JP4536781B2 - Electroless nickel plating solution - Google Patents

Electroless nickel plating solution Download PDF

Info

Publication number
JP4536781B2
JP4536781B2 JP2007539858A JP2007539858A JP4536781B2 JP 4536781 B2 JP4536781 B2 JP 4536781B2 JP 2007539858 A JP2007539858 A JP 2007539858A JP 2007539858 A JP2007539858 A JP 2007539858A JP 4536781 B2 JP4536781 B2 JP 4536781B2
Authority
JP
Japan
Prior art keywords
plating solution
electroless nickel
ppm
nickel
electroless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007539858A
Other languages
Japanese (ja)
Other versions
JPWO2007043333A1 (en
Inventor
英治 日野
正志 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Publication of JPWO2007043333A1 publication Critical patent/JPWO2007043333A1/en
Application granted granted Critical
Publication of JP4536781B2 publication Critical patent/JP4536781B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1683Control of electrolyte composition, e.g. measurement, adjustment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/244Finish plating of conductors, especially of copper conductors, e.g. for pads or lands

Description

本発明は、無電解ニッケルめっき液に関する。特に、多数のICチップからなるシリコンウエハー上に無電解NiめっきによるNi金属バンプ(突起部)もしくははんだバンプ用のニッケルアンダーバリアメタル(UBM)を均一な膜厚で形成することを可能とする無電解Niめっき液に関する。   The present invention relates to an electroless nickel plating solution. In particular, it is possible to form Ni metal bumps (protrusions) by electroless Ni plating or nickel under barrier metal (UBM) for solder bumps on a silicon wafer composed of a large number of IC chips with a uniform film thickness. The present invention relates to an electrolytic Ni plating solution.

無電解めっき法によるめっきは、材料表面の接触作用による還元を利用しているため、窪んだ所にも一様な厚さにめっきをすることができる。特に、一般的に無電解Niめっきは耐食性、耐磨耗性に優れているため、古くから材料部品の表面処理用めっきとして使用されておりその歴史は古い。近年ではプリント配線板のはんだ接合の下地処理用もしくはコンパクトディスク(CD)、ハードディスクドライブ(HDD)の下地処理用として広く使用されている。   Since the plating by the electroless plating method uses reduction by the contact action of the material surface, it is possible to plate even a recessed portion with a uniform thickness. In particular, since electroless Ni plating is generally excellent in corrosion resistance and wear resistance, it has long been used as a plating for surface treatment of material parts and has a long history. In recent years, it has been widely used for ground processing of solder joints of printed wiring boards or for ground processing of compact discs (CD) and hard disk drives (HDD).

はんだの下地処理として広く一般的に使用されている無電解ニッケルめっき液には、安定剤として鉛化合物が含有されているため、得られるニッケル皮膜にも鉛が含有される。
しかし、最近EU(ヨーロッパ連合)のRoHS法の制定により、電子部品中の鉛、クロム等の有害物質の規制が強化され(現在鉛は0.1%以下)、今後その規制はさらに厳しくなるものと考えられている。また、はんだの種類も以前はスズと鉛の共晶はんだが一般的であったが、最近は鉛フリーのスズ・銀・亜鉛もしくはスズ・銀・ビスマス等の2元系もしくは3元系のはんだが実用化されている。以上のようにRoHS法の規制ははんだのみならず、電子部品全般に規制がかけられているために、はんだの下地処理として広く一般的に使用されている無電解法によるニッケル皮膜にもこの規制が適用される。例えば、ニッケル皮膜の耐食性及びはんだ濡れ性の低下を改善した特許文献1に記載された無電解ニッケルめっき法においてもRoHS法の規制を考慮しなければならない。
Since the electroless nickel plating solution widely used as a solder base treatment contains a lead compound as a stabilizer, the resulting nickel coating also contains lead.
However, recently the EU (European Union) RoHS regulation has strengthened regulations on harmful substances such as lead and chromium in electronic components (currently lead is less than 0.1%), and the regulations will become even stricter in the future. It is believed that. In addition, the eutectic solder of tin and lead was common before, but recently, lead-free tin / silver / zinc or tin / silver / bismuth etc. binary or ternary solder Has been put to practical use. As described above, the regulation of the RoHS method is not only applied to solder but also to electronic components in general, and this regulation is applied to the electroless nickel coating that is widely used as a base treatment for solder. Applies. For example, in the electroless nickel plating method described in Patent Document 1 in which the deterioration of the corrosion resistance and solder wettability of the nickel film is improved, the regulation of the RoHS method must be considered.

さらに多数のICからなるシリコンウエハー上に無電解ニッケルめっきによりニッケル金属バンプ(突起部)もしくははんだバンプ用のニッケルアンダーバリアメタル(UBM)を形成しようとした場合、集積回路内の電位差の問題(例えばn型半導体(Si中に微量のリンをドーピングしたもの)にさらにボロンをドーピングしてp型半導体を作ると、接合面にn/p拡散層ができ、100ルクスの光をこのICに当てるとP/N極間に約0.4Vの電位差が発生する。)、もしくは電極パッド(材質はアルミニウムもしくは銅が一般的)の微細化により、電極パッド上に析出させたニッケル金属の高さが不揃いとなったり、ひどい場合にはニッケル金属が全く析出しないという新たな問題がでてくる。このように複数の問題が依然として解決されていないため、無電解ニッケル液はシリコンウエハー用バンプもしくはUBNとして使用することが困難であると考えられている。   Furthermore, when an attempt is made to form nickel metal bumps (protrusions) or nickel under barrier metal (UBM) for solder bumps on a silicon wafer consisting of a large number of ICs by electroless nickel plating, problems such as potential differences in the integrated circuit (for example, When a p-type semiconductor is made by further doping boron into an n-type semiconductor (which is doped with a small amount of phosphorus in Si), an n / p diffusion layer is formed on the junction surface, and 100 lux light is applied to this IC A potential difference of about 0.4 V is generated between the P / N poles), or the height of the nickel metal deposited on the electrode pad is uneven due to the miniaturization of the electrode pad (material is typically aluminum or copper). In the worst case, there is a new problem that nickel metal does not precipitate at all. As described above, since a plurality of problems have not been solved yet, it is considered that the electroless nickel solution is difficult to be used as a bump or UBN for a silicon wafer.

このため、現在は電気金(Au)めっき法により、高さがおよそ15μmのAuバンプが作製されたり、UBM用にスパッタもしくは電気めっき法の併用により、高さがおよそ5μmのバリアー金属が作製され利用されている。しかし、Auめっき法は工程が複雑でかつコストが高く、またスパッタ及び電気めっき法では電気を供給するシード層及び拡散防止層をエッチングしなければならず工程が複雑になり生産性を下げている。
特許第3479639号公報
For this reason, currently, Au bumps with a height of approximately 15 μm are produced by electrogold (Au) plating, or barrier metals with a height of approximately 5 μm are produced by sputtering or electroplating for UBM. It's being used. However, the Au plating method is complicated and expensive, and the sputtering and electroplating methods require etching of the seed layer and the diffusion prevention layer for supplying electricity, which complicates the process and lowers productivity. .
Japanese Patent No. 3479963

本発明は、無電解ニッケルめっきにより半導体ウエハー上にニッケル金属バンプもしくははんだバンプ用のUBMを形成しても、電極パッド上に析出されたニッケル金属の高さが不揃いとならずに、均一な厚さとなり、かつRoHS法の規制を満足する鉛含有量の少ない無電解ニッケルめっき液を提供することを目的とする。   In the present invention, even when a nickel metal bump or a solder bump UBM is formed on a semiconductor wafer by electroless nickel plating, the height of the nickel metal deposited on the electrode pad is not uneven, and the thickness is uniform. An object of the present invention is to provide an electroless nickel plating solution with a low lead content that satisfies the regulations of the RoHS method.

上記課題を解決するために鋭意検討を重ねた結果、無電解ニッケルめっき液に特定の濃度の鉛イオン、コバルトイオン及びイオウ化合物を含有させることが有効であることを知見し、本発明に至った。
すなわち本発明は、
水溶性ニッケル塩、還元剤、錯化剤、pH緩衝剤を含有する無電解ニッケルめっき液において、鉛イオンを0.01〜1ppm、コバルトイオンを0.01〜1ppm、及びイオウ化合物を0.01〜1ppm含有する無電解ニッケルめっき液に関する。
As a result of intensive studies to solve the above problems, it has been found that it is effective to contain lead ions, cobalt ions and sulfur compounds at specific concentrations in the electroless nickel plating solution, and the present invention has been achieved. .
That is, the present invention
In an electroless nickel plating solution containing a water-soluble nickel salt, a reducing agent, a complexing agent, and a pH buffer, lead ions are 0.01 to 1 ppm, cobalt ions are 0.01 to 1 ppm, and sulfur compounds are 0.01. It relates to an electroless nickel plating solution containing ˜1 ppm.

本発明の無電解ニッケルめっき液を使用することにより、RoHS法を満足し、かつ多数のICチップからなるシリコンウエハー上に無電解NiめっきによるNi金属バンプもしくははんだバンプ用のUBMを均一な膜厚で形成することができる。これにより、コストが高く複雑な工程を経るAuめっき法やスパッタ及び電気めっき法を利用することなく、安価で簡便に金属バンプ、UBMを作製することが可能となる。   By using the electroless nickel plating solution of the present invention, a UHS for Ni metal bumps or solder bumps by electroless Ni plating is uniformly formed on a silicon wafer consisting of a large number of IC chips that satisfies the RoHS method. Can be formed. This makes it possible to easily and inexpensively produce metal bumps and UBMs without using an Au plating method, sputtering, and electroplating method that are expensive and complicated.

実施例においてアルミニウムパッド上に無電解ニッケルめっきを施した結果の顕微鏡による拡大写真(500倍)及び電子顕微鏡による拡大写真(5000倍)である。It is the enlarged photograph (500 times) by the microscope of the result of having electroless nickel-plated on the aluminum pad in an Example, and the enlarged photograph (5000 times) by an electron microscope. 比較例1においてアルミニウムパッド上に無電解ニッケルめっきを施した結果の顕微鏡による拡大写真(500倍)及び電子顕微鏡による拡大写真(5000倍)である。It is the enlarged photograph (500 times) by the microscope of the result of having electroless nickel-plated on the aluminum pad in the comparative example 1, and the enlarged photograph (5000 times) by an electron microscope. 比較例2においてアルミニウムパッド上に無電解ニッケルめっきを施した結果の顕微鏡による拡大写真(500倍)及び電子顕微鏡による拡大写真(5000倍)である。It is the enlarged photograph (500 times) by the microscope of the result of having electroless nickel-plated on the aluminum pad in the comparative example 2, and the enlarged photograph (5000 times) by an electron microscope. 比較例3においてアルミニウムパッド上に無電解ニッケルめっきを施した結果の顕微鏡による拡大写真(500倍)及び電子顕微鏡による拡大写真(5000倍)である。It is the enlarged photograph (500 times) by a microscope of the result of having electroless nickel-plated on the aluminum pad in the comparative example 3, and the enlarged photograph (5000 times) by an electron microscope. 比較例4においてアルミニウムパッド上に無電解ニッケルめっきを施した結果の顕微鏡による拡大写真(500倍)及び電子顕微鏡による拡大写真(5000倍)である。It is the enlarged photograph (500 times) by the microscope of the result of having electroless nickel-plated on the aluminum pad in the comparative example 4, and the enlarged photograph (5000 times) by an electron microscope. 比較例5においてアルミニウムパッド上に無電解ニッケルめっきを施した結果の顕微鏡による拡大写真(500倍)及び電子顕微鏡による拡大写真(5000倍)である。It is the enlarged photograph (500 times) by the microscope of the result of having electroless nickel-plated on the aluminum pad in the comparative example 5, and the enlarged photograph (5000 times) by an electron microscope.

本発明の無電解ニッケルめっき液は、水溶性ニッケル塩、還元剤、pH緩衝剤、錯化剤を含有し、更に所定濃度の鉛イオン、コバルトイオン、及びイオウ化合物を含有するが、その他必要に応じて安定剤、反応促進剤、界面活性剤などを含有することができる。   The electroless nickel plating solution of the present invention contains a water-soluble nickel salt, a reducing agent, a pH buffering agent, a complexing agent, and further contains lead ions, cobalt ions, and a sulfur compound at a predetermined concentration, but other necessity. Accordingly, stabilizers, reaction accelerators, surfactants and the like can be contained.

本発明の無電解ニッケルめっき液において使用する水溶性ニッケル塩としては、例えば硫酸ニッケル、塩化ニッケル、次亜リン酸ニッケル、などがあげられる。
還元剤としては、例えば、次亜リン酸塩、ジメチルアミンボラン、トリメチルアミンボラン、ヒドラジンなどが挙げられる。
pH緩衝剤としては、例えば酢酸、蟻酸、コハク酸、マロン酸等のカルボン酸塩、アンモニウム塩等が挙げられる。
Examples of the water-soluble nickel salt used in the electroless nickel plating solution of the present invention include nickel sulfate, nickel chloride, nickel hypophosphite, and the like.
Examples of the reducing agent include hypophosphite, dimethylamine borane, trimethylamine borane, hydrazine and the like.
Examples of the pH buffer include carboxylic acid salts such as acetic acid, formic acid, succinic acid, and malonic acid, ammonium salts, and the like.

錯化剤としては、例えば乳酸、りんご酸、クエン酸等のオキシカルボン酸、グリシン、アラニン等のアミノ酸類等が挙げられる。
本発明においては、鉛イオン、イオウ化合物は安定剤となるが、さらに安定剤として、その他の安定剤を含有しても良く、例えば、ビスマス、セレン、タリウム等の重金属イオン等が挙げられる。
Examples of the complexing agent include oxycarboxylic acids such as lactic acid, malic acid and citric acid, and amino acids such as glycine and alanine.
In the present invention, lead ions and sulfur compounds serve as stabilizers, but may further contain other stabilizers as stabilizers, for example, heavy metal ions such as bismuth, selenium and thallium.

反応促進剤としては、例えばエチレンジアミン、トリエチレンテトラミン等のアミン系化合物等が挙げられる。
界面活性剤としては、例えばポリエチレングリコール等の非イオン系アルコール、スルホン酸系の陰イオン系界面活性剤、アミンオキサイド系の陽イオン系界面活性剤等が挙げられる。
Examples of the reaction accelerator include amine compounds such as ethylenediamine and triethylenetetramine.
Examples of the surfactant include nonionic alcohols such as polyethylene glycol, sulfonic acid anionic surfactants, and amine oxide cationic surfactants.

RoHS法のニッケル皮膜中に含有される鉛の濃度の問題を克服するためには無電解ニッケルめっき液中の鉛イオンの濃度を低下させることは必要不可欠な条件であるが、単純に鉛イオンの濃度を低下させるとニッケル電着面の四隅にニッケルのこぶ状の異常電着が発生するので、このこぶ状の異常電着を抑制するために必要最低限の鉛イオンの濃度が無電解ニッケルめっき液に必要である。このこぶ状の異常電着は、イオウ系化合物の濃度が高いと抑制することができるが、微細電極パッドにNiが析出しなくなる。   In order to overcome the problem of the concentration of lead contained in the nickel film of the RoHS method, it is indispensable to reduce the concentration of lead ions in the electroless nickel plating solution. If the concentration is lowered, abnormal nickel electrodeposition occurs at the four corners of the nickel electrodeposition surface. The minimum lead ion concentration necessary to suppress this abnormal electrodeposition is not electroless nickel plating. Necessary for the liquid. This bumpy abnormal electrodeposition can be suppressed when the concentration of the sulfur compound is high, but Ni does not precipitate on the fine electrode pad.

また、本発明に係る、半導体固有の電位差の問題を克服し、かつ微細電極パッド上にバンプを形成することのできる無電解Niめっき液を作製するのに重要な点は、コバルトイオンの添加とイオウ化合物の添加の両方が必要不可決な点である。この2種類の添加物のどちらか一方が欠如すると、半導体固有の電位差を有する電極パッド上に析出するNiの厚さにばらつきが生じ、酷い場合にはどちらか一方の電極にNiが析出しなかったりする。また微細化された電極パッド上にも同様にNiが析出しなかったり、厚みに大きなばらつきが発生したりする。
よって、無電解ニッケル液中の鉛イオン、コバルトイオン及びイオウ化合物の3つは相互に影響するのでこの3成分の適正濃度を把握することが重要である。
In addition, the important point for producing the electroless Ni plating solution that can overcome the problem of potential difference inherent to the semiconductor and can form bumps on the fine electrode pad according to the present invention is the addition of cobalt ions. Both additions of sulfur compounds are necessary and inevitable. If either one of these two types of additives is absent, the Ni thickness deposited on the electrode pad having the potential difference inherent to the semiconductor will vary, and in severe cases, Ni will not deposit on either electrode. Or Similarly, Ni does not precipitate on the miniaturized electrode pad, or the thickness varies greatly.
Therefore, since the three of lead ion, cobalt ion and sulfur compound in the electroless nickel solution affect each other, it is important to grasp the proper concentration of these three components.

本発明の無電解ニッケルめっき液においては、鉛イオンを0.01〜1ppm含有することが重要である。より好ましくは0.1ppm〜1ppmである。0.01ppm未満の場合、ニッケル電着面の四隅にニッケルのこぶ状の異常電着が発生しやすい。この異常電着の発生は鉛イオンが前記の範囲内にあれば、抑制することができる。1ppmを越える場合、ニッケル皮膜中の鉛の含有量がおよそ300ppmを超えることになる。RoHS法では1000ppm(0.1%)以下を要求されているが、将来を見据え、その他必要特性を満たすのであれば、より低濃度化するのが望ましい。1ppmを越えて添加しても、ニッケル中の鉛の含有量が増加するのみである。
めっき液中に鉛イオンを含有させるためには、鉛化合物をめっき液に溶解すればよく、該鉛化合物としては、硝酸鉛、酢酸鉛等を挙げることができる。
In the electroless nickel plating solution of the present invention, it is important to contain 0.01 to 1 ppm of lead ions. More preferably, it is 0.1 ppm to 1 ppm. When the concentration is less than 0.01 ppm, nickel bumpy abnormal electrodeposition tends to occur at the four corners of the nickel electrodeposition surface. Generation | occurrence | production of this abnormal electrodeposition can be suppressed if lead ion exists in the said range. When it exceeds 1 ppm, the lead content in the nickel film exceeds approximately 300 ppm. In the RoHS method, 1000 ppm (0.1%) or less is required, but it is desirable to lower the concentration if other necessary characteristics are satisfied with the future in mind. Adding over 1 ppm only increases the lead content in the nickel.
In order to contain lead ions in the plating solution, a lead compound may be dissolved in the plating solution, and examples of the lead compound include lead nitrate and lead acetate.

また、コバルトイオンを0.01ppm〜1ppm含有していることが重要である。より好ましくは、0.3ppm〜1ppmである。コバルト無添加の場合はイオウ化合物を添加してもニッケルの析出速度が遅くなり、かつ電位差の影響を受け、特に半導体電極のN極にニッケルが析出しなくなる。本発明の所期の目的を達成するためにはコバルトイオンを0.01ppm以上めっき液中に含有させる必要があるが、1ppmを越える高濃度にすると、添加初期、ニッケル表面にピンホールが発生し易くなってしまう。ニッケル表面のピンホールは無電解置換金めっき時、孔食の原因になるので、はんだ接合強度の点から好ましくない。
めっき液中にコバルトイオンを含有させるには、コバルト化合物をめっき液中に溶解すればよく、該コバルト化合物としては、硫酸コバルト、酢酸コバルト、硝酸コバルト、炭酸コバルト等を挙げることができる。
Moreover, it is important to contain 0.01 ppm to 1 ppm of cobalt ions. More preferably, it is 0.3 ppm to 1 ppm. In the case of no addition of cobalt, even if a sulfur compound is added, the deposition rate of nickel becomes slow and is affected by the potential difference, so that nickel does not precipitate particularly at the N pole of the semiconductor electrode. In order to achieve the intended object of the present invention, cobalt ions must be contained in the plating solution in an amount of 0.01 ppm or more. However, if the concentration exceeds 1 ppm, pinholes are generated on the nickel surface in the initial stage of addition. It becomes easy. Since pinholes on the nickel surface cause pitting corrosion during electroless substitution gold plating, it is not preferable from the viewpoint of solder joint strength.
In order to contain cobalt ions in the plating solution, a cobalt compound may be dissolved in the plating solution, and examples of the cobalt compound include cobalt sulfate, cobalt acetate, cobalt nitrate, and cobalt carbonate.

次にイオウ化合物の無電解ニッケルめっき液中の濃度についても重要であり、0.01〜1ppm含有する必要がある。より好ましくは、0.1〜0.5ppmである。イオウ化合物はコバルト同様にこれを無添加とした場合はニッケルの析出速度が遅くなり、かつ電位差の影響を受け、特に半導体電極のN極にニッケルが析出しなくなる。本発明の所期の目的を達成するためにはイオウ化合物の濃度は0.01ppm以上必要である。イオウ化合物の濃度が1ppmを越えて含有している場合には、微細パッド部にニッケルが析出し難くなる。
本発明に使用するイオウ化合物は、チオ硫酸塩、チオン酸塩、チオ尿素、チオシアン酸塩、チオ炭酸塩、あるいはこれらの塩等が好ましい。特に好ましいのは、チオシアン酸カリウム(別名、ロダンカリ)、ロダニンである。
Next, it is important also about the density | concentration in the electroless nickel plating solution of a sulfur compound, and it is necessary to contain 0.01-1 ppm. More preferably, it is 0.1-0.5 ppm. If the sulfur compound is not added like cobalt, the deposition rate of nickel is slow, and it is affected by the potential difference, and nickel is not particularly deposited at the N pole of the semiconductor electrode. In order to achieve the intended object of the present invention, the concentration of the sulfur compound needs to be 0.01 ppm or more. When the concentration of the sulfur compound exceeds 1 ppm, nickel hardly deposits on the fine pad portion.
The sulfur compound used in the present invention is preferably thiosulfate, thionate, thiourea, thiocyanate, thiocarbonate, or a salt thereof. Particularly preferred are potassium thiocyanate (also known as rodankari) and rhodanine.

本発明の無電解ニッケルめっき液は、水溶液であり、pH4〜6に調整することが好ましく、pH4.5〜5.5に調整することがより好ましい。
また、本発明の無電解ニッケルめっき液は、浴温70〜90℃で使用するのが好ましく、75〜85℃がより好ましい。
めっき液のpH、及び浴温が上記範囲外の場合、めっき速度が遅かったり、浴分解を起し易い等の問題がある。
めっき方法としては、本発明のめっき液中に被めっき物を浸漬すればよい。
The electroless nickel plating solution of the present invention is an aqueous solution, preferably adjusted to pH 4 to 6, and more preferably adjusted to pH 4.5 to 5.5.
Further, the electroless nickel plating solution of the present invention is preferably used at a bath temperature of 70 to 90 ° C, more preferably 75 to 85 ° C.
When the pH of the plating solution and the bath temperature are out of the above ranges, there are problems such as a slow plating rate and easy decomposition of the bath.
What is necessary is just to immerse a to-be-plated object in the plating solution of this invention as a plating method.

以下、本発明を実施例に基づいて説明するが、本発明はこれに限定されるものではない。
[実施例1]
以下の組成の無電解ニッケルめっき液を建浴した。
NiSO・6HO 25g/l
NaHPO・HO 25g/l
りんご酸 4g/l
コハク酸2Na 12g/l
グリシン 5g/l
Pb(NO 0.6ppm(Pbとして0.38ppm)
CoSO・7HO 1.6ppm(Coとして0.32ppm)
KSCN 0.4ppm
該無電解ニッケルめっき液を用いて無電解ニッケルめっきを施した。なお、pHは5.0とし、めっき条件は80℃で30分とした。被めっき材は多数のICからなる半導体TEGウエハー(n/p電極有り)であり、約100ルックスの自然光下の条件のもとにこのICのアルミニウムパッド上にニッケルを析出させた。
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to this.
[Example 1]
An electroless nickel plating solution having the following composition was constructed.
NiSO 4 · 6H 2 O 25g / l
NaH 2 PO 2 · H 2 O 25g / l
Malic acid 4g / l
Succinic acid 2Na 12g / l
Glycine 5g / l
Pb (NO 3 ) 2 0.6 ppm (0.38 ppm as Pb)
CoSO 4 · 7H 2 O 1.6 ppm (0.32 ppm as Co)
KSCN 0.4ppm
Electroless nickel plating was performed using the electroless nickel plating solution. The pH was 5.0 and the plating conditions were 80 ° C. and 30 minutes. The material to be plated was a semiconductor TEG wafer (with n / p electrodes) consisting of a large number of ICs, and nickel was deposited on the aluminum pads of the ICs under conditions of about 100 lux under natural light.

[比較例1]
以下の組成の無電解ニッケルめっき液を建浴した。
NiSO・6HO 25g/l
NaHPO・HO 25g/l
りんご酸 4g/l
コハク酸2Na 12g/l
グリシン 5g/l
Pb(NO 0.6ppm(Pbとして0.38ppm)
CoSO・7HO 16ppm(Coとして3.2ppm)
KSCN 0.4ppm
該無電解ニッケルめっき液を用いて無電解ニッケルめっきを施した。なお、pHは5.0とし、めっき条件は80℃で30分とした。被めっき材は多数のICからなる半導体TEGウエハー(n/p電極有り)であり、約100ルクスの自然光下の条件の下にこのICのアルミニウムパッド上にニッケルを析出させた。
[Comparative Example 1]
An electroless nickel plating solution having the following composition was constructed.
NiSO 4 · 6H 2 O 25g / l
NaH 2 PO 2 · H 2 O 25g / l
Malic acid 4g / l
Succinic acid 2Na 12g / l
Glycine 5g / l
Pb (NO 3 ) 2 0.6 ppm (0.38 ppm as Pb)
CoSO 4 · 7H 2 O 16ppm ( 3.2ppm as Co)
KSCN 0.4ppm
Electroless nickel plating was performed using the electroless nickel plating solution. The pH was 5.0 and the plating conditions were 80 ° C. and 30 minutes. The material to be plated was a semiconductor TEG wafer (with n / p electrodes) consisting of a large number of ICs, and nickel was deposited on the aluminum pads of the ICs under conditions of about 100 lux under natural light.

[比較例2]
以下の組成の無電解ニッケルめっき液を建浴した。
NiSO・6HO 25g/l
NaHPO・HO 25g/l
りんご酸 4g/l
コハク酸2Na 12g/l
グリシン 5g/l
Pb(NO 0.6ppm(Pbとして0.38ppm)
CoSO・7HO 160ppm(Coとして32ppm)
KSCN 0.4ppm
該無電解ニッケルめっき液を用いて無電解ニッケルめっきを施した。なお、pHは5.0とし、めっき条件は80℃で30分とした。被めっき材は多数のICからなる半導体TEGウエハー(n/p電極有り)であり、約100ルクスの自然光下の条件の下にこのICのアルミニウムパッド上にニッケルを析出させた。
[Comparative Example 2]
An electroless nickel plating solution having the following composition was constructed.
NiSO 4 · 6H 2 O 25g / l
NaH 2 PO 2 · H 2 O 25g / l
Malic acid 4g / l
Succinic acid 2Na 12g / l
Glycine 5g / l
Pb (NO 3 ) 2 0.6 ppm (0.38 ppm as Pb)
CoSO 4 · 7H 2 O 160ppm ( 32ppm as Co)
KSCN 0.4ppm
Electroless nickel plating was performed using the electroless nickel plating solution. The pH was 5.0 and the plating conditions were 80 ° C. and 30 minutes. The material to be plated was a semiconductor TEG wafer (with n / p electrodes) consisting of a large number of ICs, and nickel was deposited on the aluminum pads of the ICs under conditions of about 100 lux under natural light.

[比較例3]
以下の組成の無電解ニッケルめっき液を建浴した。
NiSO・6HO 25g/l
NaHPO・HO 25g/l
りんご酸 4g/l
コハク酸2Na 12g/l
グリシン 5g/l
Pb(NO 0.6ppm(Pbとして0.38ppm)
CoSO・7HO 0ppm
KSCN 0.4ppm
該無電解ニッケルめっき液を用いて無電解ニッケルめっきを施した。なお、pHは5.0とし、めっき条件は80℃で30分とした。被めっき材は多数のICからなる半導体TEGウエハー(n/p電極有り)であり、約100ルクスの自然光下の条件のもとにこのICのアルミニウムパッド上にニッケルを析出させた。
[Comparative Example 3]
An electroless nickel plating solution having the following composition was constructed.
NiSO 4 · 6H 2 O 25g / l
NaH 2 PO 2 · H 2 O 25g / l
Malic acid 4g / l
Succinic acid 2Na 12g / l
Glycine 5g / l
Pb (NO 3 ) 2 0.6 ppm (0.38 ppm as Pb)
CoSO 4 · 7H 2 O 0ppm
KSCN 0.4ppm
Electroless nickel plating was performed using the electroless nickel plating solution. The pH was 5.0 and the plating conditions were 80 ° C. and 30 minutes. The material to be plated was a semiconductor TEG wafer (with n / p electrodes) consisting of a large number of ICs, and nickel was deposited on the aluminum pads of the ICs under conditions of about 100 lux under natural light.

[比較例4]
以下の組成の無電解ニッケルめっき液を建浴した。
NiSO・6HO 25g/l
NaHPO・HO 25g/l
りんご酸 4g/l
コハク酸2Na 12g/l
グリシン 5g/l
Pb(NO 0ppm
CoSO・7HO 16ppm(Coとして3.2ppm)
KSCN 0.4ppm
該無電解ニッケルめっき液を用いて無電解ニッケルめっきを施した。なお、pHは5.0とし、めっき条件は80℃で30分とした。被めっき材は多数のICからなる半導体TEGウエハー(n/p電極有り)であり、約100ルクスの自然光下の条件のもとにこのICのアルミニウムパッド上にニッケルを析出させた。
[Comparative Example 4]
An electroless nickel plating solution having the following composition was constructed.
NiSO 4 · 6H 2 O 25g / l
NaH 2 PO 2 · H 2 O 25g / l
Malic acid 4g / l
Succinic acid 2Na 12g / l
Glycine 5g / l
Pb (NO 3 ) 20 ppm
CoSO 4 · 7H 2 O 16ppm ( 3.2ppm as Co)
KSCN 0.4ppm
Electroless nickel plating was performed using the electroless nickel plating solution. The pH was 5.0 and the plating conditions were 80 ° C. and 30 minutes. The material to be plated was a semiconductor TEG wafer (with n / p electrodes) consisting of a large number of ICs, and nickel was deposited on the aluminum pads of the ICs under conditions of about 100 lux under natural light.

[比較例5]
以下の組成の無電解ニッケルめっき液を建浴した。
NiSO・6HO 25g/l
NaHPO・HO 25g/l
りんご酸 4g/l
コハク酸2Na 12g/l
グリシン 5g/l
Pb(NO 0.6ppm
CoSO・7HO 16ppm(Coとして3.2ppm)
該無電解ニッケルめっき液を用いて無電解ニッケルめっきを施した。なお、pHは5.0とし、めっき条件は80℃で30分とした。被めっき材は多数のICからなる半導体TEGウエハー(n/p電極有り)であり、約100ルクスの自然光下の条件のもとにこのICのアルミニウムパッド上にニッケルを析出させた。
[Comparative Example 5]
An electroless nickel plating solution having the following composition was constructed.
NiSO 4 · 6H 2 O 25g / l
NaH 2 PO 2 · H 2 O 25g / l
Malic acid 4g / l
Succinic acid 2Na 12g / l
Glycine 5g / l
Pb (NO 3 ) 2 0.6 ppm
CoSO 4 · 7H 2 O 16ppm ( 3.2ppm as Co)
Electroless nickel plating was performed using the electroless nickel plating solution. The pH was 5.0 and the plating conditions were 80 ° C. and 30 minutes. The material to be plated was a semiconductor TEG wafer (with n / p electrodes) consisting of a large number of ICs, and nickel was deposited on the aluminum pads of the ICs under conditions of about 100 lux under natural light.

実施例により施された無電解Niめっきの顕微鏡及び電子顕微鏡による拡大写真を図1に示した。同様に比較例1〜5によるものをそれぞれ図2〜6に示した。更に実施例及び比較例1〜5によりAlパッド上に析出したニッケルを評価した結果の詳細を表にまとめた。なお、各評価項目とその評価方法は以下に示すとおりである。   An enlarged photograph of the electroless Ni plating applied according to the example using a microscope and an electron microscope is shown in FIG. Similarly, those according to Comparative Examples 1 to 5 are shown in FIGS. Further, details of the results of evaluation of nickel deposited on the Al pad in Examples and Comparative Examples 1 to 5 are summarized in a table. In addition, each evaluation item and its evaluation method are as showing below.

Ni高さP極およびN極:レーザー顕微鏡によりP極およびN極上のNiの高さを測定した。
P/N高さ比:上記測定後P/N高さ比を計算した。
ピンホール:SEMにより5000倍に拡大し、ピンホールの有無を観察した。
異常析出(こぶ):SEMにより500倍に拡大し、異常析出(こぶ)を観察した。
Pb含有量:析出したニッケル中の含有量で、GDMAS分析により測定した。
Ni height P pole and N pole: The height of Ni on the P pole and the N pole was measured by a laser microscope.
P / N height ratio: After the above measurement, the P / N height ratio was calculated.
Pinhole: It was magnified 5000 times by SEM and the presence or absence of a pinhole was observed.
Abnormal precipitation (gump): Magnified by SEM by 500 times, and abnormal precipitation (gump) was observed.
Pb content: The content in precipitated nickel, which was measured by GDMAS analysis.

図1からも明らかなように本発明に係る無電解Niめっき液を使用した実施例においては、Alパッド上にIC固有の電位差及び面積の影響も受けず均一な無電解Niめっきを施すことができ、Niの析出速度も十分であり、かつ、比較例に見られるようなNiのピンホール及び異常析出は見られなかった。
図2に示す比較例1の拡大写真(5000倍)には微細なピンホールが見え、図3に示す比較例2の拡大写真(5000倍)に大きなピンホールが見える。また、図4に示す比較例3の拡大写真(500倍)にNi高さの減少及びP/N極の電位差の影響が観察される。特にN極にはNiが析出しにくい。更に図5に示す比較例4の拡大写真(500倍)で電極パッド部周辺部にNiの異常析出(こぶ)が見える。また、図6に示す比較例5の拡大写真(500倍)にNi高さの減少が、及び拡大写真(5000倍)に小さいが多数のピンホールが見える。
As is clear from FIG. 1, in the example using the electroless Ni plating solution according to the present invention, uniform electroless Ni plating can be performed on the Al pad without being affected by the potential difference and area inherent to the IC. In addition, the Ni deposition rate was sufficient, and Ni pinholes and abnormal precipitation as seen in the comparative examples were not observed.
A fine pinhole is seen in the enlarged photograph (5000 times) of Comparative Example 1 shown in FIG. 2, and a large pinhole is seen in the enlarged photograph (5000 times) of Comparative Example 2 shown in FIG. Moreover, the influence of the reduction | decrease of Ni height and the electric potential difference of a P / N pole is observed by the enlarged photograph (500 times) of the comparative example 3 shown in FIG. In particular, Ni is unlikely to be deposited on the N pole. Further, in the enlarged photograph (500 times) of Comparative Example 4 shown in FIG. 5, abnormal Ni precipitation (kumps) can be seen around the electrode pad portion. In addition, a reduction in Ni height is seen in the enlarged photograph (500 times) of Comparative Example 5 shown in FIG. 6, and a large number of pinholes are visible in the enlarged photograph (5000 times).

本発明に係る無電解Niめっき液を利用することにより、多数のICチップからなるシリコンウエハー上にも無電解NiめっきによるNi金属バンプ(突起部)もしくははんだバンプ用のUBMを均一な膜厚で形成することが可能なとなる。   By using the electroless Ni plating solution according to the present invention, Ni metal bumps (projections) by electroless Ni plating or UBMs for solder bumps with a uniform film thickness can be formed on a silicon wafer composed of a number of IC chips. It becomes possible to form.

Claims (1)

水溶性ニッケル塩、還元剤、錯化剤、pH緩衝剤を含有する無電解ニッケルめっき液において、鉛イオンを0.01〜1ppm、コバルトイオンを0.01〜1ppm、及びイオウ化合物を0.01〜1ppm含有する無電解ニッケルめっき液。  In an electroless nickel plating solution containing a water-soluble nickel salt, a reducing agent, a complexing agent, and a pH buffer, lead ions are 0.01 to 1 ppm, cobalt ions are 0.01 to 1 ppm, and sulfur compounds are 0.01. Electroless nickel plating solution containing ~ 1ppm.
JP2007539858A 2005-10-07 2006-09-26 Electroless nickel plating solution Expired - Fee Related JP4536781B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005294316 2005-10-07
JP2005294316 2005-10-07
PCT/JP2006/319063 WO2007043333A1 (en) 2005-10-07 2006-09-26 Electroless nickel plating solution

Publications (2)

Publication Number Publication Date
JPWO2007043333A1 JPWO2007043333A1 (en) 2009-04-16
JP4536781B2 true JP4536781B2 (en) 2010-09-01

Family

ID=37942583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007539858A Expired - Fee Related JP4536781B2 (en) 2005-10-07 2006-09-26 Electroless nickel plating solution

Country Status (7)

Country Link
US (1) US8182594B2 (en)
EP (1) EP1932943A4 (en)
JP (1) JP4536781B2 (en)
KR (1) KR100961011B1 (en)
CN (1) CN101189362B (en)
TW (1) TWI337628B (en)
WO (1) WO2007043333A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101146769B1 (en) * 2010-04-09 2012-05-17 한국생산기술연구원 Electroless nikel plating solution, electroless plating method using the same and nikel coating layer prepared by the same
US20120061698A1 (en) * 2010-09-10 2012-03-15 Toscano Lenora M Method for Treating Metal Surfaces
EP2551375A1 (en) * 2011-07-26 2013-01-30 Atotech Deutschland GmbH Electroless nickel plating bath composition
US8936672B1 (en) * 2012-06-22 2015-01-20 Accu-Labs, Inc. Polishing and electroless nickel compositions, kits, and methods
CN103898583A (en) * 2013-06-03 2014-07-02 无锡市锡山区鹅湖镇荡口青荡金属制品厂 Chemical nickel-plating solution electroplating chromium on surface of magnesium alloy die casting
JP6163023B2 (en) * 2013-06-10 2017-07-12 日本電波工業株式会社 Quartz device and method of manufacturing quartz device
JP6326857B2 (en) * 2014-02-21 2018-05-23 三菱瓦斯化学株式会社 Electroless plating solution
US11685999B2 (en) 2014-06-02 2023-06-27 Macdermid Acumen, Inc. Aqueous electroless nickel plating bath and method of using the same
JP6474860B2 (en) * 2017-06-28 2019-02-27 小島化学薬品株式会社 Electroless nickel strike plating solution and method for forming nickel plating film
CN110527992A (en) * 2019-09-27 2019-12-03 广州皓悦新材料科技有限公司 A kind of chemical nickel-plating plating solution
KR102121755B1 (en) * 2020-02-20 2020-06-12 주식회사 씨엠케미칼 An electroless nickel plating solution easy to convert use
US11505867B1 (en) 2021-06-14 2022-11-22 Consolidated Nuclear Security, LLC Methods and systems for electroless plating a first metal onto a second metal in a molten salt bath, and surface pretreatments therefore

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533326B1 (en) * 1971-07-06 1978-02-06
JPH06280038A (en) * 1993-03-30 1994-10-04 Hitachi Chem Co Ltd Electroless nickel-phosphorus plating solution
JPH07233479A (en) * 1994-02-21 1995-09-05 Tetsuya Aisaka Electroless plating bath and electroless plating method
JPH09176864A (en) * 1995-10-23 1997-07-08 C Uyemura & Co Ltd Thick-film formation in electroless gold plating
JP2003268561A (en) * 2002-03-15 2003-09-25 Murata Mfg Co Ltd Electroless plating solution, method of producing ceramic electronic parts, and ceramic electronic parts

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3562000A (en) * 1968-10-25 1971-02-09 Gen Am Transport Process of electrolessly depositing metal coatings having metallic particles dispersed therethrough
US4632857A (en) * 1974-05-24 1986-12-30 Richardson Chemical Company Electrolessly plated product having a polymetallic catalytic film underlayer
US3977884A (en) * 1975-01-02 1976-08-31 Shipley Company, Inc. Metal plating solution
US4080207A (en) * 1976-06-29 1978-03-21 Eastman Kodak Company Radiation-sensitive compositions and photographic elements containing N-(acylhydrazinophenyl) thioamide nucleating agents
DE3532866A1 (en) * 1985-09-14 1987-03-26 Basf Ag METHOD FOR MANUFACTURING ELECTRODES
JP3115095B2 (en) * 1992-04-20 2000-12-04 ディップソール株式会社 Electroless plating solution and plating method using the same
US5437887A (en) * 1993-12-22 1995-08-01 Enthone-Omi, Inc. Method of preparing aluminum memory disks
JP2901523B2 (en) * 1995-08-09 1999-06-07 日本カニゼン株式会社 Electroless black plating bath composition and film formation method
US5910340A (en) * 1995-10-23 1999-06-08 C. Uyemura & Co., Ltd. Electroless nickel plating solution and method
CN1055138C (en) * 1996-11-20 2000-08-02 山东矿业学院 Acidic chemical plating nickel solution and plating method
JP3687722B2 (en) * 1999-01-12 2005-08-24 上村工業株式会社 Electroless composite plating solution and electroless composite plating method
JP3499543B2 (en) * 2001-08-15 2004-02-23 株式会社神戸製鋼所 Electrical Zn-plated steel sheet with excellent white rust resistance and method for producing the same
CN1150349C (en) * 2001-09-29 2004-05-19 中国科学院金属研究所 Method of supersonic chemical plating nickel phosphorus of powder metallurgy material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533326B1 (en) * 1971-07-06 1978-02-06
JPH06280038A (en) * 1993-03-30 1994-10-04 Hitachi Chem Co Ltd Electroless nickel-phosphorus plating solution
JPH07233479A (en) * 1994-02-21 1995-09-05 Tetsuya Aisaka Electroless plating bath and electroless plating method
JPH09176864A (en) * 1995-10-23 1997-07-08 C Uyemura & Co Ltd Thick-film formation in electroless gold plating
JP2003268561A (en) * 2002-03-15 2003-09-25 Murata Mfg Co Ltd Electroless plating solution, method of producing ceramic electronic parts, and ceramic electronic parts

Also Published As

Publication number Publication date
US8182594B2 (en) 2012-05-22
EP1932943A1 (en) 2008-06-18
CN101189362B (en) 2011-03-16
JPWO2007043333A1 (en) 2009-04-16
TW200720477A (en) 2007-06-01
TWI337628B (en) 2011-02-21
EP1932943A4 (en) 2013-06-26
US20090064892A1 (en) 2009-03-12
KR20080015463A (en) 2008-02-19
KR100961011B1 (en) 2010-06-01
CN101189362A (en) 2008-05-28
WO2007043333A1 (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP4536781B2 (en) Electroless nickel plating solution
JP5679216B2 (en) Manufacturing method of electrical parts
JP2005523995A (en) Minimizing whisker growth in tin electrodeposits
TW200902758A (en) Electroless gold plating bath, electroless gold plating method and electronic parts
KR20070026832A (en) Tin-based plating film and method for forming the same
CN113832509B (en) Plating solution for electroplating gold on nickel plating layer and method for electroplating gold on nickel plating layer and gold-plated part
US8338954B2 (en) Semiconductor apparatus and fabrication method thereof
CN108342717B (en) Low-temperature chemical nickel plating solution, nickel plating process, nickel plating layer and flexible printed circuit board
JP6025899B2 (en) Electroless nickel plating bath and electroless plating method using the same
Goh et al. Electrodeposition of lead‐free solder alloys
US8771409B2 (en) Electroless gold plating solution and electroless gold plating method
JP7185999B2 (en) Electroless palladium plating solution
EP4230775A1 (en) Tin alloy plating solution
JP5363142B2 (en) Method for forming tin plating film
JP6521553B1 (en) Substitution gold plating solution and substitution gold plating method
JP7149061B2 (en) Electroless palladium plating solution
US20230407508A1 (en) Tin-silver plating solution and method for forming tin-silver solder bump by using same
KR102533369B1 (en) Tin-silver plating solution and method of forming tin-silver solder bumps using the same
JP7316250B2 (en) Electroless gold plating bath and electroless gold plating method
Kim Comparison of Deposition Behavior and Properties of Cyanide-free Electroless Au Plating on Various Underlayer Electroless Ni-P films
TWI409368B (en) A method for making a light emitting diode
US20120045570A1 (en) Plating solution for forming tin alloy and method of forming tin alloy film using the same
CN117552063A (en) Cyanide-free gold plating solution, method for plating gold on nickel layer, and gold-plated article
CN116848292A (en) Tin alloy plating solution
JP2021070858A (en) Substitution gold plating solution and substitution gold plating method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees