JP4544898B2 - ZnO膜の成膜方法 - Google Patents

ZnO膜の成膜方法 Download PDF

Info

Publication number
JP4544898B2
JP4544898B2 JP2004114160A JP2004114160A JP4544898B2 JP 4544898 B2 JP4544898 B2 JP 4544898B2 JP 2004114160 A JP2004114160 A JP 2004114160A JP 2004114160 A JP2004114160 A JP 2004114160A JP 4544898 B2 JP4544898 B2 JP 4544898B2
Authority
JP
Japan
Prior art keywords
gas
decomposition
source
source gas
zno film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004114160A
Other languages
English (en)
Other versions
JP2005298867A (ja
Inventor
道宏 佐野
直史 堀尾
和馬 山本
敬志 横山
徹 稲垣
孝洋 白幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Stanley Electric Co Ltd
Original Assignee
Air Water Inc
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc, Stanley Electric Co Ltd filed Critical Air Water Inc
Priority to JP2004114160A priority Critical patent/JP4544898B2/ja
Publication of JP2005298867A publication Critical patent/JP2005298867A/ja
Application granted granted Critical
Publication of JP4544898B2 publication Critical patent/JP4544898B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、少なくともZn原料ガスとO原料ガスにより、被処理物の表面にZnO膜の成膜を行なうZnO膜の成膜方法に関するものである。
白色の発光ダイオード(LED)等の発光素子に使用されるZnOエピタキシャル膜は、一般的にMBE(Molecular Beam Epitaxy)装置やMO−CVD(Metal Organic−Chemical Vapor Deposition)装置が成膜装置として採用されている。これらの装置では、プラズマやレーザーを用いて、原料ガスの分解アシストを行い、ZnO成膜の形成効率を高めている。
特許第2715299号公報
上記のMBE装置やMO−CVD装置等のように、プラズマ源やレーザー源を成膜装置に組み付けることは、構造的に複雑になるとともに設備費用の高騰を招くという問題がある。また、既存の成膜装置にプラズマ源やレーザー源を付加することについても、上記の場合と同様な問題がある。さらに、プラズマ等の利用により、原料ガスの分解がより一層活性化されるが、反面、副生成物堆積によるパーティクルが発生しやすくなり、膜質劣化等に弊害をもたらす恐れが生じる。
本発明は、上記のような事情に鑑みなされたもので、処理空間に分解ガスを導入し、特別な設備改造を伴うことなく、ZnO成膜の成長を促進させるZnO膜の成膜方法の提供を目的とする。
上記目的を達成するため、本発明のZnO膜の成膜方法は、処理空間内に少なくともZn原料ガスとO原料ガスを供給し、上記両原料ガスにより上記処理空間に露出している被処理物の表面にZnO膜の成膜を行うZnO膜の成膜方法であって、上記処理空間内に、少なくとも上記両原料ガスのいずれかの分解を促進する分解ガスとしての水素ガスを導入しながらZnO膜の成膜を行う際に、上記両原料ガスや分解ガスのラジカル化を行なわず、かつ、上記分解ガスを上記両原料ガスとは別個に処理空間内に供給することを要旨とする。
本発明のZnO膜の成膜方法は、上記処理空間内に、少なくとも上記両原料ガスのいずれかの分解を促進する分解ガスとしての水素ガスを導入しながらZnO膜の成膜を行う。このため、上記両原料ガスのいずれかの分解が分解ガスによって促進されるので、それとともに被処理物の表面に形成される成膜の成長速度が向上し、ZnO成膜の形成時間が短縮され、生産性が向上する。また、被処理物を加熱して成膜する成膜装置の場合には、上記の成膜形成時間の短縮により、加熱のための熱エネルギー費用の低減に有効である。原料ガスを分解する手段として分解ガスが採用されているので、従来技術のように、プラズマやレーザーを採用することが回避でき、成膜設備の構造簡素化や設備費用の低減に有効である。同時に、副生成物堆積によるパーティクルが発生しにくくなり、膜質劣化等が回避できる。さらに、分解ガスとして、Zn原料である有機金属材料の分解促進に効果的な水素ガスを選定したことにより、有機金属材料が分解しにくくなる低温域においても、水素が被処理物の表面に留まりやすいので、有機金属材料の分解効果が発揮され、良好な成膜成長がなされる。このように、水素ガスを選定したため、O原料ガス特に酸素との反応により微量な水分HOが発生し、これがZn原料である有機金属材料の一部と反応して反応の基点を作り、Zn+O→ZnOの反応が促進される。
本発明のZnO膜の成膜方法では、上記両原料ガスや分解ガスのラジカル化を行なわないため、プラズマやレーザー,高周波放電,マイクロ波放電等を採用することが回避でき、成膜設備の構造簡素化や設備費用の低減に有効であるとともに、副生成物堆積によるパーティクルが発生しにくくなり、膜質劣化等が回避できる。
また、本発明のZnO膜の成膜方法では、上記分解ガスを上記両原料ガスとは別個に処理空間内に供給するため、分解ガスだけが独立した流路すなわち第3供給流路を経て処理空間内に供給されるので、分解ガスの種類,流量,被処理物に対する噴出状態等の各種条件に適合させることが行ないやすくなる。
つぎに、本発明を実施するための最良の形態を説明する。
本発明のZnO膜の成膜方法は、処理空間内に少なくともZn原料ガスとO原料ガスを供給し、上記両原料ガスにより上記処理空間に露出している被処理物の表面にZnO膜の成膜を行なうZnO膜の成膜方法に係るものである。そして、本発明では、上記処理空間内に、少なくとも上記両原料ガスのいずれかの分解を促進する分解ガスを導入しながらZnO膜の成膜を行なう。
本発明は、MBE(Molecular Beam Epitaxy)やMO−CVD(Metal Organic−Chemical Vapor Deposition)による成膜方法にかかるものである。したがって、上記処理空間は、真空ポンプ等で減圧したのち、所定の原料ガスを導入し、減圧条件もしくは常圧条件において原料ガスが供給されるものである。
上記被処理物は、上記処理空間内に配置され、表面への原料ガスの噴射を受けて被処理物表面に、ZnO被膜を生成させるものである。上記被処理物としては、具体的には、サファイヤ基板,ZnO基板,SiC基板,ScAlMgO基板等各種の基板を用いることができ、特に限定するものではない。
上記Zn原料ガスは、ZnO被膜を生成するためのZn源となる原料ガスであり、例えば、ジエチル亜鉛(DEZn),DMZn,Zn(C)等各種のガスを用いることができ、特に限定するものではない。
上記O原料ガスは、ZnO被膜を生成するためのO源となる原料ガスであり、例えば、酸素,亜酸化窒素,NO,NO,HO等各種のガスを用いることができ、特に限定するものではない。
上記分解ガスは、上記処理空間内に上記原料ガスと同時に導入されて上記両原料ガスのいずれかの分解を促進するものである。上記分解ガスとしては、原料ガスの分解を促進するものであれば各種のものを用いることができ、特に限定するものではないが、具体的には、HまたはH基を含むガスを好適に用いることができる。例えば、水素ガスや、水素ガス以外のHまたはH基を含むガスとして、アセチレン(C),エチレン(C),ベンゼン(C)等を用いることができる。
上記分解ガスとしては、特に、水素ガスが好適に用いられる。上記分解ガスとして水素ガスを用いることにより、上記水素ガスが分解ガスとして、Zn原料である有機金属材料の分解促進に効果的に作用し、上記Zn原料ガスからZn元素が分解され、このZn元素がO原料ガスと反応して良好なZnO膜の成膜が進行する。さらに、有機金属材料が分解しにくくなる低温域においても、水素が被処理物の表面に留まりやすいので、有機金属材料の分解効果が発揮され、良好な成膜成長がなされる。原料ガスを分解する手段として水素ガスが採用されているので、従来技術のように、プラズマやレーザーを採用することが回避でき、成膜設備の構造簡素化や設備費用の低減に有効である。さらに、水素ガスを分解ガスとすることにより、O原料ガス特に酸素との反応により微量な水分HOが発生し、これがZn原料である有機金属材料の一部と反応して反応の基点を作り、Zn+O→ZnOの反応が促進される。
そして、本発明のZnO膜の成膜方法では、上記処理空間内に、少なくとも上記両原料ガスのいずれかの分解を促進する分解ガスを導入しながらZnO膜の成膜を行なう。
このようにすることにより、上記両原料ガスのいずれかの分解が分解ガスによって促進されるので、それとともに被処理物の表面に形成される成膜の成長速度が向上し、ZnO成膜の形成時間が短縮され、生産性が向上する。また、被処理物を加熱して成膜する成膜装置の場合には、上記の成膜形成時間の短縮により、加熱のための熱エネルギー費用の低減に有効である。原料ガスを分解する手段として分解ガスが採用されているので、従来技術のように、プラズマやレーザーを採用することが回避でき、成膜設備の構造簡素化や設備費用の低減に有効である。同時に、副生成物堆積によるパーティクルが発生しにくくなり、膜質劣化等が回避できる。さらに、分解ガスとして、Zn原料である有機金属材料の分解促進に効果的な水素ガスを選定することも可能となり、有機金属材料が分解しにくくなる低温域においても、水素が被処理物の表面に留まりやすいので、有機金属材料の分解効果が発揮され、良好な成膜成長がなされる。このように、水素ガスを選定した場合には、O原料ガス特に酸素との反応により微量な水分HOが発生し、これがZn原料である有機金属材料の一部と反応して反応の基点を作り、Zn+O→ZnOの反応が促進される。
本発明のZnO膜の成膜方法では、処理空間内における分解対象とする原料ガスに対する分解ガスの容量比が10倍容量未満であることが好適である。このようにすることにより、分解ガスによる適度な原料ガスの分解が行なわれ、分解ガスによる還元作用等が生じてかえって成膜速度を低下させるようなことがほとんどなく、効率的な成膜が行なわれる。
本発明のZnO膜の成膜方法では、上記分解ガスを、分解対象とする原料ガスの流量に対して10倍未満の流量で処理空間内に導入することが好適である。このようにすることにより、分解ガスによる適度な原料ガスの分解が行なわれ、分解ガスによる還元作用等が生じてかえって成膜速度を低下させるようなことがほとんどなく、効率的な成膜が行なわれる。また、原料ガスに対する分解ガスの容量比の制御が極めて容易かつ正確に行なえ、成膜速度や膜品質のコントロールが容易になるとともに、成膜方法を実現する装置の簡素化にとっても有利である。このとき、原料ガスに対する分解ガスの容量比の制御をより正確に行なうために、両原料ガスと分解ガスは、同時に処理空間内に導入を開始することが好ましい。
上記処理空間内における分解対象とする原料ガスに対する分解ガスの容量比や、分解対象とする原料ガスの流量に対する分解ガスの流量が、10倍以上になると、分解ガスによる還元反応が生じ、せっかく成膜したZnO膜の表面が還元作用によってエッチングされてしまい、成膜速度がかえって低下する。また、ZnO膜の表面が鏡面にならずに表面状態の荒れが生じ、ZnO膜を半導体として使用する際の性能低下につながるおそれが生じる。
上記処理空間内における分解対象とする原料ガスに対する分解ガスの容量比や、分解対象とする原料ガスの流量に対する分解ガスの流量は、10倍未満であれば所望の効果を得ることができるが、より好適なので、0.5倍以上10倍未満であり、さらに好適なのは、1倍以上10倍未満である。
ZnO膜生成中の処理空間内の圧力レベルは、特に限定するものではなく、常圧レベル〜高真空レベルまで、各種の圧力レベルでの成膜が可能である。具体的には、10−2Torr(約1.33Pa)レベル、10−3Torr(約0.133Pa)レベル、10−4Torr(約0.0133Pa)レベル、10−5Torr(約0.00133Pa)レベルでの成膜が可能である。
本発明のZnO膜の成膜方法では、上記両原料ガスや分解ガスのラジカル化を行なわないことが好適である。このようにすることにより、プラズマやレーザー,高周波放電,マイクロ波放電等を採用することが回避でき、成膜設備の構造簡素化や設備費用の低減に有効であるとともに、副生成物堆積によるパーティクルが発生しにくくなり、膜質劣化等が回避できる。
本発明のZnO膜の成膜方法では、上記分解ガスと、当該分解ガスの分解対象となる原料ガスとを、共通の供給流路から処理空間内に供給することが好適である。このようにすることにより、上記共通の供給流路内において上記分解対象となる原料ガスが分解ガスによって分解され、分解された原料ガスが被処理物の表面に成膜成長が促進されやすい状態で到達する。このため、成膜の成長速度が速まり、生産性が向上する。
本発明のZnO膜の成膜方法では、上記分解対象となる原料ガスと異なる原料ガスを、上記分解ガスおよび当該分解ガスの分解対象となる原料ガスとは別個に処理空間内に供給することが好適である。このようにすることにより、分解対象となる原料ガスと分解ガスとが流通する流路すなわち上記共通の供給流路である第1供給流路と、他の異なる原料ガスが流通する流路すなわち第2供給流路とが別個に独立した状態で成立する。このため、第1供給流路を流通する原料ガスと分解ガスが、第2供給流路を流通する他の異なる原料ガスから区分された状態で、被処理物の表面に供給することができ、被処理物表面における分解ガスで分解された原料ガスや他の異なる原料ガスの供給状態が、成膜形成ないしは成膜成長速度の向上にとって最適化される。
本発明のZnO膜の成膜方法では、上記分解ガスを上記両原料ガスとは別個に処理空間内に供給することが好適である。このようにすることにより、分解ガスだけが独立した流路すなわち第3供給流路を経て処理空間内に供給されるので、分解ガスの種類,流量,被処理物に対する噴出状態等の各種条件に適合させることが行ないやすくなる。
本発明のZnO膜の成膜方法では、上記分解ガスの分解対象となる原料ガスは、Zn原料ガスであることが好適である。このようにすることにより、上記Zn原料ガスからZn元素が分解され、このZn元素がO原料ガスと反応して良好なZnO膜の成膜が進行する。さらに、分解ガスとして、Zn原料である有機金属材料の分解促進に効果的な水素ガスを選定することができるので、有機金属材料が分解しにくくなる低温域においても、水素が被処理物の表面に留まりやすいので、有機金属材料の分解効果が発揮され、良好な成膜成長がなされる。
本発明のZnO膜の成膜方法では、被処理物の表面に対し、上記Zn原料ガス,O原料ガスおよび分解ガスを近接した噴出開口から噴出させることが好適である。このようにすることにより、各噴出開口からのZn原料ガス,O原料ガスおよび分解ガスが接近した箇所から流出するので、原料ガスの分解やその後の他の原料ガスとの反応が成膜の良好な成長にとって適正な状態で進行する。
本発明のZnO膜の成膜方法では、上記噴出開口のうちの1つが上記共通の供給流路であることが好適である。このようにすることにより、上記噴出開口のうちの1つから上記分解対象となる原料ガスが分解ガスによって分解された状態で噴出するので、分解されるべき原料ガスは良好な分解状態になって、被処理物の表面に成膜成長が促進されやすい状態で到達する。このため、成膜の成長速度が速まり、生産性が向上する。
本発明のZnO膜の成膜方法では、上記Zn原料ガス,O原料ガスおよび分解ガスを、それぞれ独立して複数の拡散室に導入し、上記各拡散室を経てそれぞれ噴出開口からZn原料ガス,O原料ガスおよび分解ガスをそれぞれ独立して噴射させることが好適である。このようにすることにより、各ガスの流れに脈動や乱流状態があっても各拡散室において緩衝されるので、上記各噴出開口から流出する各ガスの流れが整流状態となり、被処理物の表面に作用する処理ガス雰囲気が成膜形成およびその形成速度向上にとって最適化される。また、各拡散室からそれぞれ第1供給流路,第2供給流路,第3供給流路が分岐して各噴出開口に連通しているので、各噴出開口における流出ガス量が略均一になり、被処理物の表面の成膜成長がムラなく均一に進行し、よりすぐれた成膜品質が確保できる。
図1〜図3は、本発明の成膜方法を実現する成膜装置の第1例を示す。
以下の説明では、Zn原料ガスの分解ガスとして水素ガスを用い、O原料ガスとともに被処理物の表面におけるZnO膜を高い膜成長速度のもとに成膜するものを説明する。
図1は、成膜装置の全体構造を示す断面図である。この装置は、内部が処理空間1とされた処理容器2内に分離板3が設けられ、分離板3にあけた開口4に合致させた状態で被処理物である板状のサファイア基板5が載置されている。サファイア基板5の裏面の上方に加熱ヒータHが配置されて、加熱エリア1Aが形成されている。また、分離板3やサファイア基板5の下側の処理空間1が、各種の処理ガスが供給される成長エリア1Bとされている。そして、処理空間1を真空にする真空ポンプ(図示していない)が配置され、排気口6から処理空間1内が真空排気されるようになっている。なお、8は加熱用のリフレクタである。
上記サファイア基板5に対する処理ガスすなわち原料ガスや分解ガス等の供給は、供給流路から処理空間1内すなわち成長エリア1Bに対して行なわれる。この例では、成長エリア1B内へ供給される処理ガスはガス噴出ヘッド7を経由するようになっている。上記ガス噴出ヘッド7は、上記分離板3やそれに載置されたサファイア基板5の下側の成長エリア1B内に配置されている。このガス噴出ヘッド7から噴射された処理ガスにより、サファイア基板5の表面にCVD(Chemical Vaper Deposition)処理が施されて、白色LED等の発光素子に用いられるZnOエピタキシャル膜や絶縁用の酸化膜あるいは配線用の金属膜等が成膜される。
この第1例は、原料ガスとしてZn原料ガスとO原料ガスが用いられ、また、Zn原料ガスに対する分解ガスとしてHまたはH基を含むガスである水素ガスが用いられている。原料ガスは、Zn原料ガスにはDEZn(ジエチル亜鉛)が採用され、O原料ガスには酸素(O)と亜酸化窒素(NO)が採用されている。上記の原料ガスや分解ガスを用いてサファイア基板5の表面にZnO膜を成膜する。
ガス噴出ヘッド(シャワーヘッドとも呼ばれている)7は、その内部が、仕切り板9を介して第1拡散室10と第2拡散室11に区画され、上記第1拡散室10には後述の第1供給流路15が開口し、また、上記第2拡散室11には後述の第2供給流路16が開口している。第2拡散室11のサファイヤ基板5側には、当該サファイア基板5に面した状態で開口板12が配置されている。上記開口板12には、図2に拡大して示すように、複数の噴出開口13,14が接近した状態で配置されている。1つの噴出開口13は開口板12に直接設けた円形の穴13Aであり、もう1つの噴出開口14は上記噴出開口13よりも小径の断面円形のパイプ14Aである。上記穴13Aは第2拡散室11に連通しており、上記パイプ14Aは仕切り板9を貫通して第1拡散室10に連通している。したがって、噴出開口13すなわち穴13Aと噴出開口14すなわちパイプ14Aは同心状に配置されて、接近した位置関係になっている。
上記第1供給流路15を、分解対象となるDEZnガスと、DEZnガスに対する分解ガスである水素ガスとが上述した所定の流量比率で流通する。すなわち、上記第1供給流路15は、本発明の共通の供給流路として機能する。DEZnガスと水素ガスの流路17,18には、それぞれマスフローコントローラ(流量調節計)19,20が配置され、両流路17,18は切換弁21に接続され、上記切換弁21に第1供給流路15が接続されているとともに、ベント通路21Aが接続されている。DEZnガスや水素ガスは、それぞれマスフローコントローラ(流量調節計)19,20で上述した所定の流量に設定され、初期の段階ではベント通路21Aから処理設備(図示していない)を経て系外に放出される。その後、両ガスの流量比が所定値に安定してから切換弁21を切換えることにより、DEZnガスと水素ガスとが第1拡散室10に同時に供給される。
上記第2供給流路16を、O原料ガスである酸素と亜酸化窒素とが所定の流量比率で流通する。酸素と亜酸化窒素の流路22,23には、それぞれマスフローコントローラ(流量調節計)24,25が配置され、両流路22,23は切換弁26に接続され、上記切換弁26に第2供給流路16が接続されているとともに、ベント通路26Aが接続されている。酸素と亜酸化窒素は、それぞれマスフローコントローラ(流量調節計)24,25で所定の流量に設定され、初期の段階ではベント通路26Aから処理設備(図示していない)を経て系外に放出される。その後、両ガスの流量比が所定値に安定してから切換弁26を切換えることにより、酸素と亜酸化窒素とが第2拡散室11に供給される。なお、酸素と亜酸化窒素は特に相互反応をしないので、上記のように共通の通路である第2供給流路16から混合状態で供給することができるが、酸素と亜酸化窒素を別々の供給流路で供給することもできる。このように別々に供給することにより、両ガスの供給比率を設定する弁装置が簡素化される。
上記のように、第1供給流路15と第2供給流路16とは別個に設けられ、分解対象となるDEZnガスは第1供給流路15を流通して、第1拡散室10に供給される。他方、分解対象となっていない酸素と亜酸化窒素は第2供給流路16を流通して、第2拡散室11に供給される。
第1供給流路15内を流通するZn原料ガスや水素ガス等は、それらが流動中に水素ガスによりZn原料ガスが分解され、Zn原料ガスは良好な分解状態になってパイプ14Aからサファイア基板5の表面に供給される。したがって、第1供給流路15は、切換弁21から延びるパイプ部材15Aと、上記パイプ部材15Aが開口している第1拡散室10と、第1拡散室10から開口板12まで伸びているパイプ14Aによって構成されている。また、第2供給流路16もそこを流れるO原料ガスが、開口板12を出た箇所から分解されたZn元素との反応が開始されるので、第1供給流路15と同様に、切換弁26から穴13Aまでにわたって存在している。
上記の成膜装置の動作を、図3に示したZnO成膜シーケンスに関連させて説明する。成膜装置の成膜シーケンスは、基板クリーニング,バッファ層成長,高温層成長の3段階である。
最初の基板クリーニングは、サファイア基板5の膜成長面の状態をコントロールし、成膜の成長を促進するために行なわれ、その方法として真空中やガス雰囲気での熱処理がなされる。この例では、水素ガス雰囲気中で、加熱ヒータHによって加熱されたサファイア基板の温度を約1000℃に保っている。この基板クリーニングの段階では、DEZn,O,NOの供給はなされていない。上記基板クリーニングを実施するために、処理空間1を真空状態とし、上記マスフローコントローラ(流量調節計)20,切換弁21および加熱ヒータHの制御装置(図示していない)を動作させて、水素ガス雰囲気中で、サファイア基板5の温度を約1000℃に保っている。基板クリーニングにおける水素ガスは、第1供給流路15から第1拡散室10に供給され、パイプ14Aからサファイア基板5の表面に吹き付けられる。
次の段階であるバッファ層成長は、低温でZnO単結晶膜を成長させ、その後の高温層成長を助長させるために行なわれる。上記基板クリーニング終了後、処理空間1の真空状態を維持し、加熱ヒータHの制御装置を動作させて、約5分間でサファイア基板5の温度を約400℃に安定させる。この安定状態になってから、切換弁21および26を切り換えて、DEZnとHとが所定の流量比率のもとに第1供給流路15から第1拡散室10に供給され、パイプ14Aを経てサファイア基板5の表面に吹き付けられる。この吹き付けと同時に、OとNOとが所定の流量比率のもとに第2供給流路16から第2拡散室11に供給され、穴13Aを経てサファイア基板5の表面に吹き付けられる。以上のようにDEZnガスがHで分解されながら、OとNOとともにサファイア基板5の表面に噴射されて、バッファ層の成長がなされる。なお、この段階で形成されたZnO単結晶膜の目標膜厚は、30〜40nmである。
最後の段階である高温層成長は、サファイア基板温度を600〜800℃に設定してZnO成膜を行う。この段階では、確実な成膜を進行させるために、各原料ガスや分解ガス等の処理ガスを供給する前に真空度を高め、さらに、加熱ヒータHの制御装置を動作させてサファイア基板5の温度を600〜800℃の高温に維持し、その後、上記バッファ層成長の段階と同様にして、各マスフローコントローラ(流量調節計)19,20,24,25並びに切換弁21,26を動作させる。この段階での成長圧力は、10−3〜1Pa(10−5〜10−2Torr)である。これにより、DEZnとHとが所定の流量比率のもとに第1供給流路15から第1拡散室10に供給され、パイプ14Aを経てサファイア基板5の表面に吹き付けられる。この吹き付けと同時に、OとNOとが所定の流量比率のもとに第2供給流路16から第2拡散室11に供給され、穴13Aを経てサファイア基板5の表面に吹き付けられる。以上のようにDEZnガスがHによってZn元素に分解されながら、OとNOとともにサファイア基板5の表面に噴射されて、Zn元素とO原料ガスが反応し、ZnO成膜の成長が図られる。その後、所定の膜厚に達したとき、各ガスの供給を停止し加熱ヒータHの加熱も停止して、サファイア基板5が成膜装置から取り出される。なお、上記バッファ層成長および高温層成長における反応式は、Zn+O→ZnOとZn+NO→ZnO+Nである。そして、この段階で形成されるZnO成膜の目標膜厚は、2μmである。
上記高温層成長の段階では、高温であるためにZnO膜の表層から還元が進行しないようにすることが必要である。そのために、OとNOを真空状態を維持しながらDEZnとHの供給停止後も流し続けて加熱温度を下げて行くようにしている。このような還元防止の措置を講じることにより、ZnO成膜の厚さが正常に確保され、成膜時間の短縮にも効果的である。上記のOとNOの供給延長時間は、図3において符合Tで示されている。
上記第1例では,サファイア基板5が被処理物とされているが、これをZnO基板とし、その表面にZnO膜をホモ成長で形成することも可能である。また、上記第1例では、OとNOを所定の流量比率で供給するものであるが、OとNOを独立させて別々に供給することも可能である。
上記第1例の構成により、上記Zn原料ガスであるDEZnの分解が分解ガスである水素ガスによって促進されるので、分解されたZn元素と酸素との反応により、サファイア基板5の表面に形成されるZnO成膜の成長速度が向上し、ZnO成膜の形成時間が短縮され、生産性が向上する。また、サファイア基板5を加熱して成膜する成膜装置の場合には、上記の成膜形成時間の短縮により、加熱のための熱エネルギー費用の低減に有効である。Zn原料ガスを分解するガスとして水素ガスが採用されているので、従来技術のように、プラズマやレーザーを採用することが回避でき、成膜設備の構造簡素化や設備費用の低減に有効である。さらに、分解ガスとして、Zn原料である有機金属材料の分解促進に効果的な水素ガスを選定することができるので、有機金属材料が分解しにくくなる低温域においても、水素がサファイア基板5の表面に留まりやすいので、有機金属材料の分解効果が発揮され、良好な成膜成長がなされる。
一方、上記のように分解ガスとして水素ガスを選定することができるので、O原料ガス特に酸素との反応により微量な水分HOが発生し、これがZn原料である有機金属材料の一部と反応して反応の基点を作り、Zn+O→ZnOの反応が促進される。さらに、O原料として水(HO)を付加することにより、上記のZn+O→ZnOの反応が促進される。
上記第1供給流路15内において、上記分解対象となるDEZnガスが、分解ガスである水素ガスによってZn元素に分解され、分解されたDEZnガスがサファイア基板5の表面に成膜成長が促進されやすい状態で到達する。このため、成膜の成長速度が速まり、生産性が向上する。
分解対象となるDEZnガスと水素ガスとが流通する流路すなわち第1供給流路15と、他の異なる原料ガスであるO原料ガスが流通する流路すなわち第2供給流路16とが別個に独立した状態で成立している。このため、第1供給流路15を流通するDEZnガスと水素ガスが、第2供給流路16を流通する他の異なるO原料ガスから区分された状態で、サファイア基板5の表面に供給することができ、サファイア基板5の表面における水素ガスで分解されたZn元素やO原料ガスの供給状態が、成膜形成ないしは成膜成長速度の向上にとって最適化される。また、膜質向上や低パーティクル化が実現するのであるが、それはDEZnガスと水素ガスとが第1供給流路15から供給されるので、O原料ガスとの反応によるHO生成がサファイア基板5の表面に限定されているためと考えられる。
上記処理空間1(成長エリア1B)内に、上記Zn原料ガス,O原料ガスおよび分解ガスをサファイア基板5の表面に対して噴出する複数の噴出開口すなわち穴13A,パイプ14Aを接近した位置関係で設けてあるので、各穴13A,パイプ14AからのZn原料ガス,O原料ガスおよび分解ガスが接近した箇所から流出し、原料ガスの分解やその後の反応が成膜の良好な成長にとって適正な状態で進行する。さらに、上記複数の噴出開口、例えば、穴13Aとパイプ14Aの組合わせを、サファイア基板5の大きさ等に応じて複数組配置することにより、ZnO成膜の処理ガス雰囲気を良好に形成することができる。
上記穴13A,パイプ14Aのうちのパイプ14Aが上記第1供給流路15とされていることにより、一方のパイプ14AからZn原料ガスが水素ガスによって分解された状態で噴出するので、分解されるべきZn原料ガスは良好な分解状態になって、サファイア基板5の表面に成膜成長が促進されやすい状態で到達する。このため、成膜の成長速度が速まり、生産性が向上する。
上記分解ガスの分解対象となる原料ガスが、Zn原料ガスであるから、上記Zn原料ガスからZn元素が分解され、このZn元素がO原料ガスと反応して良好なZnO膜の成膜が進行する。さらに、分解ガスとして、Zn原料である有機金属材料の分解促進に効果的な水素ガスが選定されているので、有機金属材料が分解しにくくなる低温域においても、水素がサファイア基板5の表面に留まりやすいので、有機金属材料の分解効果が発揮され、良好な成膜成長がなされる。
上記水素ガスが分解ガスとして、Zn原料である有機金属材料の分解促進に効果的に作用し、有機金属材料が分解しにくくなる低温域においても、水素がサファイア基板5の表面に留まりやすいので、有機金属材料の分解効果が発揮され、良好なZnO膜成長がなされる。原料ガスを分解する手段として水素ガスが採用されているので、従来技術のように、プラズマやレーザーを採用することが回避でき、成膜設備の構造簡素化や設備費用の低減に有効である。
Zn原料ガスを供給する第1供給流路15やO原料ガスを供給する第2供給流路16とは別個に、処理空間1内に水素ガスを供給する流路を設けることができる。すなわち、図1に2点鎖線で示すように、第3供給流路27が第1拡散室10に開口しており、上記第3供給流路27の途中にマスフローコントローラ(流量調節計)28が配置してある。
上記第3供給流路27を設けることにより、水素ガスだけが独立した流路すなわち第3供給流路を経て処理空間1内に供給されるので、分解ガスの種類,流量,サファイア基板5に対する噴出状態等の各種条件に適合させることが行ないやすくなる。
図4および図5は、本発明の成膜方法を実現する成膜装置の第2例を示す。
この第2例は、複数の噴出開口が、上記Zn原料ガス,O原料ガスおよび分解ガスがそれぞれ独立して導入される複数の拡散室に連通し、各噴出開口からZn原料ガス,O原料ガスおよび分解ガスをそれぞれ独立して噴射させるものである。図4は、処理容器2全体の断面図であり、図5は、ガス噴出ヘッド7の一部を拡大した断面図である。図示していないが、ガス噴出ヘッド7の平面形状は円形であり、その表面に多数の噴出開口13がサファイア基板5の表面に均一なZnO成膜が形成できるように設けられている。
この例では、平面形状が円形とされた略ドーム型の拡散室29A,29B,29Cが、分厚い積層部材30A,30B,30Cの中央部にそれぞれ独立した室の状態で構成されている。DEZnを供給する第1供給流路15は、ガス噴出ヘッド7の外部から噴出開口13に連通しており、この第1供給流路15の途中に拡散室29Aが配置されている。また、水素ガスを供給する第3供給流路27は、ガス噴出ヘッド7の外部から噴出開口13に連通しており、この第3供給流路27の途中に拡散室29Bが配置されている。さらに、O原料ガスを供給する第2供給流路16は、ガス噴出ヘッド7の外部から噴出開口13に連通しており、この第2供給流路16の途中に拡散室29Cが配置されている。上記のように、各拡散室29A,29B,29Cはそれぞれ独立しているので、拡散室29AにはDEZnだけが供給され、拡散室29Bには水素ガスだけが供給され、また、拡散室29CにはO原料ガスだけが供給される。
上記噴出開口13は、図5に示されているように、積層部材30Cに設けた円形の開口31内に大径パイプ32を挿入して環状の流通間隙33を形成し、上記大径パイプ32の内側に小径パイプ34を挿入して環状の流通間隙35を形成し、さらに、小径パイプ34自体の内側が流通路36とされている。上記流通路36は第1供給流路15と、上記流通間隙35は第3供給流路27と、上記流通間隙33は第2供給流路16にそれぞれ連通している。それ以外は、上記第1例と同様であり、同様の部分には同じ符号を付している。
上記構成により、各ガスの流れに脈動や乱流状態があっても各拡散室29A,29B,29Cにおいて緩衝されるので、上記各噴出開口33,35,36から流出する各ガスの流れが整流状態となり、サファイア基板5の表面に作用する処理ガス雰囲気が成膜形成およびその形成速度向上にとって最適化される。また、各拡散室29A,29B,29Cからそれぞれ第1供給流路15,第3供給流路27,第2供給流路16が分岐して各噴出開口36,35,33に連通しているので、各噴出開口36,35,33における流出ガス量が略均一になり、サファイア基板5の表面の成膜成長がムラなく均一に進行し、よりすぐれた成膜品質が確保できる。それ以外は、上記第1例と同様の作用効果を奏する。
なお、上記第1例において、第1供給流路15にDEZnと水素ガスを同時に流し、第3供給流路27には何も流さないか、あるいは何等かの他のガスを供給するようにすることも可能である。
図6および図7は、本発明の成膜方法を実現する成膜装置の第3例を示す。
この第3例は、拡散室の形状を変更したもので、図6は、ガス噴出ヘッド7の断面図、図7は、噴出開口13の部分を拡大して示した断面図である。上記積層部材30Cと30Bの間に広くて偏平な円形の空間を設けて、その空間を拡散室29Cとして構成し、上記積層部材30Bと30Aの間に広くて偏平な円形の空間を設けて、その空間を拡散室29Bとして構成し、積層部材30Aの中央部に空間容積の大きな凹部を設けてそこを拡散室29Aにしたものである。また、第2供給流路16は供給管16Aを外部から拡散室29C内に挿入し、その先端部に拡散室29Cの略中央部に開口する噴口16Bを設けてある。さらに、第3供給流路27は供給管27Aを外部から拡散室29B内に挿入し、その先端部に拡散室29Bの略中央部に開口する噴口27Bを設けてある。それ以外は、上記第1および第2例と同様であり、同様の部分には同じ符号を付している。
上記構成により、広くて偏平な円形の空間とされた拡散室29B,29Cの中央部に、それぞれ噴口16B,27BからO原料ガスおよび水素ガスが供給され、各噴出開口13に対して均等な流量のガス流出が可能となり、サファイア基板5の表面全域に均一な品質のZnO成膜が形成できる。それ以外は、上記第1および第2例と同様の作用効果を奏する。
図8は、本発明の成膜方法を実現する成膜装置の第4例を示す。
この第4例は、図1に示した加熱エリア1Aが、処理空間1内において独立した加熱ボックス37の状態で形成され、その下側にサファイア基板5が取り付けられている。DEZnと水素ガスを供給する第1供給流路15が、処理容器2の外部から処理空間1内に挿入され、O原料ガスを供給する第2供給流路16が、処理容器2の外部から処理空間1内に挿入され、各第1供給流路15および第2供給流路16はサファイア基板5の表面に各処理ガスを吹き付けるようになっている。なお、第3供給流路27を2点鎖線図示のように配置して、水素ガスを供給することも可能である。それ以外は、上記第1〜第3例と同様であり、同様の部分には同じ符号を付している。
上記構成により、サファイア基板5の表面に、水素ガスで分解されたZn元素およびO原料ガスが吹き付けられ、ZnO膜が形成される。それ以外は、上記第1〜第3例と同様の作用効果を奏する。
図1に示した成膜装置を用い、下記の条件でZnO膜の成膜を行なった。
成膜温度(基板温度) :700℃
DEZn流量 : 2sccm
酸素流量 :500sccm
亜酸化窒素流量 : 40sccm
水素流量 : 0sccm(比較例1)
水素流量 : 10sccm(実施例1)
DEZn対水素の容量比: 5倍
圧力レベル : 10−2Torrオーダー
(約1.33Pa程度)
上記比較例1および実施例1のZnO成長速度は、下記のとおりであり、水素を添加することでZnOの成長速度が2.8倍に向上した。
比較例1 :0.05 μm/Hr
実施例1 :0.1395μm/Hr
図1に示した成膜装置を用い、下記の条件でZnO膜の成膜を行なった。
成膜温度(基板温度) :600℃
DEZn流量 : 2sccm
酸素流量 :360sccm
亜酸化窒素流量 : 40sccm
水素流量 : 0sccm(比較例2)
水素流量 : 10sccm(実施例2)
DEZn対水素の容量比: 5倍
圧力レベル : 10−3Torrオーダー
(約0.133Pa程度)
上記比較例2および実施例2のZnO成長速度は、下記のとおりであり、水素を添加することでZnOの成長速度が4.5倍に向上した。
比較例2 :0.0645μm/Hr
実施例2 :0.287 μm/Hr
図1に示した成膜装置を用い、下記の条件でZnO膜の成膜を行なった。
成膜温度(基板温度) :400℃
DEZn流量 : 5sccm
酸素流量 :160sccm
亜酸化窒素流量 : 40sccm
水素流量 : 10sccm(実施例3)
水素流量 : 50sccm(比較例3)
DEZn対水素の容量比: 2倍(実施例3)
10倍(比較例3)
圧力レベル : 10−4Torrオーダー
(約00.133Pa程度)
上記実施例3および比較例3のZnO成長速度は、下記のとおりであり、水素をDEZnの2倍量添加した場合と、水素をDEZnの10倍量添加した場合とで、ZnOの成長速度は殆ど変わらずに若干低下した。比較例3では、実施例3のZnO膜の表面が鏡面であったのに対し、比較例3の表面は白濁しており、水素によるZnO膜表面の還元反応が起こり、表面状態が悪化したことがわかる。
実施例3 :0.469μm/Hr
比較例3 :0.444 μm/Hr
本発明は、プラズマ源やレーザー源を成膜装置に組み込んだり、既存の成膜装置を改造してプラズマ源やレーザー源を装備するような経済的な負担を回避して、分解ガスの供給により簡単な成膜設備で品質的に安定したZnO成膜が可能となり、白色発光ダイオード等の発光素子の製造等に適用することができる。
本発明の成膜方法を実現する成膜装置の第1例を示す全体構成図である。 噴出開口部分の拡大断面図である。 ZnO成膜のシーケンス図である。 第2例の成膜装置の断面図である。 図5に示したガス噴出ヘッドの拡大断面図である。 第3例のガス噴出ヘッドの断面図である。 図7に示したガス噴出ヘッドの部分的な拡大断面図である。 第4例の成膜装置の断面図である。
符号の説明
1 処理空間
1A 加熱エリア
1B 成長エリア
2 処理容器
3 分離板
4 開口
5 被処理物,サファイア基板,ZnO基板
6 排気口
7 ガス噴出ヘッド
H 加熱ヒータ
8 リフレクタ
9 仕切り板
10 第1拡散室
11 第2拡散室
12 開口板
13 噴出開口
13A 穴
14 噴出開口
14A パイプ
15 第1供給流路
15A パイプ部材
16 第2供給流路
16A 供給管
16B 噴口
17 流路
18 流路
19 マスフローコントローラ(流量調節計)
20 マスフローコントローラ(流量調節計)
21 切換弁
21A ベント通路
22 流路
23 流路
24 マスフローコントローラ(流量調節計)
25 マスフローコントローラ(流量調節計)
26 切換弁
26A ベント通路
T 延長時間
27 第3供給流路
27A 供給管
27B 噴口
28 マスフローコントローラ(流量調節計)
29A 拡散室
29B 拡散室
29C 拡散室
30A 積層部材
30B 積層部材
30C 積層部材
31 開口
32 大径パイプ
33 流通間隙
34 小径パイプ
35 流通間隙
36 流通路
37 加熱ボックス

Claims (6)

  1. 処理空間内に少なくともZn原料ガスとO原料ガスを供給し、上記両原料ガスにより上記処理空間に露出している被処理物の表面にZnO膜の成膜を行うZnO膜の成膜方法であって、
    上記処理空間内に、少なくとも上記両原料ガスのいずれかの分解を促進する分解ガスとしての水素ガスを導入しながらZnO膜の成膜を行う際に、
    上記両原料ガスや分解ガスのラジカル化を行なわず、かつ、
    上記分解ガスを上記両原料ガスとは別個に処理空間内に供給することを特徴とするZnO膜の成膜方法。
  2. 処理空間内における分解対象とする原料ガスに対する分解ガスの容量比が10倍容量未満である請求項1記載のZnO膜の成膜方法。
  3. 上記分解ガスを、分解対象とする原料ガスの流量に対して10倍未満の流量で処理空間内に導入する請求項1または2記載のZnO膜の成膜方法。
  4. 上記分解ガスの分解対象となる原料ガスは、Zn原料ガスである請求項1〜3のいずれか一項に記載のZnO膜の成膜方法。
  5. 被処理物の表面に対し、上記Zn原料ガス,O原料ガスおよび分解ガスを近接した噴出開口から噴出させる請求項1〜のいずれか一項に記載のZnO膜の成膜方法。
  6. 上記Zn原料ガス,O原料ガスおよび分解ガスを、それぞれ独立して複数の拡散室に導入し、上記各拡散室を経てそれぞれ噴出開口からZn原料ガス,O原料ガスおよび分解ガスをそれぞれ独立して噴射させる請求項記載のZnO膜の成膜方法。
JP2004114160A 2004-04-08 2004-04-08 ZnO膜の成膜方法 Expired - Fee Related JP4544898B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004114160A JP4544898B2 (ja) 2004-04-08 2004-04-08 ZnO膜の成膜方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004114160A JP4544898B2 (ja) 2004-04-08 2004-04-08 ZnO膜の成膜方法

Publications (2)

Publication Number Publication Date
JP2005298867A JP2005298867A (ja) 2005-10-27
JP4544898B2 true JP4544898B2 (ja) 2010-09-15

Family

ID=35330780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004114160A Expired - Fee Related JP4544898B2 (ja) 2004-04-08 2004-04-08 ZnO膜の成膜方法

Country Status (1)

Country Link
JP (1) JP4544898B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4784112B2 (ja) * 2005-03-10 2011-10-05 住友電気工業株式会社 ZnO系化合物結晶の成長方法
JP4873726B2 (ja) * 2007-03-26 2012-02-08 独立行政法人物質・材料研究機構 酸化亜鉛薄膜の形成方法
JP2011521477A (ja) * 2008-05-21 2011-07-21 ルーメンズ, インコーポレイテッド 酸化亜鉛系エピタキシャルの層およびデバイス
US8529699B2 (en) 2008-09-16 2013-09-10 Stanley Electric Co., Ltd. Method of growing zinc-oxide-based semiconductor and method of manufacturing semiconductor light emitting device
JP5073624B2 (ja) * 2008-09-16 2012-11-14 スタンレー電気株式会社 酸化亜鉛系半導体の成長方法及び半導体発光素子の製造方法
JP5030909B2 (ja) * 2008-09-16 2012-09-19 スタンレー電気株式会社 酸化亜鉛単結晶層の成長方法
JP5537890B2 (ja) * 2009-10-06 2014-07-02 スタンレー電気株式会社 酸化亜鉛系半導体発光素子の製造方法
CN107075676B (zh) * 2014-10-29 2019-08-02 东芝三菱电机产业***株式会社 针对成膜装置的气体喷射装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093823A (ja) * 2000-09-14 2002-03-29 Tohoku Ricoh Co Ltd 薄膜形成装置
JP2004040054A (ja) * 2002-07-08 2004-02-05 Univ Shimane 酸化亜鉛系薄膜の成長方法
WO2005078154A1 (ja) * 2004-02-16 2005-08-25 Kaneka Corporation 透明導電膜の製造方法、及びタンデム型薄膜光電変換装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093823A (ja) * 2000-09-14 2002-03-29 Tohoku Ricoh Co Ltd 薄膜形成装置
JP2004040054A (ja) * 2002-07-08 2004-02-05 Univ Shimane 酸化亜鉛系薄膜の成長方法
WO2005078154A1 (ja) * 2004-02-16 2005-08-25 Kaneka Corporation 透明導電膜の製造方法、及びタンデム型薄膜光電変換装置の製造方法

Also Published As

Publication number Publication date
JP2005298867A (ja) 2005-10-27

Similar Documents

Publication Publication Date Title
US9932670B2 (en) Method of decontamination of process chamber after in-situ chamber clean
CN110904432B (zh) 一种mocvd反应器
KR20120053003A (ko) 할로우 캐소드 샤워헤드
US8138069B2 (en) Substrate pretreatment for subsequent high temperature group III depositions
JP4840832B2 (ja) 気相成長装置、気相成長方法、および半導体素子の製造方法
KR20120126012A (ko) 가스 공급 장치, 열처리 장치, 가스 공급 방법 및 열처리 방법
JP4544898B2 (ja) ZnO膜の成膜方法
CN112695302B (zh) 一种mocvd反应器
JP2008066413A (ja) シャワーヘッド構造及びこれを用いた処理装置
WO2008001095A1 (en) Gas combustion apparatus
JP5588856B2 (ja) カーボン膜上への酸化物膜の成膜方法及び成膜装置
JP2013125851A (ja) 成膜装置及び成膜方法
JP2011018895A (ja) Iii族窒化物半導体の気相成長装置
KR100744528B1 (ko) 알에프 파워가 인가되는 가스 분리형 샤워헤드를 이용한플라즈마 원자층 증착장치 및 방법
JP4133911B2 (ja) 成膜装置
JP4879693B2 (ja) Mocvd装置およびmocvd法
KR100407507B1 (ko) 원자층 증착장치의 가스 분사장치
KR20020084616A (ko) 원자층 형성용 반응챔버
JP2011192946A (ja) 酸化亜鉛薄膜の成膜方法及び成膜装置
KR101062457B1 (ko) 화학기상증착장치와 이를 위한 가스 공급방법
JP2002353151A (ja) 半導体製造装置
US11961716B2 (en) Atomic layer deposition method
JP4415005B2 (ja) 基板処理装置
JP3168275B2 (ja) 半導体結晶成長装置
KR20120090349A (ko) 화학기상증착장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4544898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees