JP4530114B2 - Method for producing lead-containing perovskite complex oxide sintered body - Google Patents

Method for producing lead-containing perovskite complex oxide sintered body Download PDF

Info

Publication number
JP4530114B2
JP4530114B2 JP2000279320A JP2000279320A JP4530114B2 JP 4530114 B2 JP4530114 B2 JP 4530114B2 JP 2000279320 A JP2000279320 A JP 2000279320A JP 2000279320 A JP2000279320 A JP 2000279320A JP 4530114 B2 JP4530114 B2 JP 4530114B2
Authority
JP
Japan
Prior art keywords
sintered body
lead
sintering
containing perovskite
pbtio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000279320A
Other languages
Japanese (ja)
Other versions
JP2002087887A (en
Inventor
友成 竹内
光春 田渕
和明 阿度
博之 蔭山
洌 市川
正雄 鴇田
正和 川原
幸弘 中山
真一 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000279320A priority Critical patent/JP4530114B2/en
Publication of JP2002087887A publication Critical patent/JP2002087887A/en
Application granted granted Critical
Publication of JP4530114B2 publication Critical patent/JP4530114B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、スパッタターゲットとしての使用に適する鉛含有ペロブスカイト型複合酸化物焼結体の製造方法に関する。
【0002】
【従来の技術】
現在、集積回路のトランジスタ部の誘電体薄膜、DRAM等のメモリ薄膜、赤外線センサ等の焦電体薄膜などに用いられる焦電体薄膜又は圧電体薄膜として、チタン酸鉛(PbTiO3)、ジルコン酸チタン酸鉛(Pb(Zr,Ti)O3)等の鉛含有チタン酸複合酸化物をはじめとする様々な鉛含有ペロブスカイト型複合酸化物材料が開発され、使用されている。
【0003】
薄膜作製には種々の方法があるが、その中でスパッタ法は量産性、コスト等の面で優れた方法であり、工業的に広く用いられている成膜方法である。上記した誘電体薄膜、焦電体薄膜、圧電体薄膜等を工業的用途に用いる場合には、通常、最小でも直径2.5インチ(約6.35cm)程度の円領域に均一に成膜することが必要であり、スパッタ法でこの様な薄膜を作製するためには、スパッタターゲットはそれよりも大きいサイズ、即ち、最小でも直径3インチ(約7.62cm)程度のものが要求される。
【0004】
鉛含有ペロブスカイト型複合酸化物材料を製造する方法としては焼結法が考えられるが、鉛含有量の多い材料、特にチタン酸鉛(PbTiO3)は通常の外熱式焼結法では焼結し難い。これは、高温から室温への冷却過程で500℃近傍の相転移温度を通過したときに生じるc軸長とそれに垂直な方向のa軸長の変化量の違いが大きく、かつ室温においてはさらにこの軸長比が大きくなる(c/a=1.065)ために、冷却過程で大きな内部応力が発生し、亀裂等が発生し易くなるからである。また揮発性のPbを含み、高温でPbOの一部が組成から失われるため、高温での通常の電気炉による外熱式焼結は組成制御の観点から不利である。
【0005】
従来は、燒結法によって鉛含有チタン酸複合酸化物材料を得るためには、焼結性を上げるためにLaをはじめとする異種元素を添加し、通常の電気炉等を用いた外熱法により1200℃以上の高温で数時間焼結させていた(特開平5−170531公報)。
【0006】
しかしながら、異種元素を添加した焼結体をスパッタターゲットとして用いると、作製した膜に添加元素が混入するため、PbTiO3が本来的に有する特性を持つ膜を作製できない。例えばPbTiO3の重要な特性であるキュリー温度は、添加量のないもので約490℃であるが、添加量を増すほど低下してしまう。キュリー温度が低下すると温度による圧電特性の変化量が大きくなり、例えば圧力センサとして正確に機能しなくなる。
【0007】
特開平10−251070号公報には、酸化物微粒子に直流パルス電流を印加して放電プラズマ焼結することによって、粒成長を生じさせることなく高密度の焼結体を作製する方法が開示されている。この公報では、具体的な方法としては、実施例1では共沈法で得られたBaTiO3微粒子を原料とし、実施例2では共沈法で得られたNaZr2(PO43微粒子を原料として、それそれ4000Aの電流を通電して1000〜1100℃で焼結体を得ている。しかしながら、この様な原料粉末を用いて放電プラズマ焼結する方法では、実施例に記載された直径2cm程度の治具を用いる場合には、高強度の焼結体を得ることが可能であるが、スパッタターゲットとして適する大型の焼結体を製造する場合には、十分な強度を有する焼結体を得ることができない。しかも、この様な高温で焼結する場合には、焼結時にPbOが脱離するので、理論比の鉛含有ペロブスカイト型複合酸化物焼結体を得ることができない。
【0008】
また、特許公報第3030359号には、単分散のPbTiO3粉末を放電プラズマ焼結することによる高密度のチタン酸鉛多結晶焼結体の製造方法が記載されている。この方法では、単分散の粒径分布に近い(粒径分布幅の狭い)酸化物微粒子を用い、焼結時に500〜1500Aという電流を印加している。しかしながら、この様な単分散の粒径分布を持つ原料を用いると、スパッタターゲットとして使用可能な大型の焼結体とする場合には、強度が不足して簡単に崩壊してしまう。
【0009】
以上の様に、スパッタターゲットとしての使用に適する直径8cm程度以上の大型の鉛含有ペロブスカイト型複合酸化物材料を得るためには、異種元素を添加することなく、高密度のPbTiO3、Pb(Zr,Ti)O3等の鉛含有ペロブスカイト型複合酸化物焼結体を安定に作製することが求められるが、従来の方法では、このような焼結体を短時間で作製するのは困難であったため、商用ベースでのターゲットは比較的高価となり、これがPbTiO3等の薄膜の低コスト化を妨げる要因の一つになっている。
【0010】
【発明が解決しようとする課題】
本発明の主な目的は、スパッタ法による成膜用ターゲットとして適する大型でしかも高密度の鉛含有ペロブスカイト型複合酸化物焼結体を簡単に製造できる方法を提供することである。
【0011】
【課題を解決するための手段】
本発明者は、上記のような従来技術の問題に鑑みて鋭意研究を重ねた結果、サブミクロンの平均粒径を持ち、粒径分布幅の比較的広い鉛含有ペロブスカイト型複合酸化物粉を出発原料とし、その粉末に加圧下で直流パルス電流を通電して、通電焼結させる場合には、大型で高密度の鉛含有ペロブスカイト型複合酸化物焼結体を短時間で作製できることを見出し、ここに本発明を完成するに至った。
【0012】
即ち、本発明は、以下の鉛含有ペロブスカイト型複合酸化物焼結体の製造方法、及びスパッタターゲットを提供するものである。
1.平均粒径1μm未満且つ粒径分布の標準偏差が0.1μm以上の鉛含有ペロブスカイト型複合酸化物粉末を原料とし、加圧下で直流パルス電流により通電焼結させる直径8cm以上、厚さ1mm以上の円柱状の鉛含有ペロブスカイト型複合酸化物焼結体の製造方法であって、前記鉛含有ペロブスカイト型複合酸化物粉末としてPbTiO を用い、40MPaの圧力下で700〜850℃で通電焼結させることを特徴とする製造方法。
2.上記項1の方法で通電焼結させた後、大気中で500〜1500℃に30分〜6時間保持して熱処理する直径8cm以上、厚さ1mm以上の円柱状の鉛含有ペロブスカイト型複合酸化物焼結体の製造方法であって、該熱処理に際し、1〜50℃/分の速度で前記熱処理温度まで昇温し、保持した後、昇温時と同様の速度で降温する製造方法。
3.上記項1又は2の方法で得られた直径8cm以上、厚さ1mm以上の円柱状の鉛含有ペロブスカイト型複合酸化物焼結体からなるスパッタターゲット。
【0013】
【発明の実施の形態】
本発明の鉛含有ペロブスカイト型複合酸化物焼結体の製造方法は、平均粒径1μm未満且つ粒径分布の標準偏差が0.1μm以上の鉛含有ペロブスカイト型複合酸化物粉末を原料とし、加圧下で直流パルス電流により通電焼結させる方法である。
【0014】
以下、本発明の鉛含有ペロブスカイト型複合酸化物焼結体の製造方法について詳細に説明する。
鉛含有ペロブスカイト型複合酸化物粉末
出発原料である鉛含有ペロブスカイト型複合酸化物粉末は、平均粒径が1μm未満であって、粒径分布の標準偏差が0.1μm以上であることが必要である。この様な粒径が小さくしかも粒径分布幅の広い原料を用いることによって原料粉末が密に充填され、これを通電焼結することによって、直径8cm以上の大型の焼結体であっても、充分な強度を有する高密度焼結体とすることができる。
【0015】
鉛含有ペロブスカイト型複合酸化物粉末としては、例えば、PbTiO3、Pb(ZrxTi1-x)O3、(PbxLa1-x)(ZryTi1-y)O3等の鉛含有チタン酸複合酸化物の他、Pb(MgxNb1-x)O3、Pb(MnxNb1-x)O3等を例示できる。これらの複合酸化物の内で、Pb(ZrxTi1-x)O3については、0<x<1とすることができ、特に高圧電定数の点からは、0.4≦x≦0.6程度であることが好ましい。また、(PbxLa1-x)(ZryTi1-y)O3については、0<x<1及び0<y<1とすることができ、特に高電気光学係数の点からは、0.85≦x≦0.95、0.4≦y≦0.6程度であることが好ましい。Pb(MgxNb1-x)O3については、0<x<1とすることができ、高圧電定数の点からは、0.3≦x≦0.4程度であることが好ましい。Pb(MnxNb1-x)O3については、0<x<1とすることができ、高圧電定数の点からは、0.3≦x≦0.4程度であることが好ましい。
【0016】
鉛含有ペロブスカイト型複合酸化物粉末の製造方法については特に限定的ではなく、公知の方法に従って上記した条件を満足する複合酸化物粉末を製造すればよいが、例えば、PbTiO3を例にとれば、鉛の原料としてのPbOと、チタンの原料としてのH2TiO3を、鉛がやや過剰になる程度に蒸留水中で混合し、これにKOH等を加えてアルカリ過剰とした後、この混合液を200〜220℃程度で5〜10時間程度水熱処理することによって、上記した平均粒径及び粒径分布を有するPbTiO3粉末を得ることができる。
【0017】
通電焼結法
本発明方法では、上記した鉛含有ペロブスカイト型複合酸化物粉末を所定の形状に成形した後、 加圧下で直流パルス電流により通電焼結させることによって、高密度焼結体を製造することができる。
【0018】
通電焼結方法としては、例えば、放電プラズマ焼結法、放電焼結法、或いはプラズマ活性化焼結法等を含むパルス通電加圧焼結法を用いて、所定の形状の治具に原料粉末を充填し圧縮して圧粉体とし、この圧粉体を10〜40MPa程度、好ましくは20〜40MPa程度で加圧しながら、パルス幅2〜3ミリ秒程度、周期3Hz〜300kHz程度、好ましくは10Hz〜100Hz程度のパルス状のON−OFF直流電流を通電すればよい。この様な方法で直流パルス電流を通電することによって、充填された原料粉末の粒子間隙に生じる放電現象を利用して、放電プラズマ、放電衝撃圧力等による粒子表面の浄化活性化作用及び電場により生じる電界拡散効果やジュール熱による熱拡散効果、加圧による塑性変形圧力などが焼結の駆動力となって焼結が促進される。
【0019】
焼結温度は、600〜1200℃程度とすることが好ましく、700〜1000℃程度とすることがより好ましく、700〜800℃程度とすることが更に好ましい。この様な焼結温度の範囲内から、目的とする鉛含有ペロブスカイト型複合酸化物焼結体の種類に応じて、適切な温度範囲を選択すればよい。例えば、PbTiO3焼結体を目的物とする場合には、700〜850℃程度の焼結温度とすることが好ましい。
【0020】
焼結温度が低すぎると、焼結体の強度が不足して崩壊しやすく、一方、焼結温度が高すぎると、試料の一部がPbOとして揮発し、組成制御が困難になるので好ましくない。
【0021】
焼結温度は、直流パルス電流のピーク電流値によって調整することができ、同一の焼結治具を用いた場合には、パルス電流のピーク電流値を高くすると焼結温度が上昇するので、焼結治具の温度をモニターしながら電流値を増減させ、所定の温度になるようにピーク電流値を制御すればよい。例えば、直径8cm程度、厚さ2.5cm程度の大型の円筒状治具を用いる場合には、5000〜10000A程度、好ましくは6000〜8000A程度のピーク電流値のパルス電流を通電することによって、上記した範囲の焼結温度とすることができる。
【0022】
焼結時間については、通常、1〜5分間程度、好ましくは2〜3分程度とすればよい。焼結時間が短すぎると充分に焼結が進まず、一方焼結時間が長すぎると、試料の一部がPbOとして揮発して組成のずれが生じやすいので好ましくない。
【0023】
上記した通電焼結法によって、目的とする高密度の鉛含有ペロブスカイト型複合酸化物焼結体を得ることができるが、例えば、グラファイト製の焼結治具を用いた場合には、得られる焼結体の表面近傍には、治具の成分である導電性のグラファイトが含まれる。この様な焼結体表面近傍に含まれるグラファイト等の不純物は、焼結体表面を研磨するか、或いは、焼結体を大気中で300〜2000℃程度、好ましくは500〜1500℃程度に30分〜6時間程度保持して熱処理することにより、容易に取り除くことができる。熱処理に際しては、特性の変化を防止するために、焼結体をこれと反応しないアルミナなどの容器に収容し、1〜50℃/分程度、好ましくは2〜15℃/分程度の速度で所定の熱処理温度まで昇温し、保持した後、昇温時と同様の速度で降温することが好ましい。
鉛含有ペロブスカイト型複合酸化物焼結体
本発明方法によれば、通常、理論密度の85%程度以上という高密度の焼結体を得ることが可能である。そして、得られる鉛含有ペロブスカイト型複合酸化物焼結体は、スパッタターゲットとして適する直径約8cm以上、厚さ約1mm以上(好ましくは3mm以上)の円柱状の大型焼結体であっても、充分な機械的強度を有するものとなる。
【0024】
本発明方法で得られる焼結体は、更なる加工を施さずにそのままスパッタターゲットとして使用することができる。
【0025】
スパッタによる成膜の条件は特に限定されるものではなく、例えば、アルゴンと酸素の混合ガスフロー中、100W以上の印加電力で数時間スパッタすることにより、基板上にPbTiO3薄膜を作製することができる。単相のペロブスカイト型PbTiO3薄膜は、例えば、スパッタ中またはスパッタ後に基板を500〜700℃に熱処理することにより得ることができる。
【0026】
【発明の効果】
本発明の鉛含有ペロブスカイト型複合酸化物焼結体の製造方法によれば、スパッタターゲットに好適な大型で高密度の鉛含有ペロブスカイト型複合酸化物焼結体を、従来の外熱式焼結法に比べて短時間で安定に作製できる。この様な方法で得られる焼結体は、強誘電体、焦電体、圧電体等として有用な鉛含有ペロブスカイト型複合酸化物薄膜を作製するためのスパッタターゲットとして有用性が高いものである。
【0027】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明する。
実施例1
PbOとH2TiO3をPb/Ti(原子比)=1.05となるように混合し、これにH2TiO3と等モル量のKOHを加えた混合粉末を蒸留水に入れ、220℃で7時間水熱処理して、PbTiO3粉末を得た。得られたPbTiO3粉末の平均粒径は0.1μm、粒径分布の標準偏差は0.1μmであった。
【0028】
上記PbTiO3粉末を原料として、以下の方法で通電焼結を行った。
【0029】
通電焼結機としては、住友石炭鉱業(株)製放電プラズマ焼結機SPS NK9.40 Mark7及びNK3.20 Mark4を用いた。焼結治具としては、グラファイト製で直径8cmの円筒形のものを用いた。この治具に、上記PbTiO3粉末約110gを均一に入れ、30〜50MPaの圧力を印加した。更に治具に6000〜8000Aの直流パルス電流を印加することにより試料周辺を昇温速度約100〜140℃/分で700、800、900又は1000℃に加熱した。この状態を2分間保持した後、電流及び圧力印加を止め、試料を室温まで冷却した。
【0030】
この状態で取り出した焼結体は直径約8cm、厚さ約3mmの円柱状であり、黒色で電気伝導性を有し、X線回折から治具のグラファイトが含まれていることが確認できた。グラファイトを含有することは、エネルギー分散型X線分析(EDX)測定結果でPb、Ti、Oの他にCが認められたことからも明らかである。
【0031】
この焼結体を室温から700℃まで2.3℃/分で昇温し、700℃で2時間保持した後、2.3℃/分で室温まで降温した。
【0032】
熱処理後の焼結体は、X線回折ではPbTiO3のピークのみとなり、EDXからはPb、Ti、Oのみとなっており、PbTiO3焼結体が得られたことが確認できた。
【0033】
熱処理後の各試料のX線回折パターンを図1に示す。いずれも正方晶のPbTiO3であった。焼結温度900℃以上又は加圧力50MPa以上の通電焼結の試料にTiO2(ルチル型)のピークが認められたが、これは通電焼結中にPbが一部蒸散したためと考えられる。得られた焼結体は、焼結温度900℃以上又は加圧力50MPa以上のものについて亀裂が確認された。これは焼結中及び冷却過程でPbTiO3試料と黒鉛治具の熱膨張率の差が焼結体中に残留応力を生じさせたことや、Pb欠損による組成不均一の生成が原因と考えられる。
【0034】
また、原料として用いたPbTiO3粉末と通電焼結によって得られた各焼結体について、格子定数(a,c軸長)とEDXにより見積もられたPb/Ti原子比を下記表1に示す。表中、1.00(1)とあるのは、1.00±0.01を意味し、その他も同様である。表中には、PbTiO3のa,c軸長の報告値(JCPDS 6−452)も示す。
【0035】
【表1】

Figure 0004530114
【0036】
以上の結果から判るように、通電焼結によって得られた各焼結体は、a,c軸長は、報告値と良い一致を示した。また、各試料のPb/Tiも理論値に近い値であった。
【0037】
得られた各焼結体について焼結温度と密度の関係を図2のグラフに示す。図2に示す通り、800℃、2分(加圧力40MPa)の通電焼結による焼結体(亀裂なし)は、密度6.9g/cm3であり、理論密度(7.97g/cm3)の86%という高密度であった。
【0038】
尚、同じPbTiO3出発粉末を、通常の電気炉による外熱式で1200℃、2時間焼結したものは、密度6.1g/cm3(理論密度の77%)であり、同じPbTiO3出発粉末を30MPaの圧力下、ホットプレス法により1000℃で1分間焼結したものは密度6.1g/cm3(理論密度の77%)であり、何れも低密度であった。
【0039】
また、同じPbTiO3出発粉末を30MPaの圧力下、ホットプレス法により1000℃で30分間焼結したものは密度7.1g/cm3(理論密度の89%)となったが、焼結体表面にPb塊が析出し、焼結体のPb/Ti比が0.45という非量論比の焼結体となった。
【0040】
スパッタ法による成膜試験
40MPaの加圧下、800℃、2分の通電焼結により作製したPbTiO3焼結体をスパッタターゲットとして用いて、以下の方法でスパッタ法により成膜試験を行った。
【0041】
基板としては石英ガラスを用い、アルゴン3.0cm3/分、酸素3.0cm3/分のガスフローで内圧を1Paに制御し、150Wの印加電力で3時間スパッタした。得られた膜の厚みは1.2μmで、これは成膜速度6.7nm/分に相当する。
【0042】
図3に、得られた薄膜のX線回折図と、これを600、650又は700℃で2時間熱処理した薄膜のX線回折図を示す。成膜直後はアモルファスであるが、600℃の熱処理でパイロクロア相が混在した薄膜が得られ、650℃の熱処理でほぼ単相のペロブスカイト型PbTiO3薄膜が得られた。
【0043】
形成された薄膜の格子定数(a,c軸長)とEDXにより見積もられたPb/Ti原子比を下記表2に示す。表2に示す通り、Pb/Ti比は、650℃の熱処理で1.00(1)(1.00±0.01を意味する。以下同様)であり、この条件でほぼ量論比のPbTiO3が得られることが分かった。更に高温の熱処理では、例えば700℃の熱処理でPbTi37の相が認められ、Pb/Ti比も0.81(2)となった。
【0044】
【表2】
Figure 0004530114
【0045】
以上から、本発明方法で得られたPbTiO3焼結体はスパッタターゲットとして使用可能であることが確認できた。
【0046】
比較例1
PbOとTiO2の混合粉を電気炉で1200℃で2時間固相反応させて平均粒径1μmのPbTiO3粉末を調製した。
【0047】
このPbTiO3粉末を用いて、実施例1と同様の方法で800℃で2分間通電焼結(加圧力40MPa)させた。得られた焼結体の密度は5.7g/cm3(理論密度の71%)であり、高密度の焼結体は得られなかった
比較例2
水熱合成法により調製した平均粒径0.06μm、粒径分布の標準偏差0.02μmのPbTiO3粉末を原料として用い、実施例1と同様の方法で800〜1000℃で2分間の通電焼結(加圧力40MPa)を行ったが、得られた焼結体は、脆く形状を保持できなかった。
【図面の簡単な説明】
【図1】実施例1で得られたPbTiO3焼結体と原料粉末のX線回折パターンを示す図。
【図2】実施例1で得られたPbTiO3焼結体の焼結温度と密度の関係を示すグラフ。
【図3】通電焼結法で得たPbTiO3焼結体をターゲットとして形成されたスパッタ薄膜のX線回折パターンを示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a lead-containing perovskite complex oxide sintered body suitable for use as a sputter target.
[0002]
[Prior art]
Currently, lead titanate (PbTiO 3 ) and zirconic acid are used as pyroelectric thin films or piezoelectric thin films used for dielectric thin films in integrated circuit transistors, memory thin films such as DRAMs, pyroelectric thin films such as infrared sensors, etc. Various lead-containing perovskite complex oxide materials including lead-containing titanate complex oxides such as lead titanate (Pb (Zr, Ti) O 3 ) have been developed and used.
[0003]
There are various methods for forming a thin film. Among them, the sputtering method is an excellent method in terms of mass productivity and cost, and is a film forming method widely used industrially. When the above-described dielectric thin film, pyroelectric thin film, piezoelectric thin film, etc. are used for industrial purposes, they are usually uniformly formed in a circular region having a diameter of at least 2.5 inches (about 6.35 cm). In order to produce such a thin film by the sputtering method, the sputter target is required to have a larger size, that is, at least about 3 inches in diameter (about 7.62 cm).
[0004]
As a method for producing a lead-containing perovskite-type composite oxide material, a sintering method is conceivable. However, a material having a high lead content, particularly lead titanate (PbTiO 3 ), is sintered by a normal external heating method. hard. This is because there is a large difference in the amount of change between the c-axis length and the a-axis length in the direction perpendicular to the phase transition temperature near 500 ° C. during the cooling process from high temperature to room temperature. This is because the axial length ratio is large (c / a = 1.005), so that a large internal stress is generated in the cooling process, and cracks are easily generated. Further, since it contains volatile Pb and a part of PbO is lost from the composition at a high temperature, external heat sintering in a normal electric furnace at a high temperature is disadvantageous from the viewpoint of composition control.
[0005]
Conventionally, in order to obtain a lead-containing titanate composite oxide material by a sintering method, different elements such as La are added in order to improve sinterability, and an external heating method using a normal electric furnace or the like is used. Sintering was performed at a high temperature of 1200 ° C. or higher for several hours (Japanese Patent Laid-Open No. 5-170531).
[0006]
However, when a sintered body to which a different element is added is used as a sputter target, the additive element is mixed into the produced film, so that a film having characteristics inherent to PbTiO 3 cannot be produced. For example, the Curie temperature, which is an important characteristic of PbTiO 3 , is about 490 ° C. with no added amount, but decreases as the added amount increases. When the Curie temperature decreases, the amount of change in piezoelectric characteristics due to temperature increases, and for example, it does not function correctly as a pressure sensor.
[0007]
Japanese Patent Laid-Open No. 10-251070 discloses a method for producing a high-density sintered body without causing grain growth by applying a direct current pulse current to oxide fine particles and performing discharge plasma sintering. Yes. In this publication, as a specific method, BaTiO 3 fine particles obtained by coprecipitation method are used as raw materials in Example 1, and NaZr 2 (PO 4 ) 3 fine particles obtained by coprecipitation method are used as raw materials in Example 2. As a result, a current of 4000 A was applied to obtain a sintered body at 1000 to 1100 ° C. However, in the method of performing discharge plasma sintering using such raw material powder, when a jig having a diameter of about 2 cm described in the examples is used, a high-strength sintered body can be obtained. When producing a large sintered body suitable as a sputtering target, a sintered body having sufficient strength cannot be obtained. Moreover, in the case of sintering at such a high temperature, PbO is desorbed during sintering, and thus a lead-containing perovskite complex oxide sintered body having a theoretical ratio cannot be obtained.
[0008]
Japanese Patent Publication No. 3030359 describes a method for producing a high-density lead titanate polycrystalline sintered body by discharge plasma sintering monodisperse PbTiO 3 powder. In this method, oxide fine particles close to a monodispersed particle size distribution (narrow particle size distribution width) are used, and a current of 500 to 1500 A is applied during sintering. However, when a raw material having such a monodispersed particle size distribution is used, when a large-sized sintered body that can be used as a sputtering target is used, the strength is insufficient and the material easily collapses.
[0009]
As described above, in order to obtain a large lead-containing perovskite complex oxide material having a diameter of about 8 cm or more suitable for use as a sputtering target, high-density PbTiO 3 , Pb (Zr (Zr , it is required to stably produce a lead-containing perovskite-type composite oxide sintered body such as Ti) O 3, in the conventional method, it is difficult to produce such a sintered body in a short time For this reason, commercial targets are relatively expensive, which is one of the factors that hinder the cost reduction of thin films such as PbTiO 3 .
[0010]
[Problems to be solved by the invention]
The main object of the present invention is to provide a method capable of easily producing a large-sized and high-density lead-containing perovskite complex oxide sintered body suitable as a film-forming target by sputtering.
[0011]
[Means for Solving the Problems]
As a result of intensive studies in view of the problems of the prior art as described above, the present inventor started a lead-containing perovskite complex oxide powder having an average particle size of submicron and a relatively wide particle size distribution range. We found that large-scale, high-density lead-containing perovskite-type composite oxide sintered bodies can be produced in a short period of time when a direct current pulse current is applied to the powder under pressure and energized and sintered. The present invention has been completed.
[0012]
That is, the present invention provides the following method for producing a lead-containing perovskite complex oxide sintered body and a sputter target.
1. Lead-containing perovskite type complex oxide powder having an average particle size of less than 1 μm and a standard deviation of particle size distribution of 0.1 μm or more is used as a raw material, and is subjected to current sintering by DC pulse current under pressure . A method for producing a cylindrical lead-containing perovskite-type composite oxide sintered body , wherein PbTiO 3 is used as the lead-containing perovskite-type composite oxide powder, and current sintering is performed at 700 to 850 ° C. under a pressure of 40 MPa. The manufacturing method characterized by this.
2. A columnar lead-containing perovskite complex oxide having a diameter of 8 cm or more and a thickness of 1 mm or more, which is heat-treated in the atmosphere at 500 to 1500 ° C. for 30 minutes to 6 hours after being subjected to electric sintering by the method of item 1 above A method for producing a sintered body, wherein , during the heat treatment, the temperature is raised to the heat treatment temperature at a rate of 1 to 50 ° C./min, held, and then lowered at the same rate as the temperature rise.
3. Upper climate 1 or obtained 8cm diameter more than 2 ways, sputter target having a thickness of 1mm or more cylindrical lead-containing perovskite-type composite oxide sintered body.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing a lead-containing perovskite complex oxide sintered body according to the present invention uses a lead-containing perovskite complex oxide powder having an average particle size of less than 1 μm and a standard deviation of the particle size distribution of 0.1 μm or more as a raw material. In this method, the current is sintered by direct current pulse current.
[0014]
Hereinafter, the method for producing the lead-containing perovskite complex oxide sintered body of the present invention will be described in detail.
Lead-containing perovskite complex oxide powder The lead-containing perovskite complex oxide powder as a starting material has an average particle size of less than 1 μm and a standard deviation of particle size distribution of 0.1 μm or more. is required. By using a raw material having such a small particle size and a wide particle size distribution range, the raw material powder is densely packed, and by conducting current sintering, this is a large sintered body having a diameter of 8 cm or more. It can be set as the high-density sintered compact which has sufficient intensity | strength.
[0015]
Examples of the lead-containing perovskite complex oxide powder include lead-containing materials such as PbTiO 3 , Pb (Zr x Ti 1-x ) O 3 , (Pb x La 1-x ) (Zr y Ti 1-y ) O 3. other titanate composite oxides, can be exemplified Pb (Mg x Nb 1-x ) O 3, Pb (Mn x Nb 1-x) O 3 or the like. Among these composite oxides, for Pb (Zr x Ti 1-x ) O 3, can be 0 <x <1, in particular in terms of high piezoelectric constant, 0.4 ≦ x ≦ 0 .6 is preferable. Also, the (Pb x La 1-x) (Zr y Ti 1-y) O 3, 0 <x < can be 1 and 0 <y <1, especially from the viewpoint of high electro-optic coefficient, It is preferable that 0.85 ≦ x ≦ 0.95 and 0.4 ≦ y ≦ 0.6. Pb (Mg x Nb 1-x ) O 3 can satisfy 0 <x <1, and is preferably about 0.3 ≦ x ≦ 0.4 from the viewpoint of a high piezoelectric constant. Pb (Mn x Nb 1-x ) O 3 can satisfy 0 <x <1, and is preferably about 0.3 ≦ x ≦ 0.4 from the viewpoint of a high piezoelectric constant.
[0016]
The method for producing the lead-containing perovskite complex oxide powder is not particularly limited, and a complex oxide powder that satisfies the above-described conditions may be produced according to a known method. For example, taking PbTiO 3 as an example, PbO as a raw material of lead and H 2 TiO 3 as a raw material of titanium are mixed in distilled water to such an extent that lead is slightly excessive, and KOH or the like is added thereto to make an alkali excess. PbTiO 3 powder having the above average particle size and particle size distribution can be obtained by hydrothermal treatment at about 200 to 220 ° C. for about 5 to 10 hours.
[0017]
Electric current sintering method In the method of the present invention, the above lead-containing perovskite complex oxide powder is formed into a predetermined shape, and then subjected to electric current sintering under a direct current pulse current under pressure, thereby performing high density sintering. The body can be manufactured.
[0018]
As the electric current sintering method, for example, a pulsed electric current pressure sintering method including a discharge plasma sintering method, a discharge sintering method, or a plasma activated sintering method is used. And compressed into a green compact. While pressing the green compact at about 10 to 40 MPa, preferably about 20 to 40 MPa, the pulse width is about 2 to 3 milliseconds, the period is about 3 Hz to 300 kHz, preferably 10 Hz. A pulsed ON-OFF direct current of about 100 Hz may be applied. By applying a direct current pulse current in this way, the discharge phenomenon generated in the particle gap of the filled raw material powder is utilized, and it is generated by the activation action and electric field of the particle surface by discharge plasma, discharge shock pressure, etc. The electric field diffusion effect, the thermal diffusion effect due to Joule heat, the plastic deformation pressure due to pressurization, etc. serve as the driving force for the sintering to promote the sintering.
[0019]
The sintering temperature is preferably about 600 to 1200 ° C, more preferably about 700 to 1000 ° C, and still more preferably about 700 to 800 ° C. From such a sintering temperature range, an appropriate temperature range may be selected according to the type of the target lead-containing perovskite complex oxide sintered body. For example, when a PbTiO 3 sintered body is the target product, it is preferable to set the sintering temperature at about 700 to 850 ° C.
[0020]
If the sintering temperature is too low, the strength of the sintered body is insufficient and tends to collapse. On the other hand, if the sintering temperature is too high, part of the sample volatilizes as PbO, making composition control difficult, which is not preferable. .
[0021]
The sintering temperature can be adjusted according to the peak current value of the direct current pulse current. When the same sintering jig is used, the sintering temperature rises when the peak current value of the pulse current is increased. What is necessary is just to control a peak current value so that it may become predetermined | prescribed temperature, increasing / decreasing an electric current value, monitoring the temperature of a jig. For example, when a large cylindrical jig having a diameter of about 8 cm and a thickness of about 2.5 cm is used, by applying a pulse current having a peak current value of about 5000 to 10000 A, preferably about 6000 to 8000 A, The sintering temperature can be within the range.
[0022]
The sintering time is usually about 1 to 5 minutes, preferably about 2 to 3 minutes. If the sintering time is too short, the sintering does not proceed sufficiently. On the other hand, if the sintering time is too long, a part of the sample volatilizes as PbO and the composition tends to shift.
[0023]
By the above-described current sintering method, a target high-density lead-containing perovskite-type composite oxide sintered body can be obtained. For example, when a graphite-made sintering jig is used, the obtained sintered body is obtained. Conductive graphite, which is a component of the jig, is included near the surface of the bonded body. Impurities such as graphite contained in the vicinity of the surface of such a sintered body polish the surface of the sintered body, or 30 to about 300 to 2000 ° C., preferably about 500 to 1500 ° C. in the atmosphere. It can be easily removed by heat treatment with holding for about 6 minutes. In the heat treatment, in order to prevent a change in characteristics, the sintered body is accommodated in a container such as alumina which does not react with the sintered body and is predetermined at a rate of about 1 to 50 ° C./min, preferably about 2 to 15 ° C./min. It is preferable that the temperature is raised to the heat treatment temperature and maintained, and then the temperature is lowered at the same rate as during the temperature rise.
Lead-containing perovskite complex oxide sintered body According to the method of the present invention, it is usually possible to obtain a sintered body having a high density of about 85% or more of the theoretical density. Then, lead-containing perovskite-type composite oxide sintered body obtained is about 8cm or more in diameter suitable as the sputtering target, even a cylindrical large sintered body of about 1mm thickness or more (preferably at least 3 mm), sufficient It has a high mechanical strength.
[0024]
The sintered body obtained by the method of the present invention can be used as it is as a sputtering target without further processing.
[0025]
The conditions for film formation by sputtering are not particularly limited. For example, a PbTiO 3 thin film can be formed on a substrate by sputtering for several hours with an applied power of 100 W or more in a mixed gas flow of argon and oxygen. it can. The single-phase perovskite PbTiO 3 thin film can be obtained, for example, by heat-treating the substrate at 500 to 700 ° C. during or after sputtering.
[0026]
【The invention's effect】
According to the method for producing a lead-containing perovskite-type composite oxide sintered body of the present invention, a large-scale and high-density lead-containing perovskite-type composite oxide sintered body suitable for a sputtering target is converted into a conventional external heating sintering method. Compared to, it can be stably produced in a short time. The sintered body obtained by such a method is highly useful as a sputtering target for producing a lead-containing perovskite complex oxide thin film useful as a ferroelectric, pyroelectric, piezoelectric, or the like.
[0027]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
PbO and H 2 TiO 3 were mixed so that Pb / Ti (atomic ratio) = 1.05, and a mixed powder obtained by adding H 2 TiO 3 and an equimolar amount of KOH to distilled water was added at 220 ° C. For 7 hours to obtain PbTiO 3 powder. The average particle size of the obtained PbTiO 3 powder was 0.1 μm, and the standard deviation of the particle size distribution was 0.1 μm.
[0028]
Using the PbTiO 3 powder as a raw material, current sintering was performed by the following method.
[0029]
As the electric current sintering machine, discharge plasma sintering machines SPS NK9.40 Mark7 and NK3.20 Mark4 manufactured by Sumitomo Coal Mining Co., Ltd. were used. A cylindrical jig made of graphite and having a diameter of 8 cm was used as the sintering jig. About 110 g of the PbTiO 3 powder was uniformly placed in this jig, and a pressure of 30 to 50 MPa was applied. Further, by applying a DC pulse current of 6000 to 8000 A to the jig, the periphery of the sample was heated to 700, 800, 900 or 1000 ° C. at a temperature rising rate of about 100 to 140 ° C./min. After maintaining this state for 2 minutes, the application of current and pressure was stopped, and the sample was cooled to room temperature.
[0030]
The sintered body taken out in this state has a cylindrical shape with a diameter of about 8 cm and a thickness of about 3 mm, is black and has electrical conductivity, and it has been confirmed from X-ray diffraction that it contains graphite of the jig. . The inclusion of graphite is apparent from the fact that C was recognized in addition to Pb, Ti, and O in the results of energy dispersive X-ray analysis (EDX) measurement.
[0031]
The sintered body was heated from room temperature to 700 ° C. at 2.3 ° C./min, held at 700 ° C. for 2 hours, and then cooled to room temperature at 2.3 ° C./min.
[0032]
The sintered body after the heat treatment had only a peak of PbTiO 3 by X-ray diffraction and only Pb, Ti, and O from EDX, and it was confirmed that a PbTiO 3 sintered body was obtained.
[0033]
The X-ray diffraction pattern of each sample after the heat treatment is shown in FIG. It was both PbTiO 3 of tetragonal. A peak of TiO 2 (rutile type) was observed in the current sintering sample having a sintering temperature of 900 ° C. or higher or a pressing force of 50 MPa or higher. This is considered to be due to partial evaporation of Pb during the current sintering. As for the obtained sintered compact, the crack was confirmed about the sintered temperature of 900 degreeC or more or the applied pressure of 50 MPa or more. This is thought to be due to the difference in the thermal expansion coefficient between the PbTiO 3 sample and the graphite jig during the sintering and the cooling process, causing residual stress in the sintered body and the generation of non-uniform composition due to Pb defects. .
[0034]
Table 1 below shows the Pb / Ti atomic ratio estimated by the lattice constant (a, c-axis length) and EDX for the PbTiO 3 powder used as a raw material and each sintered body obtained by current sintering. . In the table, 1.00 (1) means 1.00 ± 0.01, and the others are the same. In the table, the reported values (JCPDS 6-452) of the a and c axis lengths of PbTiO 3 are also shown.
[0035]
[Table 1]
Figure 0004530114
[0036]
As can be seen from the above results, the a and c axis lengths of the respective sintered bodies obtained by the electric current sintering were in good agreement with the reported values. Moreover, Pb / Ti of each sample was also a value close to the theoretical value.
[0037]
The relationship between the sintering temperature and the density for each of the obtained sintered bodies is shown in the graph of FIG. As shown in FIG. 2, the sintered body (no cracks) obtained by current sintering at 800 ° C. for 2 minutes (pressure 40 MPa) has a density of 6.9 g / cm 3 and a theoretical density (7.97 g / cm 3 ). It was a high density of 86%.
[0038]
Note that the same PbTiO 3 starting powder sintered at 1200 ° C. for 2 hours by an external heating method using a normal electric furnace has a density of 6.1 g / cm 3 (77% of the theoretical density), and the same PbTiO 3 starting powder. When the powder was sintered at 1000 ° C. for 1 minute under a pressure of 30 MPa by a hot press method, the density was 6.1 g / cm 3 (77% of the theoretical density), and all of them were low density.
[0039]
Further, the same PbTiO 3 starting powder sintered at 1000 ° C. for 30 minutes under a pressure of 30 MPa by a hot press method had a density of 7.1 g / cm 3 (89% of the theoretical density). Pb agglomerates were precipitated in the sintered body, and a sintered body having a non-stoichiometric ratio of Pb / Ti ratio of 0.45 was obtained.
[0040]
Film formation test by sputtering method Using a PbTiO 3 sintered body produced by current sintering at 800 ° C. for 2 minutes under a pressure of 40 MPa, a film formation test was performed by the following method using a sputtering target.
[0041]
As the substrate using quartz glass, argon 3.0 cm 3 / min, the pressure in oxygen 3.0 cm 3 / min gas flow was controlled to 1 Pa, for 3 hours sputtering with power applied 150 W. The thickness of the obtained film is 1.2 μm, which corresponds to a film forming speed of 6.7 nm / min.
[0042]
FIG. 3 shows an X-ray diffraction pattern of the thin film obtained and an X-ray diffraction pattern of the thin film that was heat-treated at 600, 650, or 700 ° C. for 2 hours. Although it was amorphous immediately after the film formation, a thin film containing a pyrochlore phase was obtained by heat treatment at 600 ° C., and a substantially single-phase perovskite PbTiO 3 thin film was obtained by heat treatment at 650 ° C.
[0043]
Table 2 below shows the lattice constant (a, c-axis length) of the formed thin film and the Pb / Ti atomic ratio estimated by EDX. As shown in Table 2, the Pb / Ti ratio is 1.00 (1) (meaning 1.00 ± 0.01; the same applies hereinafter) after heat treatment at 650 ° C. Under these conditions, the PbTiO ratio is almost stoichiometric. 3 was found to be obtained. In the heat treatment at a higher temperature, for example, a PbTi 3 O 7 phase was observed in the heat treatment at 700 ° C., and the Pb / Ti ratio was 0.81 (2).
[0044]
[Table 2]
Figure 0004530114
[0045]
From the above, it was confirmed that the PbTiO 3 sintered body obtained by the method of the present invention can be used as a sputtering target.
[0046]
Comparative Example 1
A mixed powder of PbO and TiO 2 was subjected to a solid phase reaction at 1200 ° C. for 2 hours in an electric furnace to prepare a PbTiO 3 powder having an average particle diameter of 1 μm.
[0047]
Using this PbTiO 3 powder, current sintering was performed at 800 ° C. for 2 minutes (pressure of 40 MPa) in the same manner as in Example 1. The density of the obtained sintered body was 5.7 g / cm 3 (71% of the theoretical density), and a high-density sintered body was not obtained. Comparative Example 2
Using PbTiO 3 powder having an average particle size of 0.06 μm and a standard deviation of the particle size distribution of 0.02 μm prepared by a hydrothermal synthesis method as a raw material, electrobaking at 800 to 1000 ° C. for 2 minutes in the same manner as in Example 1. Although sintering (pressurizing force 40 MPa) was performed, the obtained sintered body was brittle and could not retain its shape.
[Brief description of the drawings]
FIG. 1 is a diagram showing X-ray diffraction patterns of a PbTiO 3 sintered body and raw material powder obtained in Example 1. FIG.
2 is a graph showing the relationship between sintering temperature and density of PbTiO 3 sintered body obtained in Example 1.
FIG. 3 is a diagram showing an X-ray diffraction pattern of a sputtered thin film formed using a PbTiO 3 sintered body obtained by an electric current sintering method as a target.

Claims (3)

平均粒径1μm未満且つ粒径分布の標準偏差が0.1μm以上の鉛含有ペロブスカイト型複合酸化物粉末を原料とし、加圧下で直流パルス電流により通電焼結させる直径8cm以上、厚さ1mm以上の円柱状の鉛含有ペロブスカイト型複合酸化物焼結体の製造方法であって、前記鉛含有ペロブスカイト型複合酸化物粉末としてPbTiOを用い、40MPaの圧力下で700〜850℃で通電焼結させることを特徴とする製造方法。Lead-containing perovskite type complex oxide powder having an average particle size of less than 1 μm and a standard deviation of particle size distribution of 0.1 μm or more is used as a raw material, and is subjected to current sintering by DC pulse current under pressure . A method for producing a cylindrical lead-containing perovskite-type composite oxide sintered body, wherein PbTiO 3 is used as the lead-containing perovskite-type composite oxide powder, and current sintering is performed at 700 to 850 ° C. under a pressure of 40 MPa. The manufacturing method characterized by this. 請求項1の方法で通電焼結させた後、大気中で500〜1500℃に30分〜6時間保持して熱処理する直径8cm以上、厚さ1mm以上の円柱状の鉛含有ペロブスカイト型複合酸化物焼結体の製造方法であって、該熱処理に際し、1〜50℃/分の速度で前記熱処理温度まで昇温し、保持した後、昇温時と同様の速度で降温する製造方法。 A cylindrical lead-containing perovskite-type composite oxide having a diameter of 8 cm or more and a thickness of 1 mm or more, which is heat-treated in the atmosphere at 500 to 1500 ° C. for 30 minutes to 6 hours after being electrically sintered by the method of claim 1 A method for producing a sintered body, wherein, during the heat treatment, the temperature is raised to the heat treatment temperature at a rate of 1 to 50 ° C./min, held, and then lowered at the same rate as the temperature rise. 請求項1又は2の方法で得られた直径8cm以上、厚さ1mm以上の円柱状の鉛含有ペロブスカイト型複合酸化物焼結体からなるスパッタターゲット。A sputter target comprising a cylindrical lead-containing perovskite complex oxide sintered body having a diameter of 8 cm or more and a thickness of 1 mm or more obtained by the method according to claim 1 or 2.
JP2000279320A 2000-09-14 2000-09-14 Method for producing lead-containing perovskite complex oxide sintered body Expired - Lifetime JP4530114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000279320A JP4530114B2 (en) 2000-09-14 2000-09-14 Method for producing lead-containing perovskite complex oxide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000279320A JP4530114B2 (en) 2000-09-14 2000-09-14 Method for producing lead-containing perovskite complex oxide sintered body

Publications (2)

Publication Number Publication Date
JP2002087887A JP2002087887A (en) 2002-03-27
JP4530114B2 true JP4530114B2 (en) 2010-08-25

Family

ID=18764338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000279320A Expired - Lifetime JP4530114B2 (en) 2000-09-14 2000-09-14 Method for producing lead-containing perovskite complex oxide sintered body

Country Status (1)

Country Link
JP (1) JP4530114B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320894A (en) * 1992-05-15 1993-12-07 Mitsubishi Materials Corp Sputtering target material for production of multi component oxide ferroelectric thin film having lead-containing perovskite structure and its production
JPH10251070A (en) * 1997-01-08 1998-09-22 Agency Of Ind Science & Technol High density sintering method of oxide fine particle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789759A (en) * 1993-07-27 1995-04-04 Sumitomo Chem Co Ltd Alumina for tape cast, alumina composition, alumina green sheet, alumina sintered plate and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320894A (en) * 1992-05-15 1993-12-07 Mitsubishi Materials Corp Sputtering target material for production of multi component oxide ferroelectric thin film having lead-containing perovskite structure and its production
JPH10251070A (en) * 1997-01-08 1998-09-22 Agency Of Ind Science & Technol High density sintering method of oxide fine particle

Also Published As

Publication number Publication date
JP2002087887A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
EP1457471B1 (en) Crystal oriented ceramics and production method of same
JP5114730B2 (en) Method for manufacturing piezoelectric ceramics
KR100394348B1 (en) Process for producing piezoelectric ceramics
US20080152530A1 (en) Method of preparing ferroelectric powders and ceramics
JP2008069051A (en) Piezoelectric ceramic and method of manufacturing the same
Oh et al. Fabrication and evaluation of lead-free piezoelectric ceramic LF4 thick film deposited by aerosol deposition method
Ichikawa et al. Fabrication and characterization of (100),(001)-oriented reduction-resistant lead-free piezoelectric (Ba, Ca) TiO3 ceramics using platelike seed crystals
Mirzaei et al. Effect of Nb doping on sintering and dielectric properties of PZT ceramics
Hayashi et al. Low-temperature sintering of LiBiO2-coated Pb (Mg1/3Nb2/3) O3-PbZrO3-PbTiO3 powders prepared by surface chemical modification method and their piezoelectric properties
JP2007084408A (en) Piezoelectric ceramic
CN112225550B (en) Piezoelectric ceramic material, preparation method thereof and piezoelectric ceramic sensor
JPWO2008032500A1 (en) Method for manufacturing piezoelectric body and piezoelectric body
JP3007929B2 (en) High density sintering method for oxide fine particles
JP4530114B2 (en) Method for producing lead-containing perovskite complex oxide sintered body
Kong et al. Preparation and characterization of lead zirconate ceramics from high-energy ball milled powder
JP3650872B2 (en) Crystalline oriented bismuth layered perovskite compound and method for producing the same
JP4029151B2 (en) Proton conductive perovskite complex oxide sintered body
Duran et al. Processing and characterization of< 001>-textured Pb (Mg1/3Nb2/3) O3–Pb (Yb1/2Nb1/2) O3–PbTiO3 ceramics
Hayashi et al. Enhancement of piezoelectric properties of low-temperature-fabricated Pb (Mg1/3Nb2/3) O3-PbZrO3-PbTiO3 ceramics with LiBiO2 sintering aid by post-annealing process
US20090170685A1 (en) Method of producing a lead zirconium titanate-based sintered body, lead zirconium titanate-based sintered body, and lead zirconium titanate-based sputtering target
Takeuchi et al. Rapid preparation of lead titanate sputtering target using spark‐plasma sintering
JP3080277B2 (en) Method for producing bismuth layered compound
Yoo et al. Dielectric and piezoelectric properties of low-temperature-sintering Pb (Mg1/2W1/2) O3-Pb (Ni1/3Nb2/3) O3-Pb (Zr, Ti) O3 ceramics for multilayer piezoelectric actuator
Duan et al. Growth and electrical properties of Pb (In0. 5Nb0. 5) O3–PbTiO3 crystals by the solution Bridgman method
JP3030359B1 (en) Lead-containing titanate composite oxide high-density polycrystalline sintered body having perovskite structure and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050810

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051013

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070418

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4530114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term