JP4540971B2 - Neutral titanium oxide sol and method for producing the same - Google Patents

Neutral titanium oxide sol and method for producing the same Download PDF

Info

Publication number
JP4540971B2
JP4540971B2 JP2003408014A JP2003408014A JP4540971B2 JP 4540971 B2 JP4540971 B2 JP 4540971B2 JP 2003408014 A JP2003408014 A JP 2003408014A JP 2003408014 A JP2003408014 A JP 2003408014A JP 4540971 B2 JP4540971 B2 JP 4540971B2
Authority
JP
Japan
Prior art keywords
titanium oxide
oxide sol
fine particles
sol
oxide fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003408014A
Other languages
Japanese (ja)
Other versions
JP2005170687A (en
Inventor
洋一 石灰
貴志 西川
由美 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2003408014A priority Critical patent/JP4540971B2/en
Publication of JP2005170687A publication Critical patent/JP2005170687A/en
Application granted granted Critical
Publication of JP4540971B2 publication Critical patent/JP4540971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、中性域のpHで分散安定なアナタース型結晶構造を有する酸化チタンゾルおよびその製造方法に関する。   The present invention relates to a titanium oxide sol having an anatase-type crystal structure that is stable in dispersion at a neutral pH, and a method for producing the same.

酸化チタンは、白色顔料のほかに種々の性質を活かした機能性材料として用いられている。例えば、紫外線を吸収し遮蔽する性質を有することから、化粧料の紫外線吸収剤やプラスチック包装材等の充填剤などとして用いられている。また、高表面積を有することから、触媒、吸着剤等として有用であり、一方、紫外光を照射すると励起する性質を利用して、光触媒、光半導体等としても有用である。具体的に光触媒として用いる場合には、酸化チタン微粒子のバンドギャップ以上のエネルギーを有する光を照射すると、酸化チタンが励起しその表面に正孔と電子が発生する。発生した正孔は非常に強力な酸化力を有していることなどから、有毒物質、悪臭物質、刺激性物質、環境汚染物質、菌、黴、藻類、細菌などの有害物を除去できる。さらに、酸化チタンを基材の表面に固定させることによって、前記の有害物除去機能のほか、この光触媒機能によって、基材の表面に付着する汚れを防止したり、基材の表面を親水性にし、曇りを防止することができる。   Titanium oxide is used as a functional material utilizing various properties in addition to a white pigment. For example, since it has the property of absorbing and shielding ultraviolet rays, it is used as an ultraviolet absorber for cosmetics and as a filler for plastic packaging materials. Moreover, since it has a high surface area, it is useful as a catalyst, an adsorbent, etc. On the other hand, it is also useful as a photocatalyst, an optical semiconductor, etc. by utilizing the property of being excited when irradiated with ultraviolet light. Specifically, when used as a photocatalyst, irradiation with light having energy greater than or equal to the band gap of the titanium oxide fine particles excites the titanium oxide and generates holes and electrons on the surface thereof. Since the generated holes have a very strong oxidizing power, harmful substances such as toxic substances, malodorous substances, irritating substances, environmental pollutants, fungi, sputum, algae and bacteria can be removed. Furthermore, by fixing titanium oxide to the surface of the base material, in addition to the above-mentioned harmful substance removing function, this photocatalytic function can prevent dirt adhering to the surface of the base material or make the surface of the base material hydrophilic. , Can prevent fogging.

前記のような機能性材料として用いる酸化チタンとしては、微粒子状であればそれらの活性が高まり好ましい。さらに、基材に付着して用いる場合、酸化チタンが微粒子状であれば、可視光を透過し透明になるため、基材自体の意匠性を損ない難いという利点がある。このような酸化チタン微粒子は、通常、溶媒に分散したゾルの状態で用いられており、そのような酸化チタンゾルには酸性域のpHで安定な酸性酸化チタンゾル、中性域のpHで安定な中性酸化チタンゾル、アルカリ性域のpHで安定なアルカリ性酸化チタンゾルにわけられる。この内、酸性域あるいはアルカリ性域のpHで安定なものを用いる場合には、光触媒反応等を行う反応系のpHを同じように酸性域あるいはアルカリ性域に保持する必要があること、さらに、基材に付着して用いる場合には、酸化チタンゾルに配合された酸あるいはアルカリによって、基材が腐食される場合があり、問題となる。他方、中性域のpHで安定な酸化チタンゾルでは、光触媒反応等を行う反応系のpHの問題がなく、腐食の問題もないため好ましいものである。しかしながら、酸化チタンを中性域のpHで分散安定化させるためには、従来、酸化チタンの粒子表面に10〜25重量%の好ましい範囲の多量のシリカをできる限り緻密に被覆させる必要があった(特許文献1参照)。   The titanium oxide used as the functional material as described above is preferably in the form of fine particles because its activity increases. Furthermore, when used by adhering to a base material, if titanium oxide is in the form of fine particles, visible light is transmitted and becomes transparent, so that there is an advantage that it is difficult to impair the design of the base material itself. Such titanium oxide fine particles are usually used in the form of a sol dispersed in a solvent. Such a titanium oxide sol includes an acidic titanium oxide sol that is stable at a pH in an acidic region and a medium that is stable at a pH in a neutral region. Titanium oxide sols can be divided into alkaline titanium oxide sols that are stable at alkaline pH. Among these, when using a material that is stable at pH in the acidic range or alkaline range, it is necessary to maintain the pH of the reaction system for carrying out the photocatalytic reaction in the acidic range or alkaline range in the same manner. When used while adhering to the substrate, the substrate may be corroded by the acid or alkali blended in the titanium oxide sol, which is a problem. On the other hand, a titanium oxide sol that is stable at a neutral pH is preferable because there is no pH problem in the reaction system for carrying out a photocatalytic reaction or the like, and there is no corrosion problem. However, in order to disperse and stabilize titanium oxide at a neutral pH, conventionally, it has been necessary to coat the surface of titanium oxide particles with a large amount of silica in a preferable range of 10 to 25% by weight as densely as possible. (See Patent Document 1).

特開平10−158015号公報Japanese Patent Laid-Open No. 10-158015

前記の特許文献1に記載の方法では、中性域のpHで分散安定な酸化チタンゾルが得られるものの、光触媒等の機能を有さない多量のシリカが緻密に被覆されているため、有害物等と酸化チタン微粒子との接触が阻害され、酸化チタンの優れた機能が発現しにくいという問題がある。   In the method described in Patent Document 1, although a dispersion-stable titanium oxide sol is obtained at a neutral pH, a large amount of silica that does not have a function as a photocatalyst is densely coated. There is a problem that the contact between the titanium oxide fine particles and the titanium oxide fine particles is hindered, and the excellent function of titanium oxide is hardly exhibited.

本発明者らは、中性域のpHで分散性が安定であり、しかも、酸化チタンの機能が発現しやすい酸化チタンゾルを得るべく鋭意検討した。その結果、アナタース型結晶構造を有する酸化チタン微粒子の表面に多孔質シリカを被着させると、シリカの空孔を通じて有害物等が酸化チタン表面に接触し、その機能によって吸着、分解、除去などが起こること、しかも、多孔質シリカが酸化チタンの等電点を中性域からずらすことができ、中性域での分散性に優れた酸化チタンゾルが得られることなどの知見を得、本発明を完成した。すなわち、本発明は、
(1)アナタース型結晶構造を含み、その表面に多孔質シリカを5〜10重量%被着した酸化チタン微粒子を分散してなる、中性域のpHで安定な光触媒用酸化チタンゾル、
(2)酸性酸化チタンゾルに、そのゾルのpHを酸性に維持しながらアルカリ金属珪酸塩を混合して、酸化チタン微粒子の表面に多孔質シリカを5〜10重量%被着し、次いで、中性域のpHに調整することを特徴とする中性域のpHで安定な光触媒用酸化チタンゾルの製造方法、である。

The present inventors have intensively studied to obtain a titanium oxide sol that has stable dispersibility at a pH in a neutral range and that easily exhibits the function of titanium oxide. As a result, when porous silica is deposited on the surface of titanium oxide fine particles having an anatase type crystal structure, harmful substances etc. come into contact with the titanium oxide surface through the pores of silica, and adsorption, decomposition, removal, etc. are caused by its function. In addition, the present inventors obtained knowledge that the porous silica can shift the isoelectric point of titanium oxide from the neutral region, and that a titanium oxide sol excellent in dispersibility in the neutral region can be obtained. completed. That is, the present invention
(1) A titanium oxide sol for photocatalysts that is stable at neutral pH, comprising titanium oxide fine particles containing anatase type crystal structure and having 5-10% by weight of porous silica deposited on its surface,
(2) An alkali metal silicate is mixed with an acidic titanium oxide sol while maintaining the pH of the sol acidic, and 5-10% by weight of porous silica is deposited on the surface of the titanium oxide fine particles. A method for producing a titanium oxide sol for a photocatalyst that is stable at a neutral pH, wherein the pH is adjusted to a neutral pH.

本発明の酸化チタンゾルは、アナタース型結晶構造を有する酸化チタン微粒子の表面に多孔質シリカを被着することによって、酸化チタンの等電点を調整することができ、pHが5〜9程度の中性域で酸化チタン微粒子の分散性が安定となる。また、シリカを多孔質の状態で被着することによってシリカによる阻害を少なくすることができるため、酸化チタン微粒子の機能が発現しやすくなる効果があり、しかも、酸化チタン微粒子を固定する基材との接触を緩和し、光触媒機能の発現によって基材をも分解する弊害を防止する効果もある。したがって、本発明の酸化チタンゾルは、使用場面での制限が少なく、酸化チタン微粒子をあらゆる物質、組成物に配合したり、あらゆる基材に固定することが可能であり、また、多孔質シリカの空孔を通してアナタース型結晶構造を有する酸化チタン微粒子の機能を利用し、例えば、光触媒、光半導体、触媒、吸着剤、紫外線吸収剤、充填剤などの種々の用途に用いることができる。   The titanium oxide sol of the present invention can adjust the isoelectric point of titanium oxide by depositing porous silica on the surface of titanium oxide fine particles having an anatase type crystal structure, and has a pH of about 5-9. The dispersibility of the titanium oxide fine particles becomes stable in the nature region. Moreover, since silica can be reduced in a porous state, the inhibition by the silica can be reduced, so that the function of the titanium oxide fine particles can be easily expressed. This also has the effect of relaxing the contact and preventing the harmful effect of decomposing the base material due to the development of the photocatalytic function. Therefore, the titanium oxide sol of the present invention has few restrictions in use situations, and the titanium oxide fine particles can be blended in any substance and composition, or can be fixed to any substrate, and the porous silica can be used in an empty space. Utilizing the function of titanium oxide fine particles having an anatase type crystal structure through the pores, it can be used for various applications such as photocatalysts, optical semiconductors, catalysts, adsorbents, ultraviolet absorbers, fillers and the like.

本発明の酸化チタンゾルは、水溶媒や水と有機溶媒の混合溶媒に酸化チタン微粒子を分散させたものであり、pHが5〜9程度の中性域で酸化チタン微粒子の分散性が安定である。分散配合した酸化チタン微粒子は、アナタース型結晶構造を含み、その表面に多孔質シリカを被着することが重要である。酸化チタン微粒子は、アナタース型結晶構造を少なくとも含むものであり、X線回折によってアナタース型結晶構造と同定できるものが少なくとも50重量%以上含むものが好ましく、より好ましくは80重量%以上含む。アナタース型結晶構造のほかには非晶質の構造のものが含まれていてもよく、また、ルチル型、ブルッカイト型のそのほかの結晶構造が一部分含まれていてもよい。酸化チタンには、通常の酸化チタンのほかに含水酸化チタン、水和酸化チタン、オルトチタン酸、メタチタン酸、水酸化チタンと称されるものを含む。酸化チタン微粒子の一次粒子径は、1〜100nmの範囲が好ましく、1〜10nmの範囲がより好ましい。一次粒子径が100nmより大きくても、あるいは、1nmより小さくても分散安定性が低下しやすいため好ましくなく、少なくとも1〜100nmの範囲であれば分散安定性がよい。一方、光触媒、触媒、吸着剤などの用途には微細なものが好ましく、一次粒子径が10nm以下のものがより好ましく、1〜10nmのものがさらに好ましい。酸化チタン微粒子の一次粒子径は、透過電子顕微鏡写真によって測定する。また、光触媒性等の機能を向上させるために、予め酸化チタン微粒子の表面に白金、金、銀、銅、パラジウム、ロジウム、ルテニウムなどの金属、酸化ルテニウムなどの金属酸化物を被着しておいてもよい。酸化チタンゾルに含まれる酸化チタン微粒子の含有量は適宜設定でき、例えば1〜40重量%程度のものとすることができる。   The titanium oxide sol of the present invention is obtained by dispersing titanium oxide fine particles in an aqueous solvent or a mixed solvent of water and an organic solvent, and the dispersibility of the titanium oxide fine particles is stable in a neutral range of about pH 5-9. . The finely dispersed titanium oxide fine particles contain an anatase type crystal structure, and it is important to deposit porous silica on the surface thereof. The titanium oxide fine particles contain at least an anatase type crystal structure, and those which can be identified as an anatase type crystal structure by X-ray diffraction are preferably contained at least 50% by weight, more preferably at least 80% by weight. In addition to the anatase type crystal structure, those having an amorphous structure may be included, and other crystal structures of a rutile type and a brookite type may be partially included. Titanium oxide includes what are called hydrous titanium oxide, hydrated titanium oxide, orthotitanic acid, metatitanic acid, and titanium hydroxide in addition to normal titanium oxide. The primary particle diameter of the titanium oxide fine particles is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 10 nm. Even if the primary particle diameter is larger than 100 nm or smaller than 1 nm, the dispersion stability is liable to be lowered, which is not preferable, and the dispersion stability is good in the range of at least 1 to 100 nm. On the other hand, a fine thing is preferable for uses, such as a photocatalyst, a catalyst, and an adsorbent, that whose primary particle diameter is 10 nm or less is more preferable, and the thing of 1-10 nm is further more preferable. The primary particle diameter of the titanium oxide fine particles is measured by a transmission electron micrograph. In addition, in order to improve functions such as photocatalytic properties, a metal such as platinum, gold, silver, copper, palladium, rhodium, and ruthenium, and a metal oxide such as ruthenium oxide are previously deposited on the surface of the titanium oxide fine particles. May be. The content of the titanium oxide fine particles contained in the titanium oxide sol can be appropriately set, and can be, for example, about 1 to 40% by weight.

この酸化チタン微粒子の表面、通常、個々の酸化チタン微粒子の一次粒子表面には、凝集シリカを被着しており、そのシリカの被着は多孔質(ポーラス)の構造となる。多孔質シリカは、酸化チタン微粒子に被着させる際に、通常酸性域からシリカを析出させると生成したシリカ粒子が凝集して形成することができ、その状態は後述の実施例でのポリビニルアルコール分解活性試験、あるいは二酸化チタン顔料に同様に被着した際の熱濃硫酸溶解試験で確認することができる。反対に、アルカリ性域からシリカを析出させると、特に溶液温度を70℃以上に維持しながら行うと、多孔質でない緻密なシリカが形成されやすく、酸化チタン微粒子の機能低下を起こすため好ましくない。シリカには酸化珪素のほかに、水和酸化珪素、酸化珪素の含水物、水酸化珪素と称されるものを含む。シリカの被着量は分散安定性の程度や使用する用途に応じて適宜設定することができ、酸化チタン微粒子のTiO基準に対して、SiO換算で1〜20重量%が好ましく、2〜15重量%がより好ましく、5〜10重量%がさらに好ましい。被着量が少なくとも前記範囲であればゾルの分散安定性、酸化チタン微粒子の機能の発現について両方が十分備わるため好ましく、前記範囲より著しく少ないと、中性域における酸化チタンの分散性が十分なものとならなかったり、また、被着量が前記範囲より著しく多いと、酸化チタン微粒子の機能の発現が阻害されやすくなるため好ましくない。被着したシリカには、酸、アルカリなどの不純物を含んでいてもよく、また、アルミナ、マグネシア、ジルコニア、酸化亜鉛、酸化鉛などの無機酸化物を含ませてもよい。 The surface of the titanium oxide fine particles, usually the primary particle surface of each individual titanium oxide fine particle, is coated with agglomerated silica, and the silica is deposited in a porous structure. Porous silica can be formed by agglomeration of silica particles produced by depositing silica from the acidic region when it is deposited on titanium oxide fine particles. The state is the decomposition of polyvinyl alcohol in the examples described later. It can be confirmed by an activity test or a hot concentrated sulfuric acid dissolution test when it is similarly applied to a titanium dioxide pigment. On the other hand, when silica is precipitated from the alkaline region, it is not preferable that the silica be precipitated while maintaining the solution temperature at 70 ° C. or more, because non-porous, dense silica is easily formed and the function of the titanium oxide fine particles is lowered. In addition to silicon oxide, silica includes hydrated silicon oxide, hydrated silicon oxide, and silicon hydroxide. The amount of silica applied can be appropriately set according to the degree of dispersion stability and the application to be used, and is preferably 1 to 20% by weight in terms of SiO 2 with respect to the TiO 2 standard of the titanium oxide fine particles. 15 weight% is more preferable and 5-10 weight% is further more preferable. If the deposition amount is at least in the above range, it is preferable because both the dispersion stability of the sol and the expression of the function of the titanium oxide fine particles are sufficiently provided. If it is significantly less than the above range, the dispersibility of the titanium oxide in the neutral range is sufficient. If it does not become a thing or the amount of deposition is significantly larger than the above range, it is not preferable because the function of the titanium oxide fine particles tends to be inhibited. The deposited silica may contain impurities such as acid and alkali, and may contain inorganic oxides such as alumina, magnesia, zirconia, zinc oxide and lead oxide.

本発明の酸化チタンゾルには、基材との親和性を改善するために、アルコールを配合してもよい。配合するアルコールとしては、メタノール、エタノール、プロパノールなどのアルコール類、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブなどのエーテルアルコール類、エチレングリコール、ブチレングリコールなどの多価アルコール類など水に可溶なアルコールの中から一種類以上を用いることができる。アルコールの配合量は適宜設定することができる。また、酸化チタンゾルには、充填剤、顔料、吸着剤、粘度調整剤、乾燥促進剤などを添加してもよい。   The titanium oxide sol of the present invention may contain an alcohol in order to improve the affinity with the substrate. Alcohols to be blended include alcohols such as methanol, ethanol and propanol, ether alcohols such as methyl cellosolve, ethyl cellosolve and butyl cellosolve, and water-soluble alcohols such as polyhydric alcohols such as ethylene glycol and butylene glycol. One or more types can be used. The compounding quantity of alcohol can be set suitably. In addition, a filler, pigment, adsorbent, viscosity modifier, drying accelerator and the like may be added to the titanium oxide sol.

本発明の酸化チタンゾルの使用に関して、酸化チタンゾルに基材を浸漬したり、酸化チタンゾルを基材に塗布し、または、吹き付けし、溶媒を除去して、酸化チタン微粒子を基材に固定して、種々の用途に用いることができる。酸化チタンゾルには、酸化チタン微粒子の固定を強固にするために、例えば、水ガラス、コロイダルシリカ、ポリオルガノシロキサン、アルキルシリケート、アルキルシリケートの部分加水分解生成物などのケイ素化合物、リン酸亜鉛、リン酸アルミニウムなどのリン酸塩、重リン酸塩、セメント、石灰、セッコウ、ほうろう用フリット、グラスライニング用うわぐすり、プラスターなどの無機系バインダ、フッ素系ポリマー、シリコーン系ポリマーなどの有機系バインダなどのバインダの一種または二種以上を配合してもよい。基材に酸化チタンゾルを塗布したりあるいは吹き付けたりするには、例えば、含浸法、ディップコーティング法、スピナーコーティング法、ブレードコーティング法、ローラーコーティング法、ワイヤーバーコーティング法、リバースロールコーティング法などの通常の方法で塗布したり、あるいは、スプレーコーティング法などの通常の方法で吹き付けたりして、基材の少なくとも一部に酸化チタン微粒子を配置させることができる。このようにして塗布あるいは吹き付けた後、乾燥または焼成して溶媒を除去する。乾燥または焼成の温度は、800℃より低い温度が好ましく、100〜400℃の温度で行うのがより好ましい。バインダを用いた場合には、そのバインダが固化する方法、例えば紫外線照射などの方法を用いてもよい。基材としては、セラミックス、ガラスなどの無機材質の物品、プラスチック、ゴム、木、紙などの有機材質の物品、アルミニウムなどの金属、綱などの合金などの金属材質の物品を用いることができる。基材の大きさや形には特に制限されない。基材に酸化チタンゾルを塗布したりあるいは吹き付けたりする前に、必要に応じて、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、メラミン樹脂、ウレタン樹脂、アルキド樹脂などの有機系結着剤やシリカなどの無機系結着剤を基材に塗布しあるいは吹き付けたりしてもよい。   Regarding the use of the titanium oxide sol of the present invention, the substrate is immersed in the titanium oxide sol, or the titanium oxide sol is applied to the substrate or sprayed, the solvent is removed, and the titanium oxide fine particles are fixed to the substrate. It can be used for various applications. For the titanium oxide sol, in order to firmly fix the titanium oxide fine particles, for example, water glass, colloidal silica, polyorganosiloxane, alkyl silicate, alkyl silicate partial hydrolysis products such as silicon compounds, zinc phosphate, phosphorus Phosphate such as aluminum oxide, heavy phosphate, cement, lime, gypsum, frit for enamel, glaze for glass lining, inorganic binder such as plaster, organic binder such as fluorine polymer, silicone polymer, etc. One or two or more of these binders may be blended. In order to apply or spray titanium oxide sol on the substrate, for example, the impregnation method, dip coating method, spinner coating method, blade coating method, roller coating method, wire bar coating method, reverse roll coating method, etc. The titanium oxide fine particles can be arranged on at least a part of the base material by applying by a method or spraying by a usual method such as a spray coating method. After coating or spraying in this way, the solvent is removed by drying or baking. The drying or firing temperature is preferably lower than 800 ° C, and more preferably 100 to 400 ° C. When a binder is used, a method of solidifying the binder, for example, a method such as ultraviolet irradiation may be used. As the substrate, an article made of an inorganic material such as ceramics or glass, an article made of an organic material such as plastic, rubber, wood or paper, a metal material such as a metal such as aluminum or an alloy such as a rope can be used. There are no particular restrictions on the size or shape of the substrate. Before applying or spraying the titanium oxide sol on the substrate, organic binders such as acrylic resin, epoxy resin, polyester resin, melamine resin, urethane resin, alkyd resin, and inorganic such as silica, if necessary You may apply | coat or spray a type | system | group binder on a base material.

光触媒用途に用いる場合、本発明の酸化チタンゾルあるいは前記のように酸化チタンゾルにアルコールやバインダなどを配合した液状組成物を特に光触媒液状組成物と称し、その光触媒液状組成物を用いて基材に酸化チタン微粒子を固定したものを光触媒体と称する。光触媒液状組成物あるいは光触媒体に配合した酸化チタン微粒子のバンドギャップ以上のエネルギーを持つ波長の光を照射させることにより、その回りに存在する有毒物質、悪臭物質、刺激性物質、環境汚染物質、菌、黴、藻類、細菌などの有害物を除去できるほか、基材の表面に付着する汚れを防止したり、基材の表面を親水性にし、曇りを防止することができる。照射する光としては、紫外線を含有した光などが挙げられ、例えば、太陽光や蛍光灯、ブラックライト、ハロゲンランプ、キセノンフラッシュランプ、水銀灯などの光を用いることができる。特に、300〜400nmの近紫外線を含有した光が好ましい。光の照射量や照射時間などは処理する物質の量などによって適宜設定できる。   When used for photocatalytic applications, the titanium oxide sol of the present invention or a liquid composition in which alcohol or binder is blended with the titanium oxide sol as described above is particularly called a photocatalyst liquid composition, and the photocatalyst liquid composition is used to oxidize the substrate. A material in which titanium fine particles are fixed is called a photocatalyst. By irradiating light of a wavelength with energy more than the band gap of the titanium oxide fine particles blended in the photocatalyst liquid composition or photocatalyst, toxic substances, malodorous substances, stimulating substances, environmental pollutants, bacteria In addition to removing harmful substances such as cocoons, algae, and bacteria, it is possible to prevent dirt adhering to the surface of the base material, or to make the surface of the base material hydrophilic to prevent fogging. Examples of the light to be irradiated include light containing ultraviolet rays. For example, light from sunlight, a fluorescent lamp, a black light, a halogen lamp, a xenon flash lamp, a mercury lamp, or the like can be used. In particular, light containing near ultraviolet rays of 300 to 400 nm is preferable. The light irradiation amount, irradiation time, and the like can be appropriately set depending on the amount of the substance to be processed.

本発明の酸化チタンゾルを種々の用途に使用するには、酸化チタンゾルの状態で使用したり基材に固定して用いることができるほかに、酸化チタンゾルから固形分を分離し、乾燥または焼成して酸化チタン粉体としても使用することができる。乾燥または焼成の温度は、800℃より低い温度が好ましく、100〜400℃の温度で行うのがより好ましい。   In order to use the titanium oxide sol of the present invention for various applications, the titanium oxide sol can be used in the form of a titanium oxide sol or fixed to a substrate, and the solid content can be separated from the titanium oxide sol and dried or calcined. It can also be used as titanium oxide powder. The drying or firing temperature is preferably lower than 800 ° C, and more preferably 100 to 400 ° C.

