JP4518583B2 - Solid electrolyte battery - Google Patents

Solid electrolyte battery Download PDF

Info

Publication number
JP4518583B2
JP4518583B2 JP23320298A JP23320298A JP4518583B2 JP 4518583 B2 JP4518583 B2 JP 4518583B2 JP 23320298 A JP23320298 A JP 23320298A JP 23320298 A JP23320298 A JP 23320298A JP 4518583 B2 JP4518583 B2 JP 4518583B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
current collector
solid electrolyte
electrode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23320298A
Other languages
Japanese (ja)
Other versions
JP2000067906A (en
Inventor
寛之 明石
真志生 渋谷
悟郎 柴本
健 瀬川
幸夫 宮木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP23320298A priority Critical patent/JP4518583B2/en
Publication of JP2000067906A publication Critical patent/JP2000067906A/en
Application granted granted Critical
Publication of JP4518583B2 publication Critical patent/JP4518583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、電解質に固体又はゲル状の高分子材料を用いた固体電解質電池に関する。
【0002】
【従来の技術】
固体電解質電池は、電解質に固体又はゲル状の高分子材料を用いた二次電池である。固体電解質電池は、電解質が固体又はゲル状であるために、何らかの原因で電池に穴が開いたり、破けたりしても、電解質が外に漏れることはなく高い安全性を有している。また、固体電解質電池は、薄型化、積層化することができる利点を有している。
【0003】
従来、固体電解質電池においては、一般にアルミニウム箔にリチウム複合酸化物を正極活物質として塗布して正極とし、また、銅箔に炭素質材料を負極活物質として塗布して負極とし、得られたシート状の両極間に、固体又はゲル状の高分子材料からなる電解質と、ポリエチレン微多孔質膜等からなるセパレータとを間置し、これら巻回積層して構成される巻回体が外装材により密封されてなる。
【0004】
【発明が解決しようとする課題】
ところで、従来の固体電解質電池においては、電池が外部からの圧力により押し潰されたりする等、不慮の事態にあって、正極と負極との間のセパレータが破断又は溶融し、電池内において正極と負極とが短絡することで、発熱や発煙等により電池全体に損傷を与えるおそれがあった。
【0005】
本発明は上述したような従来の実情に鑑みて提案されたものであり、電池が圧壊しても損傷を最小限に抑えることができる固体電解質電池を提供することを目的とする。
【0006】
【課題を解決するための手段】
この目的を達成するために提案される本発明に係る固体電解質電池は、帯状の正極集電体の両面に正極活物質層と固体電解質層を有する正極と、帯状の負極集電体の両面に負極活物質層と固体電解質層を有する負極とが、セパレータを介して巻回されてなる巻回体をラミネートフィルムからなる外装内に有し、正極は、長さ方向の一端部に、両面に亘って正極集電体が露呈している正極集電体露呈部分と固体電解質層を有するとともに、負極は、長さ方向の一端部に、両面に亘って負極集電体が露呈している負極集電体露呈部分と固体電解質層を有し、正極集電体露呈部分と固体電解質層及び負極集電体露呈部分と固体電解質層とは、セパレータを介して巻回体の外周を一周以上覆ってなり、巻回体は、負極が正極よりも外周側とされていることを特徴とする。
【0007】
以上のように構成された本発明に係る固体電解質電池によれば、巻回体の外周が正極集電体露呈部分と負極集電体露呈部分とで覆われているので、電池が圧壊しても、正極集電体露呈部分と負極集電体露呈部分とが初めに短絡する。そして、この固体電解質電池では、正極集電体露呈部分と負極集電体露呈部分との短絡により発生する熱を拡散するので、電池活物質への影響はほとんどなく、電池全体に損傷を及ぼさない。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。本発明の実施の形態として示す固体電解質電池1は、図1及び図2に示すように、帯状の正極2と帯状の負極3とが、固体電解質層4とセパレータ5とを介して密着状態で巻回されてなる巻回体6が、外装材7により密封されて構成される。
【0009】
正極2は、図3に示すように、正極集電体8の両面に正極活物質を被着してなるものである。この正極2を作製する際には、まず、例えば、LiCoO2 を95重量部と、ケッチェンブラックを1重量部と、黒鉛を2重量部と、N−ポリフッ化ビニリデンを3重量部とを混合して正極合剤を調製する。
【0010】
次に、この正極合剤を例えば、N−メチルピロリドン中に分散させてスラリー状とする。そしてこのスラリー状正極合剤を正極集電体8となる、例えば、厚さ20μmのアルミニウム箔の両面に、それぞれ80μmの厚さに均一に塗布し、これを80℃の乾燥炉中に2時間放置することにより乾燥させる。これを120℃に加熱したロールプレス機により加圧することによって、厚さ100μmの正極活物質層9が形成された正極2が作製される。
【0011】
正極2は、長さ方向の一端部に、両面とも正極活物質層9が形成されず正極集電体8が露呈している正極集電体露呈部分8aを有している。また、正極2は、長さ方向の他端部に接続された、例えば、アルミニウムからなる集電を行うための正極リード10を有している。この正極集電体露呈部分8aとされた端部は、巻回されて巻回体6とされたときに、巻回体6の外周側とされる。そして、この正極集電体露呈部分8aは、巻回体6の外周を少なくとも一周以上覆う。すなわち、正極集電体露呈部分8aの長さL1 は、巻回体6の外径をdとするとき、πd以上である。
【0012】
負極3は、図4に示すように、負極集電体11の両面に負極活物質を被着してなるものである。この負極3を作製するには、例えば、黒鉛を90重量部と、ポリフッ化ビニリデンを10重量部とを混合して負極合剤を調製する。
【0013】
次に、この負極合剤を例えば、N−メチルピロリドン中に分散させてスラリー状とする。そして、このスラリー状負極合剤を負極集電体11となる、例えば、厚さ20μmの銅箔の両面に、それぞれ80μmの厚さに均一に塗布し、これを80℃の乾燥炉中に2時間放置することにより乾燥させる。これを120℃に加熱したロールプレス機により加圧することによって、厚さ100μmの負極活物質層12が形成された負極3が作製される。
【0014】
負極3は、長さ方向の一端部に、両面とも負極活物質層12が形成されず負極集電体11が露呈している負極集電体露呈部分11aを有している。また、負極3は、長さ方向の他端部に接続された、例えば、ニッケルからなる集電を行うための負極リード13を有している。この負極集電体露呈部分11aとされた端部は、巻回されて巻回体6とされたときに、巻回体6の外周側とされる。そして、この負極集電体露呈部分11aは、巻回体6の外周を少なくとも一周以上覆う。すなわち、負極集電体露呈部分11aの長さL2 は、巻回体6の外径をdとするとき、πd以上である。
【0015】
固体電解質を作製するには、例えば、ポリアクリロニトリルを、エチレンカーボネートと、プロピレンカーボネートと、γ−ブチロラクトンとを混合した溶媒に分散させた後、これを100℃まで加熱することで、無色透明な高分子溶液を作製する。そして、この高分子溶液にLiPF6 を添加した後、乾燥雰囲気中にて放冷することによって、ゲル状の固体電解質が作製される。
【0016】
セパレータ5には、絶縁性であるとともに、比熱の比較的大きい材料が用いられる。セパレータ5としては、例えば、厚さ25μmの微孔性ポリプロピレンフィルムが用いられる。
【0017】
巻回体6は、図6に示すように、予め減圧乾燥処理した正極2の正極活物質層9が形成された両面に、上述した溶融状態の高分子溶液を薄く塗布し、ゲル化した固体電解質層4を有している。同様に、予め減圧乾燥処理した負極3の負極活物質層12が形成された両面に、上述した溶融状態の高分子溶液を薄く塗布し、ゲル化した固体電解質層4を有している。巻回体6においては、この固体電解質層4が形成された正極2と負極3とがセパレータ5aを介して密着状態とされる。巻回体6は、巻回される際に、負極3が正極2よりも外周側に配されることが好ましく、その負極3の外周側にセパレータ5bを配して積層化され、渦巻状に巻回される。なお、固体電解質層4は、正極2の正極活物質層9が形成された両面及び負極3の負極活物質層12が形成された両面に形成されたが、係る構成に限定されるものではなく、固体電解質層4が正極集電体露呈部分8a及び負極集電体露呈部分11a上に形成された構成としてもよい。
【0018】
巻回体6においては、図2中の円A部分を拡大した図6に示すように、巻回された際に、この巻回された正極集電体露呈部分8aと負極集電体露呈部分11aとが、セパレータ5を介して巻回体6の外周を一周以上覆っていることになる。巻回体6においては、負極3が正極2よりも外周側に配され、負極集電体露呈部分11aが正極集電体露呈部分8aを覆うことにより、後述するように、電池内部での短絡が防止されることになる。
【0019】
巻回体6は、図7(a)に示すように、高分子フィルムからなる外装材7により密封される。外装材7は、ホットシール可能な、例えば、防湿性ラミネートフィルムからなる。外装材7は、例えば、筒状に成形され、一方端部の開口が閉じられた構成となっている。巻回体6は、外装材7の他方端部に設けられた開口7aより収納される。最後に、図7(b)に示すように、開口7aをホットシールすることにより巻回体6が完全密封されて固体電解質電池1が作製される。
【0020】
固体電解質電池の圧壊による発熱や発煙等の問題は、電池缶が押し潰されて、まずセパレータが破れ、電池内部で正極と負極とが短絡することにより発熱し、この熱により反応が引き起こされて発煙するものと考えられる。そこで、本発明に係る固体電解質電池1について、安全性評価試験を行った。
【0021】
評価方法としては、固体電解質電池1を0.2cの電流条件で4.2Vまで低電圧充電し、同電圧まで達した後、さらに3時間定電圧充電した。このときの充電容量は、650mAhであり、エネルギー密度は280Wh/lであった。そして、安全性について、充電した電池を断熱材の上に設置した後、これに直径5mmの市販の釘を垂直に刺し、電池短絡が生じるまで釘をさし込んでゆく手法で評価した。
【0022】
評価結果は、本発明に係る固体電解質電池1を採用した電池については、いずれも電池表面の温度が50〜100℃となり、顕著な電池内部の変形は観察されなかった。それに対して、従来のように電極集電体露呈部分を有さない固体電解質電池について同じ条件で評価試験を行ったところ、電池内部の変形は観察されなかったものの、電池表面温度は120〜140℃付近まで上昇することが判明した。
【0023】
これは、上述したような固体電解質電池1においては、図6に示すように、電池が押し潰された等の異常事態が発生したときには、まず、巻回体6の外周部分で正極集電体露呈部分8aと負極集電体露呈部分11aとが初めに短絡する。正極集電体露呈部分8aと負極集電体露呈部分11aとの短絡は、正極活物質層9及び負極活物質層12から離れた場所で起こるとともに、短絡場所の範囲には、比熱が比較的高いセパレータ5が配されている。そのため、正極集電体露呈部分8aと負極集電体露呈部分11aとの短絡により発熱しても、熱を拡散させ、電極活物質層への影響を少なくすることができる。したがって、発熱や発煙等、電池全体に及ぶような損傷を最小限に抑えることができ、安全性に優れた固体電解質電池1を得ることができる。
【0024】
このとき、正極集電体露呈部分8aの長さ又は負極集電体露呈部分11aの長さがπdよりも小さいと、正極集電体露呈部分8aと負極集電体露呈部分11aとが巻回体6の外周を一周以上覆うことができない。巻回体6の外周が正極集電体露呈部分8aと負極集電体露呈部分11aとで覆われていない部分で電池が押し潰された場合には、正極集電体露呈部分8aと負極集電体露呈部分11aとを初めに短絡させることができず、損傷を最小限に抑えることができない。
【0025】
また、正極集電体露呈部分8a又は負極集電体露呈部分11aが片面のみであっても、正極集電体露呈部分8aと負極集電体露呈部分11aとの短絡を電極活物質層と十分離れた場所で行うことができず、電極活物質層への影響を最小限に抑えることができない。
【0026】
したがって、電極集電体露呈部分を電極の両面に配し、その長さをπd以上とすることが好ましく、これにより固体電解質電池の安全性をより向上させることができる。
【0027】
上述した実施の形態では、リチウムイオン二次電池を例に挙げて説明したが、本発明はこれに限定されるものではなく、リチウムイオン二次電池以外に適用した固体電解質電池についても適用可能である。
【0028】
また、本発明に係る固体電解質電池1について詳細に説明したが、正極活物質、負極活物質、固体電解質としては、特に限定されるものではない。
【0029】
正極活物質としては、LixMO2(Mは1種類以上の遷移金属、好ましくはCo、Ni、又はMnを表し、0.05≦x≦1.10)等を使用することができ、例えば、LiCoO2、LiNiO2 、LiNiyCo(1-y)2 (但し、0<y<1)、LiMn24等の複合酸化物が挙げられる。なお、このような複合酸化物は、例えば、リチウム、コバルト、ニッケル、マンガン等の炭酸塩、酸化物等を出発原料とし、これらの炭酸塩を所望の複合酸化物の組成に応じて混合し、酸素存在雰囲気下600〜1000℃の温度範囲で焼成することにより得られる。また、複合酸化物は、出発原料として炭酸塩を使用することなく、水酸化物、酸化物を使用しても同様に得ることができる。
【0030】
負極には、リチウムイオンをドープ・脱ドープすることができる物質として、例えば、炭素材料を使用することができ、例えば、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等)、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を焼成したもの)、炭素繊維、活性炭等が挙げられる。
【0031】
固体電解質は、電解液として、環状エステル化合物を複数種混合したもの、例えば、エチレンカーボネート、プロピレンカーボネート、γ−ブチルラクトン等を適当な組成で組み合わせた混合電解液、直鎖状エステル化合物を混合したもの、例えば、ジメチルカーボネート、エチルメチルカーボネート、ジメトキシエタン、プロピオン酸メチル等を適当な組成で組み合わせた混合電解液等を使用することができる。
【0032】
また、固体電解質は、電解液をゲル化する高分子として、ポリフッ化ビニリデン及び同高分子の共重合体(例えば、ヘキサフロロプロピレンやテトラフロロエチレン等の共重合体)、ポリアクリロニトリル及び同高分子の共重合体(例えば、酢酸ビニル、ブタジエン、スチレン等の共重合体)、ポリメタクリル酸メチル及び同高分子の共重合体(例えば、ビニル基を有した高分子)、ポリエチレンオキサイド及び同高分子の共重合体(例えば、ポリプロピレンオキサイド等の共重合体)等を使用することができ、これらは単独又は2種類以上混合して使用することができる。
【0033】
また、固体電解質は、電解液に含有される電解質として、LiClO4、LiAsF6、LiPF6、LiBF6 、LiB(C654、LiCl、LiBr、CH3SO3Li、CF3SO3Li等を使用することができる。
【0034】
【発明の効果】
以上詳細に説明したように、本発明に係る固体電解質電池によれば、電池が押し潰されたときに、初めに、両面に正極集電体露呈部分と負極集電体露呈部分との短絡を起こして熱を拡散するため、正極活物質や負極活物質への影響はほとんどなく、発熱や発煙を抑えることができる。
【0035】
また、本発明に係る固体電解質電池によれば、電極集電体露呈部分が両電極の両面に配されるとともに、集電体露呈部分が巻回体の外周を一周以上覆っているので、電池が押し潰されたときの発熱や発煙をより抑えることができる。
【図面の簡単な説明】
【図1】本発明に係る固体電解質電池の一構成例を示す概略斜視図である。
【図2】巻回体の一構成例を示す横断面図である。
【図3】正極の一構成例を示す斜視図である。
【図4】負極の一構成例を示す斜視図である。
【図5】巻回体の積層構造を説明する要部断面図である。
【図6】図2中、円Aの部分を拡大して示す横断面図である。
【図7】(a)外装材に収納される巻回体を説明する概略斜視図である。(b)外装材により密封される巻回体を説明する概略側面図である。
【符号の説明】
1 固体電解質電池、2 正極、3 負極、4 固体電解質層、5 セパレータ、6 巻回体、7 外装材、8 正極集電体、8a 正極集電体露呈部分、9正極活物質層、11 負極集電体、11a 負極集電体露呈部分、12 負極活物質層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid electrolyte battery using a solid or gel polymer material as an electrolyte.
[0002]
[Prior art]
The solid electrolyte battery is a secondary battery using a solid or gel polymer material as an electrolyte. Since the electrolyte is solid or gelled, the solid electrolyte battery has high safety because the electrolyte does not leak to the outside even if a hole is opened or broken for some reason. Further, the solid electrolyte battery has an advantage that it can be thinned and laminated.
[0003]
Conventionally, in a solid electrolyte battery, generally, a lithium composite oxide is applied as a positive electrode active material to an aluminum foil to form a positive electrode, and a carbon material is applied to a copper foil as a negative electrode active material to form a negative electrode. An electrode made of a solid or gel polymer material and a separator made of a polyethylene microporous membrane, etc. are interposed between the two electrodes, and a wound body formed by winding and laminating is formed by an exterior material. It is sealed.
[0004]
[Problems to be solved by the invention]
By the way, in the conventional solid electrolyte battery, the separator between the positive electrode and the negative electrode breaks or melts in an unexpected situation such as when the battery is crushed by external pressure, and the positive electrode in the battery When the negative electrode is short-circuited, the entire battery may be damaged due to heat generation or smoke generation.
[0005]
The present invention has been proposed in view of the above-described conventional situation, and an object of the present invention is to provide a solid electrolyte battery capable of minimizing damage even when the battery is crushed.
[0006]
[Means for Solving the Problems]
The solid electrolyte battery according to the present invention proposed to achieve this object, a positive electrode having a two-sided positive electrode active material layer and the solid electrolyte layer of the band-shaped positive electrode collector, both surfaces of a strip-shaped anode current collector A negative electrode active material layer and a negative electrode having a solid electrolyte layer are wound in a package made of a laminate film and wound on a separator, and the positive electrode is attached to one end in the length direction on both sides. The positive electrode current collector is exposed to the positive electrode current collector exposed portion and the solid electrolyte layer, and the negative electrode is exposed at one end in the length direction on both sides. It has a negative electrode current collector exposed portion and a solid electrolyte layer, and the positive electrode current collector exposed portion, the solid electrolyte layer, and the negative electrode current collector exposed portion and the solid electrolyte layer have one or more rounds of the outer periphery of the wound body via a separator. The wound body has a negative electrode on the outer peripheral side than the positive electrode. And wherein the door.
[0007]
According to the solid electrolyte battery according to the present invention configured as described above, since the outer periphery of the wound body is covered with the positive electrode current collector exposed portion and the negative electrode current collector exposed portion, the battery is crushed. In addition, the positive electrode current collector exposed portion and the negative electrode current collector exposed portion are short-circuited first. In this solid electrolyte battery, the heat generated by the short circuit between the positive electrode current collector exposed portion and the negative electrode current collector exposed portion is diffused, so there is almost no influence on the battery active material, and the entire battery is not damaged. .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1 and FIG. 2, the solid electrolyte battery 1 shown as the embodiment of the present invention has a belt-like positive electrode 2 and a belt-like negative electrode 3 in a close contact state via a solid electrolyte layer 4 and a separator 5. A wound body 6 that is wound is configured to be sealed by an exterior material 7.
[0009]
As shown in FIG. 3, the positive electrode 2 is formed by depositing a positive electrode active material on both surfaces of the positive electrode current collector 8. When producing this positive electrode 2, first, for example, 95 parts by weight of LiCoO 2 , 1 part by weight of ketjen black, 2 parts by weight of graphite, and 3 parts by weight of N-polyvinylidene fluoride are mixed. Thus, a positive electrode mixture is prepared.
[0010]
Next, this positive electrode mixture is dispersed in, for example, N-methylpyrrolidone to form a slurry. Then, this slurry-like positive electrode mixture is applied to both sides of an aluminum foil having a thickness of 20 μm, for example, as a positive electrode current collector 8 to a thickness of 80 μm, and this is applied in a drying furnace at 80 ° C. for 2 hours. Allow to dry by standing. By pressing this with a roll press heated to 120 ° C., the positive electrode 2 on which the positive electrode active material layer 9 having a thickness of 100 μm is formed is produced.
[0011]
The positive electrode 2 has a positive electrode current collector exposed portion 8a at one end in the length direction where the positive electrode active material layer 9 is not formed on both surfaces and the positive electrode current collector 8 is exposed. The positive electrode 2 has a positive electrode lead 10 connected to the other end portion in the length direction, for example, for collecting current made of aluminum. The end portion that is the positive electrode current collector exposed portion 8 a is the outer peripheral side of the wound body 6 when it is wound to be the wound body 6. And this positive electrode electrical power collector exposure part 8a covers the outer periphery of the wound body 6 at least 1 round or more. That is, the length L 1 of the positive electrode current collector exposed portion 8a is not less than πd when the outer diameter of the wound body 6 is d.
[0012]
As shown in FIG. 4, the negative electrode 3 is formed by depositing a negative electrode active material on both surfaces of the negative electrode current collector 11. In order to produce this negative electrode 3, for example, 90 parts by weight of graphite and 10 parts by weight of polyvinylidene fluoride are mixed to prepare a negative electrode mixture.
[0013]
Next, this negative electrode mixture is dispersed in, for example, N-methylpyrrolidone to form a slurry. And this slurry-like negative electrode mixture is uniformly apply | coated to each thickness of 80 micrometers on both surfaces of the 20-micrometer-thick copper foil used as the negative electrode collector 11, and this is 2 in a 80 degreeC drying furnace. Dry by standing for a period of time. By pressing this with a roll press heated to 120 ° C., the negative electrode 3 on which the negative electrode active material layer 12 having a thickness of 100 μm is formed is produced.
[0014]
The negative electrode 3 has a negative electrode current collector exposed portion 11a at one end in the length direction where the negative electrode active material layer 12 is not formed on both surfaces and the negative electrode current collector 11 is exposed. Moreover, the negative electrode 3 has the negative electrode lead 13 for performing the current collection which consists of nickel, for example connected to the other end part of a length direction. The end portion that is the negative electrode current collector exposed portion 11 a is the outer peripheral side of the wound body 6 when it is wound into the wound body 6. The negative electrode current collector exposed portion 11 a covers at least one circumference of the wound body 6. That is, the length L 2 of the negative electrode current collector exposed portion 11a is equal to or greater than πd when the outer diameter of the wound body 6 is d.
[0015]
In order to produce a solid electrolyte, for example, polyacrylonitrile is dispersed in a solvent in which ethylene carbonate, propylene carbonate, and γ-butyrolactone are mixed, and then heated to 100 ° C. Make a molecular solution. Then, after addition of LiPF 6 to the polymer solution, by cooling at a dry atmosphere, gel-like solid electrolyte is produced.
[0016]
The separator 5 is made of an insulating material having a relatively large specific heat. As the separator 5, for example, a microporous polypropylene film having a thickness of 25 μm is used.
[0017]
As shown in FIG. 6 , the wound body 6 is a gelled solid that is obtained by thinly applying the molten polymer solution described above to both surfaces on which the positive electrode active material layer 9 of the positive electrode 2 that has been previously dried under reduced pressure is formed. An electrolyte layer 4 is provided. Similarly, the above-mentioned molten polymer solution is thinly applied to both surfaces of the negative electrode 3 on which the negative electrode active material layer 12 of the negative electrode 3 that has been previously dried under reduced pressure is formed, and the solid electrolyte layer 4 is gelled. In the wound body 6, the positive electrode 2 and the negative electrode 3 on which the solid electrolyte layer 4 is formed are brought into a close contact state via a separator 5a. When the wound body 6 is wound, it is preferable that the negative electrode 3 is disposed on the outer peripheral side of the positive electrode 2, and the separator 5 b is disposed on the outer peripheral side of the negative electrode 3 to form a spiral shape. It is wound. In addition, although the solid electrolyte layer 4 was formed in the both surfaces in which the positive electrode active material layer 9 of the positive electrode 2 was formed, and the negative electrode active material layer 12 of the negative electrode 3, it was not limited to the structure which concerns. The solid electrolyte layer 4 may be formed on the positive electrode current collector exposed portion 8a and the negative electrode current collector exposed portion 11a.
[0018]
In the wound body 6, as shown in FIG. 6 in which the circle A portion in FIG. 2 is enlarged, when wound, the wound positive electrode current collector exposed portion 8a and negative electrode current collector exposed portion 11a covers the outer periphery of the wound body 6 through the separator 5 one or more times. In the wound body 6, the negative electrode 3 is arranged on the outer peripheral side of the positive electrode 2, and the negative electrode current collector exposed portion 11 a covers the positive electrode current collector exposed portion 8 a, thereby short-circuiting inside the battery as will be described later. Will be prevented.
[0019]
As shown in FIG. 7A, the wound body 6 is sealed with an exterior material 7 made of a polymer film. The exterior material 7 is made of, for example, a moisture-proof laminate film that can be hot-sealed. The exterior material 7 is formed into, for example, a cylindrical shape and has an opening at one end closed. The wound body 6 is accommodated through an opening 7 a provided at the other end of the exterior material 7. Finally, as shown in FIG. 7B, the wound body 6 is completely sealed by hot-sealing the opening 7a, and the solid electrolyte battery 1 is manufactured.
[0020]
Problems such as heat generation and smoke generation due to the collapse of the solid electrolyte battery are caused by the battery can being crushed, the separator is first broken, and the positive electrode and the negative electrode are short-circuited inside the battery, and this heat causes a reaction. It is considered to emit smoke. Therefore, a safety evaluation test was performed on the solid electrolyte battery 1 according to the present invention.
[0021]
As an evaluation method, the solid electrolyte battery 1 was charged at a low voltage to 4.2 V under a current condition of 0.2c, and after reaching the same voltage, the solid electrolyte battery 1 was further charged at a constant voltage for 3 hours. The charging capacity at this time was 650 mAh, and the energy density was 280 Wh / l. And after installing the charged battery on the heat insulating material, safety was evaluated by a method in which a commercially available nail having a diameter of 5 mm was vertically stabbed into this and the nail was inserted until a battery short circuit occurred.
[0022]
As a result of the evaluation, all the batteries employing the solid electrolyte battery 1 according to the present invention had a battery surface temperature of 50 to 100 ° C., and no remarkable deformation inside the battery was observed. On the other hand, when an evaluation test was performed under the same conditions for a solid electrolyte battery having no electrode current collector exposed portion as in the prior art, the battery surface temperature was 120 to 140 although deformation inside the battery was not observed. It was found that the temperature rose to around ℃.
[0023]
In the solid electrolyte battery 1 as described above, as shown in FIG. 6, when an abnormal situation occurs such as when the battery is crushed, first, the positive electrode current collector at the outer peripheral portion of the wound body 6. The exposed portion 8a and the negative electrode current collector exposed portion 11a are first short-circuited. The short circuit between the positive electrode current collector exposed portion 8a and the negative electrode current collector exposed portion 11a occurs at a location away from the positive electrode active material layer 9 and the negative electrode active material layer 12, and the specific heat is relatively low in the range of the short circuit location. A high separator 5 is arranged. Therefore, even if heat is generated due to a short circuit between the positive electrode current collector exposed portion 8a and the negative electrode current collector exposed portion 11a, the heat can be diffused and the influence on the electrode active material layer can be reduced. Therefore, it is possible to minimize damage that extends to the entire battery, such as heat generation and smoke generation, and the solid electrolyte battery 1 having excellent safety can be obtained.
[0024]
At this time, if the length of the positive electrode current collector exposed portion 8a or the length of the negative electrode current collector exposed portion 11a is smaller than πd, the positive electrode current collector exposed portion 8a and the negative electrode current collector exposed portion 11a are wound. The outer periphery of the body 6 cannot be covered more than once. When the battery is crushed at a portion where the outer periphery of the wound body 6 is not covered with the positive electrode current collector exposed portion 8a and the negative electrode current collector exposed portion 11a, the positive electrode current collector exposed portion 8a and the negative electrode current collector The electrical conductor exposed portion 11a cannot be short-circuited first, and damage cannot be minimized.
[0025]
Moreover, even if the positive electrode current collector exposed portion 8a or the negative electrode current collector exposed portion 11a is only on one side, a short circuit between the positive electrode current collector exposed portion 8a and the negative electrode current collector exposed portion 11a is sufficient with the electrode active material layer. It cannot be performed in a remote place, and the influence on the electrode active material layer cannot be minimized.
[0026]
Therefore, it is preferable that the electrode current collector exposed portions are disposed on both surfaces of the electrode, and the length thereof is preferably πd or more, whereby the safety of the solid electrolyte battery can be further improved.
[0027]
In the above-described embodiment, the lithium ion secondary battery has been described as an example. However, the present invention is not limited to this, and can be applied to a solid electrolyte battery applied to other than the lithium ion secondary battery. is there.
[0028]
Moreover, although the solid electrolyte battery 1 according to the present invention has been described in detail, the positive electrode active material, the negative electrode active material, and the solid electrolyte are not particularly limited.
[0029]
As the positive electrode active material, Li x MO 2 (M represents one or more transition metals, preferably Co, Ni, or Mn, 0.05 ≦ x ≦ 1.10) and the like can be used. , LiCoO 2 , LiNiO 2 , LiNiyCo (1-y) O 2 (where 0 <y <1), LiMn 2 O 4 and other complex oxides. In addition, such a complex oxide, for example, starting from carbonates, oxides, etc. of lithium, cobalt, nickel, manganese, etc., these carbonates are mixed according to the composition of the desired complex oxide, It is obtained by firing in a temperature range of 600 to 1000 ° C. in an oxygen-existing atmosphere. The composite oxide can be obtained in the same manner by using a hydroxide or an oxide without using a carbonate as a starting material.
[0030]
For the negative electrode, for example, a carbon material can be used as a substance that can be doped / undoped with lithium ions. For example, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), Examples thereof include graphites, glassy carbons, organic polymer compound fired bodies (obtained by firing a phenol resin, a furan resin, etc.), carbon fibers, activated carbon, and the like.
[0031]
The solid electrolyte is a mixture of a plurality of cyclic ester compounds as an electrolytic solution, for example, a mixed electrolytic solution in which ethylene carbonate, propylene carbonate, γ-butyllactone, etc. are combined in an appropriate composition, and a linear ester compound. For example, a mixed electrolyte obtained by combining dimethyl carbonate, ethyl methyl carbonate, dimethoxyethane, methyl propionate and the like with an appropriate composition can be used.
[0032]
The solid electrolyte is a polymer that gels the electrolyte solution, such as polyvinylidene fluoride and a copolymer of the same polymer (for example, a copolymer of hexafluoropropylene or tetrafluoroethylene), polyacrylonitrile, and the same polymer. Copolymers (for example, copolymers of vinyl acetate, butadiene, styrene, etc.), polymethyl methacrylate and copolymers of the same polymer (for example, polymers having a vinyl group), polyethylene oxide and the same polymer These copolymers (for example, copolymers such as polypropylene oxide) can be used, and these can be used alone or in admixture of two or more.
[0033]
The solid electrolyte includes LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 6 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li, and CF 3 SO 3 as electrolytes contained in the electrolytic solution. Li or the like can be used.
[0034]
【The invention's effect】
As described above in detail, according to the solid electrolyte battery according to the present invention, when the battery is crushed, first, a short circuit between the exposed portion of the positive electrode current collector and the exposed portion of the negative electrode current collector is performed on both sides. Since the heat is generated and diffused, the positive electrode active material and the negative electrode active material are hardly affected, and heat generation and smoke generation can be suppressed.
[0035]
Further, according to the solid electrolyte battery according to the present invention, the electrode current collector exposed portions are arranged on both surfaces of both electrodes, and the current collector exposed portions cover the outer circumference of the wound body one or more times. Heat generation and smoke generation when crushed can be further suppressed.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing a configuration example of a solid electrolyte battery according to the present invention.
FIG. 2 is a cross-sectional view showing a configuration example of a wound body.
FIG. 3 is a perspective view showing a configuration example of a positive electrode.
FIG. 4 is a perspective view showing a configuration example of a negative electrode.
FIG. 5 is a cross-sectional view of a main part for explaining a laminated structure of a wound body.
6 is an enlarged cross-sectional view showing a circle A portion in FIG. 2. FIG.
FIG. 7A is a schematic perspective view illustrating a wound body housed in an exterior material. (B) It is a schematic side view explaining the wound body sealed with an exterior material.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Solid electrolyte battery, 2 Positive electrode, 3 Negative electrode, 4 Solid electrolyte layer, 5 Separator, 6 wound body, 7 Exterior material, 8 Positive electrode collector, 8a Positive electrode collector exposed part, 9 Positive electrode active material layer, 11 Negative electrode Current collector, 11a Negative electrode current collector exposed portion, 12 Negative electrode active material layer

Claims (1)

帯状の正極集電体の両面に正極活物質層と固体電解質層を有する正極と、帯状の負極集電体の両面に負極活物質層と固体電解質層を有する負極とが、セパレータを介して巻回されてなる巻回体をラミネートフィルムからなる外装内に有し、
上記正極は、長さ方向の一端部に、両面に亘って正極集電体が露呈している正極集電体露呈部分と固体電解質層を有するとともに、上記負極は、長さ方向の一端部に、両面に亘って負極集電体が露呈している負極集電体露呈部分と固体電解質層を有し、上記正極集電体露呈部分と固体電解質層及び上記負極集電体露呈部分と固体電解質層とは、上記セパレータを介して上記巻回体の外周を一周以上覆ってなり、
上記巻回体は、上記負極が正極よりも外周側とされていることを特徴とする固体電解質電池。
A positive electrode having a positive electrode active material layer and a solid electrolyte layer on both sides of a strip-shaped positive electrode current collector, and a negative electrode having a negative electrode active material layer and a solid electrolyte layer on both sides of the strip-shaped negative electrode current collector are wound via a separator. Having a wound wound body in an exterior made of a laminate film,
The positive electrode has a positive electrode current collector exposed portion and a solid electrolyte layer that are exposed on both sides of the positive electrode current collector at one end in the length direction, and the negative electrode is at one end in the length direction. A negative electrode current collector exposed portion and a solid electrolyte layer, the negative electrode current collector exposed on both sides, the positive electrode current collector exposed portion and the solid electrolyte layer, and the negative electrode current collector exposed portion and the solid electrolyte. The layer covers the outer periphery of the wound body one or more times through the separator,
The wound body is a solid electrolyte battery in which the negative electrode is positioned on the outer peripheral side of the positive electrode.
JP23320298A 1998-08-19 1998-08-19 Solid electrolyte battery Expired - Fee Related JP4518583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23320298A JP4518583B2 (en) 1998-08-19 1998-08-19 Solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23320298A JP4518583B2 (en) 1998-08-19 1998-08-19 Solid electrolyte battery

Publications (2)

Publication Number Publication Date
JP2000067906A JP2000067906A (en) 2000-03-03
JP4518583B2 true JP4518583B2 (en) 2010-08-04

Family

ID=16951359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23320298A Expired - Fee Related JP4518583B2 (en) 1998-08-19 1998-08-19 Solid electrolyte battery

Country Status (1)

Country Link
JP (1) JP4518583B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233149A (en) * 1998-02-13 1999-08-27 Sony Corp Nonaqueous electrolyte battery
JP2001273884A (en) * 2000-03-28 2001-10-05 Yuasa Corp Sealed type battery and manufacturing method thereof
JP2002280079A (en) * 2001-03-19 2002-09-27 Sony Corp Battery
US10461358B2 (en) * 2011-10-11 2019-10-29 Samsung Sdi Co., Ltd. Rechargeable lithium battery
KR20220096863A (en) * 2020-12-31 2022-07-07 삼성전기주식회사 All solid state battery
JP7190516B2 (en) * 2021-01-19 2022-12-15 本田技研工業株式会社 Cylindrical solid-state battery and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3269146B2 (en) * 1992-12-28 2002-03-25 松下電器産業株式会社 Ion conductive polymer electrolyte
JPH09180761A (en) * 1995-12-27 1997-07-11 Fuji Elelctrochem Co Ltd Spiral lithium ion secondary battery
JP3555124B2 (en) * 1996-01-19 2004-08-18 日本電池株式会社 Lithium ion battery
JPH09293535A (en) * 1996-04-25 1997-11-11 Sumitomo Chem Co Ltd Nonaqueous secondary battery
JPH1092470A (en) * 1996-09-17 1998-04-10 Teruya Ozawa Lithium ion battery and manufacture of it
JPH10214606A (en) * 1996-11-28 1998-08-11 Sanyo Electric Co Ltd Thin type battery of laminated armor body

Also Published As

Publication number Publication date
JP2000067906A (en) 2000-03-03

Similar Documents

Publication Publication Date Title
KR100711669B1 (en) Solid Electrolyte Battery
JP3556636B2 (en) Flat secondary battery and method of manufacturing the same
KR20000076975A (en) Secondary battery
JP4236308B2 (en) Lithium ion battery
JP2001176497A (en) Nonaqueous electrolyte secondary battery
US20010004502A1 (en) Nonaqueous secondary battery
US20220223948A1 (en) Electrochemical apparatus and electronic apparatus
JPH11312505A (en) Thin battery
JP4053802B2 (en) Electrochemical devices
JP2000348776A (en) Secondary battery
JP4815845B2 (en) Polymer battery
JP4366775B2 (en) Solid electrolyte battery
JP5213003B2 (en) Nonaqueous electrolyte secondary battery
JP3583592B2 (en) Thin rechargeable battery
JP3675354B2 (en) Solid electrolyte battery and manufacturing method thereof
JP2004199994A (en) Battery
JP4142921B2 (en) Lithium ion secondary battery
JP4518583B2 (en) Solid electrolyte battery
JP3579227B2 (en) Thin rechargeable battery
JP2019145330A (en) Non-aqueous electrolyte secondary battery
JP2000133274A (en) Polymer lithium secondary battery
JPH11162436A (en) Thin secondary battery
JP3511966B2 (en) Cylindrical lithium-ion battery
JP3580511B2 (en) Organic electrolyte secondary battery
JP2004199938A (en) Nonaqueous electrolytic solution secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080501

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080527

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees