベルの粒子形状の触媒酸化物のマトリックス33’及び34’を形成する。前記触媒領域34の厚さは前記最良の成長区域32の厚さより大きくなるので、前記粒子形状の触媒のマトリックス34’における単一の触媒粒子の直径が大きく、かつ前記最良の成長区域32から離れるほど大きくなる。前記触媒領域33の厚さは前記最良の成長区域32の厚さより小さくなるので、前記粒子形状の触媒酸化物のマトリックス33’における単一の触媒粒子の直径が小さく、かつ前記最良の成長区域32から離れるほど小さくなる。
図5及び図6を参照すると、前記粒子形状の触媒酸化物のマトリックス33’及び34’が形成された前記基材10を反応皿(図示せず)に置いて、炭素を含むガスとしてエチレンを導入して、CVD方法でカーボンナノチューブのマトリックスを成長させる。カーボンナノチューブの成長の途中に、エチレンが分解されて形成した水素を利用して、表面が酸化された粒子形状の触媒酸化物のマトリックス33’及び34’を粒子形状の触媒マトリックス33”及び34”に還元する。そして、この粒子形状の触媒マトリックス33”及び34”にカーボンナノチューブのマトリックス50及び51を成長させる。前記エチレンはメタン、アセチレンなどの炭素を含むガスに代えることができる。また、異なるCVD条件で形成された触媒膜の最良の厚さが異なるので、カーボンナノチューブを成長させるCVD条件は前記最良の成長区域が形成される条件と同様になるように設けられる。また、成長時間を制御することにより、前記カーボンナノチューブのマトリックス50及び51の長さを制御することができる。
カーボンナノチューブは前記最良の成長区域32に最大の速度で成長できるので、触媒膜30の厚さが最良の厚さに比べて変化すれば、カーボンナノチューブの成長速度が低下する。従って、前記粒子形状の触媒マトリックス34”に成長されたカーボンナノチューブのマトリックス51は、前記粒子形状の触媒の直径が大きくなる方向に湾曲するが、前記粒子形状の触媒マトリックス33”に成長された炭素素ナノチューブのマトリックス50は、前記粒子形状の触媒の直径が小さくなる方向に湾曲する。即ち、前記粒子形状の触媒マトリックス33”及び34”に成長させたカーボンナノチューブのマトリックスは前記最良の成長区域32から離れる方向に湾曲する。
図6を参照すると、カーボンナノチューブのマトリックスの構成1は、基材10と、前記基材10に形成されたカーボンナノチューブのマトリックス50、51と、を含む。前記カーボンナノチューブのマトリックス50、51は、前記触媒膜30に成長させた各方向の複数のカーボンナノチューブからなる。前記カーボンナノチューブのマトリックス50と51とは、略弧状にされ、前記最良の成長区域32から離れてそれぞれ相反の方向に向けて成長される。本実施例において、前記触媒膜30は単に前記マスク40の一側に形成されるので、前記カーボンナノチューブのマトリックス50及び51は二つの異なる方向に向いて成長される。
なお、触媒パターンを形成する段階を省略して、直接触媒膜30にカーボンナノチューブのマトリックスを成長させることができる。前記触媒膜32は最も薄い端部が最良の成長区域である場合、カーボンナノチューブのマトリックスはこの薄い端部から厚くなる方向に湾曲する。前記触媒膜32は最も厚い端部が最良の成長区域である場合、カーボンナノチューブのマトリックスはこの厚い端部から薄くなる方向に湾曲する。前記触媒膜32の中間のある場所が最良の成長区域である場合、カーボンナノチューブは最良の成長区域から離れて相反の方向に向けて、別々に相反する両側に湾曲する。
(実施例2)
図7及び8に示すように、基材70を準備する。この基材70はシリコン、ガラス、金属などのうちいずれか一種から成るものである。前記基材70の中心の場所にマスク80を設置する。前記マスク80は厚膜フォトレジスト、又は犠牲層に形成された金属又は金属の酸化物、金属の窒化物などのうちいずれか一種である。前記マスク80の上方に、線形の触媒スパッタ装置60を配置する。前記マスク80はある程度の厚さが形成され、前記触媒スパッタ装置60の一部を遮るように構成される。前記マスク80は立方体、長方体、円柱体などのいずれかに形成されてもよいが、本実施例では長方体に形成される。前記マスク80は所定の厚さを有し、前記触媒スパッタ装置60の一部を遮るので、前記触媒スパッタ装置60から飛びした触媒は前記マスク80で遮られ前記基材70の一端に堆積し、前記マスク80から離れる方向に沿って、次第に厚くなる台形の触媒膜90が形成される。前記触媒はFe、Co、Ni又はそれらの合金のうちいずれか一種であってもよい。
実施例1と同様に、前記触媒膜90の厚さが変化する幅が前記マスク80の高さの2倍程度より大きい場合、前記触媒膜90の厚さの方向での変化が著しく見られる。
前記触媒スパッタ装置60が直線型の触媒スパッタ装置である場合、前記触媒スパッタ装置60は前記基材70に相対して静止し、又は前記基材70に平行な方向へ沿って移動する。前記触媒スパッタ装置60が紙面に平行な方向に設置される場合、前記触媒スパッタ装置60は前記基材70に対向して、紙面に垂直な方向に移動し、大面積の台形の触媒膜90を形成することができる。また、前記触媒スパッタ装置60が紙面に垂直な方向に設置される場合、前記触媒スパッタ装置60は前記基材70に対向して、紙面に平行な方向に移動し、前記マスク80の周辺に大面積の台形の触媒膜90を形成することができる。
図9を参照すると、前記マスク80を除去した後、カーボンナノチューブの成長方向を制御するために、前記触媒膜90に最良の成長区域92を確定する。前記最良の成長区域92の測定方法は前記実施例1と同様である。
図10を参照すると、前記触媒膜90にパターンが形成される。本実施例において、リソグラフィー技術により触媒のパターンを形成して、前記触媒膜90にフォトレジストを塗布し、所定のパターンにより露光して現像し、酸溶剤を用いて保護されない触媒膜及びフォトレジストを除去して、前記所定のパターンと同様な、台形の触媒領域93、94、及び触媒領域94、95を形成する。前記触媒膜90を堆積する時、複数の孔を有し厚さが異なる二枚の板材をマスク80として利用して、所定の厚さを有する触媒のパターンを形成することができる。
図11を参照すると、前記触媒領域93、94、及び触媒領域94、95が形成された前記基材70を300℃で焼鈍しして、前記触媒領域93、94、及び触媒領域94、95を酸化させ、表面が酸化された、ナノレベルの粒子形状の触媒酸化物のマトリックス93’、94’、及び95’、96’を形成する。前記触媒領域93及び96の厚さは最良の厚さより大きくなるので、前記粒子形状の触媒酸化物のマトリックス93’及び96’における単一の触媒の粒子の直径が大き、かつ前記最良の成長区域92から離れるほど大きくなる。前記触媒領域94及び95の厚さは前記の最良の厚さより小さくなるので、前記粒子形状の触媒酸化物のマトリックス94’及び96’における単の触媒の粒子の直径が小さく、かつ前記最良の区域92から離れるほど小さくなる。
図12を参照すると、前記複数の粒子形状の触媒酸化物のマトリックス93’、94’及び95’、96’が形成された前記基材70を反応皿(図示せず)に置いて、炭素を含むガスとしてエチレンを導入して、CVD方法でカーボンナノチューブのマトリックスを成長させる。カーボンナノチューブの成長の途中に、エチレンで分解された水素を利用して、表面が酸化された粒子形状の触媒酸化物のマトリックス93’、94’及び95’、96’を粒子形状の触媒マトリックスマトリックス93”、94”及び95”、96”に還元する。そして、この粒子形状の触媒マトリックス93”、94”及び95”、96”にカーボンナノチューブのマトリックス100、101及び102、103を成長させる。前記エチレンはメタン、アセチレンなどの炭素を含むガスに代えることができる。また、成長時間を制御することにより、前記カーボンナノチューブのマトリックス50及び51の長さを制御することができる。
カーボンナノチューブは前記最良の成長区域92に最大の速度で成長できるので、触媒膜90の厚さが最良の厚さに比べて変化すれば、カーボンナノチューブの成長速度が低下する。従って、前記粒子形状の触媒マトリックス93”及び96”に成長させたカーボンナノチューブのマトリックス100及び103は、前記粒子形状の触媒の直径が大きくなる方向に湾曲するが、前記粒子形状の触媒マトリックス94”及び95”に成長された炭素素ナノチューブのマトリックス101及び102は、前記粒子形状の触媒の直径が小さくなる方向に湾曲する。
図13を参照すると、カーボンナノチューブのマトリックスの構成2は、基材70と、前記基材70に形成されたカーボンナノチューブのマトリックス100、101、102、103と、を含む。前記カーボンナノチューブのマトリックス100、101、102、103は、前記触媒膜70に成長させた各方向の複数のカーボンナノチューブからなる。
本発明に係る方法によれば、製造工程を簡単にすることができ、本発明によるカーボンナノチューブのマトリックスの構成はフィールドエミッタ、電子真空装置などに利用することができる。
本発明の実施例1に係る触媒膜が堆積された基板を示す図である。 本発明の実施例1に係る最良の区域を示す斜視図である。 本発明の実施例1に係る触媒パターンを示す斜視図である。 本発明の実施例1に係る粒子形状の触媒のマトリックスを示す図である。 本発明の実施例1に係るカーボンナノチューブのマトリックスを示す図である。 本発明の実施例1に係るカーボンナノチューブのマトリックスの構成を示す斜視図である。 本発明の実施例2に係る触媒膜が堆積された基板を示す図である。 本発明の実施例2に係る最良の区域を示す斜視図である。 本発明の実施例2に係る触媒膜を示す斜視図である。 本発明の実施例2に係る触媒パターンを示す斜視図である。 本発明の実施例2に係る粒子形状の触媒のマトリックスを示す図である。 本発明の実施例2に係るカーボンナノチューブのマトリックスを示す図である。 本発明の実施例2に係るカーボンナノチューブのマトリックスの構成を示す斜視図である。
符号の説明
1,2 カーボンナノチューブのマトリックスの構成
10,70 基材
20,60 触媒スパッタ装置
30,90 触媒膜
32、92 最良の成長区域
33,34,93,94,95,96 触媒領域
33’,34’,93’,94’,95’,96’ 粒子形状の触媒酸化物のマトリックス
33”,34”,93”,94”,95”,96” 粒子形状の触媒マトリックス
40,80 マスク
42 側面
50,51,100,101,102,103 カーボンナノチューブのマトリックス

Claims (4)

  1. マスクを有する基材を準備し、前記マスクが前記基材に垂直な側面を有する段階と、
    前記マスクの一部を遮るように前記基材の上方に触媒スパッタ装置を設置し、前記触媒スパッタ装置から飛び出した触媒が前記基材に堆積されて触媒膜が形成される段階と、
    前記マスクを除去して、前記触媒膜の最良の成長区域を測定する段階と、
    前記触媒膜が形成された前記基材に焼鈍しをする段階と、
    炭素を含むガスを導入し、前記最良の成長区域から離れて異なる方向に向けて湾曲するようにカーボンナノチューブのマトリックスを前記触媒膜に成長させる段階と、
    を含み、
    前記触媒スパッタ装置と前記基材との離間距離は、前記触媒スパッタ装置からの触媒原子の平均自由行程の十倍より大きくするように、前記触媒スパッタ装置を前記基材の上方に設置し、
    前記マスクの厚さは、前記触媒スパッタ装置から飛び出した触媒の原子の平均自由行程より小さく設定され、
    前記触媒の原子の平均自由行程Sは次式を満足し、
    Figure 0004546428
    dは前記触媒原子の直径とされ、pは前記触媒堆積工程における気体圧とされ、kはボルツマン定数(1.38066×10−23 J/K (Joule per kelvin))であり、Tは前記触媒堆積工程における気体温度であり、
    前記触媒膜の厚さT(λ)は次式を満足し、
    Figure 0004546428
    ここで、λは触媒膜から前記マスクの側面までの距離とされ、T は前記マスクが設置されない場合に、前記基板に堆積して形成された触媒膜の厚さとされ、hは前記マスクの厚さとされることを特徴とするカーボンナノチューブのマトリックスの成長方法。
  2. 前記基材に焼鈍しをする前に、前記基材に形成された触媒膜は、前記マスクに近い端部から前記マスクから遠い端部まで次第に厚くなる台形の形状に形成され、前記台形の触媒膜のある厚さは前記最良の成長区域の厚さに接近することを特徴とする、請求項1に記載のカーボンナノチューブのマトリックスの成長方法。
  3. 前記マスクは厚膜フォトレジスト、犠牲層に形成された金属又は金属の酸化物、金属の窒化物のいずれか一種であることを特徴とする、請求項1に記載のカーボンナノチューブのマトリックスの成長方法。
  4. 前記触媒膜の最良の成長区域を測定する段階は、マスクを有する基材に触媒を堆積させて次第に厚くなる触媒膜を形成する段階と、前記触媒膜にカーボンナノチューブのマトリックスを成長させる段階と、前記カーボンナノチューブのマトリックスにおける最高のカーボンナノチューブの成長位置を前記触媒膜の最良の成長区域として測定する段階と、含むことを特徴とする、請求項1に記載のカーボンナノチューブのマトリックスの成長方法。
JP2006198687A 2005-07-22 2006-07-20 カーボンナノチューブのマトリックスの製造方法 Active JP4546428B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100361481A CN100436311C (zh) 2005-07-22 2005-07-22 碳纳米管阵列制作方法

Publications (2)

Publication Number Publication Date
JP2007031271A JP2007031271A (ja) 2007-02-08
JP4546428B2 true JP4546428B2 (ja) 2010-09-15

Family

ID=37655989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006198687A Active JP4546428B2 (ja) 2005-07-22 2006-07-20 カーボンナノチューブのマトリックスの製造方法

Country Status (3)

Country Link
US (1) US7781017B1 (ja)
JP (1) JP4546428B2 (ja)
CN (1) CN100436311C (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101290857B (zh) * 2007-04-20 2011-06-22 清华大学 场发射阴极及其制备方法
JP5052954B2 (ja) * 2007-05-09 2012-10-17 株式会社アルバック Cnt成長方法
US8795772B2 (en) * 2008-01-24 2014-08-05 Nano-Electronic And Photonic Devices And Circuits, Llc Method of forming nano-pads of catalytic metal for growth of single walled carbon nanotubes
JP5245499B2 (ja) * 2008-04-01 2013-07-24 ミツミ電機株式会社 カーボンナノチューブの製造方法
FR2952631B1 (fr) * 2009-11-13 2012-01-13 Commissariat Energie Atomique Procede d'elaboration de nanotubes de carbone sur un substrat
CN101880035A (zh) 2010-06-29 2010-11-10 清华大学 碳纳米管结构
CN102602159A (zh) * 2011-01-24 2012-07-25 山东新北洋信息技术股份有限公司 一种薄膜型热敏打印头及其制造方法
WO2014189895A1 (en) * 2013-05-20 2014-11-27 Advantech Global, Ltd Small feature size fabrication using a shadow mask deposition process
CN111909666A (zh) * 2020-08-12 2020-11-10 杭州英希捷科技有限责任公司 基于垂向碳纳米管阵列的非转移式热界面材料及其方法
CN113046719B (zh) * 2021-03-16 2023-04-18 江苏集萃脑机融合智能技术研究所有限公司 确定二维材料生长合金催化剂中金属原子最佳配比的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181620A (ja) * 2002-12-05 2004-07-02 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi 炭素ナノチューブのマトリックス構造及びその製造方法
JP2004292302A (ja) * 2003-03-25 2004-10-21 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi 炭素ナノチューブのマトリックス構造及びその製造方法
JP2006052122A (ja) * 2004-08-11 2006-02-23 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi 炭素ナノチューブのマトリックス構造及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US659790A (en) * 1899-04-24 1900-10-16 William John Cruyt Rotary motor.
US6232706B1 (en) * 1998-11-12 2001-05-15 The Board Of Trustees Of The Leland Stanford Junior University Self-oriented bundles of carbon nanotubes and method of making same
US6297592B1 (en) * 2000-08-04 2001-10-02 Lucent Technologies Inc. Microwave vacuum tube device employing grid-modulated cold cathode source having nanotube emitters
US6692324B2 (en) * 2000-08-29 2004-02-17 Ut-Battelle, Llc Single self-aligned carbon containing tips
CN1286715C (zh) * 2002-12-21 2006-11-29 清华大学 一种碳纳米管阵列结构及其生长方法
KR100523765B1 (ko) * 2003-06-12 2005-10-26 한국과학기술원 유기초분자의 나노패턴을 이용한 탄소나노튜브 어레이의제작방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181620A (ja) * 2002-12-05 2004-07-02 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi 炭素ナノチューブのマトリックス構造及びその製造方法
JP2004292302A (ja) * 2003-03-25 2004-10-21 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi 炭素ナノチューブのマトリックス構造及びその製造方法
JP2006052122A (ja) * 2004-08-11 2006-02-23 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi 炭素ナノチューブのマトリックス構造及びその製造方法

Also Published As

Publication number Publication date
CN100436311C (zh) 2008-11-26
US20100193350A1 (en) 2010-08-05
US7781017B1 (en) 2010-08-24
JP2007031271A (ja) 2007-02-08
CN1899958A (zh) 2007-01-24

Similar Documents

Publication Publication Date Title
JP4546428B2 (ja) カーボンナノチューブのマトリックスの製造方法
JP4508894B2 (ja) 炭素ナノチューブのマトリックス構造及びその製造方法
US6833558B2 (en) Parallel and selective growth method of carbon nanotube on the substrates for electronic-spintronic device applications
US7161168B2 (en) Superlattice nanopatterning of wires and complex patterns
JP2007049084A (ja) スイッチ素子、メモリ素子および磁気抵抗効果素子
JP4979296B2 (ja) カーボンナノチューブの製造方法
JP4426523B2 (ja) 炭素ナノチューブのマトリックスの成長方法
Park et al. Individually addressable and flexible pressure sensor matrixes with ZnO nanotube arrays on graphene
US10755402B2 (en) Method for distinguishing semiconducting nanowires from metallic nanowires
Zhou et al. Controlled growth of single-walled carbon nanotubes on patterned substrates
JP2007534508A (ja) ナノ構造及びそのようなナノ構造の製造方法
EP2615062A2 (en) Method of growing carbon nanotubes laterally, and lateral interconnections and field effect transistor using the same
US7867402B2 (en) Method for realizing a multispacer structure, use of said structure as a mold and circuital architectures obtained from said mold
Matsui et al. Hexagonal nanopits with the zigzag edge state on graphite surfaces synthesized by hydrogen-plasma etching
KR100405974B1 (ko) 카본나노튜브의 수평 성장 방법
KR100434272B1 (ko) 탄소나노튜브의 수평성장 방법
KR100822992B1 (ko) 나노선 전계효과 트랜지스터 및 그 제조 방법
US20060084570A1 (en) System and method for growing nanostructures from a periphery of a catalyst layer
Sharma et al. Synthesis of Self-Assembled Single Atomic Layer Gold Crystals-Goldene
US20140004327A1 (en) Few-layer graphene nanoribbon and a method of making the same
US7655272B1 (en) Nanoparticles with controlled growth
KR101319612B1 (ko) 탄소나노튜브 수평성장방법 및 이를 이용한 전계 효과 트랜지스터
JP4967160B2 (ja) カーボンナノチューブの製造方法
KR101319613B1 (ko) 탄소나노튜브 수평성장방법 및 이를 이용하여 형성된 수평배선
TWI302904B (en) Carbon nanotubes array and method of manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100408

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4546428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250