JP4517074B2 - Detection method of live cell protein by immunodynamic measurement - Google Patents

Detection method of live cell protein by immunodynamic measurement Download PDF

Info

Publication number
JP4517074B2
JP4517074B2 JP2005064714A JP2005064714A JP4517074B2 JP 4517074 B2 JP4517074 B2 JP 4517074B2 JP 2005064714 A JP2005064714 A JP 2005064714A JP 2005064714 A JP2005064714 A JP 2005064714A JP 4517074 B2 JP4517074 B2 JP 4517074B2
Authority
JP
Japan
Prior art keywords
cell
needle
shaped material
antibody
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005064714A
Other languages
Japanese (ja)
Other versions
JP2006246731A (en
Inventor
史 中村
育夫 小幡谷
徳幸 中村
淳 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005064714A priority Critical patent/JP4517074B2/en
Publication of JP2006246731A publication Critical patent/JP2006246731A/en
Application granted granted Critical
Publication of JP4517074B2 publication Critical patent/JP4517074B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、細胞内もしくは細胞間のタンパク質に関する情報を得、これにより、細胞内タンパク質の定量あるいは細胞の種類の判別をする方法、並びにセルソーターに関する。 The present invention relates to a method for obtaining information on proteins in cells or between cells, thereby quantifying intracellular proteins or distinguishing cell types, and a cell sorter.

細胞を識別、判別する方法として、免疫による方法が従来法である。細胞膜表面に提示されたタンパク質をマーカーにした抗体を用い、セルソーターなどにより細胞を選別する方法は確立されているが、細胞の内部のタンパク質をマーカーとした場合には、生きたままの細胞を抗体で識別することは出来ない。   As a method for identifying and discriminating cells, an immunization method is a conventional method. A method of sorting cells using a cell sorter or the like using an antibody with a protein displayed on the surface of the cell membrane as a marker has been established, but if the protein inside the cell is used as a marker, the living cells are treated with antibodies. Cannot be identified.

細胞内に物質を導入する方法として、遺伝子を固定化した針状物を細胞内に挿入し、細胞の動態変化をリアルタイムで観察する技術が知られている(特許文献1)
しかしながら、特許文献1では細胞内での外来遺伝子発現の影響を見ることができるが、細胞の種類を判別することはできない。
特開2003-325161
As a method for introducing a substance into a cell, a technique is known in which a needle-like material on which a gene is immobilized is inserted into a cell and a change in cell dynamics is observed in real time (Patent Document 1).
However, in Patent Document 1, the effect of foreign gene expression in cells can be seen, but the type of cells cannot be determined.
JP2003-325161

本発明は、細胞が生きたままで細胞内のタンパク質を検出ないし定量し、あるいは、細胞の識別ないし選別を行うことを目的とする。   An object of the present invention is to detect or quantify proteins in cells while the cells are alive, or to identify or select cells.

本発明は、以下の発明に関する。
1. 細胞内または細胞間タンパク質抗原に対する抗体を固定化した細胞挿入用針状材料。
2. 細胞内または細胞間タンパク質抗原に対する抗体を固定化した細胞挿入用針状材料を細胞内或いは組織の細胞間隙に挿入することを特徴とする、該細胞内タンパク質抗原と該抗体を相互作用させる方法。
3. 細胞内または細胞間で局在化されたタンパク質抗原に対する抗体を固定化した細胞挿入用針状材料を細胞内または組織の細胞間に挿入して抗原抗体複合体を生じさせ、該針状材料を抜き出す際に該針状材料にかかる力を測定することを特徴とする細胞内または細胞間の抗原タンパク質を力学的に検出する方法。
4. 細胞内または細胞間で局在化されたタンパク質抗原に対する抗体を固定化した細胞挿入用針状材料を細胞内または細胞間に挿入して抗原抗体複合体を生じさせ、該針状材料を抜き出す際に該針状材料にかかる力を測定し、得られる測定値に基づき前記細胞内または細胞間タンパク質量を定量する方法。
5. 細胞内で局在化されたタンパク質抗原に対する抗体を固定化した細胞挿入用針状材料を細胞内に挿入して抗原抗体反応を生じさせ、該針状材料を抜き出す際に該針状材料にかかる力を測定し、得られる測定値に基づき細胞の種類を判別する方法。
6. 細胞内タンパク質抗原に対する抗体を固定化した細胞挿入用針状材料、外信状材料にかかる力を検出する手段、検出された力学情報に基づき細胞の種類を分析する手段、細胞の種類ごとに細胞の種類を選別する手段を備えたセルソーター。
The present invention relates to the following inventions.
1. A needle-like material for cell insertion, in which an antibody against an intracellular or intercellular protein antigen is immobilized.
2. A method for causing an interaction between the intracellular protein antigen and the antibody, comprising inserting a cell-like needle-like material in which an antibody against an intracellular or intercellular protein antigen is immobilized into a cell or a cell gap of a tissue.
3. A needle-like material for cell insertion in which an antibody against a protein antigen localized in or between cells is immobilized is inserted into a cell or between cells of a tissue to produce an antigen-antibody complex. A method for mechanically detecting an antigen protein in a cell or between cells, wherein a force applied to the needle-shaped material at the time of extraction is measured.
4). When a needle-like material for cell insertion in which an antibody against a protein antigen localized in or between cells is immobilized is inserted into or between cells to form an antigen-antibody complex, and the needle-like material is extracted And measuring the force applied to the needle-shaped material and quantifying the amount of intracellular or intercellular protein based on the measured value.
5). A needle-like material for cell insertion in which an antibody against a protein antigen localized in the cell is immobilized is inserted into the cell to cause an antigen-antibody reaction, and the needle-like material is applied when the needle-like material is extracted. A method of measuring force and discriminating cell types based on the measured values.
6). Cell-shaped needle-like material with antibodies against intracellular protein antigens immobilized, means for detecting the force applied to external belief material, means for analyzing cell types based on detected mechanical information, cell for each cell type Cell sorter equipped with a means to sort out the type.

本発明によれば、生きたままの細胞において、細胞内または細胞間タンパク質の定量を行うことができる。また、針状材料にかかる力(力学情報)に基づき、細胞内タンパク質の定量、細胞の識別及び細胞の選別を生きた細胞において行うことができる。   According to the present invention, intracellular or intercellular proteins can be quantified in living cells. In addition, based on the force (mechanical information) applied to the needle-shaped material, intracellular protein quantification, cell identification, and cell selection can be performed in a living cell.

従来のセルソーターと異なり、細胞内のタンパク質情報に基づき細胞選別が可能であるので、全ての細胞の選別が可能であり、例えば幹細胞などでは、将来どのように分化するかの情報も含めて精密な選別が可能である。   Unlike conventional cell sorters, it is possible to sort cells based on intracellular protein information, so it is possible to sort all cells. For example, in the case of stem cells, accurate information including information on how to differentiate in the future is available. Sorting is possible.

本発明で使用する針状材料の形状は、細長く、先端及び幅が十分小さく、細胞に挿入した場合に細胞に実質的にダメージをほとんど或いは全く与えない限り特に限定されないが、例えば円筒形、円錐形、筒状(角柱状を含む)、角錐形等の形状が例示される。先端が鋭利である必要はない。針状材料は、円柱形の方が細胞に対する侵襲性がより低く、導入効率を高められることから好ましい。また、針状材料のアスペクト比は、5:1〜50:1程度、好ましくは10:1〜40:1である。 The shape of the needle-shaped material used in the present invention is not particularly limited as long as it is elongated, has a sufficiently small tip and width, and causes little or no damage to the cell when inserted into the cell. Examples are shapes, cylinders (including prismatic shapes), and pyramids. The tip need not be sharp. The needle-shaped material is preferable because the columnar shape is less invasive to cells and the introduction efficiency can be increased. The aspect ratio of the acicular material is about 5: 1 to 50: 1, preferably 10: 1 to 40: 1.

針状材料のサイズ(円筒型の場合の直径に相当し、円筒型以外の場合には、直径に対応する大きさ)は、細胞に挿入した場合に細胞を殺すことがなく、細胞にほとんど或いは全くダメージを与えないことが望ましい。このような針状材料のサイズは、通常約800nm程度以下、好ましくは約600nm程度以下、より好ましくは約500nm程度以下である。針状材料は、細い方が細胞へのダメージが小さくなるため望ましいが、あまりに細くなり過ぎると強度が低下し抗体を十分量結合させることが困難になるので、通常100nm程度以上、好ましくは200nm程度以上のサイズを有する。   The size of the needle-shaped material (corresponding to the diameter in the case of a cylindrical type, and the size corresponding to the diameter in the case of a non-cylindrical type) does not kill the cell when inserted into the cell, It is desirable not to do any damage. The size of such an acicular material is usually about 800 nm or less, preferably about 600 nm or less, more preferably about 500 nm or less. The needle-shaped material is desirable because the thinner one is less damaging to the cells, but if it is too thin, the strength decreases and it becomes difficult to bind a sufficient amount of antibody, and is usually about 100 nm or more, preferably about 200 nm. It has the above size.

針状材料の材質としては、酸化ニッケル、石英、シリカ、アルミナ、チタニア、ジルコニア、ダイヤモンド等の無機物;金、銀、銅、白金、アルミニウム等の金属;シリコン結晶、ジルコニウム、チタン、タングステン等の金属結晶;酸化亜鉛等の金属酸化物;シリコン、窒化シリコン、ガラス、石英、プラスチック等、細胞に毒性のない物質であればいずれも使用でき、針状の固体材料であることが好ましい。   Needle-like materials include nickel oxide, quartz, silica, alumina, titania, zirconia, diamond and other inorganic materials; gold, silver, copper, platinum, aluminum and other metals; silicon crystals, zirconium, titanium, tungsten and other metals Crystals; metal oxides such as zinc oxide; any substance that is not toxic to cells, such as silicon, silicon nitride, glass, quartz, and plastic, can be used, and a needle-like solid material is preferable.

針状材料は、表面を化学的に修飾できるものが好ましい。例えば、ガラス、シリカ、石英またはシリコン結晶の場合、ビニルトリアルコキシシラン、アミノアルキルトリアルコキシシラン、エポキシ含有アルキルトリアルコキシシラン、3-メルカプトプロピルトリアルコキシシラン(MPTES)等のSH,NH2,エポキシ基、ビニル基等の官能基を導入可能なシランカップリング剤、或いはポリリジンやポリエチレンイミン等のポリ陽イオンで処理することにより官能基(アミノ基)を導入できる。これらの処理物をさらにグルタルアルデヒドやジイソチアン酸フェニル等で処理し、次いで抗体を結合させても良い。また、シリカ、アルミナ、チタニア、ジルコニア等の表面に水酸基を有する材料の場合には、例えば該水酸基をジイソシアネートと反応させ、次いで抗体と反応させることにより抗体を結合できる。金を含む金属へのチオール、スルフィド類の結合性を利用する方法を利用することもできる。この際、一方にチオール、スルフィド類を有し、他方にアミノ基、アルデヒド基、カルボキシル基等の官能基を有するリンカーを結合させることで、他方の官能基に抗体を結合させることができる。針状材料の表面修飾は、上記に限定されず、抗体を結合可能な官能基を導入する方法は、全て包含される。   The acicular material is preferably one that can chemically modify the surface. For example, in the case of glass, silica, quartz or silicon crystal, SH, NH2, epoxy group such as vinyltrialkoxysilane, aminoalkyltrialkoxysilane, epoxy-containing alkyltrialkoxysilane, 3-mercaptopropyltrialkoxysilane (MPTES), A functional group (amino group) can be introduced by treatment with a silane coupling agent capable of introducing a functional group such as a vinyl group or a polycation such as polylysine or polyethyleneimine. These processed products may be further treated with glutaraldehyde, phenyl diisothiocyanate or the like, and then bound with an antibody. In the case of a material having a hydroxyl group on the surface, such as silica, alumina, titania, zirconia, etc., the antibody can be bound by reacting, for example, the hydroxyl group with diisocyanate and then reacting with the antibody. A method utilizing the binding property of thiols and sulfides to metals including gold can also be used. In this case, the antibody can be bound to the other functional group by binding a linker having a thiol or sulfide on one side and a functional group such as an amino group, an aldehyde group, or a carboxyl group on the other side. The surface modification of the needle-shaped material is not limited to the above, and all methods for introducing a functional group capable of binding an antibody are included.

本発明では、抗体を針状材料に直接結合しても良く、リンカーを介して結合することもできる。リンカーとしては、前記シランカップリング剤、メルカプト(SH)基、アミノ基、カルボキシル基、アルデヒド基などの基を有する2官能性或いは多官能性の化合物が挙げられる。   In the present invention, the antibody may be directly bound to the needle-shaped material, or may be bound via a linker. Examples of the linker include bifunctional or polyfunctional compounds having a group such as the silane coupling agent, mercapto (SH) group, amino group, carboxyl group, and aldehyde group.

針状材料に結合される抗体は、細胞内或いは細胞間物質成分、細胞間接着成分、細胞接着成分などに対する抗体が例示される。   Examples of the antibody bound to the needle-shaped material include antibodies against intracellular or intercellular substance components, intercellular adhesion components, cell adhesion components, and the like.

本発明において対象となる細胞は、動物細胞であり、例えばヒト、マウス、ラット、サル、イヌ、ブタ、ウシ、モルモット、ハムスターなどの哺乳動物細胞が好ましく例示できる。細胞の種類としては、リンパ球、造血系幹細胞、間葉系幹細胞、胚性幹細胞などの幹細胞、線維芽細胞、上皮細胞、内皮細胞、筋芽細胞、網膜上皮細胞、ランゲルハンス島、副腎髄質細胞、骨芽細胞、破骨細胞、神経系幹細胞、神経細胞、グリア細胞、神経節細胞、および肝細胞などが挙げられる。   The target cells in the present invention are animal cells, and preferred examples include mammalian cells such as humans, mice, rats, monkeys, dogs, pigs, cows, guinea pigs, and hamsters. Cell types include stem cells such as lymphocytes, hematopoietic stem cells, mesenchymal stem cells, embryonic stem cells, fibroblasts, epithelial cells, endothelial cells, myoblasts, retinal epithelial cells, Langerhans islands, adrenal medullary cells, Examples include osteoblasts, osteoclasts, neural stem cells, nerve cells, glial cells, ganglion cells, and hepatocytes.

結合の対象となる抗原タンパク質は、微小管系の成分、アクチン/ミオシン系の成分、中間径フィラメント系の成分のいずれかの細胞骨格タンパク質、染色体の成分、ミトコンドリアの成分、ゴルジ体の成分、小胞体の成分など、細胞内のオルガネラに特異的なタンパク質で、針状材料の引き抜き時にかかる力を測定出来るものが広く対象となり得る。   Antigen proteins to be bound include cytoskeletal proteins of any of microtubule components, actin / myosin components, intermediate filament components, chromosome components, mitochondrial components, Golgi components, small components Proteins specific to intracellular organelles, such as vesicular components, that can measure the force applied when needle-shaped materials are pulled out can be widely used.

また、さらには細胞組織を対象とし、細胞間物質成分、細胞間接着成分、細胞接着成分なども対象となる。   Furthermore, it is intended for cell tissues, and also includes intercellular substance components, intercellular adhesion components, cell adhesion components, and the like.

この針状材料の細胞内或いは細胞間への挿入は、力応答測定の可能なAFMをはじめとす
る装置により行うことができる。
This needle-like material can be inserted into or between cells using an apparatus such as an AFM capable of measuring force response.

本発明の1つの好ましい実施形態として、この針状材料表面に細胞内の骨格タンパク質を抗原とした抗体を固定化し、細胞に挿入操作を行う場合を、図1に基づき説明する。   As one preferred embodiment of the present invention, a case where an antibody using an intracellular skeletal protein as an antigen is immobilized on the surface of the needle-shaped material and an insertion operation is performed on the cell will be described with reference to FIG.

図1に示すように抗体が細胞内の骨格タンパク質(抗原タンパク質)と結合し、針の抜去時に大きな引力が発生する。この力の発生を持って、細胞骨格タンパク質を定量的に検出することが可能である。また、細胞骨格タンパク質を検出することで、細胞の種類を生きたまま判別することができる。さらに、種々の幹細胞から分化誘導した細胞の中から目的の細胞のみを取り出し、選別することが出来る。幹細胞は分化の過程で種々の細胞に分化するが、将来どのような細胞に分化するのかを本発明の方法により予測することもできる。このような予測は、表面抗原を利用する従来の細胞選別方法では行えない。本発明は細胞内タンパク質を指標にした新たな細胞選別技術を提供する。   As shown in FIG. 1, the antibody binds to intracellular skeletal protein (antigen protein), and a large attractive force is generated when the needle is removed. With the generation of this force, it is possible to detect cytoskeletal proteins quantitatively. Further, by detecting cytoskeletal proteins, it is possible to discriminate the types of cells alive. Furthermore, only the target cells can be taken out and selected from the cells induced to differentiate from various stem cells. Stem cells differentiate into various cells in the process of differentiation, and it is also possible to predict which cells will differentiate in the future by the method of the present invention. Such prediction cannot be performed by a conventional cell sorting method using a surface antigen. The present invention provides a new cell sorting technique using intracellular protein as an index.

例えば、神経細胞は、良い表面マーカー抗原が無く、骨格タンパク質に神経細胞特異的なマーカータンパク質が多く発見されている。従来法では、骨格タンパク質を免疫検出する場合には、細胞からタンパク質を抽出した後に、ウェスタンブロットや、ELISAによっ
て検出するか、細胞を固定化し、免疫染色する方法がとられるが、どの場合も細胞を殺すことになり、目的の骨格タンパク質を発現している細胞は殺すことになる。また、蛍光タンパク質と目的の骨格タンパク質の融合遺伝子を発現させる方法もあるが、遺伝子組み換え体になってしまい、野生型の健常な細胞とは言えない。本発明の方法では、細胞を殺さないので、後の細胞は続く用途に使用でき、後に細胞を利用した治療(例えば再生医療)などへの応用も可能である。
For example, nerve cells do not have a good surface marker antigen, and many neuron-specific marker proteins have been found in skeletal proteins. Conventional methods for immunodetection of scaffold proteins include protein extraction from cells followed by detection by Western blot or ELISA, or cell immobilization and immunostaining. Cells that express the desired scaffold protein will be killed. In addition, there is a method of expressing a fusion gene of a fluorescent protein and a target skeletal protein, but it becomes a gene recombinant and cannot be said to be a wild-type healthy cell. In the method of the present invention, since the cells are not killed, the subsequent cells can be used for the subsequent use, and can be applied to treatment using the cells (for example, regenerative medicine).

以下、本発明を実施例に基づき説明するが、本発明がこれら実施例に限定されないことは言うまでもない。
実施例1
AFM用の単結晶シリコン探針を集束イオンビームによってエッチング加工し、針状材料
(ナノニードル、図2右)を作製した。抗体固定化の過程を図3に示した。オゾンクリーニングにより、探針表面を酸化し、2% MPTMS(3-mercaptopropyl trimethoxysilane)で1
時間反応させることにより表面にチオール基を提示させた。次に2価性架橋剤であるEMCS
(N-(6-maleimidocaproyloxy)succinimide)を1 mg/mlで1時間反応させ、スクシンイミド基を提示させた。スクシンイミド基を提示したナノニードルと抗アクチン抗体溶液を接触
させ、固定化を行った。
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, it cannot be overemphasized that this invention is not limited to these Examples.
Example 1
A single crystal silicon probe for AFM was etched by a focused ion beam to produce a needle-like material (nanoneedle, right in FIG. 2). The process of antibody immobilization is shown in FIG. Ozone cleaning oxidizes the probe surface and 1% with 2% MPTMS (3-mercaptopropyl trimethoxysilane)
By reacting for a period of time, thiol groups were presented on the surface. Next, EMCS, a bivalent crosslinking agent
(N- (6-maleimidocaproyloxy) succinimide) was reacted at 1 mg / ml for 1 hour to present a succinimide group. Immobilization was performed by bringing the nanoneedle presenting the succinimide group into contact with the anti-actin antibody solution.

抗アクチン抗体固定化ナノニードルをヒトメラニン細胞に挿入することで細胞内のアクチンフィラメントを検出した。図4に示す顕微鏡写真の矢印形のカンチレバーの先端にAFM探針すなわちナノニードルは位置しており、写真面に対して垂直方向にナノニードルが
ある。よって、先端位置を細胞に位置あわせし、カンチレバーの上下動作(写真面に垂直方向)を行うことによって、細胞にナノニードルを挿入する。使用するAFM装置は背面に
レーザー照射する光てこ方式によってカンチレバーにかかる力を測定することができ、カンチレバーの移動距離に対してカンチレバーにかかる力をプロットしたフォースカーブを得ることが出来る。抗アクチン抗体固定化ナノニードルをメラニン細胞に挿入した時に得られるフォースカーブを、図5に示した。Iではカンチレバーと細胞はまだ接触していない。しだいにカンチレバーが接近し、細胞に接触する点がIIである。IIの時点から、細胞膜に対してナノニードルが圧入し、IIIのような緩和が観察される部分で細胞膜を貫通し
、細胞に挿入される。IVで折り返し、カンチレバーは細胞から離れて行く抜去過程に入る。VIでは、カンチレバーにかかる見かけの力はゼロに戻り、これ以降の抜去過程では、抗原−抗体相互作用によりナノニードルを引っ張る作用が働いており、ゼロ点を下回る引力側の力の変異が観察される。カンチレバーにかかる力は引き離し距離の増大に従って大きくなり、VIIで抗原−抗体相互作用を破壊し、力が最大からゼロに戻る。最初の細胞接触
のIIとほぼ一致することから、ナノニードルは細胞と離れた状態になっていると考えられる。このようにして観測される相互作用破壊の力の最大値は2〜12 nN程度であり、抗体固定化量に依存して変化する。
Intracellular actin filaments were detected by inserting anti-actin antibody-immobilized nanoneedles into human melanocytes. An AFM probe, that is, a nanoneedle is located at the tip of an arrow-shaped cantilever in the micrograph shown in FIG. 4, and the nanoneedle is in a direction perpendicular to the photographic surface. Therefore, the nanoneedle is inserted into the cell by aligning the tip position with the cell and moving the cantilever up and down (perpendicular to the photographic plane). The AFM device used can measure the force applied to the cantilever by an optical lever method that irradiates the back surface with a laser, and can obtain a force curve in which the force applied to the cantilever is plotted with respect to the moving distance of the cantilever. FIG. 5 shows a force curve obtained when the anti-actin antibody-immobilized nanoneedles are inserted into melanocytes. In I, the cantilever and the cell are not yet in contact. The point where the cantilever gradually approaches and contacts the cell is II. From the time point II, the nanoneedle is pressed into the cell membrane, penetrates the cell membrane at a portion where relaxation is observed as in III, and is inserted into the cell. It turns back at IV and the cantilever enters the extraction process away from the cell. In VI, the apparent force applied to the cantilever returns to zero, and in the subsequent extraction process, the action of pulling the nanoneedle by the antigen-antibody interaction works, and the variation of the force on the attractive side below the zero point is observed. The The force on the cantilever increases with increasing separation distance, destroying the antigen-antibody interaction at VII, and the force returns from maximum to zero. Since it almost coincides with II of the first cell contact, the nanoneedle is considered to be separated from the cell. The maximum value of the interaction breaking force observed in this way is about 2 to 12 nN, and changes depending on the amount of antibody immobilized.

図6のBには、抗アクチン抗体固定化ナノニードルと、同じ過程で抗体を固定化した後に単量体アクチンでブロッキングしたナノニードルの二つのナノニードルを挿入した際のフォースカーブを示している。単量体アクチンの結合により、抗体はアクチンフィラメントと結合出来ず、Aのような抗原−抗体相互作用破壊のための力は観察されない。Aの様なフォースカーブは同じ細胞に数十回連続的に挿入しても繰り返し測定される。このことは、抗体の結合により、アクチンフィラメントが破壊され抗体と結合したアクチンフィラメント破壊残渣が抗原結合部位をふさぎ次の結合を阻害することが無く、また、抗体のニードル表面からの脱離も生じておらず、抗原−抗体の結合が破壊されており、抗体の抗原結合部位は抜去時に再生されていることを示唆する。   FIG. 6B shows a force curve when two nanoneedles of an anti-actin antibody-immobilized nanoneedle and a nanoneedle blocked with monomeric actin after the antibody is immobilized in the same process are inserted. . Due to the binding of the monomeric actin, the antibody cannot bind to the actin filament, and no force for destroying the antigen-antibody interaction like A is observed. A force curve like A is repeatedly measured even if it is inserted into the same cell several tens of times continuously. This is because the actin filaments are destroyed due to antibody binding, and the actin filament destruction residue bound to the antibody does not block the antigen binding site and inhibit the subsequent binding, and the antibody is also detached from the needle surface. However, the antigen-antibody bond is broken, suggesting that the antigen-binding site of the antibody is regenerated upon removal.

抗アクチン抗体固定化ナノニードルをアクチン脱重合剤CytochalasinDでアクチンフィ
ラメントを脱重合させたメラノサイトに挿入して力学応答を観察した結果が、図6Cである。脱重合することにより、細胞内アクチンフィラメントの含有量は減少する。2 μMの
終濃度でCytochalasinDを培地に添加し、20分間インキュベーションし、アクチンフィラ
メントを脱重合させ、CytochalasinDを含まない培地に交換し、5分後に抗体固定化ナノニードルの挿入操作を行った。Cに示すように、フォースカーブに抗原−抗体相互作用を示す引力が観察されなかった。CytochalasinDの処理時間を短くした場合、処理時間を短く
するに従い、抗原−抗体相互作用破壊のための力の最大値は、増大することが観察された。この結果は、細胞内のアクチンフィラメント含有量と測定される相互作用破壊力の最大値は相関しており、力の大きさからアクチンフィラメント含有量を定量出来ることを示唆している。
本発明の技術で細胞分化段階の評価を行うことが出来る。例えば、神経細胞の分化を観察する場合には、マーカータンパク質であるβチューブリンやニューロフィラメントなどの細胞骨格タンパク質を標的として、当該抗体を固定化したナノニードルの挿入とフォ−スカーブ観察を行う。あらかじめ用意しておいた検量線から、細胞内骨格タンパク質の含有量を定量し、分化の進行度合いを評価する。挿入操作された細胞はほとんどダメージを受けないので、その後の操作などに用いることが出来、また、使用した抗体は脱離せず細胞内に残留するその他の物質もないことから、以後の細胞を、移植治療などに使用した場合
でも高い安全性を期待することが出来る。
FIG. 6C shows the result of observing the mechanical response by inserting the anti-actin antibody-immobilized nanoneedle into the melanocyte obtained by depolymerizing the actin filament with the actin depolymerizing agent Cytochalasin D. Depolymerization reduces the content of intracellular actin filaments. Cytochalasin D was added to the medium at a final concentration of 2 μM, incubated for 20 minutes, the actin filaments were depolymerized, replaced with a medium not containing Cytochalasin D, and after 5 minutes, an antibody-immobilized nanoneedle was inserted. As shown in C, no attractive force showing an antigen-antibody interaction was observed in the force curve. When the treatment time of Cytochalasin D was shortened, it was observed that the maximum value of the force for breaking the antigen-antibody interaction increased as the treatment time was shortened. This result indicates that the actin filament content in the cell is correlated with the maximum value of the measured interaction breaking force, and the actin filament content can be determined from the magnitude of the force.
The cell differentiation stage can be evaluated by the technique of the present invention. For example, in the case of observing differentiation of a nerve cell, insertion of a nanoneedle to which the antibody is immobilized and observation of a force curve are performed targeting a cytoskeletal protein such as β-tubulin or neurofilament as marker proteins. From the calibration curve prepared in advance, the content of the intracellular skeletal protein is quantified, and the progress of differentiation is evaluated. Since the inserted cell is hardly damaged, it can be used for subsequent operations, and since the antibody used does not detach and has no other substances remaining in the cell, Even when used for transplantation treatment, high safety can be expected.

細胞内骨格タンパク質を抗原とした抗体を固定化した針状材料の挿入と抗原−抗体相互作用を針状材料抜去時に引力として測定する様子の模式図Schematic diagram of how the measurement of the insertion of needle-shaped material immobilizing an antibody with intracellular skeletal protein as an antigen and the antigen-antibody interaction as an attractive force when the needle-shaped material is removed 単結晶シリコンAFM探針(左)とナノニードル(右)Single crystal silicon AFM probe (left) and nanoneedle (right) ナノニードル表面への抗体固定化方法Antibody immobilization method on nanoneedle surface 抗体固定化ナノニードル挿入したヒトメラニン細胞の明視野像Bright-field images of human melanocytes inserted with antibody-immobilized nanoneedles 抗体固定化ナノニードル挿入時のフォースカーブとナノニードルの細胞への挿入位置の関係を示す模式図Schematic diagram showing the relationship between the force curve when inserting an antibody-immobilized nanoneedle and the insertion position of the nanoneedle into the cell フォースカーブ観察による力学測定量とアクチン量の関係A 抗体固定化ニードルをメラノサイトに挿入した時のフォースカーブB 単量体のアクチンによって抗体をブロッキングした時のフォースカーブC 脱重合剤CytochalasinDを添加した時のフォースカーブRelationship between the amount of actin measured by force curve observation and the amount of actin A Force curve B when an antibody-immobilized needle is inserted into a melanocyte Force curve C when an antibody is blocked with monomeric actin When the depolymerizing agent Cytochalasin D is added The force curve

Claims (6)

細胞内タンパク質抗原に対する抗体を固定化した細胞挿入用針状材料であって、前記細胞内タンパク質抗原が、細胞骨格タンパク質であり、かつ、前記抗体が、針状材料の引き抜き時にかかる力を測定出来るものであることを特徴とする、細胞挿入用針状材料。 A cell inserting needle-shaped material with immobilized antibodies against the intracellular protein antigen, the intracellular protein antigen is a cytoskeletal protein, and wherein the antibody, upon withdrawal of the needle-shaped material A needle-like material for cell insertion, which is capable of measuring such force . 請求項1に記載の細胞挿入用針状材料を細胞内に挿入することを特徴とする、骨格タンパクと抗体を相互作用させる方法。 Cell insertion needle-shaped material according to claim 1, characterized in that inserted into the cell, a method of interacting the skeleton proteins and antibodies. 請求項1に記載の細胞挿入用針状材料を細胞内に挿入して抗原抗体複合体を生じさせ、該針状材料を抜き出す際に該針状材料にかかる力を測定することを特徴とする、細胞内の細胞骨格タンパク質を力学的に検出する方法。 Cell insertion needle-shaped material according to claim 1 is inserted into the cell causing an antigen-antibody complex, and measuring the force exerted on the needle-shaped material when withdrawn needle-shaped material A method for dynamically detecting cytoskeletal proteins in cells. 請求項1に記載の細胞挿入用針状材料を細胞内に挿入して抗原抗体複合体を生じさせ、該針状材料を抜き出す際に該針状材料にかかる力を測定し、得られる測定値に基づき細胞内の前記細胞骨格タンパク質量を定量する方法。 Cell insertion needle-shaped material according to claim 1 is inserted into the cell causing an antigen-antibody complex, and measuring the force exerted on the needle-shaped material when withdrawn acicular material, obtained measured value A method for quantifying the amount of cytoskeletal protein in a cell based on the method. 請求項1に記載の細胞挿入用針状材料を細胞内に挿入して抗原抗体反応を生じさせ、該針状材料を抜き出す際に該針状材料にかかる力を測定し、得られる測定値に基づき細胞の種類を判別する方法。 Cell insertion needle-shaped material according to claim 1 is inserted into the cell causing an antigen-antibody reaction, and measuring the force exerted on the needle-shaped material when withdrawn acicular material, the measurements obtained A method of discriminating cell types based on this. 請求項1に記載の細胞挿入用針状材料、該針状材料にかかる力を検出する手段、検出された力学情報に基づき細胞の種類を分析する手段、細胞の種類ごとに細胞の種類を選別する手段を備えたセルソーター。 The needle-shaped material for cell insertion according to claim 1, means for detecting a force applied to the needle-shaped material, means for analyzing a cell type based on the detected mechanical information, and selecting a cell type for each cell type Cell sorter with means to do.
JP2005064714A 2005-03-09 2005-03-09 Detection method of live cell protein by immunodynamic measurement Expired - Fee Related JP4517074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005064714A JP4517074B2 (en) 2005-03-09 2005-03-09 Detection method of live cell protein by immunodynamic measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005064714A JP4517074B2 (en) 2005-03-09 2005-03-09 Detection method of live cell protein by immunodynamic measurement

Publications (2)

Publication Number Publication Date
JP2006246731A JP2006246731A (en) 2006-09-21
JP4517074B2 true JP4517074B2 (en) 2010-08-04

Family

ID=37087847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005064714A Expired - Fee Related JP4517074B2 (en) 2005-03-09 2005-03-09 Detection method of live cell protein by immunodynamic measurement

Country Status (1)

Country Link
JP (1) JP4517074B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185350A (en) * 2007-01-26 2008-08-14 Olympus Corp Cantilever and its manufacturing method
JP4798454B2 (en) * 2007-02-19 2011-10-19 オリンパス株式会社 Cantilever system for microspace measurement in and between cells
WO2009149467A2 (en) * 2008-06-06 2009-12-10 University Of Washington Method and system for concentrating particles from a solution
US8940092B1 (en) 2008-10-27 2015-01-27 University Of Washington Through Its Center For Commercialization Hybrid fibers, devices using hybrid fibers, and methods for making hybrid fibers
JP5504535B2 (en) 2010-03-11 2014-05-28 独立行政法人産業技術総合研究所 Cell separation method and separation apparatus
WO2023002890A1 (en) 2021-07-20 2023-01-26 東洋製罐グループホールディングス株式会社 Means for controlling intracellular reaction utilizing needle-shaped body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723796A (en) * 1993-07-08 1995-01-27 Hitachi Ltd Intracellular sampling and analyzing method therefor
JP2003088383A (en) * 2001-09-19 2003-03-25 Tokyo Inst Of Technol Method for collecting biomolecule from live cell
JP2003325161A (en) * 2002-03-06 2003-11-18 National Institute Of Advanced Industrial & Technology Apparatus for cell manipulation and method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723796A (en) * 1993-07-08 1995-01-27 Hitachi Ltd Intracellular sampling and analyzing method therefor
JP2003088383A (en) * 2001-09-19 2003-03-25 Tokyo Inst Of Technol Method for collecting biomolecule from live cell
JP2003325161A (en) * 2002-03-06 2003-11-18 National Institute Of Advanced Industrial & Technology Apparatus for cell manipulation and method therefor

Also Published As

Publication number Publication date
JP2006246731A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4517074B2 (en) Detection method of live cell protein by immunodynamic measurement
Chiappini Nanoneedle-based sensing in biological systems
Avery et al. A cell-free system for regulated exocytosis in PC12 cells
Lestrell et al. Engineered nano-bio interfaces for intracellular delivery and sampling: applications, agency and artefacts
CN105358979A (en) Analyte detection enhancement by targeted immobilization, surface amplification, and pixelated reading and analysis
Sariisik et al. Decoding cytoskeleton-anchored and non-anchored receptors from single-cell adhesion force data
Haupt et al. Integrated confocal and scanning probe microscopy for biomedical research
Morton et al. Atomic force microscopy-based bioanalysis for the study of disease
Roy et al. “Seeing and counting” individual antigens captured on a microarrayed spot with force-based atomic force microscopy
JP5504535B2 (en) Cell separation method and separation apparatus
Tarhan et al. Biosensing MAPs as “roadblocks”: Kinesin-based functional analysis of tau protein isoforms and mutants using suspended microtubules (sMTs)
US20210350875A1 (en) High throughput method and system for mapping intracellular phase diagrams
US11499967B2 (en) Specific protein marker and method for identifying the statistic distribution of protein stoichiometry
Han et al. Nanolithography of amyloid precursor protein cleavage with β-secretase by atomic force microscopy
Anselmetti et al. Analysis of subcellular surface structure, function and dynamics
JP2007526743A (en) A method for assessing the invasive potential of cells using chromatin analysis
RU2639125C1 (en) Method for biological visualization
Lamprecht et al. Biomedical sensing with the atomic force microscope
Schillers et al. Nanophysiology of Cells, Channels and Nuclear Pores
Kolay et al. Ligand Binding-Induced Cellular Membrane Deformation is Correlated with the Changes in Membrane Stiffness
Vidović Application of nanotechnologies for quantification measurement of nanoparticles from human cerebrospinal fluid: comparison of atomic force microscopy and tunable resistive pulse sensing
EP2435829B1 (en) Imaging method and use thereof
Joshi Biosensors
JP4118847B2 (en) Biological sample chip for collecting specific substance in cell and method for measuring specific substance in collected cell
WO2015177862A1 (en) Device and method for identifying cell cycle phase

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4517074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees