JP2002087887A - Method for manufacturing lead-containing perovskite type compound oxide sintered compact - Google Patents

Method for manufacturing lead-containing perovskite type compound oxide sintered compact

Info

Publication number
JP2002087887A
JP2002087887A JP2000279320A JP2000279320A JP2002087887A JP 2002087887 A JP2002087887 A JP 2002087887A JP 2000279320 A JP2000279320 A JP 2000279320A JP 2000279320 A JP2000279320 A JP 2000279320A JP 2002087887 A JP2002087887 A JP 2002087887A
Authority
JP
Japan
Prior art keywords
sintered body
lead
sintering
containing perovskite
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000279320A
Other languages
Japanese (ja)
Other versions
JP4530114B2 (en
Inventor
Tomonari Takeuchi
友成 竹内
Mitsuharu Tabuchi
光春 田渕
Kazuaki Ato
和明 阿度
Hiroyuki Kageyama
博之 蔭山
Kiyoshi Ichikawa
洌 市川
Masao Tokita
正雄 鴇田
Masakazu Kawahara
正和 川原
Yukihiro Nakayama
幸弘 中山
Shinichi Miyamoto
真一 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Coal Mining Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Coal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Sumitomo Coal Mining Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000279320A priority Critical patent/JP4530114B2/en
Publication of JP2002087887A publication Critical patent/JP2002087887A/en
Application granted granted Critical
Publication of JP4530114B2 publication Critical patent/JP4530114B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce lead-containing perovskite type compound oxide sintered compact of large size and high density which can be used as a sputtering target in a short time and with stability. SOLUTION: A method for manufacturing the lead-containing pervoskite type compound oxide sintered compact is distinguished by using lead-containing perovskite type compound oxide powder having <1 μm average grain size and >=0.1 μm standard deviation of grain size distribution as a raw material and subjecting to energizing sintering by applying DC pulse current under pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スパッタターゲッ
トとしての使用に適する鉛含有ペロブスカイト型複合酸
化物焼結体の製造方法に関する。
The present invention relates to a method for producing a lead-containing perovskite-type composite oxide sintered body suitable for use as a sputter target.

【0002】[0002]

【従来の技術】現在、集積回路のトランジスタ部の誘電
体薄膜、DRAM等のメモリ薄膜、赤外線センサ等の焦
電体薄膜などに用いられる焦電体薄膜又は圧電体薄膜と
して、チタン酸鉛(PbTiO3)、ジルコン酸チタン
酸鉛(Pb(Zr,Ti)O3)等の鉛含有チタン酸複
合酸化物をはじめとする様々な鉛含有ペロブスカイト型
複合酸化物材料が開発され、使用されている。
2. Description of the Related Art At present, lead titanate (PbTiO.sub.2) is used as a pyroelectric thin film or a piezoelectric thin film used for a dielectric thin film of a transistor portion of an integrated circuit, a memory thin film of a DRAM or the like, a pyroelectric thin film of an infrared sensor or the like. 3), lead zirconate titanate (Pb (Zr, Ti) O 3) various lead-containing perovskite-type composite oxide materials including lead-containing titanate composite oxides, such as have been developed and used.

【0003】薄膜作製には種々の方法があるが、その中
でスパッタ法は量産性、コスト等の面で優れた方法であ
り、工業的に広く用いられている成膜方法である。上記
した誘電体薄膜、焦電体薄膜、圧電体薄膜等を工業的用
途に用いる場合には、通常、最小でも直径2.5インチ
(約6.35cm)程度の円領域に均一に成膜すること
が必要であり、スパッタ法でこの様な薄膜を作製するた
めには、スパッタターゲットはそれよりも大きいサイ
ズ、即ち、最小でも直径3インチ(約7.62cm)程
度のものが要求される。
[0003] There are various methods for producing a thin film. Among them, the sputtering method is an excellent method in terms of mass productivity and cost, and is a film forming method widely used industrially. When the above-mentioned dielectric thin film, pyroelectric thin film, piezoelectric thin film and the like are used for industrial applications, they are usually formed uniformly in a circular area having a diameter of at least about 2.5 inches (about 6.35 cm). In order to produce such a thin film by the sputtering method, a sputter target having a larger size, that is, a diameter of at least about 3 inches (about 7.62 cm) is required.

【0004】鉛含有ペロブスカイト型複合酸化物材料を
製造する方法としては焼結法が考えられるが、鉛含有量
の多い材料、特にチタン酸鉛(PbTiO3)は通常の
外熱式焼結法では焼結し難い。これは、高温から室温へ
の冷却過程で500℃近傍の相転移温度を通過したとき
に生じるc軸長とそれに垂直な方向のa軸長の変化量の
違いが大きく、かつ室温においてはさらにこの軸長比が
大きくなる(c/a=1.065)ために、冷却過程で
大きな内部応力が発生し、亀裂等が発生し易くなるから
である。また揮発性のPbを含み、高温でPbOの一部
が組成から失われるため、高温での通常の電気炉による
外熱式焼結は組成制御の観点から不利である。
A sintering method can be considered as a method for producing a lead-containing perovskite-type composite oxide material. However, a material having a high lead content, particularly lead titanate (PbTiO 3 ), can be produced by a conventional external thermal sintering method. Hard to sinter. This is because the difference between the c-axis length and the a-axis length in the direction perpendicular to the c-axis length when passing through a phase transition temperature near 500 ° C. in the process of cooling from high temperature to room temperature is large, and further at room temperature, This is because the axial length ratio becomes large (c / a = 1.065), so that a large internal stress is generated in the cooling process and cracks and the like are easily generated. In addition, since it contains volatile Pb and a part of PbO is lost from the composition at a high temperature, external heating sintering using a normal electric furnace at a high temperature is disadvantageous from the viewpoint of composition control.

【0005】従来は、燒結法によって鉛含有チタン酸複
合酸化物材料を得るためには、焼結性を上げるためにL
aをはじめとする異種元素を添加し、通常の電気炉等を
用いた外熱法により1200℃以上の高温で数時間焼結
させていた(特開平5−170531公報)。
[0005] Conventionally, in order to obtain a lead-containing titanate composite oxide material by a sintering method, it is necessary to improve the sinterability.
A different element such as "a" is added, and sintering is performed at a high temperature of 1200 DEG C. or more for several hours by an external heating method using a normal electric furnace or the like (Japanese Patent Application Laid-Open No. 5-170531).

【0006】しかしながら、異種元素を添加した焼結体
をスパッタターゲットとして用いると、作製した膜に添
加元素が混入するため、PbTiO3が本来的に有する
特性を持つ膜を作製できない。例えばPbTiO3の重
要な特性であるキュリー温度は、添加量のないもので約
490℃であるが、添加量を増すほど低下してしまう。
キュリー温度が低下すると温度による圧電特性の変化量
が大きくなり、例えば圧力センサとして正確に機能しな
くなる。
However, when a sintered body to which a different element is added is used as a sputter target, the added element is mixed into the formed film, so that a film having characteristics inherent to PbTiO 3 cannot be manufactured. For example, the Curie temperature, which is an important property of PbTiO 3 , is about 490 ° C. without any added amount, but decreases as the added amount increases.
When the Curie temperature decreases, the amount of change in the piezoelectric characteristics due to the temperature increases, and for example, it does not function correctly as a pressure sensor.

【0007】特開平10−251070号公報には、酸
化物微粒子に直流パルス電流を印加して放電プラズマ焼
結することによって、粒成長を生じさせることなく高密
度の焼結体を作製する方法が開示されている。この公報
では、具体的な方法としては、実施例1では共沈法で得
られたBaTiO3微粒子を原料とし、実施例2では共
沈法で得られたNaZr2(PO43微粒子を原料とし
て、それそれ4000Aの電流を通電して1000〜1
100℃で焼結体を得ている。しかしながら、この様な
原料粉末を用いて放電プラズマ焼結する方法では、実施
例に記載された直径2cm程度の治具を用いる場合に
は、高強度の焼結体を得ることが可能であるが、スパッ
タターゲットとして適する大型の焼結体を製造する場合
には、十分な強度を有する焼結体を得ることができな
い。しかも、この様な高温で焼結する場合には、焼結時
にPbOが脱離するので、理論比の鉛含有ペロブスカイ
ト型複合酸化物焼結体を得ることができない。
Japanese Patent Application Laid-Open No. H10-251070 discloses a method for producing a high-density sintered body without causing grain growth by applying a DC pulse current to oxide fine particles and performing discharge plasma sintering. It has been disclosed. In this publication, as a specific method, in Example 1, BaTiO 3 fine particles obtained by a coprecipitation method were used as a raw material, and in Example 2, NaZr 2 (PO 4 ) 3 fine particles obtained by a coprecipitation method were used as a raw material. As a result, a current of 4000 A is applied to each of them,
A sintered body was obtained at 100 ° C. However, in the method of spark plasma sintering using such a raw material powder, a high-strength sintered body can be obtained when the jig having a diameter of about 2 cm described in the embodiment is used. In the case of producing a large-sized sintered body suitable as a sputter target, a sintered body having sufficient strength cannot be obtained. Moreover, when sintering at such a high temperature, PbO is desorbed during sintering, so that a lead-containing perovskite-type composite oxide sintered body having a stoichiometric ratio cannot be obtained.

【0008】また、特許公報第3030359号には、
単分散のPbTiO3粉末を放電プラズマ焼結すること
による高密度のチタン酸鉛多結晶焼結体の製造方法が記
載されている。この方法では、単分散の粒径分布に近い
(粒径分布幅の狭い)酸化物微粒子を用い、焼結時に5
00〜1500Aという電流を印加している。しかしな
がら、この様な単分散の粒径分布を持つ原料を用いる
と、スパッタターゲットとして使用可能な大型の焼結体
とする場合には、強度が不足して簡単に崩壊してしま
う。
[0008] Patent Publication No. 3030359 discloses that
A method for producing a high-density lead titanate polycrystalline sintered body by spark plasma sintering a monodispersed PbTiO 3 powder is described. In this method, oxide fine particles having a particle size distribution close to a monodisperse particle size (narrow particle size distribution width) are used.
A current of 00 to 1500 A is applied. However, when a raw material having such a monodispersed particle size distribution is used, when a large sintered body that can be used as a sputter target is formed, the strength is insufficient and the material easily collapses.

【0009】以上の様に、スパッタターゲットとしての
使用に適する直径8cm程度以上の大型の鉛含有ペロブ
スカイト型複合酸化物材料を得るためには、異種元素を
添加することなく、高密度のPbTiO3、Pb(Z
r,Ti)O3等の鉛含有ペロブスカイト型複合酸化物
焼結体を安定に作製することが求められるが、従来の方
法では、このような焼結体を短時間で作製するのは困難
であったため、商用ベースでのターゲットは比較的高価
となり、これがPbTiO3等の薄膜の低コスト化を妨
げる要因の一つになっている。
As described above, in order to obtain a large lead-containing perovskite-type composite oxide material having a diameter of about 8 cm or more suitable for use as a sputter target, high-density PbTiO 3 , Pb (Z
It is required to stably produce a lead-containing perovskite-type composite oxide sintered body such as (r, Ti) O 3, but it is difficult to produce such a sintered body in a short time by a conventional method. For this reason, commercial targets are relatively expensive, and this is one of the factors that hinder the cost reduction of thin films such as PbTiO 3 .

【0010】[0010]

【発明が解決しようとする課題】本発明の主な目的は、
スパッタ法による成膜用ターゲットとして適する大型で
しかも高密度の鉛含有ペロブスカイト型複合酸化物焼結
体を簡単に製造できる方法を提供することである。
SUMMARY OF THE INVENTION The main object of the present invention is to:
An object of the present invention is to provide a method for easily producing a large-sized and high-density lead-containing perovskite-type composite oxide sintered body suitable as a film-forming target by a sputtering method.

【0011】[0011]

【課題を解決するための手段】本発明者は、上記のよう
な従来技術の問題に鑑みて鋭意研究を重ねた結果、サブ
ミクロンの平均粒径を持ち、粒径分布幅の比較的広い鉛
含有ペロブスカイト型複合酸化物粉を出発原料とし、そ
の粉末に加圧下で直流パルス電流を通電して、通電焼結
させる場合には、大型で高密度の鉛含有ペロブスカイト
型複合酸化物焼結体を短時間で作製できることを見出
し、ここに本発明を完成するに至った。
The present inventors have conducted intensive studies in view of the above-mentioned problems of the prior art, and as a result, have found that lead having an average particle size of submicron and having a relatively wide particle size distribution width. When a powdered perovskite-type composite oxide powder is used as a starting material and a DC pulse current is applied to the powder under pressure to conduct electric sintering, a large, high-density lead-containing perovskite-type composite oxide sintered body is used. They have found that they can be manufactured in a short time, and have now completed the present invention.

【0012】即ち、本発明は、以下の鉛含有ペロブスカ
イト型複合酸化物焼結体の製造方法、及びスパッタター
ゲットを提供するものである。 1.平均粒径1μm未満且つ粒径分布の標準偏差が0.
1μm以上の鉛含有ペロブスカイト型複合酸化物粉末を
原料とし、加圧下で直流パルス電流により通電焼結させ
ることを特徴とする鉛含有ペロブスカイト型複合酸化物
焼結体の製造方法。 2.上記項1の方法で通電焼結させた後、熱処理するこ
とを特徴とする鉛含有ペロブスカイト型複合酸化物焼結
体の製造方法。 3.10〜40MPaの圧力下で600〜1200℃で
通電焼結させる上記項1又は2に記載の鉛含有ペロブス
カイト型複合酸化物焼結体の製造方法。 4.上記項1〜3のいずれかの方法で得られた鉛含有ペ
ロブスカイト型複合酸化物焼結体からなるスパッタター
ゲット。
That is, the present invention provides the following method for producing a lead-containing perovskite-type composite oxide sintered body, and a sputter target. 1. The average particle size is less than 1 μm and the standard deviation of the particle size distribution is 0.
A method for producing a lead-containing perovskite-type composite oxide sintered body, which comprises conducting a lead-containing perovskite-type composite oxide powder having a particle size of 1 μm or more as a raw material and applying a DC pulse current under pressure. 2. Item 4. A method for producing a lead-containing perovskite-type composite oxide sintered body, which is heat-treated after being electrically sintered by the method of the above item 1. 3. The method for producing a lead-containing perovskite-type composite oxide sintered body according to the above item 1 or 2, wherein the sintered body is electrically sintered at 600 to 1200 ° C. under a pressure of 10 to 40 MPa. 4. A sputter target comprising a lead-containing perovskite-type composite oxide sintered body obtained by any one of the above items 1 to 3.

【0013】[0013]

【発明の実施の形態】本発明の鉛含有ペロブスカイト型
複合酸化物焼結体の製造方法は、平均粒径1μm未満且
つ粒径分布の標準偏差が0.1μm以上の鉛含有ペロブ
スカイト型複合酸化物粉末を原料とし、加圧下で直流パ
ルス電流により通電焼結させる方法である。
BEST MODE FOR CARRYING OUT THE INVENTION A method for producing a lead-containing perovskite-type composite oxide sintered body according to the present invention comprises a lead-containing perovskite-type composite oxide having an average particle diameter of less than 1 μm and a standard deviation of particle diameter distribution of 0.1 μm or more. This is a method in which powder is used as a raw material and current is sintered by applying a DC pulse current under pressure.

【0014】以下、本発明の鉛含有ペロブスカイト型複
合酸化物焼結体の製造方法について詳細に説明する。鉛含有ペロブスカイト型複合酸化物粉末 出発原料である鉛含有ペロブスカイト型複合酸化物粉末
は、平均粒径が1μm未満であって、粒径分布の標準偏
差が0.1μm以上であることが必要である。この様な
粒径が小さくしかも粒径分布幅の広い原料を用いること
によって原料粉末が密に充填され、これを通電焼結する
ことによって、直径8cm以上の大型の焼結体であって
も、充分な強度を有する高密度焼結体とすることができ
る。
Hereinafter, the method for producing the lead-containing perovskite-type composite oxide sintered body of the present invention will be described in detail. Lead-containing perovskite-type composite oxide powder The lead-containing perovskite-type composite oxide powder as a starting material must have an average particle size of less than 1 μm and a standard deviation of the particle size distribution of 0.1 μm or more. . By using such a raw material having a small particle size and a wide particle size distribution width, the raw material powder is densely packed, and by sintering the raw material, even a large sintered body having a diameter of 8 cm or more can be obtained. A high-density sintered body having sufficient strength can be obtained.

【0015】鉛含有ペロブスカイト型複合酸化物粉末と
しては、例えば、PbTiO3、Pb(ZrxTi1-x
3、(PbxLa1-x)(ZryTi1-y)O3等の鉛含有
チタン酸複合酸化物の他、Pb(MgxNb1-x)O3
Pb(MnxNb1-x)O3等を例示できる。これらの複
合酸化物の内で、Pb(ZrxTi1-x)O3について
は、0<x<1とすることができ、特に高圧電定数の点
からは、0.4≦x≦0.6程度であることが好まし
い。また、(PbxLa1-x)(ZryTi1-y)O3につ
いては、0<x<1及び0<y<1とすることができ、
特に高電気光学係数の点からは、0.85≦x≦0.9
5、0.4≦y≦0.6程度であることが好ましい。P
b(MgxNb1-x)O3については、0<x<1とする
ことができ、高圧電定数の点からは、0.3≦x≦0.
4程度であることが好ましい。Pb(MnxNb1-x)O
3については、0<x<1とすることができ、高圧電定
数の点からは、0.3≦x≦0.4程度であることが好
ましい。
Examples of the lead-containing perovskite composite oxide powder include PbTiO 3 and Pb (Zr x Ti 1-x ).
O 3, (Pb x La 1 -x) (Zr y Ti 1-y) other O 3 and lead-containing titanate composite oxide, Pb (Mg x Nb 1- x) O 3,
Pb (Mn x Nb 1-x ) O 3 or the like can be mentioned. Among these composite oxides, Pb (Zr x Ti 1-x ) O 3 can satisfy 0 <x <1, and from the viewpoint of high piezoelectric constant, 0.4 ≦ x ≦ 0 It is preferably about 0.6. Further, it is possible to for the (Pb x La 1-x) (Zr y Ti 1-y) O 3, 0 <x <1 and 0 <y <1,
In particular, from the viewpoint of high electro-optic coefficient, 0.85 ≦ x ≦ 0.9
5, it is preferable that 0.4 ≦ y ≦ 0.6. P
For b (Mg x Nb 1-x ) O 3 , 0 <x <1. From the viewpoint of high piezoelectric constant, 0.3 ≦ x ≦ 0.
It is preferably about 4. Pb (Mn x Nb 1-x ) O
Regarding 3 , it is possible to satisfy 0 <x <1, and from the viewpoint of a high piezoelectric constant, it is preferable that 0.3 ≦ x ≦ 0.4.

【0016】鉛含有ペロブスカイト型複合酸化物粉末の
製造方法については特に限定的ではなく、公知の方法に
従って上記した条件を満足する複合酸化物粉末を製造す
ればよいが、例えば、PbTiO3を例にとれば、鉛の
原料としてのPbOと、チタンの原料としてのH2Ti
3を、鉛がやや過剰になる程度に蒸留水中で混合し、
これにKOH等を加えてアルカリ過剰とした後、この混
合液を200〜220℃程度で5〜10時間程度水熱処
理することによって、上記した平均粒径及び粒径分布を
有するPbTiO3粉末を得ることができる。
The method for producing the lead-containing perovskite-type composite oxide powder is not particularly limited, and a composite oxide powder satisfying the above-mentioned conditions may be produced according to a known method. For example, PbTiO 3 is used as an example. Then, PbO as a raw material for lead and H 2 Ti as a raw material for titanium
O 3 is mixed in distilled water to an extent that lead is slightly excessive,
After adding KOH or the like to the mixture to make it excessive in alkali, the mixture is subjected to hydrothermal treatment at about 200 to 220 ° C. for about 5 to 10 hours to obtain a PbTiO 3 powder having the above-described average particle size and particle size distribution. be able to.

【0017】通電焼結法 本発明方法では、上記した鉛含有ペロブスカイト型複合
酸化物粉末を所定の形状に成形した後、 加圧下で直流
パルス電流により通電焼結させることによって、高密度
焼結体を製造することができる。
In the method of the present invention, the above-described lead-containing perovskite-type composite oxide powder is formed into a predetermined shape, and then subjected to current sintering under a pressure by a DC pulse current to obtain a high-density sintered body. Can be manufactured.

【0018】通電焼結方法としては、例えば、放電プラ
ズマ焼結法、放電焼結法、或いはプラズマ活性化焼結法
等を含むパルス通電加圧焼結法を用いて、所定の形状の
治具に原料粉末を充填し圧縮して圧粉体とし、この圧粉
体を10〜40MPa程度、好ましくは20〜40MP
a程度で加圧しながら、パルス幅2〜3ミリ秒程度、周
期3Hz〜300kHz程度、好ましくは10Hz〜1
00Hz程度のパルス状のON−OFF直流電流を通電
すればよい。この様な方法で直流パルス電流を通電する
ことによって、充填された原料粉末の粒子間隙に生じる
放電現象を利用して、放電プラズマ、放電衝撃圧力等に
よる粒子表面の浄化活性化作用及び電場により生じる電
界拡散効果やジュール熱による熱拡散効果、加圧による
塑性変形圧力などが焼結の駆動力となって焼結が促進さ
れる。
As a current sintering method, for example, a jig having a predetermined shape is used by using a pulse current pressure sintering method including a discharge plasma sintering method, a discharge sintering method, or a plasma activated sintering method. The raw material powder is filled and compressed into a green compact, and this green compact is about 10 to 40 MPa, preferably 20 to 40 MPa.
a, a pulse width of about 2 to 3 milliseconds, a cycle of about 3 Hz to 300 kHz, preferably 10 Hz to 1
A pulsed ON-OFF DC current of about 00 Hz may be applied. By applying a DC pulse current in such a manner, the discharge phenomena generated in the particle gaps of the filled raw material powder are utilized, and the cleaning action of the particle surface by discharge plasma, discharge impact pressure, etc. and the electric field are generated. The electric field diffusion effect, the thermal diffusion effect by Joule heat, the plastic deformation pressure by pressurization, etc. serve as the driving force for sintering, and sintering is promoted.

【0019】焼結温度は、600〜1200℃程度とす
ることが好ましく、700〜1000℃程度とすること
がより好ましく、700〜800℃程度とすることが更
に好ましい。この様な焼結温度の範囲内から、目的とす
る鉛含有ペロブスカイト型複合酸化物焼結体の種類に応
じて、適切な温度範囲を選択すればよい。例えば、Pb
TiO3焼結体を目的物とする場合には、700〜85
0℃程度の焼結温度とすることが好ましい。
The sintering temperature is preferably about 600 to 1200 ° C., more preferably about 700 to 1000 ° C., and even more preferably about 700 to 800 ° C. An appropriate temperature range may be selected from the range of the sintering temperature according to the kind of the target lead-containing perovskite-type composite oxide sintered body. For example, Pb
When the target material is a TiO 3 sintered body, 700 to 85
Preferably, the sintering temperature is about 0 ° C.

【0020】焼結温度が低すぎると、焼結体の強度が不
足して崩壊しやすく、一方、焼結温度が高すぎると、試
料の一部がPbOとして揮発し、組成制御が困難になる
ので好ましくない。
If the sintering temperature is too low, the strength of the sintered body is insufficient and it is easy to collapse. On the other hand, if the sintering temperature is too high, part of the sample is volatilized as PbO, making it difficult to control the composition. It is not preferable.

【0021】焼結温度は、直流パルス電流のピーク電流
値によって調整することができ、同一の焼結治具を用い
た場合には、パルス電流のピーク電流値を高くすると焼
結温度が上昇するので、焼結治具の温度をモニターしな
がら電流値を増減させ、所定の温度になるようにピーク
電流値を制御すればよい。例えば、直径8cm程度、厚
さ2.5cm程度の大型の円筒状治具を用いる場合に
は、5000〜10000A程度、好ましくは6000
〜8000A程度のピーク電流値のパルス電流を通電す
ることによって、上記した範囲の焼結温度とすることが
できる。
The sintering temperature can be adjusted by the peak current value of the DC pulse current. When the same sintering jig is used, the sintering temperature rises when the peak current value of the pulse current is increased. Therefore, the current value may be increased or decreased while monitoring the temperature of the sintering jig, and the peak current value may be controlled to a predetermined temperature. For example, when a large cylindrical jig having a diameter of about 8 cm and a thickness of about 2.5 cm is used, about 5000 to 10000 A, preferably about 6000 A
By applying a pulse current having a peak current value of about 8000 A, the sintering temperature in the above range can be obtained.

【0022】焼結時間については、通常、1〜5分間程
度、好ましくは2〜3分程度とすればよい。焼結時間が
短すぎると充分に焼結が進まず、一方焼結時間が長すぎ
ると、試料の一部がPbOとして揮発して組成のずれが
生じやすいので好ましくない。
The sintering time is usually about 1 to 5 minutes, preferably about 2 to 3 minutes. If the sintering time is too short, the sintering does not proceed sufficiently. On the other hand, if the sintering time is too long, a part of the sample is volatilized as PbO, which is not preferable because the composition easily shifts.

【0023】上記した通電焼結法によって、目的とする
高密度の鉛含有ペロブスカイト型複合酸化物焼結体を得
ることができるが、例えば、グラファイト製の焼結治具
を用いた場合には、得られる焼結体の表面近傍には、治
具の成分である導電性のグラファイトが含まれる。この
様な焼結体表面近傍に含まれるグラファイト等の不純物
は、焼結体表面を研磨するか、或いは、焼結体を大気中
で300〜2000℃程度、好ましくは500〜150
0℃程度に30分〜6時間程度保持して熱処理すること
により、容易に取り除くことができる。熱処理に際して
は、特性の変化を防止するために、焼結体をこれと反応
しないアルミナなどの容器に収容し、1〜50℃/分程
度、好ましくは2〜15℃/分程度の速度で所定の熱処
理温度まで昇温し、保持した後、昇温時と同様の速度で
降温することが好ましい。鉛含有ペロブスカイト型複合酸化物焼結体 本発明方法によれば、通常、理論密度の85%程度以上
という高密度の焼結体を得ることが可能である。そし
て、得られる鉛含有ペロブスカイト型複合酸化物焼結体
は、スパッタターゲットとして適する直径約8cm以
上、厚さ約1mm以上(好ましくは3mm以上)の円筒
状の大型焼結体であっても、充分な機械的強度を有する
ものとなる。
By the above-described current sintering method, a target high-density lead-containing perovskite-type composite oxide sintered body can be obtained. For example, when a graphite sintering jig is used, In the vicinity of the surface of the obtained sintered body, conductive graphite which is a component of the jig is included. Such impurities such as graphite contained in the vicinity of the surface of the sintered body can be obtained by polishing the surface of the sintered body, or by sintering the sintered body in air at about 300 to 2000 ° C., preferably 500 to 150 ° C.
It can be easily removed by heat treatment at about 0 ° C. for about 30 minutes to 6 hours. At the time of heat treatment, in order to prevent a change in characteristics, the sintered body is housed in a container such as alumina which does not react with the sintered body and is subjected to a predetermined speed of about 1 to 50 ° C./min, preferably about 2 to 15 ° C./min. After the temperature is raised to and maintained at the heat treatment temperature, it is preferable to lower the temperature at the same rate as when the temperature was raised. According to lead-containing perovskite-type composite oxide sintered body present invention method, it is usually possible to obtain a dense sintered body of not less than about 85% of theoretical density. The obtained lead-containing perovskite-type composite oxide sintered body is sufficiently large even if it is a large cylindrical sintered body having a diameter of about 8 cm or more and a thickness of about 1 mm or more (preferably 3 mm or more) suitable as a sputter target. It has high mechanical strength.

【0024】本発明方法で得られる焼結体は、更なる加
工を施さずにそのままスパッタターゲットとして使用す
ることができる。
The sintered body obtained by the method of the present invention can be used as a sputter target without further processing.

【0025】スパッタによる成膜の条件は特に限定され
るものではなく、例えば、アルゴンと酸素の混合ガスフ
ロー中、100W以上の印加電力で数時間スパッタする
ことにより、基板上にPbTiO3薄膜を作製すること
ができる。単相のペロブスカイト型PbTiO3薄膜
は、例えば、スパッタ中またはスパッタ後に基板を50
0〜700℃に熱処理することにより得ることができ
る。
The conditions for film formation by sputtering are not particularly limited. For example, a PbTiO 3 thin film is formed on a substrate by sputtering for several hours with an applied power of 100 W or more in a mixed gas flow of argon and oxygen. can do. A single-phase perovskite-type PbTiO 3 thin film can be formed, for example, by sputtering the substrate 50 times during or after sputtering.
It can be obtained by heat treatment at 0 to 700 ° C.

【0026】[0026]

【発明の効果】本発明の鉛含有ペロブスカイト型複合酸
化物焼結体の製造方法によれば、スパッタターゲットに
好適な大型で高密度の鉛含有ペロブスカイト型複合酸化
物焼結体を、従来の外熱式焼結法に比べて短時間で安定
に作製できる。この様な方法で得られる焼結体は、強誘
電体、焦電体、圧電体等として有用な鉛含有ペロブスカ
イト型複合酸化物薄膜を作製するためのスパッタターゲ
ットとして有用性が高いものである。
According to the method for producing a lead-containing perovskite-type composite oxide sintered body of the present invention, a large-sized, high-density lead-containing perovskite-type composite oxide sintered body suitable for a sputter target can be obtained by a conventional method. It can be manufactured more stably in a shorter time than the thermal sintering method. The sintered body obtained by such a method is highly useful as a sputter target for producing a lead-containing perovskite-type composite oxide thin film useful as a ferroelectric, pyroelectric, piezoelectric, or the like.

【0027】[0027]

【実施例】以下、実施例を挙げて本発明を更に詳細に説
明する。 実施例1 PbOとH2TiO3をPb/Ti(原子比)=1.05
となるように混合し、これにH2TiO3と等モル量のK
OHを加えた混合粉末を蒸留水に入れ、220℃で7時
間水熱処理して、PbTiO3粉末を得た。得られたP
bTiO3粉末の平均粒径は0.1μm、粒径分布の標
準偏差は0.1μmであった。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. Example 1 PbO and H 2 TiO 3 were mixed with Pb / Ti (atomic ratio) = 1.05.
And H 2 TiO 3 in an equimolar amount of K
The mixed powder to which OH was added was placed in distilled water and subjected to hydrothermal treatment at 220 ° C. for 7 hours to obtain a PbTiO 3 powder. P obtained
The average particle size of the bTiO 3 powder was 0.1 μm, and the standard deviation of the particle size distribution was 0.1 μm.

【0028】上記PbTiO3粉末を原料として、以下
の方法で通電焼結を行った。
Using the above PbTiO 3 powder as a raw material, electric current sintering was performed by the following method.

【0029】通電焼結機としては、住友石炭鉱業(株)
製放電プラズマ焼結機SPS NK9.40 Mark
7及びNK3.20 Mark4を用いた。焼結治具と
しては、グラファイト製で直径8cmの円筒形のものを
用いた。この治具に、上記PbTiO3粉末約110g
を均一に入れ、30〜50MPaの圧力を印加した。更
に治具に6000〜8000Aの直流パルス電流を印加
することにより試料周辺を昇温速度約100〜140℃
/分で700、800、900又は1000℃に加熱し
た。この状態を2分間保持した後、電流及び圧力印加を
止め、試料を室温まで冷却した。
As an electric sintering machine, Sumitomo Coal Mining Co., Ltd.
Plasma Sintering Machine SPS NK9.40 Mark
7 and NK 3.20 Mark4 were used. As the sintering jig, a cylindrical one having a diameter of 8 cm made of graphite was used. About 110 g of the above PbTiO 3 powder was added to this jig.
And a pressure of 30 to 50 MPa was applied. Further, by applying a DC pulse current of 6000 to 8000 A to the jig, a temperature rise rate around the sample is about 100 to 140 ° C.
Per minute to 700, 800, 900 or 1000 ° C. After maintaining this state for 2 minutes, the application of current and pressure was stopped, and the sample was cooled to room temperature.

【0030】この状態で取り出した焼結体は直径約8c
m、厚さ約3mmの円筒状であり、黒色で電気伝導性を
有し、X線回折から治具のグラファイトが含まれている
ことが確認できた。グラファイトを含有することは、エ
ネルギー分散型X線分析(EDX)測定結果でPb、T
i、Oの他にCが認められたことからも明らかである。
The sintered body taken out in this state has a diameter of about 8c.
m, a cylindrical shape having a thickness of about 3 mm, a black color having electrical conductivity, and X-ray diffraction confirmed that graphite of the jig was included. The inclusion of graphite is confirmed by Pb, T by energy dispersive X-ray analysis (EDX) measurement results.
It is clear from the fact that C was recognized in addition to i and O.

【0031】この焼結体を室温から700℃まで2.3
℃/分で昇温し、700℃で2時間保持した後、2.3
℃/分で室温まで降温した。
The sintered body was cooled from room temperature to 700 ° C. by 2.3.
The temperature was raised at a rate of 700 ° C./min and maintained at 700 ° C. for 2 hours.
The temperature was lowered to room temperature at a rate of ° C / min.

【0032】熱処理後の焼結体は、X線回折ではPbT
iO3のピークのみとなり、EDXからはPb、Ti、
Oのみとなっており、PbTiO3焼結体が得られたこ
とが確認できた。
[0032] The sintered body after the heat treatment has a PbT
Only the peak of iO 3 is obtained, and Pb, Ti,
Only O was found, and it was confirmed that a PbTiO 3 sintered body was obtained.

【0033】熱処理後の各試料のX線回折パターンを図
1に示す。いずれも正方晶のPbTiO3であった。焼
結温度900℃以上又は加圧力50MPa以上の通電焼
結の試料にTiO2(ルチル型)のピークが認められた
が、これは通電焼結中にPbが一部蒸散したためと考え
られる。得られた焼結体は、焼結温度900℃以上又は
加圧力50MPa以上のものについて亀裂が確認され
た。これは焼結中及び冷却過程でPbTiO3試料と黒
鉛治具の熱膨張率の差が焼結体中に残留応力を生じさせ
たことや、Pb欠損による組成不均一の生成が原因と考
えられる。
FIG. 1 shows an X-ray diffraction pattern of each sample after the heat treatment. All were tetragonal PbTiO 3 . The peak of TiO 2 (rutile type) was observed in the sample of the electric sintering at a sintering temperature of 900 ° C. or more or a pressure of 50 MPa or more, which is considered to be because Pb partially evaporated during the electric sintering. In the obtained sintered body, cracks were confirmed for those having a sintering temperature of 900 ° C. or more or a pressure of 50 MPa or more. This is considered to be due to the difference in the thermal expansion coefficient between the PbTiO 3 sample and the graphite jig during sintering and the cooling process, which caused residual stress in the sintered body, and the non-uniform composition due to Pb deficiency. .

【0034】また、原料として用いたPbTiO3粉末
と通電焼結によって得られた各焼結体について、格子定
数(a,c軸長)とEDXにより見積もられたPb/T
i原子比を下記表1に示す。表中、1.00(1)とあ
るのは、1.00±0.01を意味し、その他も同様で
ある。表中には、PbTiO3のa,c軸長の報告値
(JCPDS 6−452)も示す。
For the PbTiO 3 powder used as a raw material and each sintered body obtained by electric current sintering, the lattice constants (a and c axis lengths) and the Pb / T estimated by EDX were used.
The i atomic ratio is shown in Table 1 below. In the table, “1.00 (1)” means 1.00 ± 0.01, and the same applies to the others. The table also shows the reported values of the a and c axis lengths of PbTiO 3 (JCPDS 6-452).

【0035】[0035]

【表1】 [Table 1]

【0036】以上の結果から判るように、通電焼結によ
って得られた各焼結体は、a,c軸長は、報告値と良い
一致を示した。また、各試料のPb/Tiも理論値に近
い値であった。
As can be seen from the above results, in each sintered body obtained by the electric sintering, the a and c axis lengths showed good agreement with the reported values. Further, Pb / Ti of each sample was close to the theoretical value.

【0037】得られた各焼結体について焼結温度と密度
の関係を図2のグラフに示す。図2に示す通り、800
℃、2分(加圧力40MPa)の通電焼結による焼結体
(亀裂なし)は、密度6.9g/cm3であり、理論密
度(7.97g/cm3)の86%という高密度であっ
た。
FIG. 2 is a graph showing the relationship between the sintering temperature and the density of each of the obtained sintered bodies. As shown in FIG.
The sintered body (no cracks) obtained by current-carrying sintering at 2 ° C. for 2 minutes (pressing force of 40 MPa) has a density of 6.9 g / cm 3, which is 86% of the theoretical density (7.97 g / cm 3 ). there were.

【0038】尚、同じPbTiO3出発粉末を、通常の
電気炉による外熱式で1200℃、2時間焼結したもの
は、密度6.1g/cm3(理論密度の77%)であ
り、同じPbTiO3出発粉末を30MPaの圧力下、
ホットプレス法により1000℃で1分間焼結したもの
は密度6.1g/cm3(理論密度の77%)であり、
何れも低密度であった。
The same PbTiO 3 starting powder sintered at 1200 ° C. for 2 hours by an external heating method using a normal electric furnace has a density of 6.1 g / cm 3 (77% of the theoretical density). The PbTiO 3 starting powder was pressed under a pressure of 30 MPa.
What was sintered at 1000 ° C. for 1 minute by the hot press method had a density of 6.1 g / cm 3 (77% of the theoretical density).
All were low density.

【0039】また、同じPbTiO3出発粉末を30M
Paの圧力下、ホットプレス法により1000℃で30
分間焼結したものは密度7.1g/cm3(理論密度の
89%)となったが、焼結体表面にPb塊が析出し、焼
結体のPb/Ti比が0.45という非量論比の焼結体
となった。
The same PbTiO 3 starting powder was mixed with 30M
30 ℃ at 1000 ℃ by hot press method under pressure of Pa
After sintering for one minute, the density became 7.1 g / cm 3 (89% of the theoretical density), but Pb lumps precipitated on the surface of the sintered body, and the sintered body had a Pb / Ti ratio of 0.45. A stoichiometric sintered body was obtained.

【0040】スパッタ法による成膜試験 40MPaの加圧下、800℃、2分の通電焼結により
作製したPbTiO3焼結体をスパッタターゲットとし
て用いて、以下の方法でスパッタ法により成膜試験を行
った。
Film formation test by sputtering method A PbTiO 3 sintered body produced by current sintering at 800 ° C. for 2 minutes under a pressure of 40 MPa is used as a sputter target to perform a film formation test by the following method. Was.

【0041】基板としては石英ガラスを用い、アルゴン
3.0cm3/分、酸素3.0cm3/分のガスフローで
内圧を1Paに制御し、150Wの印加電力で3時間ス
パッタした。得られた膜の厚みは1.2μmで、これは
成膜速度6.7nm/分に相当する。
Using quartz glass as the substrate, sputtering was performed for 3 hours at an applied power of 150 W while controlling the internal pressure to 1 Pa with a gas flow of 3.0 cm 3 / min of argon and 3.0 cm 3 / min of oxygen. The thickness of the film obtained was 1.2 μm, which corresponds to a film formation rate of 6.7 nm / min.

【0042】図3に、得られた薄膜のX線回折図と、こ
れを600、650又は700℃で2時間熱処理した薄
膜のX線回折図を示す。成膜直後はアモルファスである
が、600℃の熱処理でパイロクロア相が混在した薄膜
が得られ、650℃の熱処理でほぼ単相のペロブスカイ
ト型PbTiO3薄膜が得られた。
FIG. 3 shows an X-ray diffraction pattern of the obtained thin film and an X-ray diffraction pattern of the thin film which was heat-treated at 600, 650 or 700 ° C. for 2 hours. Although the film was amorphous immediately after the film formation, a thin film mixed with a pyrochlore phase was obtained by heat treatment at 600 ° C., and a substantially single-phase perovskite-type PbTiO 3 thin film was obtained by heat treatment at 650 ° C.

【0043】形成された薄膜の格子定数(a,c軸長)
とEDXにより見積もられたPb/Ti原子比を下記表
2に示す。表2に示す通り、Pb/Ti比は、650℃
の熱処理で1.00(1)(1.00±0.01を意味
する。以下同様)であり、この条件でほぼ量論比のPb
TiO3が得られることが分かった。更に高温の熱処理
では、例えば700℃の熱処理でPbTi37の相が認
められ、Pb/Ti比も0.81(2)となった。
Lattice constant (a, c axis length) of the formed thin film
And the Pb / Ti atomic ratio estimated by EDX and EDX are shown in Table 2 below. As shown in Table 2, the Pb / Ti ratio was 650 ° C.
Is 1.00 (1) (meaning 1.00 ± 0.01; the same applies hereinafter) under this heat treatment.
It was found that TiO 3 was obtained. Further, in the heat treatment at a higher temperature, for example, a phase of PbTi 3 O 7 was recognized at a heat treatment of 700 ° C., and the Pb / Ti ratio was 0.81 (2).

【0044】[0044]

【表2】 [Table 2]

【0045】以上から、本発明方法で得られたPbTi
3焼結体はスパッタターゲットとして使用可能である
ことが確認できた。
From the above, the PbTi obtained by the method of the present invention was obtained.
It was confirmed that the O 3 sintered body could be used as a sputter target.

【0046】比較例1 PbOとTiO2の混合粉を電気炉で1200℃で2時
間固相反応させて平均粒径1μmのPbTiO3粉末を
調製した。
Comparative Example 1 A mixed powder of PbO and TiO 2 was subjected to a solid-phase reaction in an electric furnace at 1200 ° C. for 2 hours to prepare a PbTiO 3 powder having an average particle size of 1 μm.

【0047】このPbTiO3粉末を用いて、実施例1
と同様の方法で800℃で2分間通電焼結(加圧力40
MPa)させた。得られた焼結体の密度は5.7g/c
3(理論密度の71%)であり、高密度の焼結体は得
られなかった 比較例2 水熱合成法により調製した平均粒径0.06μm、粒径
分布の標準偏差0.02μmのPbTiO3粉末を原料
として用い、実施例1と同様の方法で800〜1000
℃で2分間の通電焼結(加圧力40MPa)を行った
が、得られた焼結体は、脆く形状を保持できなかった。
Using this PbTiO 3 powder, Example 1
Sintering at 800 ° C for 2 minutes (pressing force 40
MPa). The density of the obtained sintered body is 5.7 g / c.
m 3 (71% of the theoretical density), and a high-density sintered body was not obtained. Comparative Example 2 An average particle size of 0.06 μm prepared by a hydrothermal synthesis method and a standard deviation of a particle size distribution of 0.02 μm. Using PbTiO 3 powder as a raw material, 800 to 1000
Although electric sintering (pressing force of 40 MPa) was performed at 2 ° C. for 2 minutes, the obtained sintered body was not brittle and could not maintain its shape.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られたPbTiO3焼結体と原料
粉末のX線回折パターンを示す図。
FIG. 1 is a view showing an X-ray diffraction pattern of a PbTiO 3 sintered body obtained in Example 1 and a raw material powder.

【図2】実施例1で得られたPbTiO3焼結体の焼結
温度と密度の関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the sintering temperature and the density of the PbTiO 3 sintered body obtained in Example 1.

【図3】通電焼結法で得たPbTiO3焼結体をターゲ
ットとして形成されたスパッタ薄膜のX線回折パターン
を示す図。
FIG. 3 is a view showing an X-ray diffraction pattern of a sputtered thin film formed by using a PbTiO 3 sintered body obtained by an electric current sintering method as a target.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田渕 光春 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 阿度 和明 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 蔭山 博之 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 市川 洌 茨城県つくば市並木1丁目2番地 工業技 術院機械技術研究所内 (72)発明者 鴇田 正雄 神奈川県川崎市高津区坂戸3丁目2番1号 株式会社イズミテックSCM事業部内 (72)発明者 川原 正和 神奈川県川崎市高津区坂戸3丁目2番1号 株式会社イズミテックSCM事業部内 (72)発明者 中山 幸弘 神奈川県川崎市高津区坂戸3丁目2番1号 株式会社イズミテックSCM事業部内 (72)発明者 宮本 真一 神奈川県川崎市高津区坂戸3丁目2番1号 株式会社イズミテックSCM事業部内 Fターム(参考) 4K029 AA09 BA02 BA17 BA50 DC09 GA01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mitsuharu Tabuchi 8-3-131 Midorigaoka, Ikeda-shi, Osaka Pref. Industrial Technology Institute Osaka Institute of Industrial Technology (72) Inventor Kazuaki Ado 1-chome Midorioka, Ikeda-shi, Osaka No.8-31 Industrial Technology Institute Osaka Industrial Technology Research Institute (72) Inventor Hiroyuki Kageyama 8-3-131 Midorioka Ikeda-shi Osaka Prefecture Industrial Technology Institute Osaka Industrial Technology Research Institute (72) Inventor Kiyoshi Ichikawa Tsukuba, Ibaraki Prefecture 1-2-2, Ichinamiki, Machinery Research Laboratory, Industrial Technology Institute (72) Inventor Masao Tokita 3-2-1, Sakado, Takatsu-ku, Kawasaki, Kanagawa Prefecture Izumi Tech SCM Division (72) Inventor Masakazu Kawahara Kanagawa 3-2-1 Sakado, Takatsu-ku, Kawasaki-shi Izumi Tech SCM Division (72) Inventor Yukihiro Nakayama Takatsu-ku, Kawasaki-shi, Kanagawa 3-2-1 Tomi, Izumitec SCM Division (72) Inventor Shinichi Miyamoto 3-2-1, Sakado, Takatsu-ku, Kawasaki-shi, Kanagawa F-term in Izumitec SCM Division 4K029 AA09 BA02 BA17 BA50 DC09 GA01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】平均粒径1μm未満且つ粒径分布の標準偏
差が0.1μm以上の鉛含有ペロブスカイト型複合酸化
物粉末を原料とし、加圧下で直流パルス電流により通電
焼結させることを特徴とする鉛含有ペロブスカイト型複
合酸化物焼結体の製造方法。
1. A lead-containing perovskite-type composite oxide powder having an average particle size of less than 1 μm and a standard deviation of a particle size distribution of 0.1 μm or more is used as a raw material, and is subjected to current sintering with a DC pulse current under pressure. For producing a lead-containing perovskite-type composite oxide sintered body.
【請求項2】請求項1の方法で通電焼結させた後、熱処
理することを特徴とする鉛含有ペロブスカイト型複合酸
化物焼結体の製造方法。
2. A method for producing a lead-containing perovskite-type composite oxide sintered body, which is heat-treated after being electrically sintered by the method of claim 1.
【請求項3】10〜40MPaの圧力下で600〜12
00℃で通電焼結させる請求項1又は2に記載の鉛含有
ペロブスカイト型複合酸化物焼結体の製造方法。
3. 600 to 12 under a pressure of 10 to 40 MPa.
The method for producing a lead-containing perovskite-type composite oxide sintered body according to claim 1 or 2, wherein the sintered body is electrically sintered at 00 ° C.
【請求項4】請求項1〜3のいずれかの方法で得られた
鉛含有ペロブスカイト型複合酸化物焼結体からなるスパ
ッタターゲット。
4. A sputter target comprising a lead-containing perovskite-type composite oxide sintered body obtained by the method according to claim 1.
JP2000279320A 2000-09-14 2000-09-14 Method for producing lead-containing perovskite complex oxide sintered body Expired - Lifetime JP4530114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000279320A JP4530114B2 (en) 2000-09-14 2000-09-14 Method for producing lead-containing perovskite complex oxide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000279320A JP4530114B2 (en) 2000-09-14 2000-09-14 Method for producing lead-containing perovskite complex oxide sintered body

Publications (2)

Publication Number Publication Date
JP2002087887A true JP2002087887A (en) 2002-03-27
JP4530114B2 JP4530114B2 (en) 2010-08-25

Family

ID=18764338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000279320A Expired - Lifetime JP4530114B2 (en) 2000-09-14 2000-09-14 Method for producing lead-containing perovskite complex oxide sintered body

Country Status (1)

Country Link
JP (1) JP4530114B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320894A (en) * 1992-05-15 1993-12-07 Mitsubishi Materials Corp Sputtering target material for production of multi component oxide ferroelectric thin film having lead-containing perovskite structure and its production
JPH0789759A (en) * 1993-07-27 1995-04-04 Sumitomo Chem Co Ltd Alumina for tape cast, alumina composition, alumina green sheet, alumina sintered plate and its production
JPH10251070A (en) * 1997-01-08 1998-09-22 Agency Of Ind Science & Technol High density sintering method of oxide fine particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320894A (en) * 1992-05-15 1993-12-07 Mitsubishi Materials Corp Sputtering target material for production of multi component oxide ferroelectric thin film having lead-containing perovskite structure and its production
JPH0789759A (en) * 1993-07-27 1995-04-04 Sumitomo Chem Co Ltd Alumina for tape cast, alumina composition, alumina green sheet, alumina sintered plate and its production
JPH10251070A (en) * 1997-01-08 1998-09-22 Agency Of Ind Science & Technol High density sintering method of oxide fine particle

Also Published As

Publication number Publication date
JP4530114B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
EP1457471B1 (en) Crystal oriented ceramics and production method of same
Wang et al. Synthesizing nanocrystalline Pb (Zn1/3Nb2/3) O3 powders from mixed oxides
US8269402B2 (en) BNT-BKT-BT piezoelectric composition, element and methods of manufacturing
US9039921B2 (en) Freestanding films with electric field-enhanced piezoelectric coefficients
US20080152530A1 (en) Method of preparing ferroelectric powders and ceramics
JP2008069051A (en) Piezoelectric ceramic and method of manufacturing the same
Oh et al. Fabrication and evaluation of lead-free piezoelectric ceramic LF4 thick film deposited by aerosol deposition method
CN100371298C (en) Grain oriented ceramics and production method thereof
Ichikawa et al. Fabrication and characterization of (100),(001)-oriented reduction-resistant lead-free piezoelectric (Ba, Ca) TiO3 ceramics using platelike seed crystals
JP6398771B2 (en) Piezoelectric composition and piezoelectric element
Funsueb et al. Electrical properties and microstructure of phase combination in BaTiO3-based Ceramics
Hayashi et al. Low-temperature sintering of LiBiO2-coated Pb (Mg1/3Nb2/3) O3-PbZrO3-PbTiO3 powders prepared by surface chemical modification method and their piezoelectric properties
JP2007084408A (en) Piezoelectric ceramic
CN107235724B (en) Piezoelectric ceramic sputtering target material, lead-free piezoelectric film, and piezoelectric film element
JP3007929B2 (en) High density sintering method for oxide fine particles
KR101981649B1 (en) Templates for textured BaTiO3-based lead-free piezoelectric ceramics and method for fabricating the same
Kong et al. Preparation and characterization of lead zirconate ceramics from high-energy ball milled powder
JP2002087887A (en) Method for manufacturing lead-containing perovskite type compound oxide sintered compact
US20090170685A1 (en) Method of producing a lead zirconium titanate-based sintered body, lead zirconium titanate-based sintered body, and lead zirconium titanate-based sputtering target
JPH11335825A (en) Sputtering target and its production
JP6299502B2 (en) Piezoelectric composition and piezoelectric element
JP3030359B1 (en) Lead-containing titanate composite oxide high-density polycrystalline sintered body having perovskite structure and method for producing the same
JP3932351B2 (en) Multi-component piezoelectric material manufacturing method
JP7064205B2 (en) Lead-free ferroelectric thin film
JP2003073173A (en) Method of manufacturing sintered compact and sintered compact and spattering terget using it

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050810

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051013

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070418

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4530114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term