本発明の酸化チタンゾルは、酸性酸化チタンゾルに、そのゾルのpHを酸性に維持しながら珪素化合物を混合して、酸化チタン微粒子の表面に多孔質シリカを被着し、次いで、中性域のpHに調整して得られる。本発明の酸化チタンゾルの製造方法を以下の(A)、(B)の工程にわけて詳述する。   In the titanium oxide sol of the present invention, the acidic titanium oxide sol is mixed with a silicon compound while keeping the pH of the sol acidic, and porous silica is deposited on the surface of the titanium oxide fine particles. It is obtained by adjusting to The method for producing a titanium oxide sol of the present invention will be described in detail in the following steps (A) and (B).

(A)酸性の酸化チタンゾルの調製
含水酸化チタンなどの酸化チタンを一塩基酸またはその塩で解膠処理して酸性の酸化チタンゾルを得る。含水酸化チタンとしては、メタチタン酸、オルトチタン酸などの無定形のもの、ルチル型またはアナタース型の結晶を一部有するもの、あるいはこれらの混合物などが挙げられるが、光触媒活性等の高いアナタース型の結晶を少なくとも一部有するものが望ましい。含水酸化チタンは、例えば硫酸チタン、硫酸チタニル、四塩化チタン等の水溶性無機チタン化合物などのチタン化合物を加熱加水分解したり、該チタン化合物水溶液にアルカリを添加し、中和したりして得ることができる。加熱加水分解して得られる含水酸化チタンは、普通このものをアルカリで中和し、固液分離、洗浄、脱水して、内部に残存している硫酸根をできるだけ除去した後この脱水物に塩酸、硝酸、酢酸、塩素酸、クロル酢酸などの一塩基酸を加えて解膠処理する。解膠処理によって得られる酸性酸化チタンゾルは、一塩基酸を安定剤として含有しており、通常pH3以下の酸性を示す。酸化チタン微粒子の粒径は、加熱加水分解を行ったり、中和温度を下げたり、中和反応を遅くしたりすることによって、より微細なものとすることができる。なお、本発明製造方法の各工程で使用されるアルカリとしては、水酸化ナトリウム、水酸化カリウム、アンモニア水などが挙げられる。
(A) Preparation of acidic titanium oxide sol Titanium oxide such as hydrous titanium oxide is peptized with a monobasic acid or a salt thereof to obtain an acidic titanium oxide sol. Examples of the hydrous titanium oxide include amorphous ones such as metatitanic acid and orthotitanic acid, those having a part of rutile or anatase type crystals, or a mixture thereof. What has a crystal | crystallization at least partially is desirable. Hydrous titanium oxide is obtained by, for example, hydrolyzing a titanium compound such as a water-soluble inorganic titanium compound such as titanium sulfate, titanyl sulfate, and titanium tetrachloride, or neutralizing the titanium compound aqueous solution by adding an alkali. be able to. Hydrous titanium oxide obtained by hydrolyzing with heat is usually neutralized with alkali, solid-liquid separation, washing and dehydration to remove the sulfate radical remaining in the interior as much as possible. Add monobasic acid such as nitric acid, acetic acid, chloric acid and chloroacetic acid to peptize. The acidic titanium oxide sol obtained by the peptization treatment contains a monobasic acid as a stabilizer and usually exhibits an acidity of pH 3 or less. The particle diameter of the titanium oxide fine particles can be made finer by carrying out heat hydrolysis, lowering the neutralization temperature, or slowing the neutralization reaction. In addition, sodium hydroxide, potassium hydroxide, aqueous ammonia etc. are mentioned as an alkali used at each process of this invention manufacturing method.

(B)酸化チタン微粒子への多孔質シリカ被着処理
酸性酸化チタンゾルにそのゾルのpHを酸性に維持しながら珪素化合物を混合すると、珪素化合物が加水分解し、生成したシリカ粒子が凝集して、分散した酸化チタン微粒子の一次粒子表面に析出する。珪素化合物としては珪酸ナトリウム等のアルカリ金属珪酸塩などを用いることができ、酸性域で析出させるために、塩酸、硝酸、酢酸、塩素酸、クロル酢酸、硫酸などの酸を添加しながら、珪素化合物を混合するのが好ましく、pHを3以下にしながら混合するのがさらに好ましい。珪素化合物を混合した後、必要に応じて熟成し、次に、混合液にアルカリを添加し、pHが5〜9程度の範囲に調整する。その後、必要に応じて固液分離し、洗浄し、再分散してもよい。固液分離には限外濾過法等を用いることができ、この固液分離や次の洗浄によって不純物を除去することができる。洗浄の程度は、通常酸化チタンゾルの導電率が5mS/cm以下、好ましくは2mS/cm以下、最も好ましくは1mS/cm以下になるように行うのがよい。また、再分散の際には超音波処理などの物理的方法によって酸化チタン微粒子の分散性を高めてもよい。このようにして、中性域のpHで安定した酸化チタンゾルが得られる。
(B) Porous silica deposition treatment on titanium oxide fine particles When a silicon compound is mixed with acidic titanium oxide sol while maintaining the pH of the sol acidic, the silicon compound is hydrolyzed and the generated silica particles are aggregated, Precipitated on the primary particle surface of the dispersed titanium oxide fine particles. As the silicon compound, an alkali metal silicate such as sodium silicate can be used, and in order to deposit in an acidic region, the silicon compound is added while adding an acid such as hydrochloric acid, nitric acid, acetic acid, chloric acid, chloroacetic acid or sulfuric acid. Are preferably mixed, and more preferably mixed while keeping the pH at 3 or less. After mixing the silicon compound, it is aged as necessary, and then an alkali is added to the mixed solution to adjust the pH to a range of about 5-9. Thereafter, solid-liquid separation, washing, and redispersion may be performed as necessary. For the solid-liquid separation, an ultrafiltration method or the like can be used, and impurities can be removed by this solid-liquid separation or subsequent washing. The degree of cleaning is usually such that the conductivity of the titanium oxide sol is 5 mS / cm or less, preferably 2 mS / cm or less, and most preferably 1 mS / cm or less. Further, in the case of redispersion, the dispersibility of the titanium oxide fine particles may be enhanced by a physical method such as ultrasonic treatment. In this way, a titanium oxide sol stable at neutral pH is obtained.

本発明をより詳しく述べるため、以下に実施例を記載するが、これらは本発明を限定するものではない。   In order to describe the present invention in more detail, examples are described below, but these are not intended to limit the present invention.

実施例1
(A)酸性酸化チタンゾルの調製
チタン鉱石を硫酸と反応させ、得られた硫酸チタン溶液を加熱加水分解して生成させた凝集メタチタン酸をTiO換算30重量%の水性スラリーとし、このスラリーをアンモニア水でpH7に中和し、その後濾過洗浄して硫酸根を除去した。得られた脱水ケーキに硝酸を加えて解膠処理して、アナタース型結晶構造を含む酸化チタン微粒子(一次粒子径7nm)からなるpH1.5の酸性酸化チタンゾルを得た。
Example 1
(A) Preparation of acidic titanium oxide sol Titanium ore was reacted with sulfuric acid, and the resulting titanium sulfate solution was hydrolyzed with heating to form an aggregated metatitanic acid as an aqueous slurry of 30% by weight in terms of TiO 2. The mixture was neutralized with water to pH 7, and then filtered and washed to remove sulfate radicals. Nitric acid was added to the obtained dehydrated cake and peptized to obtain an acidic titanium oxide sol having a pH of 1.5 comprising titanium oxide fine particles (primary particle diameter: 7 nm) containing an anatase type crystal structure.

(B)シリカ被着処理
前記(A)の工程で得られた酸性酸化チタンゾルを純水で希釈して、TiO換算200g/lの酸化チタンゾル600mlとした後、70℃に昇温し、次いで、SiO換算濃度432g/lのケイ酸ナトリウム水溶液20.8mlを20%硫酸と同時に添加し、その後、30分間熟成した。次いで、10%水酸化ナトリウム水溶液でpHを8に調整した後、2%硫酸水溶液でpHを6に調整し、濾過・洗浄を行い、湿ケーキを得た。この湿ケーキを純水中にリパルプした後、超音波分散して、中性域で安定な酸化チタンゾル(固形分濃度20重量%。pH=7.5)(試料A)を得た。
この試料Aには、酸化チタン微粒子の表面に凝集シリカが多孔質の状態で被着しており、その含有量は、TiO100重量部に対してSiO換算で6.27重量部であった。
(B) Silica deposition treatment The acidic titanium oxide sol obtained in the step (A) was diluted with pure water to obtain 600 ml of a titanium oxide sol of 200 g / l in terms of TiO 2 , then heated to 70 ° C., Then, 20.8 ml of an aqueous sodium silicate solution having a SiO 2 equivalent concentration of 432 g / l was added simultaneously with 20% sulfuric acid, followed by aging for 30 minutes. Next, the pH was adjusted to 8 with a 10% aqueous sodium hydroxide solution, the pH was adjusted to 6 with a 2% aqueous sulfuric acid solution, filtered and washed to obtain a wet cake. The wet cake was repulped into pure water and then ultrasonically dispersed to obtain a titanium oxide sol (solid content concentration 20% by weight, pH = 7.5) (sample A) that was stable in the neutral range.
In this sample A, the aggregated silica was deposited in a porous state on the surface of the titanium oxide fine particles, and the content thereof was 6.27 parts by weight in terms of SiO 2 with respect to 100 parts by weight of TiO 2. It was.

比較例1
実施例1の前記(A)の工程で得られた酸性酸化チタンゾル3リットルと5%水酸化ナトリウム水溶液とを、系のpHが5〜9に維持されるように水中に添加した。その後、系のpHを7に調整後、濾過し、濾液の導電率が100μS/cmとなるまで洗浄を行い、酸化チタン湿ケーキを得た。この酸化チタン湿ケーキに10%水酸化ナトリウム水溶液を添加後、リパルプし、さらに超音波分散機で3時間分散して、pH10.5のアルカリ性酸化チタンゾルを得た。このアルカリ性酸化チタンゾルを純水で希釈して、TiO換算200g/lの酸化チタンゾル600mlとした後、70℃に昇温し、SiO換算濃度432g/lのケイ酸ナトリウム水溶液20.8mlを添加し、その後、90℃に昇温し、1時間熟成後、10%硫酸を添加してpHを6に調整し、濾過・洗浄を行い、湿ケーキを得た。この湿ケーキを純水中にリパルプした後、超音波分散して、中性域で安定な酸化チタンゾル(固形分濃度20重量%。pH=7.9)(試料B)を得た。
この試料Bには、酸化チタン微粒子の表面に緻密なシリカが被着しており、その含有量は、TiO100重量部に対してSiO換算で6.62重量部であった。
Comparative Example 1
3 liters of acidic titanium oxide sol obtained in the step (A) of Example 1 and a 5% aqueous sodium hydroxide solution were added to water so that the pH of the system was maintained at 5-9. Then, after adjusting the pH of the system to 7, it was filtered and washed until the electrical conductivity of the filtrate reached 100 μS / cm to obtain a titanium oxide wet cake. A 10% aqueous sodium hydroxide solution was added to the titanium oxide wet cake, followed by repulping and further dispersing for 3 hours with an ultrasonic disperser to obtain an alkaline titanium oxide sol having a pH of 10.5. This alkaline titanium oxide sol is diluted with pure water to make 600 ml of titanium oxide sol 200 g / l in terms of TiO 2 , then heated to 70 ° C., and 20.8 ml of sodium silicate aqueous solution having a SiO 2 equivalent concentration of 432 g / l is added. Thereafter, the temperature was raised to 90 ° C., and after aging for 1 hour, 10% sulfuric acid was added to adjust the pH to 6, followed by filtration and washing to obtain a wet cake. This wet cake was repulped into pure water and then ultrasonically dispersed to obtain a titanium oxide sol (solid content concentration 20% by weight, pH = 7.9) (sample B) that was stable in the neutral range.
In Sample B, dense silica was deposited on the surface of the titanium oxide fine particles, and the content thereof was 6.62 parts by weight in terms of SiO 2 with respect to 100 parts by weight of TiO 2 .

実施例1、比較例1で得られた酸化チタンゾルの透過率を以下に示す方法により評価した。それぞれの酸化チタンゾルを固形分濃度0.015重量%となるように純水で希釈して調製し、10mmの石英セルに入れ、分光光度計(U-3300:日立製) を用いて正透過でのスペクトル(波長300〜750nm)を測定した。得られた結果を表1に示した。表1の結果より、実施例1で得られた中性酸化チタンゾルは、比較例1の酸化チタンゾルと同程度の可視域での透過性を有し、分散性およびその安定性も同等程度であることがわかった。   The transmittance of the titanium oxide sol obtained in Example 1 and Comparative Example 1 was evaluated by the following method. Each titanium oxide sol is prepared by diluting with pure water to a solid content concentration of 0.015% by weight, placed in a 10 mm quartz cell, and transmitted through a spectrophotometer (U-3300: manufactured by Hitachi). Spectrum (wavelength 300 to 750 nm) was measured. The obtained results are shown in Table 1. From the results shown in Table 1, the neutral titanium oxide sol obtained in Example 1 has the same visible permeability as the titanium oxide sol of Comparative Example 1, and the dispersibility and stability thereof are comparable. I understood it.

Figure 0004540971
Figure 0004540971

光触媒活性の評価1
実施例1および比較例1で得られた得られた酸化チタンゾルのポリビニルアルコール分解活性を以下の方法により評価した。試料A、Bを各々固形分濃度6重量%となるように、純水で希釈した酸化チタンゾル2.5mlと6重量%の濃度のポリビニルアルコール2.5mlとを混合し、10mm厚の石英セルに封入し、ブラックライトを用いて2mW/cmの強度の紫外線を2時間照射した。紫外線照射前後の明度および色度を色彩色差計(938:X-Rite社製)を用いて各々測定し、紫外線照射前後での色差(ΔE)を算出した。得られた結果を表2に示した。一般に、光触媒活性が高いほど色差は大きくなることから、本発明の酸化チタンゾルは光触媒活性が高いことがわかる。
Evaluation of photocatalytic activity 1
The polyvinyl alcohol decomposing activity of the obtained titanium oxide sol obtained in Example 1 and Comparative Example 1 was evaluated by the following method. Samples A and B were mixed with 2.5 ml of titanium oxide sol diluted with pure water and 2.5 ml of polyvinyl alcohol having a concentration of 6% by weight so that the solids concentration would be 6% by weight. It was sealed and irradiated with ultraviolet light having an intensity of 2 mW / cm 2 for 2 hours using a black light. The brightness and chromaticity before and after UV irradiation were measured using a color difference meter (938: manufactured by X-Rite), and the color difference (ΔE) before and after UV irradiation was calculated. The obtained results are shown in Table 2. In general, the higher the photocatalytic activity, the greater the color difference, indicating that the titanium oxide sol of the present invention has a high photocatalytic activity.

Figure 0004540971
Figure 0004540971

実施例2
実施例1で得られた酸化チタンゾルを固形分濃度5重量%に調整した後、スライドガラス上にスピンコーター(1H-360S:ミカサ製)で1000rpm×10秒の条件で塗布し、110℃で3時間乾燥させて、光触媒体(試料C)を得た。
Example 2
After adjusting the titanium oxide sol obtained in Example 1 to a solid content concentration of 5% by weight, it was applied on a slide glass with a spin coater (1H-360S: manufactured by Mikasa) under the condition of 1000 rpm × 10 seconds, and 3 ° C. at 110 ° C. It was made to dry for a time and the photocatalyst body (sample C) was obtained.

比較例2
比較例1で得られた酸化チタンゾルを固形分濃度5重量%に調整した後、実施例2と同じ方法で、光触媒体(試料D)とした。
Comparative Example 2
After adjusting the titanium oxide sol obtained in Comparative Example 1 to a solid content concentration of 5% by weight, a photocatalyst (sample D) was prepared in the same manner as in Example 2.

光触媒活性の評価2
実施例2および比較例2で得られた光触媒体の光触媒活性を以下に示す方法により評価した。まず、それぞれの試料に4mW/cmのブラックライトの光を12時間プレ照射して、予め試料中に含まれる不純物を除去した。次いで、それぞれの試料を閉鎖循環式装置(内容積2.8リットルのガラス製容器)にセットし、アセトアルデヒドを濃度が約50ppm程度になるように注入した。次いで、暗状態で30分間放置した後反応容器上部に設置した4Wブラックライトを点灯し、反応容器内のアセトアルデヒド濃度をガスクロマトグラフで測定した。なお、310〜400nmの紫外光の照射強度は試料の表面で約0.5mW/cmであった。アセトアルデヒドの残量の経時変化から、分解速度定数を算出した結果を表3に示す。この結果から、本発明の酸化チタンゾルを用いた光触媒体は、比較例のものに比べて、アセトアルデヒドの分解速度が速いことがわかる。
Evaluation of photocatalytic activity 2
The photocatalytic activity of the photocatalysts obtained in Example 2 and Comparative Example 2 was evaluated by the following method. First, each sample was pre-irradiated with 4 mW / cm 2 of black light for 12 hours to remove impurities contained in the sample in advance. Next, each sample was set in a closed circulation apparatus (a glass container having an internal volume of 2.8 liters), and acetaldehyde was injected so that the concentration was about 50 ppm. Next, after standing in the dark for 30 minutes, the 4 W black light installed on the upper part of the reaction vessel was turned on, and the acetaldehyde concentration in the reaction vessel was measured by gas chromatography. In addition, the irradiation intensity | strength of 310-400 nm ultraviolet light was about 0.5 mW / cm < 2 > at the surface of the sample. Table 3 shows the results of calculating the decomposition rate constant from the change in the remaining amount of acetaldehyde with time. From this result, it can be seen that the photocatalyst using the titanium oxide sol of the present invention has a faster decomposition rate of acetaldehyde than that of the comparative example.

Figure 0004540971
Figure 0004540971

本発明の酸化チタンゾルは、アナタース型結晶構造を有する酸化チタン微粒子の機能を付与するためなどに用いることができる。例えば、酸化チタンゾルに配合した酸化チタン微粒子を種々の物質、組成物に配合したり、基材に固定して、光触媒、光半導体、触媒、吸着剤、紫外線吸収剤、充填剤などの用途に用いる際の材料として利用することができる。
The titanium oxide sol of the present invention can be used for imparting the function of titanium oxide fine particles having an anatase type crystal structure. For example, titanium oxide fine particles blended in a titanium oxide sol can be blended into various substances and compositions, or fixed to a base material, and used for applications such as photocatalysts, optical semiconductors, catalysts, adsorbents, ultraviolet absorbers, and fillers. It can be used as a material.

Claims (2)

アナタース型結晶構造を含み、その表面に多孔質シリカを5〜10重量%被着した酸化チタン微粒子を分散してなる、中性域のpHで安定な光触媒用酸化チタンゾル。 A titanium oxide sol for photocatalysts, which is stable at neutral pH, comprising titanium oxide fine particles containing anatase type crystal structure and having 5-10% by weight of porous silica deposited on its surface. 酸性酸化チタンゾルに、そのゾルのpHを酸性に維持しながらアルカリ金属珪酸塩を混合して、酸化チタン微粒子の表面に多孔質シリカを5〜10重量%被着し、次いで、中性域のpHに調整することを特徴とする中性域のpHで安定な光触媒用酸化チタンゾルの製造方法。 An alkali metal silicate is mixed with an acidic titanium oxide sol while maintaining the pH of the sol acidic, and 5 to 10% by weight of porous silica is deposited on the surface of the titanium oxide fine particles. A method for producing a titanium oxide sol for a photocatalyst that is stable at a neutral pH.
JP2003408014A 2003-12-05 2003-12-05 Neutral titanium oxide sol and method for producing the same Expired - Fee Related JP4540971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003408014A JP4540971B2 (en) 2003-12-05 2003-12-05 Neutral titanium oxide sol and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003408014A JP4540971B2 (en) 2003-12-05 2003-12-05 Neutral titanium oxide sol and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005170687A JP2005170687A (en) 2005-06-30
JP4540971B2 true JP4540971B2 (en) 2010-09-08

Family

ID=34729882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003408014A Expired - Fee Related JP4540971B2 (en) 2003-12-05 2003-12-05 Neutral titanium oxide sol and method for producing the same

Country Status (1)

Country Link
JP (1) JP4540971B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100340489C (en) * 2005-09-27 2007-10-03 广东省生态环境与土壤研究所 Method for preparing high activity titanium dioxide sol using industrial metatitanic acid as material
JP2009101287A (en) * 2007-10-23 2009-05-14 Asahi Kasei Chemicals Corp Modified photocatalyst sol and its manufacturing method
JP2011105905A (en) * 2009-11-20 2011-06-02 Dic Corp Aqueous curable coating composition and method for producing the same
JP2012086104A (en) * 2010-10-15 2012-05-10 Asahi Kasei Chemicals Corp Photocatalyst composition
JP5655827B2 (en) 2011-11-14 2015-01-21 信越化学工業株式会社 Visible light responsive titanium oxide fine particle dispersion, method for producing the same, and member having a photocatalytic thin film formed on the surface using the dispersion
CN104010724B (en) * 2011-11-16 2016-12-28 水晶美国股份公司 neutral, stable and transparent photocatalyst titanium oxide sol
CN104640630B (en) 2012-09-19 2017-10-24 信越化学工业株式会社 Visible-light-responsive photocatalyst particle dispersion liquid, its manufacture method and the part on surface with photocatalyst film
KR101290553B1 (en) * 2013-02-22 2013-07-31 (주)영일교구 Melamine resin for air quality improvement and manufacturing method of furniture board thereby
JP6237780B2 (en) 2013-10-16 2017-11-29 信越化学工業株式会社 Titanium oxide / tungsten oxide composite photocatalyst fine particle dispersion, production method thereof, and member having photocatalytic thin film on surface
CN111498897B (en) * 2015-02-27 2022-07-12 堺化学工业株式会社 Method for producing dispersion of titanium oxide particles
CN106423121B (en) * 2016-12-21 2019-06-28 重庆中鼎三正科技有限公司 A kind of method that chlorate method doping in one step method prepares modified titanium dioxide sol

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158015A (en) * 1996-10-02 1998-06-16 Ishihara Sangyo Kaisha Ltd Production of surface-treated titanium dioxide sol
JP2000053421A (en) * 1998-08-07 2000-02-22 Ishihara Sangyo Kaisha Ltd Titanium oxide sol and its preparation
JP2000063117A (en) * 1998-08-07 2000-02-29 Ishihara Sangyo Kaisha Ltd Titanium oxide sol and its production
JP2001206720A (en) * 2000-01-26 2001-07-31 Taki Chem Co Ltd Titanium oxide sol and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158015A (en) * 1996-10-02 1998-06-16 Ishihara Sangyo Kaisha Ltd Production of surface-treated titanium dioxide sol
JP2000053421A (en) * 1998-08-07 2000-02-22 Ishihara Sangyo Kaisha Ltd Titanium oxide sol and its preparation
JP2000063117A (en) * 1998-08-07 2000-02-29 Ishihara Sangyo Kaisha Ltd Titanium oxide sol and its production
JP2001206720A (en) * 2000-01-26 2001-07-31 Taki Chem Co Ltd Titanium oxide sol and manufacturing method thereof

Also Published As

Publication number Publication date
JP2005170687A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
US9382128B2 (en) Stable nano titania sols and a process for their production
TWI651269B (en) Titanium dioxide particles and preparation method thereof
JP4686536B2 (en) Photocatalyst, method for producing the same, dispersion containing photocatalyst, and photocatalyst coating composition
JP3524342B2 (en) Titanium dioxide sol and thin film for thin film formation
JPH06293519A (en) Production of titanium oxide particles and film
KR20150028979A (en) Coating composition and uses thereof
JP4540971B2 (en) Neutral titanium oxide sol and method for producing the same
WO2004043863A1 (en) Photocatalytic rutile titanium dioxide
JP4507066B2 (en) Tungsten oxide-containing titanium oxide sol, production method thereof, coating agent and optical functional body
US20090156394A1 (en) Inorganic sintered material containing photocatalyst covered with silicon oxide film
WO2007105705A1 (en) Visible light-responsive photocatalyst, method for producing same, photocatalyst coating agent using same, and photocatalyst dispersion
JP4522082B2 (en) Photocatalyst liquid composition and photocatalyst formed using the same
KR101467836B1 (en) Paint composition containing porous composite compound
JP3978636B2 (en) Coating composition for photocatalyst film formation
JP4026041B2 (en) Neutral titania sol
JP5552378B2 (en) Visible light responsive photocatalyst-containing interior coating composition and coating film containing the same
JP2004344863A (en) Photocatalyst support porous gel and manufacturing method therefor
JP3885248B2 (en) Photocatalyst composition
KR20190117875A (en) Method for preparing TiO2 using underwater plasma
KR20080093483A (en) Synthesis method of coating agent for antipollution
JP4296533B2 (en) Titanium oxide photocatalyst with excellent nitrogen oxide removal performance
JP3431301B2 (en) Tile with photocatalytic function
JP2001029795A (en) Titanium oxide coating film-formable composition for photocatalyst and production of the same
JP2008043827A (en) Glass molding containing photocatalyst coated with silicon oxide film
JP3749641B2 (en) Photocatalyst powder and method for producing photocatalyst film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100623

R151 Written notification of patent or utility model registration

Ref document number: 4540971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140702

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees