JP4519520B2 - High Ni-base alloy welding wire - Google Patents

High Ni-base alloy welding wire Download PDF

Info

Publication number
JP4519520B2
JP4519520B2 JP2004156813A JP2004156813A JP4519520B2 JP 4519520 B2 JP4519520 B2 JP 4519520B2 JP 2004156813 A JP2004156813 A JP 2004156813A JP 2004156813 A JP2004156813 A JP 2004156813A JP 4519520 B2 JP4519520 B2 JP 4519520B2
Authority
JP
Japan
Prior art keywords
welding
wire
welding wire
corrosion resistance
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004156813A
Other languages
Japanese (ja)
Other versions
JP2005118875A (en
Inventor
竜一 本間
裕滋 井上
茂 大北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2004156813A priority Critical patent/JP4519520B2/en
Publication of JP2005118875A publication Critical patent/JP2005118875A/en
Application granted granted Critical
Publication of JP4519520B2 publication Critical patent/JP4519520B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Description

本発明は耐食性オーステナイト系ステンレス鋼、高合金の溶接に関し、詳しくは、YUS270等に代表される高耐食オーステナイト系ステンレス鋼以上の耐食性を有し、靭性とワイヤ製造性に優れ、かつブローホール等の溶接欠陥の生じにくい溶接材料である高Ni基合金溶接ワイヤに関する。   The present invention relates to the welding of corrosion resistant austenitic stainless steels and high alloys, and more specifically, has corrosion resistance higher than that of high corrosion resistant austenitic stainless steels typified by YUS270, etc. The present invention relates to a high Ni-base alloy welding wire which is a welding material in which welding defects are not easily generated.

種々の化学プラントや石油・天然ガスの輸送分野、あるいは海水利用技術等の厳しい使用環境に耐えうる各種の耐食材料の開発が進んでいる。特に腐食環境が厳しい箇所には高耐食オーステナイト系ステンレス鋼や高合金材料が使用され、そのほとんどの鋼構造物組み立ては溶接を用いて行なわれる。   Development of various corrosion-resistant materials that can withstand harsh usage environments such as various chemical plants, oil and natural gas transportation fields, and seawater utilization technology is progressing. High corrosion-resistant austenitic stainless steel and high alloy materials are used particularly in places where the corrosive environment is severe, and most of the steel structures are assembled by welding.

一般的に溶接部に形成された溶接金属は凝固組織のまま腐食環境に供される場合、母材と比較してその組織の粗大化や不均一性のために、耐食性が劣るので、母材と同等以上の耐食性が要求される。そのため、現在では上述のような高耐食材料の溶接には、共金系を用いずに母材と同等以上の耐食性をもつ高Cr−高Mo含有の高Ni基合金溶接材料が使用されている。   In general, when the weld metal formed in the weld zone is subjected to a corrosive environment with a solidified structure, the base metal is inferior in corrosion resistance due to the coarsening and non-uniformity of the structure compared to the base metal. Corrosion resistance equivalent to or better than is required. Therefore, at present, a high Ni-base alloy welding material containing a high Cr-high Mo and having a corrosion resistance equivalent to or higher than that of the base material is used for welding the high corrosion resistance material as described above without using a common metal system. .

高Ni基合金溶接材料の代表的なものとして、インコネル625(60Ni−22Cr−9Mo−3.5Nb)が知られているが、本来これは耐熱用の溶接材料であるため、Nb含有量が耐食性向上の点では必要以上に多く、溶接時に溶接部に高温割れが発生しやすい。さらに、室温強度は高いが、延性と靭性が低く、耐食構造用溶接材料としては問題が多い。
一方、Nbが添加されていない高Ni基合金溶接材料としてハステロイ276(60Ni−15Cr−15Mo−3.5W)では、Cが0.01質量%以下と低く耐食性は良好であるが、Mo含有量が多いために溶接金属中にσ相などの金属間化合物が生成し、靭性が低いという欠点がある。
Inconel 625 (60Ni-22Cr-9Mo-3.5Nb) is known as a typical high Ni-based alloy welding material, but since it is a heat-resistant welding material, the Nb content is corrosion resistance. In terms of improvement, it is more than necessary, and hot cracks are likely to occur in the weld during welding. Furthermore, although room temperature strength is high, ductility and toughness are low, there are many problems as a welding material for corrosion resistant structures.
On the other hand, in the case of Hastelloy 276 (60Ni-15Cr-15Mo-3.5W) as a high Ni-base alloy welding material to which Nb is not added, the C content is as low as 0.01% by mass or less, but the corrosion resistance is good. Therefore, there is a disadvantage that intermetallic compounds such as σ phase are generated in the weld metal and the toughness is low.

上記問題を解決するため、インコネル625相当の高Ni基合金溶接材料をベースに低C化、Nb無添加とした上でNを多く添加し、耐高温割れ性および靭性を改善した高Ni基合金溶接ワイヤが提案されている(例えば、特許文献1、特許文献2、特許文献3参照)。しかし、これらのワイヤは溶接ワイヤ加工性が低く、生産性が非常に低く、溶接で得られる溶接金属の耐高温割れ性、靭性も改善されているものの十分とは言えない。また、MIG溶接を行う場合にはブローホール等の溶接欠陥が発生しやすい。
この溶接時のブローホール発生に関しては、今までは、普通鋼およびステンレス鋼用溶接ワイヤでは、経験上ワイヤ中のN量が関係していることが知られている。しかしながら、高耐食性鋼の溶接で用いる高Ni基合金溶接ワイヤにおいては、ワイヤ中のN量とブローホール発生との関係を評価されていないのが現状である。
In order to solve the above problems, a high Ni-base alloy with a high Ni-base alloy welding material equivalent to Inconel 625, low C, no Nb added, and a large amount of N added to improve hot crack resistance and toughness A welding wire has been proposed (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3). However, although these wires have low weld wire workability, productivity is very low, and the hot cracking resistance and toughness of the weld metal obtained by welding are improved, they are not sufficient. Also, when performing MIG welding, welding defects such as blow holes are likely to occur.
Regarding the generation of blowholes during welding, it has been known from experience that the amount of N in the wire is related to welding wires for ordinary steel and stainless steel. However, in a high Ni base alloy welding wire used for welding high corrosion resistance steel, the relationship between the amount of N in the wire and the occurrence of blowholes has not been evaluated at present.

特開昭63−212091号公報JP 63-212091 A 特開平01−293992号公報JP-A-01-293992 特開平07−214374号公報JP 07-214374 A

従来知られている高Ni基合金溶接材料は耐溶接高温割れ性や靭性が十分ではなく、この成分系をベースとして耐食性、耐溶接高温割れ性を改善した溶接材料においても溶接ワイヤの生産性と溶接性の面で問題点が多く、今後の需要増に対応するには不十分である。 本発明は上記従来技術の問題点に鑑みて、耐食性、靭性、耐高温割れ性が高く、生産性と溶接性に優れたNi基合金溶接ワイヤを提供することを目的とする。   Conventionally known high Ni-base alloy welding materials have insufficient welding hot cracking resistance and toughness, and welding wire productivity is improved even in welding materials that have improved corrosion resistance and welding hot cracking resistance based on this component system. There are many problems in terms of weldability, which is insufficient to meet the future increase in demand. The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a Ni-based alloy welding wire having high corrosion resistance, toughness and hot cracking resistance, and excellent productivity and weldability.

本発明は、前記課題を解決するものであって、その要旨とするところは以下の通りである。   This invention solves the said subject, The place made into the summary is as follows.

(1)質量%で
Ni:55〜75%
Cr:18〜25%
Mo:7.50〜9.81%
Cu:0.1〜3%
Si:0.01〜0.5%
Mn:0.001〜2%
を含有し、
Nb:0.1%以下
C:0.1%以下
N:0.05%以下
P:0.01%以下
S:0.01%以下
O:200ppm以下
に制限し、かつ[S]+[O]<230ppmを満足し、残部が不可避不純物からなることを特徴とする高Ni基合金溶接ワイヤ。
但し、上記[S]はSの含有量(質量%)、上記[O]はOの含有量(ppm)を示す。
(2)さらに、質量%で
W:1.1〜3.1%
を含み、Mo及びWの合計量が12%以下であることを特徴とする上記(1)に記載の高Ni基合金溶接ワイヤ。
(1) Ni by mass: 55-75%
Cr: 18-25%
Mo: 7.50 to 9.81%
Cu: 0.1 to 3%
Si: 0.01 to 0.5%
Mn: 0.001-2%
Containing
Nb: 0.1% or less C: 0.1% or less N: 0.05% or less P: 0.01% or less S: 0.01% or less O: Restricted to 200 ppm or less, and [S] + [O A high Ni-base alloy welding wire characterized by satisfying <230 ppm and the balance being made of inevitable impurities .
However, said [S] shows content (mass%) of S, and said [O] shows content (ppm) of O.
(2) Furthermore, in mass%
W: 1.1-3.1%
The high Ni-base alloy welding wire according to (1), wherein the total amount of Mo and W is 12% or less.

)さらに、質量%で、Mg:0.0002〜0.01%およびCa:0.0002〜0.01%のうちの1種または2種を含有し、かつ下記(1)式で定義されるΔSが−0.01超〜0.01未満%であることを特徴とする上記(1)又は(2)に記載の高Ni基合金溶接ワイヤ。
ΔS=[S]−0.8[Ca]−0.3[Mg]・・・(1)
但し、上記[S]、[Ca]、[Mg]はそれぞれS、Ca、Mgの含有量(質量%)を示す。
( 3 ) Furthermore, it contains one or two of Mg: 0.0002 to 0.01% and Ca: 0.0002 to 0.01% by mass%, and is defined by the following formula (1) The high Ni-base alloy welding wire according to (1) or (2) , wherein ΔS is more than −0.01 to less than 0.01%.
ΔS = [S] −0.8 [Ca] −0.3 [Mg] (1)
However, said [S], [Ca], and [Mg] show content (mass%) of S, Ca, and Mg, respectively.

)さらに、質量%で、Ti:0.01〜0.4%を含有することを特徴とする上記(1)〜(3)の何れか1項に記載の高Ni基合金溶接ワイヤ。
( 4 ) The high Ni-base alloy welding wire according to any one of (1) to (3) above , further containing Ti: 0.01 to 0.4% by mass.

)さらに、質量%で、Al:0.01〜0.4%を含有することを特徴とする上記(1)〜(4)の何れか1項に記載の高Ni基合金溶接ワイヤ。
( 5 ) The high Ni-base alloy welding wire according to any one of (1) to (4) , further comprising Al: 0.01 to 0.4% by mass.

)さらに、質量%で、B:0.0003〜0.001%を含有することを特徴とする上記(1)〜(5)の何れか1項に記載の高Ni基合金溶接ワイヤ。
( 6 ) The high Ni-base alloy welding wire according to any one of (1) to (5) above , further containing B: 0.0003 to 0.001% by mass%.

)さらに、質量%で、Co:0.1〜5%を含有することを特徴とする上記(1)〜(6)の何れか1項に記載の高Ni基合金溶接ワイヤ。
( 7 ) The high Ni-based alloy welding wire as set forth in any one of (1) to (6) , further comprising Co: 0.1 to 5% by mass.

本発明によれば、従来の溶接ワイヤに比べ同等以上の溶接金属の耐食性を有し、かつ靭性、耐高温割れ性、溶接性、および溶接ワイヤの生産性を大きく改善した高Ni溶接ワイヤを提供することが可能となる。   According to the present invention, there is provided a high Ni welding wire that has a weld metal corrosion resistance equal to or higher than that of a conventional welding wire and has greatly improved toughness, hot crack resistance, weldability, and welding wire productivity. It becomes possible to do.

本発明者らは、種々の高Ni基合金溶接ワイヤを用いて溶着金属を作製し、それらの諸特性を調べた結果、以下の知見を得た。
すなわちインコネル625相当の高Ni基合金溶接材料に対して、Nbを含有させず、C含有量を0.01質量%以下に低減することによって、溶接金属の耐高温割れ性、延性、靭性が大幅に改善される。
As a result of producing weld metals using various high Ni-base alloy welding wires and examining their properties, the present inventors have obtained the following knowledge.
That is, Nb is not contained in the high Ni-base alloy welding material equivalent to Inconel 625, and the C content is reduced to 0.01% by mass or less, thereby greatly improving the hot crack resistance, ductility, and toughness of the weld metal. To be improved.

また、さらに、N含有量を0.05質量%以下に制限することによって、溶接ワイヤの熱間変形抵抗が低下し溶接ワイヤ製造時の生産性が大幅に向上するとともに、溶接金属の靭性が改善され、さらに溶接時のブローホールの発生も抑えられる。   Furthermore, by limiting the N content to 0.05% by mass or less, the hot deformation resistance of the welding wire is reduced, the productivity at the time of manufacturing the welding wire is greatly improved, and the toughness of the weld metal is improved. Furthermore, the occurrence of blowholes during welding is also suppressed.

また、さらに、[S]+[O]<230ppm(但し、[S]、[O]はそれぞれS、Oの質量%)に制限することにより、溶接ワイヤ製造時の鍛造性と熱間加工性がさらに改善される。   Further, by limiting to [S] + [O] <230 ppm (where [S] and [O] are mass% of S and O, respectively), forgeability and hot workability during the manufacture of the welding wire. Is further improved.

また、さらに、Cuの添加は硫酸環境等、特に非酸化性環境での溶接金属の耐食性改善に有効であり、溶接金属の強度を向上させるにはCoの添加が有効である。   Furthermore, the addition of Cu is effective for improving the corrosion resistance of the weld metal in a sulfuric acid environment, particularly in a non-oxidizing environment, and the addition of Co is effective for improving the strength of the weld metal.

次に本発明の成分限定理由について述べる。
なお、以下に示した「%」は、特に説明がない限り、「質量%」を意味するものとする。
Next, the reasons for limiting the components of the present invention will be described.
Note that “%” shown below means “% by mass” unless otherwise specified.

Niは溶接金属のマトリックスを構成する主要元素であり、後述するMo、Wが偏析し、脆くかつ耐食性に有害な金属間化合物の析出を促進させ、その結果、溶接金属の靭性および延性が低減し、耐食性の低下することを防ぐためには、本発明溶接ワイヤ中のNi含有量は55%以上とする必要がある。   Ni is a main element constituting the matrix of the weld metal, and Mo and W, which will be described later, segregate and promote the precipitation of intermetallic compounds that are brittle and harmful to corrosion resistance. As a result, the toughness and ductility of the weld metal are reduced. In order to prevent the corrosion resistance from decreasing, the Ni content in the welding wire of the present invention needs to be 55% or more.

一方、溶接金属の耐食性を向上させる主要元素であるCr等の添加元素の量を確保するため、Ni含有量の上限を75%とする。   On the other hand, the upper limit of the Ni content is set to 75% in order to ensure the amount of additive elements such as Cr, which is the main element improving the corrosion resistance of the weld metal.

CrはNiと同様に溶接金属マトリックスの耐食性を向上させるための主要元素であり、その効果を十分に得るためには18%以上の含有が必要である。
一方、多量に含有するとワイヤの製造性が著しく低下するとともに、溶接金属の耐食性に有害な金属間化合物の析出を促すため、それらを考慮してその含有量の上限を25%とした。
Cr, like Ni, is a main element for improving the corrosion resistance of the weld metal matrix, and in order to obtain the effect sufficiently, it is necessary to contain 18% or more.
On the other hand, when contained in a large amount, the manufacturability of the wire is remarkably reduced and precipitation of intermetallic compounds harmful to the corrosion resistance of the weld metal is promoted. Therefore, the upper limit of the content is set to 25% in consideration of them.

Mo、Wはいずれも溶接金属マトリックス中に固溶して、耐食性、強度を向上させるために必要な元素である。これらの効果を十分に得るためにはMoは実施例に示すように7.50〜9.81%含有させる。さらに、Wを添加する場合にはWは実施例に示すように1.1〜3.1%含有させる。そして、MoおよびWの2種は合計量で6%以上含有する必要がある。
一方、MoおよびWの2種が合計量で12%を超えると耐食性、延性、靭性に有害な金属間化合物の生成を著しく促進するためその上限を12%とした。
Both Mo and W are elements necessary for improving the corrosion resistance and strength by dissolving in the weld metal matrix. In order to sufficiently obtain these effects, Mo is contained in an amount of 7.50 to 9.81% as shown in the examples. Furthermore, when W is added, W is contained in an amount of 1.1 to 3.1% as shown in the examples. And 2 types of Mo and W need to contain 6% or more in total amount.
On the other hand, if the total amount of Mo and W exceeds 12%, the formation of intermetallic compounds harmful to corrosion resistance, ductility and toughness is remarkably accelerated, so the upper limit was made 12%.

Cuは硫黄環境等の非酸化性環境や中性環境での溶接金属の耐食性を改善する元素であり、そのために0.1%以上の添加が必要である。
しかし、多量に含有すると熱間加工性が低下し、溶接ワイヤの生産性を害する上、塩化物含有酸化性環境での溶接金属の耐食性も害することから、これらを考慮してその含有量の上限を3%とした。
Cu is an element that improves the corrosion resistance of the weld metal in a non-oxidizing environment such as a sulfur environment or in a neutral environment, and for that purpose, addition of 0.1% or more is necessary.
However, if it is contained in a large amount, the hot workability deteriorates, and the productivity of the welding wire is impaired, and the corrosion resistance of the weld metal in a chloride-containing oxidizing environment is also impaired. Was 3%.

Siは、溶製時に脱酸元素として0.01%以上含有されるが、多量に含有すると溶接熱サイクル中に高Cr−高Mo系の金属間化合物であるσ相の生成、析出を著しく促進し、その結果、溶接金属の耐食性、延性、靭性が低下するため、Si含有量の上限を0.5%としたが、0.2%とすることが好ましい。   Si is contained in an amount of 0.01% or more as a deoxidizing element at the time of melting, but if it is contained in a large amount, the formation and precipitation of a σ phase, which is a high Cr-high Mo intermetallic compound, is significantly accelerated during the welding heat cycle. As a result, the corrosion resistance, ductility, and toughness of the weld metal are lowered, so the upper limit of the Si content is 0.5%, but is preferably 0.2%.

Mnは脱酸元素であり、また、同時にNの固溶も促進するため0.001%好ましくは0.01%以上の含有が必要である。
一方、多量に含有すると溶接金属の耐食性等に有害な金属管化合物の析出を促すため、その含有量の上限を2%とした。
Mn is a deoxidizing element and also promotes solid solution of N at the same time, so 0.001%, preferably 0.01% or more is necessary.
On the other hand, if contained in a large amount, precipitation of a metal tube compound that is harmful to the corrosion resistance of the weld metal is promoted, so the upper limit of its content was made 2%.

Nbは溶接金属の靭性、高温割れ感受性を著しく阻害する元素であり、かつ高強度、低延性となるため溶接ワイヤ製造面にも影響を及ぼすため、できる限り低減する必要がある。本発明では、溶接金属の靭性および高温割れ感受性を阻害せず、かつ延性低下による溶接ワイヤの加工性の低減が問題とならないNb含有量の上限として0.1%を上限とした。
なお、溶接金属の靭性、高温割れ感受性、および、溶接ワイヤ加工性をより向上するためにはNb含有量の上限を0.05%とするのが好ましい。
Nb is an element that remarkably inhibits the toughness and hot cracking susceptibility of the weld metal, and also has a high strength and low ductility, which also affects the surface of the welded wire, so it must be reduced as much as possible. In the present invention, the upper limit of the Nb content is set to 0.1% so that the toughness and hot cracking susceptibility of the weld metal are not hindered, and the reduction of the workability of the welding wire due to the reduction in ductility is not a problem.
In order to further improve the toughness, hot cracking susceptibility and weld wire workability of the weld metal, the upper limit of the Nb content is preferably 0.05%.

Cは不可避不純物元素であり、本発明が対象とする高Ni含有溶接金属において特にCrと結合しやすく、粒界等に炭化物として析出し、耐食性や延性・靭性を阻害すると共に、Mo、Wとも結合して耐溶接高温割れ性も低下させるため極力低下させることがこのましい。
したがって、C含有量はできるだけ低減するのが好ましいが、工業的かつ経済的な観点からその含有量の上限を0.1%とした。
C is an unavoidable impurity element, and is particularly easily bonded to Cr in the high Ni-containing weld metal targeted by the present invention, and precipitates as carbides at grain boundaries and the like, while inhibiting corrosion resistance and ductility / toughness. It is desirable to reduce as much as possible because it reduces the weld hot cracking resistance by bonding.
Therefore, it is preferable to reduce the C content as much as possible, but the upper limit of the content is set to 0.1% from an industrial and economical viewpoint.

Nは従来ワイヤでは0.1%以上添加することにより、溶接金属の延性と靭性に悪影響を及ぼさずに強度と耐食性を改善すると考えられてきた。しかし、本発明者らは、Nがワイヤ生産性の指標となる熱間押出変形抵抗の増大や破断絞り値の低下を招くこと、および溶接時のブローホール発生量を増大させる、という知見からワイヤ中のN含有量はできる限り低減することが好ましいことが判り、これらの理由で不可避的不純物として含有されるN含有量の上限を0.05%とした。   It has been considered that N is added to a conventional wire in an amount of 0.1% or more to improve the strength and corrosion resistance without adversely affecting the ductility and toughness of the weld metal. However, the present inventors have found out that N causes an increase in hot extrusion deformation resistance and a reduction in the fracture drawing value, which are indicators of wire productivity, and increases the amount of blowholes generated during welding. It turned out that it is preferable to reduce N content in it as much as possible, The upper limit of N content contained as an unavoidable impurity for these reasons was made into 0.05%.

P、Sはいずれも不可避的不純物元素であり、両者とも溶接高温割れ感受性を著しく阻害する元素である。また、多層溶接や補修溶接等の多重熱サイクル中に粒界脆化も促進する。また、Sは溶接ワイヤの熱間加工性に著しく影響を及ぼす。
したがって、両元素ともできるだけ低減する必要があり、いずれも含有量の上限を0.01%に制限した。
Both P and S are unavoidable impurity elements, and both are elements that significantly impair the weld hot cracking susceptibility. It also promotes grain boundary embrittlement during multiple thermal cycles such as multilayer welding and repair welding. Further, S significantly affects the hot workability of the welding wire.
Therefore, it is necessary to reduce both elements as much as possible, and in both cases, the upper limit of the content is limited to 0.01%.

OはSと同じように溶接ワイヤの熱間加工性に著しく影響を及ぼす不可避不純物元素であるため、200ppm以下に制限した。   O, like S, is an inevitable impurity element that significantly affects the hot workability of the welding wire, so it was limited to 200 ppm or less.

上記のSおよびOは溶接ワイヤの熱間加工性に著しく影響を及ぼす元素であり、 SとOの含有量の合計が230ppm以上の場合には溶接ワイヤの製造時に割れが発生する頻度が高くなる。
したがって、溶接ワイヤの熱間加工性を向上させるために、上記のようにSおよびOのそれぞれの含有量を制限するとともに、[S]+[O]<230ppmを満足させることとした。
但し、[S]はSの含有量(質量%)、[O]はOの含有量(ppm)を示す。
なお、特にSは極微量でも固溶Sが存在すると粒界強度を低下させ、溶接ワイヤの熱間加工性を低下させる原因となることから上記の制限範囲内で可能な限り少なくすることが好ましい。
The above S and O are elements that significantly affect the hot workability of the welding wire. When the total content of S and O is 230 ppm or more, the frequency of occurrence of cracks during the production of the welding wire increases. .
Therefore, in order to improve the hot workability of the welding wire, the contents of S and O are limited as described above, and [S] + [O] <230 ppm is satisfied.
However, [S] indicates the S content (% by mass), and [O] indicates the O content (ppm).
In particular, even if a very small amount of S is present, it is preferable that the amount of S be as small as possible within the above-mentioned limit range because it causes the grain boundary strength to be lowered and the hot workability of the welding wire to be lowered if solid S is present. .

以上が本発明溶接ワイヤに含有する基本成分であり、残部は原料から混入する不可避的不純物である。
The above are the basic components contained in the welding wire of the present invention, and the balance is inevitable impurities mixed from the raw material.

また、本発明溶接ワイヤでは、前記基本成分に加え、以下の目的に応じて、さらに、Mg、Ca、Ti、Al、B、Coを選択的に単独あるいは複合して添加することができる。   In the welding wire of the present invention, in addition to the basic components, Mg, Ca, Ti, Al, B, and Co can be selectively added alone or in combination according to the following purposes.

Mg、Caは何れもSと硫化物を形成し、鋼中固溶Sによる粒界強度低下を抑制する作用があり、比較的微量の添加でワイヤの熱間加工性を改善する効果が得られる。この効果を得るためには、MgおよびCaの1種または2種の含有量の下限は、それぞれ0.0002%とするのが好ましい。一方、Mg、Caを過度に含有させると固溶状態のMgやCaが逆にワイヤの熱間加工性が低下し、また、溶接時のアークが不安定になり溶接性も低下する。このため、Mg、Caの含有量の上限をそれぞれ0.01%とするのが好ましい。
また、MgおよびCaの1種または2種を含有させ、粒界強度低下の原因となる鋼中固溶S量を低減し、ワイヤ熱間加工性を安定して充分に向上させるためには、上記MgおよびCaの各含有量の規定に加えて、下記(1)式で定義されるMgおよびCaとS含有量との関係から決まるS固溶量の指標である、ΔS を−0.01超〜0.01未満%とすることが好ましい。
ΔS=[S]−0.8[Ca]−0.3[Mg]・・・(1)
但し、上記[S]、[Ca]、[Mg]はそれぞれS、Ca、Mgの含有量(質量%)を示す。
Both Mg and Ca form sulfides with S, and have an effect of suppressing a decrease in grain boundary strength due to solute S in steel, and an effect of improving the hot workability of the wire can be obtained by adding a relatively small amount. . In order to obtain this effect, the lower limit of the content of one or two of Mg and Ca is preferably 0.0002%. On the other hand, when Mg and Ca are excessively contained, Mg and Ca in a solid solution state conversely deteriorate the hot workability of the wire, and the arc during welding becomes unstable and the weldability also decreases. For this reason, it is preferable that the upper limit of the content of Mg and Ca is 0.01%.
Moreover, in order to contain 1 type or 2 types of Mg and Ca, reduce the amount of solute S in the steel that causes a decrease in grain boundary strength, and stably improve the hot workability of the wire, In addition to the above-mentioned regulation of the contents of Mg and Ca, ΔS, which is an index of the S solid solution amount determined from the relationship between Mg and Ca and the S content defined by the following formula (1), is −0.01. It is preferable to set it to more than-less than 0.01%.
ΔS = [S] −0.8 [Ca] −0.3 [Mg] (1)
However, said [S], [Ca], and [Mg] show content (mass%) of S, Ca, and Mg, respectively.

Tiは炭窒化物生成元素であり、溶接時に溶接金属においてCr炭化物の生成に起因するCr欠乏層の形成を抑制し、ワイヤの熱間加工性を改善させる効果をもつ。この効果を安定して充分に得るためには、その含有量の下限を0.01%とするのが好ましい。一方、Tiは過度に含有すると溶接時のアーク安定性を劣化させ、溶接性を低下させるため、その含有量の上限を0.4%とするのが好ましい。   Ti is a carbonitride-forming element and has the effect of suppressing the formation of a Cr-deficient layer due to the formation of Cr carbide in the weld metal during welding and improving the hot workability of the wire. In order to obtain this effect stably and sufficiently, the lower limit of the content is preferably set to 0.01%. On the other hand, if Ti is contained excessively, the arc stability during welding is deteriorated and weldability is lowered. Therefore, the upper limit of the content is preferably set to 0.4%.

Alはワイヤ中に脱酸材として添加され、ワイヤの熱間加工性を改善する作用、効果がある。この効果を安定して充分にえるためにその含有量の下限を0.01%とするのが好ましい。一方、Alは過度に含有すると逆にワイヤの熱間加工性を低下させ、また、溶接金属の耐食性を低下させるため、その含有量の上限を0.4%とするのが好ましい。   Al is added to the wire as a deoxidizing material, and has the effect of improving the hot workability of the wire. In order to obtain this effect stably and sufficiently, the lower limit of the content is preferably set to 0.01%. On the other hand, when Al is contained excessively, on the contrary, the hot workability of the wire is lowered and the corrosion resistance of the weld metal is lowered. Therefore, the upper limit of the content is preferably 0.4%.

Bは微量添加によりワイヤの熱間加工性を改善する作用、効果を有するため、その効果を充分に得るためにその含有量を0.0003%とするのが好ましい。一方、過度にBを含有すると、低融点のボライドを形成し、ワイヤの熱間加工性および靭性を劣化させるため、その含有量の上限を0.001%とするのが好ましい。   Since B has an effect and an effect of improving the hot workability of the wire by adding a small amount, the content is preferably 0.0003% in order to sufficiently obtain the effect. On the other hand, when B is contained excessively, a low melting point boride is formed and the hot workability and toughness of the wire are deteriorated. Therefore, the upper limit of the content is preferably 0.001%.

Coは通常のNi基合金ワイヤ中に含有されている元素であるが、本発明では、溶接金属の強度の改善のために、通常の含有量より多い0.1%以上を含有するのがこのましい。
一方、その含有量が5%を超えると溶接ワイヤの製造性が低下するため、その含有量の上限を5%とした。
Co is an element contained in a normal Ni-based alloy wire. However, in the present invention, in order to improve the strength of the weld metal, it is preferable to contain 0.1% or more, which is higher than the normal content. Good.
On the other hand, if the content exceeds 5%, the manufacturability of the welding wire decreases, so the upper limit of the content was set to 5%.

なお、本発明溶接ワイヤは、TIG溶接、MIG溶接、プラズマ溶接、サブマージアーク溶接等の溶接法におけるソリッドワイヤとして使用されるほか、フラックス入り溶接用ワイヤの外皮や被覆アーク溶接棒の心線としても使用することができる。   The welding wire of the present invention can be used as a solid wire in welding methods such as TIG welding, MIG welding, plasma welding, and submerged arc welding, as well as a sheath of a flux-cored welding wire and a core wire of a coated arc welding rod. Can be used.

本発明溶接ワイヤは上述の通りN含有量が低いため、ワイヤ製造時に従来ワイヤに比べて熱間押出変形抵抗が低く、インゴットから鍛造、熱間圧延、冷間圧延に至る一連の線引き加工において、断線による歩留の低下や線引き速度の低下を抑制できる。   Since the welding wire of the present invention has a low N content as described above, the resistance to hot extrusion deformation is low compared to conventional wires during wire production, and in a series of wire drawing processes from ingots to forging, hot rolling, and cold rolling, Yield reduction and wire drawing speed reduction due to disconnection can be suppressed.

また、これらは、YUS270(20Cr−18Ni−6Mo−0.2N)に代表される高耐食オーステナイト系ステンレス鋼およびインコネル600(76Ni−15Cr−8Fe)に代表される高耐食高合金の溶接に適用するとともに、それら構造物の補修溶接あるいは肉盛等にも適用できる。   These are applied to welding of high corrosion resistance austenitic stainless steel represented by YUS270 (20Cr-18Ni-6Mo-0.2N) and high corrosion resistance high alloy represented by Inconel 600 (76Ni-15Cr-8Fe). In addition, it can also be applied to repair welding or overlaying of these structures.

以下、実施例にて本発明を説明する。
表1に示す9種類の成分で真空溶解し、鍛造、熱間圧延、冷間圧延で高Ni基合金溶接ワイヤ(ワイヤ径:1.2mm)を作製した。
表中のNo.1〜8は本発明例であり、No.9〜11の比較例は、従来広く用いられてきたインコネル625相当の溶接ワイヤ、No.12〜14の比較例は、それらの成分系に対してNbを含有させず、N添加によって耐食性と耐高温割れ性を改善した溶接ワイヤ、No.15〜17の比較例はCr、Moの添加元素の含有量が本発明範囲から外れた溶接ワイヤである。
Hereinafter, the present invention will be described with reference to examples.
Nine kinds of components shown in Table 1 were vacuum-melted, and high Ni-based alloy welding wires (wire diameter: 1.2 mm) were prepared by forging, hot rolling, and cold rolling.
No. in the table. 1-8 are examples of the present invention. Comparative Examples 9 to 11 are welding wires corresponding to Inconel 625, No. Nos. 12 to 14 are welding wires having no corrosion resistance and hot cracking resistance by adding N, N. Comparative examples 15 to 17 are welding wires in which the content of additive elements of Cr and Mo deviates from the scope of the present invention.

Figure 0004519520
Figure 0004519520

これらのワイヤを用いて高耐食材料をTIG溶接法にて溶接した。
なお、母材として用いた高耐食材料はASTEM−A240−S31254相当の高耐食オーステナイト系ステンレス鋼であり、化学成分は表2に示した通りである。母材は9mm厚の鋼板を用い、溶接開先形状はU開先(5R、15°、ルートフェイス:1mm)でギャップは0mmとした。
また、TIG溶接はシールドガスをAr、溶接電流200A、溶接電圧12V、溶接速度10cm/mmの条件で行った。
Using these wires, a highly corrosion-resistant material was welded by the TIG welding method.
The high corrosion resistance material used as the base material is high corrosion resistance austenitic stainless steel corresponding to ASTM-A240-S31254, and the chemical composition is as shown in Table 2. The base material was a 9 mm thick steel plate, the weld groove shape was a U groove (5R, 15 °, root face: 1 mm), and the gap was 0 mm.
TIG welding was performed under the conditions of shielding gas Ar, welding current 200 A, welding voltage 12 V, and welding speed 10 cm / mm.

Figure 0004519520
Figure 0004519520

溶接により作製した継ぎ手部から試験片を製作し、耐食性については、耐孔食性、耐粒界腐食性、全面腐食性を調べた。
耐孔食性は塩化物環境での臨界孔食発生温度(CPT)を求めることにより評価した。なお、腐食環境としては、JIS−G0578−1981に定める6%塩化第二鉄+0.05N塩酸水溶液を用いた。臨界孔食発生温度は、5℃間隔で管理された腐食環境に24時間浸漬し、孔食の発生しない最高温度を求め、それと定めた。
また、耐粒界腐食性および全面腐食性についてはそれぞれ65%沸騰硝酸および10%沸騰硫酸中に、前者は48時間、後者は6時間浸漬して、腐食減量によって評価した。それぞれの耐腐食性評価試験の試験片はいずれも溶接部を中央に含むように30mm×30mmの大きさを採取し、余盛りを削除して元厚(9mm)のまま用いた。
Test pieces were produced from the joints produced by welding, and the corrosion resistance was examined for pitting resistance, intergranular corrosion resistance, and overall corrosion resistance.
Pitting corrosion resistance was evaluated by determining the critical pitting corrosion temperature (CPT) in a chloride environment. As the corrosive environment, 6% ferric chloride + 0.05N hydrochloric acid aqueous solution defined in JIS-G0578-1981 was used. The critical pitting corrosion occurrence temperature was determined by immersing in a corrosive environment controlled at intervals of 5 ° C. for 24 hours to obtain the maximum temperature at which pitting corrosion did not occur.
Further, the intergranular corrosion resistance and overall corrosion resistance were evaluated by immersing in 65% boiling nitric acid and 10% boiling sulfuric acid for 48 hours and the latter for 6 hours, respectively, by weight loss. Each of the test pieces of each corrosion resistance evaluation test was sampled with a size of 30 mm × 30 mm so as to include the welded portion in the center, and the extra thickness was removed and the original thickness (9 mm) was used.

一方、試験片の機械的特性は溶接金属引張試験、溶接金属のシャルピー衝撃試験、溶接継ぎ手の表・裏曲げ試験から評価した。   On the other hand, the mechanical properties of the test pieces were evaluated from a weld metal tensile test, a Charpy impact test of the weld metal, and a front / back bending test of the weld joint.

溶接金属引張試験はJIS−Z3321−1999に準拠してSUS304鋼板の開先部に所定の溶接ワイヤを用いてTIG溶接でバタリング処理を施した後、同ワイヤを用いてTIG溶接で積層した試験体を作製し、溶接金属の中央からJIS−A2号(JIS−Z3111−1986)の全溶着引張試験片を採取し、引張強度を求めた。   A weld metal tensile test is a specimen in which a groove portion of a SUS304 steel plate is subjected to buttering treatment by TIG welding using a predetermined welding wire in accordance with JIS-Z3321-1999 and then laminated by TIG welding using the same wire. A total welded tensile test piece of JIS-A2 (JIS-Z3111-1986) was collected from the center of the weld metal, and the tensile strength was determined.

シャルピー衝撃試験は、溶接方向と垂直方向からサブサイズシャルピー試験片(7.5mm厚×10mm幅×55mm長)を採取し、0℃にて試験し吸収エネルギーを求めた。
曲げ試験片は、溶接継ぎ手から溶接方向と垂直方向から余盛りを削除した試験片(9mm厚×30mm幅×250mm長)を採取し、溶接部を表または裏からローラ曲げ(JIS−Z3124−1960、曲げ半径R=20mm)し、溶接継ぎ手の曲げ延性を評価した。
In the Charpy impact test, sub-size Charpy test pieces (7.5 mm thickness × 10 mm width × 55 mm length) were collected from the welding direction and the vertical direction, and tested at 0 ° C. to determine the absorbed energy.
As a bending test piece, a test piece (9 mm thickness × 30 mm width × 250 mm length) from which a surplus is removed from a welding joint and a vertical direction is taken from a weld joint, and the welded portion is subjected to roller bending from the front or back (JIS-Z3124-1960). The bending ductility of the welded joint was evaluated.

また、それぞれの溶接ワイヤの溶接高温割れ感受性をC型ジグ拘束突き合わせ溶接割れ試験(JIS−Z3155−1974)により調べた。
試験片としては、上記溶接継ぎ手特性評価に用いたのと同じ9種類の耐食材料を用い、TIG溶接により各溶接ワイヤによる溶接部の割れを調べた。
Moreover, the welding hot cracking sensitivity of each welding wire was investigated by the C-type jig restraint butt welding cracking test (JIS-Z3155-1974).
As test pieces, the same nine types of corrosion-resistant materials used for the above-mentioned weld joint property evaluation were used, and cracks of the welded portions by the respective welding wires were examined by TIG welding.

また、ワイヤの熱間変形抵抗は両端拘束型捩り試験機にて中捩り試験を行い、中捩り試験のトルクから熱間変形抵抗を計算した。
破断絞り値は比較例ワイヤを用い、溶接金属からA型高温引張試験片を採取し、高温引張試験後に測定した。
溶接時のブローホール発生量は表1に示す各溶接ワイヤを用いてMIG溶接を行い、試験体を作製した。その溶接ビードからX線透過写真を撮影し、溶接長500mm中に存在するブローホールの数を測定し、N量とブローホール発生量の関係を調べた。
Moreover, the hot deformation resistance of the wire was subjected to a medium torsion test using a torsion test machine with both ends restrained, and the hot deformation resistance was calculated from the torque of the medium torsion test.
The fracture drawing value was measured after a high-temperature tensile test by using a comparative wire and collecting A-type high-temperature tensile test pieces from the weld metal.
The amount of blowholes generated during welding was MIG welded using each welding wire shown in Table 1 to prepare a test specimen. An X-ray transmission photograph was taken from the weld bead, the number of blow holes present in the weld length of 500 mm was measured, and the relationship between the N amount and the blow hole generation amount was examined.

表3にそれぞれの腐食試験の結果を示し、表4に機械試験、高温割れ試験およびブローホール発生量の結果を示す。   Table 3 shows the results of the respective corrosion tests, and Table 4 shows the results of the mechanical test, the hot cracking test, and the amount of blowholes generated.

Figure 0004519520
Figure 0004519520

Figure 0004519520
Figure 0004519520

耐孔食性に関して、本発明例No.1〜8の溶接ワイヤを用いた場合の溶接継ぎ手のCPTはN添加により耐食性が強化されたNo.12〜14に対してはやや劣る例があるものの、いずれもCPTは60〜70℃の範囲にあり、比較例No.9〜11とほぼ同等以上である。なお、母材のCPTは75〜80℃であった。
耐粒界腐食性、全面腐食性についてもそれぞれ65%沸騰硝酸試験、10%硫酸試験の結果、本発明例No.1〜8の溶接ワイヤは比較例No.9〜14とほぼ同等またはそれ以上の耐食性を有している。
また、比較例No.15〜17についてはワイヤ中のCr量またはMo量が少ないために、いずれの耐食性試験に対しても発明例および他の比較例と比べて明らかに耐食性が劣る結果となった。
このように種々の試験結果から、本発明の耐腐食性は、比較例に比べて同等またはそれ以上の優れた耐食性を有することがわかった。
With respect to pitting corrosion resistance, Example No. of the present invention. The CPT of the welding joint when using the welding wires 1 to 8 is No. 1 whose corrosion resistance is enhanced by adding N. Although there is an example that is slightly inferior to 12 to 14, CPT is in the range of 60 to 70 ° C. It is almost equal to or more than 9-11. The CPT of the base material was 75 to 80 ° C.
As for the intergranular corrosion resistance and the overall corrosion resistance, the results of the 65% boiling nitric acid test and the 10% sulfuric acid test are shown in the examples of the present invention. The welding wires Nos. 1 to 8 are comparative example Nos. Corrosion resistance almost equal to or higher than 9-14.
Comparative Example No. For 15-17, the amount of Cr or Mo in the wire was small, so that the corrosion resistance was clearly inferior to the invention examples and other comparative examples for any of the corrosion resistance tests.
Thus, it was found from the various test results that the corrosion resistance of the present invention is equivalent to or better than that of the comparative example.

機械的特性について、シャルピー衝撃試験の結果から本発明例No.1〜8のワイヤによる溶接部は比較例No. 9〜17のいずれに対しても著しく衝撃吸収エネルギー値が改善されている。
また、強度に関して、比較例No. 9〜14はNbまたはNを多く添加している効果で強度は高いものの、本発明例No.1〜8の溶接ワイヤによる溶接金属の強度は母材と同等程度と十分な強度を有している。
また、本発明例の中でNo.3はNo.1とNo.2に対して20〜30MPa強度が改善しており、Co添加の効果が認められた。
曲げ試験では全ての場合において本発明例No.1〜8では欠陥、割れは認められず、曲げ延性は良好であった。
Regarding the mechanical characteristics, from the results of the Charpy impact test, Example No. The welded portions of the wires 1 to 8 have markedly improved impact absorption energy values compared to any of Comparative Examples Nos. 9 to 17.
Regarding strength, Comparative Examples Nos. 9 to 14 have the effect of adding a large amount of Nb or N, and the strength is high. The strength of the weld metal by the welding wires 1 to 8 is as high as that of the base material and sufficient.
In the examples of the present invention, No. 3 is No.3. 1 and No. The strength of 20 to 30 MPa was improved with respect to 2, and the effect of Co addition was recognized.
In all the bending tests, Example No. In 1 to 8, no defects and cracks were observed, and the bending ductility was good.

溶接高温割れ試験の結果からは比較例No.9〜11では割れ感受性が非常に高く、高温割れが多く発生したのに比べて、本発明例No.1〜8の溶接ワイヤは優れた耐溶接高温割れ性を示した。   From the results of the welding hot cracking test, Comparative Example No. In Nos. 9 to 11, the crack sensitivity is very high, and many hot cracks are generated. The welding wires 1 to 8 exhibited excellent weld hot cracking resistance.

破断絞り値についてはワイヤの生産性と密接な関係があり、破断絞り値が60%以上ないとワイヤ製造における線引き加工時に破断を起こす可能性が非常に高くなる。この場合ワイヤ線引き加工能率が低下、鍛造等の余分な中間行程を付与する必要も生じるため、ワイヤの生産性は著しく低下する。   The breaking drawing value is closely related to the productivity of the wire, and if the breaking drawing value is not 60% or more, the possibility of breakage at the time of drawing in wire production becomes very high. In this case, the wire drawing efficiency is lowered, and it becomes necessary to provide an extra intermediate process such as forging, so that the productivity of the wire is remarkably lowered.

図1は両端拘束型捩り試験機にて中捩り試験を行い、熱間変形抵抗を計算した結果であり、熱間押出変形抵抗に及ぼすN含有量の影響を表している。N量が0.05%以上となると熱間押出変形抵抗が100MPaを超えるため線引き加工能率が低下、中間工程が必要となってくるため溶接ワイヤ製造時の生産性が著しく低下する。
図2に実施例No.1〜14の各溶接ワイヤの溶接金属から高温引張試験片を採取し、高温引張試験後の破断絞り値を調べた結果を示す。
FIG. 1 shows the result of calculating the hot deformation resistance by performing a medium torsion test using a both-end constrained torsion tester, and shows the influence of the N content on the hot extrusion deformation resistance. When the N amount is 0.05% or more, the hot extrusion deformation resistance exceeds 100 MPa, the drawing work efficiency is lowered, and an intermediate process is required, so the productivity at the time of manufacturing the welding wire is remarkably lowered.
In FIG. The high temperature tensile test piece was extract | collected from the weld metal of each welding wire of 1-14, and the result of having investigated the fracture | rupture drawing value after a high temperature tensile test is shown.

比較例のNo.9〜14はいずれもNbまたはNが多く添加されているために破断絞り値60%以下と低い。
一方、本発明例であるNo.1〜8のワイヤはいずれも破断絞り値60%以上と高くワイヤの生産性に優れている。
表4及び図3に実施例の各溶接ワイヤを用いてMIG溶接を行い、その溶接ビードのX線透過写真を撮影し、溶接長500mm中に存在するブローホールの数を測定した結果を示す。
N含有量が0.05%以下の場合にはブローホールの数も少なく良好な溶接であるが、N添加量が高いNo.12〜14の比較例ワイヤでは溶接時にブローホールの発生が顕著となった。
N無添加であるNo.1〜8本発明例ではブローホール発生量が非常に少なく、溶接性に優れていると言える。
Comparative Example No. Nos. 9 to 14 are low at a fracture drawing value of 60% or less because a large amount of Nb or N is added.
On the other hand, No. which is an example of the present invention. The wires 1 to 8 are all high in break drawing value of 60% or more and excellent in wire productivity.
Table 4 and FIG. 3 show the results of performing MIG welding using each welding wire of the example, taking an X-ray transmission photograph of the weld bead, and measuring the number of blowholes existing in the weld length of 500 mm.
When the N content is 0.05% or less, the number of blowholes is small and good welding is achieved. In the comparative wires of 12 to 14, the occurrence of blow holes became significant during welding.
It can be said that No. 1 to 8 examples of the present invention in which N is not added have a very small amount of blowholes and are excellent in weldability.

以上の実施例の結果からわかるように本発明は耐食性、靭性、耐溶接高温割れ性に優れ、ブローホールの少ない継ぎ手を製作可能にし、また熱間押出変形抵抗が低く、破断絞り値が高いため、ワイヤ製造時における生産効率を大きく改善することが可能になる。   As can be seen from the results of the above examples, the present invention is excellent in corrosion resistance, toughness, resistance to hot cracking at welding, enables the production of joints with few blowholes, has a low resistance to hot extrusion deformation, and has a high fracture drawing value. It is possible to greatly improve the production efficiency during wire production.

溶接ワイヤ中のN含有量と熱間押出変形抵抗との関係グラフである。It is a relationship graph of N content in a welding wire and hot extrusion deformation resistance. 溶接ワイヤの温度と破断絞り値との関係グラフである。It is a relationship graph between the temperature of a welding wire, and a fracture drawing value. 溶接ワイヤ中のN含有量と溶接時ブローホール発生量との関係グラフである。It is a relationship graph of N content in a welding wire, and the amount of blowhole generation at the time of welding.

Claims (7)

質量%で
Ni:55〜75%
Cr:18〜25%
Mo:7.50〜9.81%
Cu:0.1〜3%
Si:0.01〜0.5%
Mn:0.001〜2%
を含有し、
Nb:0.1%以下
C:0.1%以下
N:0.05%以下
P:0.01%以下
S:0.01%以下
O:200ppm以下
に制限し、かつ[S]+[O]<230ppmを満足し、残部が不可避不純物からなることを特徴とする高Ni基合金溶接ワイヤ。
但し、上記[S]はSの含有量(質量%)、上記[O]はOの含有量(ppm)を示す。
Ni by mass: 55-75%
Cr: 18-25%
Mo: 7.50 to 9.81%
Cu: 0.1 to 3%
Si: 0.01 to 0.5%
Mn: 0.001-2%
Containing
Nb: 0.1% or less C: 0.1% or less N: 0.05% or less P: 0.01% or less S: 0.01% or less O: Restricted to 200 ppm or less, and [S] + [O A high Ni-base alloy welding wire characterized by satisfying <230 ppm and the balance being made of inevitable impurities .
However, said [S] shows content (mass%) of S, and said [O] shows content (ppm) of O.
さらに、質量%でFurthermore, in mass%
W:1.1〜3.1%W: 1.1-3.1%
を含み、Mo及びWの合計量が12%以下であることを特徴とする請求項1に記載の高Ni基合金溶接ワイヤ。The high Ni-base alloy welding wire according to claim 1, wherein the total amount of Mo and W is 12% or less.
さらに、質量%で、
Mg:0.0002〜0.01%
および
Ca:0.0002〜0.01%
のうちの1種または2種を含有し、かつ下記(1)式で定義されるΔSが−0.01超〜0.01未満%であることを特徴とする請求項1又は2に記載の高Ni基合金溶接ワイヤ。
ΔS=[S]−0.8[Ca]−0.3[Mg]・・・(1)
但し、上記[S]、[Ca]、[Mg]はそれぞれS、Ca、Mgの含有量(質量%)を示す。
Furthermore, in mass%,
Mg: 0.0002 to 0.01%
And Ca: 0.0002 to 0.01%
Contain one or two of, and below (1) [Delta] S defined by the formula -0.01 according to claim 1 or 2, characterized in that an ultra 0.01 less than% High Ni-base alloy welding wire.
ΔS = [S] −0.8 [Ca] −0.3 [Mg] (1)
However, said [S], [Ca], and [Mg] show content (mass%) of S, Ca, and Mg, respectively.
さらに、質量%で、
Ti:0.01〜0.4%
を含有することを特徴とする請求項1〜3の何れか1項に記載の高Ni基合金溶接ワイヤ。
Furthermore, in mass%,
Ti: 0.01 to 0.4%
The high Ni-base alloy welding wire according to claim 1 , wherein the high Ni-base alloy welding wire is contained.
さらに、質量%で、
Al:0.01〜0.4%
を含有することを特徴とする請求項1〜4の何れか1項に記載の高Ni基合金溶接ワイヤ。
Furthermore, in mass%,
Al: 0.01 to 0.4%
5. The high Ni-base alloy welding wire according to claim 1 , comprising:
さらに、質量%で、B:0.0003〜0.001%を含有することを特徴とする請求項1〜5の何れか1項に記載の高Ni基合金溶接ワイヤ。 The high Ni-base alloy welding wire according to claim 1 , further comprising B: 0.0003 to 0.001% by mass%. さらに、質量%で、
Co:0.1〜5%
を含有することを特徴とする請求項1〜6の何れか1項に記載の高Ni基合金溶接ワイヤ。
Furthermore, in mass%,
Co: 0.1 to 5%
The high Ni-base alloy welding wire according to claim 1 , comprising:
JP2004156813A 2003-09-24 2004-05-26 High Ni-base alloy welding wire Active JP4519520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004156813A JP4519520B2 (en) 2003-09-24 2004-05-26 High Ni-base alloy welding wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003332544 2003-09-24
JP2004156813A JP4519520B2 (en) 2003-09-24 2004-05-26 High Ni-base alloy welding wire

Publications (2)

Publication Number Publication Date
JP2005118875A JP2005118875A (en) 2005-05-12
JP4519520B2 true JP4519520B2 (en) 2010-08-04

Family

ID=34621976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004156813A Active JP4519520B2 (en) 2003-09-24 2004-05-26 High Ni-base alloy welding wire

Country Status (1)

Country Link
JP (1) JP4519520B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102528334A (en) * 2010-12-17 2012-07-04 江苏耐尔冶电集团有限公司 Novel processing method for flux-cored wire for austenite submerged arc resurfacing welding

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100354065C (en) * 2005-06-28 2007-12-12 武汉钢铁(集团)公司 Submerged-arc welding wire for high-strength pipeline steel
CN100423880C (en) * 2005-07-07 2008-10-08 武汉钢铁(集团)公司 Gas-shielded welding wire for welding high-strength steel
JP5254693B2 (en) * 2008-07-30 2013-08-07 三菱重工業株式会社 Welding material for Ni-base alloy
CN101780611B (en) * 2009-01-19 2011-09-07 中国科学院金属研究所 NiMnCoNbFeSiB strip brazing material
US10675720B2 (en) 2011-02-01 2020-06-09 Mitsubishi Heavy Industries, Ltd. High Cr Ni-based alloy welding wire, shielded metal arc welding rod, and weld metal formed by shielded metal arc welding
CN102658441B (en) * 2012-04-27 2014-11-05 江苏科技大学 Quaternary brazing filler metal for austenitic stainless steel vacuum brazing and preparing method thereof
US10112254B2 (en) 2014-08-21 2018-10-30 Huntington Alloys Corporation Method for making clad metal pipe
JP6439579B2 (en) * 2015-05-19 2018-12-19 新日鐵住金株式会社 Method for producing austenitic heat-resistant alloy welded joint and welded joint obtained using the same
EP3524702B1 (en) * 2016-10-07 2021-03-17 Nippon Steel Corporation Nickel material
DE102016125123A1 (en) * 2016-12-21 2018-06-21 Vdm Metals International Gmbh Process for the production of nickel alloys with optimized strip weldability
RU2672647C1 (en) * 2017-08-01 2018-11-16 Акционерное общество "Чепецкий механический завод" Corrosive-resistant alloy
CN112570925A (en) * 2020-10-26 2021-03-30 江苏新核合金科技有限公司 Nickel-based welding wire for 3D printing and preparation method thereof
CN114905188A (en) * 2022-05-27 2022-08-16 丹阳市凯鑫合金材料有限公司 Corrosion-resistant and high-temperature-resistant nickel-based alloy welding wire and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01293992A (en) * 1988-05-20 1989-11-27 Nippon Steel Corp High-ni alloy welding wire
JPH03133593A (en) * 1989-10-19 1991-06-06 Mitsubishi Materials Corp Production of ni-based heat-resistant alloy welding wire
JPH03204197A (en) * 1989-12-28 1991-09-05 Nippon Yakin Kogyo Co Ltd High-ni alloy for highly corrosion resistant welding rod
JPH07214374A (en) * 1994-02-03 1995-08-15 Nippon Steel Corp High ni alloy welding wire
JPH08300185A (en) * 1995-05-02 1996-11-19 Nippon Steel Corp Nickel-base coated electrode
JP2000158184A (en) * 1998-12-01 2000-06-13 Ugine Savoie Imphy Welding electrode made of nickel base alloy, and its alloy
JP2000512345A (en) * 1997-06-05 2000-09-19 クルップ ファオ デー エム ゲゼルシャフト ミット ベシュレンクテル ハフツング Nickel-chromium-molybdenum-alloy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01293992A (en) * 1988-05-20 1989-11-27 Nippon Steel Corp High-ni alloy welding wire
JPH03133593A (en) * 1989-10-19 1991-06-06 Mitsubishi Materials Corp Production of ni-based heat-resistant alloy welding wire
JPH03204197A (en) * 1989-12-28 1991-09-05 Nippon Yakin Kogyo Co Ltd High-ni alloy for highly corrosion resistant welding rod
JPH07214374A (en) * 1994-02-03 1995-08-15 Nippon Steel Corp High ni alloy welding wire
JPH08300185A (en) * 1995-05-02 1996-11-19 Nippon Steel Corp Nickel-base coated electrode
JP2000512345A (en) * 1997-06-05 2000-09-19 クルップ ファオ デー エム ゲゼルシャフト ミット ベシュレンクテル ハフツング Nickel-chromium-molybdenum-alloy
JP2000158184A (en) * 1998-12-01 2000-06-13 Ugine Savoie Imphy Welding electrode made of nickel base alloy, and its alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102528334A (en) * 2010-12-17 2012-07-04 江苏耐尔冶电集团有限公司 Novel processing method for flux-cored wire for austenite submerged arc resurfacing welding

Also Published As

Publication number Publication date
JP2005118875A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP4484093B2 (en) Ni-base heat-resistant alloy
JP4631986B1 (en) Ni-based alloy product and manufacturing method thereof
US9415460B2 (en) Ni-base alloy weld metal, strip electrode, and welding method
JP5389000B2 (en) Ni-base alloy weld metal, Ni-base alloy-coated arc welding rod
JP5212533B2 (en) Seamless austenitic heat-resistant alloy tube
JP4390089B2 (en) Ni-based alloy
JP4656251B1 (en) Ni-based alloy material
JP4519520B2 (en) High Ni-base alloy welding wire
JP3104622B2 (en) Nickel-based alloy with excellent corrosion resistance and workability
JP6566126B2 (en) Welded structural members
JP6852809B2 (en) Austenitic heat-resistant steel Welded metal, welded joints, welding materials for austenitic heat-resistant steel, and methods for manufacturing welded joints
JP3850764B2 (en) Welding wire for high Cr ferritic heat resistant steel
JP5998963B2 (en) Ni-base heat-resistant alloy member
JP2017014576A (en) Austenitic heat resistant alloy and weldment structure
WO2020196431A1 (en) COVERED ELECTRODE FOR HIGH-Cr FERRITIC HEAT-RESISTANT STEELS
JP3819755B2 (en) Welding method of high corrosion resistance high Mo austenitic stainless steel
JPH08252692A (en) Coated electrode for highly corrosion resistant and high mo stainless steel
JP2017014575A (en) Austenitic heat resistant alloy and weldment structure
JPH07214374A (en) High ni alloy welding wire
JP6107170B2 (en) Welding material for austenitic heat-resistant steel, weld metal and welded joint produced using the same
JP7368722B2 (en) Austenitic heat-resistant steel weld metal, welded joints, and welding materials for austenitic heat-resistant steel
JPWO2018066573A1 (en) Austenitic heat-resistant alloy and welded joint using the same
JP4774588B2 (en) Manufacturing method of high strength oil well steel pipe joint with excellent corrosion resistance and high strength oil well steel pipe joint
JP2017202493A (en) Weld material for austenitic heat-resistant steel
JP6638551B2 (en) Austenitic heat-resistant steel weld metal and welded joint having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4519520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250