JPH0723796A - Intracellular sampling and analyzing method therefor - Google Patents

Intracellular sampling and analyzing method therefor

Info

Publication number
JPH0723796A
JPH0723796A JP16885593A JP16885593A JPH0723796A JP H0723796 A JPH0723796 A JP H0723796A JP 16885593 A JP16885593 A JP 16885593A JP 16885593 A JP16885593 A JP 16885593A JP H0723796 A JPH0723796 A JP H0723796A
Authority
JP
Japan
Prior art keywords
sampling
needle
sample
tip
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16885593A
Other languages
Japanese (ja)
Inventor
Yuji Sasaki
裕次 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16885593A priority Critical patent/JPH0723796A/en
Publication of JPH0723796A publication Critical patent/JPH0723796A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable local analysis of an organism structure (cell) in high sensitivity using an atomic force microscope or a field evaporation type mass spectrometry by electrically or chemically absorbing a nucleic acid and protein, etc., to the tip part of a sample-collecting needle. CONSTITUTION:The tip part of a sample-collecting needle is stuck into a biological structure (cell) and nucleic acid and protein, etc., are electrically and chemically absorbed thereto and the absorbed sample is analyzed by an atomic force microscope or a field evaporation type mass spectrometry.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生体組織及び細胞内か
らサンプリングした核酸及びタンパク質等を直接観察試
料とする高感度分析方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly sensitive analytical method in which nucleic acids, proteins and the like sampled from living tissues and cells are used as direct observation samples.

【0002】[0002]

【従来の技術】従来の技術では、ガラスキャピラリー等
を用いて生体組織及び細胞内から核酸及びタンパク質等
をサンプリングしていた。従って、細胞壁にキャピラリ
ーの断面積分の穴をあけることになり破壊的サンプリン
グしか可能ではなかったし、高感度な分析法とサンプリ
ング法がうまく組み合っていないために、複数の生体組
織及び細胞内からサンプリングし、サンプル量を増やす
必要があり局部的分析が不可能であった。
2. Description of the Related Art In the prior art, nucleic acids, proteins and the like were sampled from living tissues and cells using glass capillaries and the like. Therefore, a hole for the cross-sectional integration of the capillary was made in the cell wall, and only destructive sampling was possible.Since the sensitive analysis method and sampling method were not well combined, sampling was performed from multiple living tissues and cells. However, it was necessary to increase the sample size and local analysis was impossible.

【0003】また、その採取した核酸及びタンパク質等
の一部しか有効に分析されていなかった。つまり、測定
装置の検出限界は、分析に必要な最低サンプル量とは等
しくなく、かなり余分なサンプル量が必要であった。
Further, only a part of the collected nucleic acids, proteins and the like have been effectively analyzed. That is, the detection limit of the measuring device was not equal to the minimum sample amount required for the analysis, and a considerably extra sample amount was required.

【0004】[0004]

【発明が解決しようとする課題】サンプリング棒をガラ
スキャピラリー等より断面積を小さくすることにより細
胞壁の破壊を極力小さくする。また、測定装置の検出限
界と、分析に必要な最低サンプル量とをほぼ等しい分析
法と組み合わせて採取した核酸及びタンパク質等を分析
する。従って、生体組織及び細胞内の局部的分析が可能
になる。
The cross-sectional area of the sampling rod is made smaller than that of a glass capillary or the like to minimize the destruction of the cell wall. In addition, the nucleic acid, protein, etc. collected are analyzed by combining the detection limit of the measuring device and the minimum sample amount required for the analysis with substantially the same analysis method. Therefore, local analysis in living tissues and cells becomes possible.

【0005】[0005]

【課題を解決するための手段】本発明は、試料採取針の
先端部に生体組織(細胞)内において核酸及びタンパク
質等を電気的または化学的に吸着(反応)させ、その先
端部に吸着された試料を直接観察試料とする。そのた
め、測定装置の検出限界が、分析に必要な最低サンプル
量とほぼ等しくなり、高感度な分析法が可能となる。ま
た、分析したい生体組織(細胞)部分に試料採取針を刺
しこむので局部的分析を可能とする。
According to the present invention, nucleic acid and protein are electrically or chemically adsorbed (reacted) in a biological tissue (cell) to the tip of a sampling needle, and the tip is adsorbed. The sample is used as the direct observation sample. Therefore, the detection limit of the measuring device becomes almost equal to the minimum sample amount required for analysis, and a highly sensitive analysis method becomes possible. In addition, since a sampling needle is inserted into a living tissue (cell) portion to be analyzed, local analysis is possible.

【0006】[0006]

【作用】本発明は、試料採取針を生体組織(細胞)内に
刺しこむため、生きた生体組織からサンプリングが可能
で、サンプリングによる破壊も最小限に抑えることがで
きる。従って、サンプリング後の生体組織(細胞)の活
性にほとんど影響を与えない。あるパラメーターに対す
る1つの生体組織(細胞)の経時変化を計測することも
可能になる。
In the present invention, since the sample collecting needle is inserted into the living tissue (cell), it is possible to sample from living living tissue, and the destruction due to sampling can be minimized. Therefore, the activity of the living tissue (cell) after sampling is hardly affected. It is also possible to measure the time-dependent change of one living tissue (cell) with respect to a certain parameter.

【0007】[0007]

【実施例】【Example】

実施例1 図1に、先端部分を親水性にし、核酸及びタンパク質を
先端部分にのみ吸着する試料採取針1を示す。この例で
は、試料採取針1自体は表面は疎水性とされ、界面活性
剤2により表面が親水性とされる。親水性とされた表面
がサンプリング部3として使用される。
Example 1 FIG. 1 shows a sampling needle 1 in which the tip portion is made hydrophilic and nucleic acids and proteins are adsorbed only to the tip portion. In this example, the surface of the sampling needle 1 itself is hydrophobic, and the surface of the sampling needle 1 is hydrophilic by the surfactant 2. The hydrophilic surface is used as the sampling unit 3.

【0008】試料採取針1は、針スキャナー7に内臓さ
れている圧電素子により粗動及び微動可能とされる。分
析目的の試料9はサンプルホルダーである光学顕微鏡の
試料台10に固定されている。針スキャナー7により、
試料採取針1は試料細胞片9の目的の個所に移動された
後、試料を刺し、数分間そのままに保持された後抜き取
られる。
The sampling needle 1 can be coarsely and finely moved by a piezoelectric element incorporated in the needle scanner 7. A sample 9 for analysis is fixed on a sample stage 10 of an optical microscope which is a sample holder. With the needle scanner 7,
The sample collection needle 1 is moved to a desired position on the sample cell piece 9, punctured with the sample, held for a few minutes, and then withdrawn.

【0009】本実施例においては、生体組織(細胞)内
の伝令リボ核酸(m-RNA)を試料採取針1のサンプリング
部3に吸着させ、その存在の有無を原子間力顕微鏡AFM
(Atomic Force Microprobe)で観察する。試料採取針1
は、例えば、タングステン針(直径100μm)とされ、
この先端部を親水性にするために両親媒性の界面活性剤
2(例えばステアリン酸カドミニウム)を吸着させて、
核酸が吸着しやすいようにする。試料採取針1の先端部
は、nmオーダーで言えばそれほど尖っているものではな
いので、この試料採取針の形状のためにAFM観察が不可
能になることはない。
In this embodiment, messenger ribonucleic acid (m-RNA) in living tissue (cells) is adsorbed to the sampling unit 3 of the sampling needle 1, and the presence or absence thereof is checked by the atomic force microscope AFM.
Observe with (Atomic Force Microprobe). Sampling needle 1
Is, for example, a tungsten needle (diameter 100 μm),
To make this tip hydrophilic, adsorb amphiphilic surfactant 2 (eg cadmium stearate),
Make it easier for nucleic acids to be adsorbed. Since the tip of the sampling needle 1 is not so sharp in nm order, the shape of the sampling needle does not make AFM observation impossible.

【0010】実施例2 実施例1と同じ試料採取針1のサンプリング部3に分析
目的のm-RNAの相補的な塩基配列(例えば、化学合成す
る)を吸着させ、リファレンスとしてAFMにて観察す
る。
Example 2 A complementary nucleotide sequence (for example, chemically synthesized) of a target mRNA for analysis is adsorbed to the sampling section 3 of the same sampling needle 1 as in Example 1 and observed by AFM as a reference. .

【0011】次に、分析目的のm-RNAの相補的な塩基配
列が吸着された試料採取針1を実施例1と同様に試料に
差し込み、サンプリング部3に吸着された分析目的のm-
RNAを観察する。この場合、m-RNAの存在を判り易くする
ために、m-RNAに特有な結合能力のある分子を反応さ
せ、その分子をAFMにて観察する。例えば、m-RNAには必
ず存在するメチオニン(塩基配列:AUG)をビオチン化した
分子の含まれ水溶液にサンプリング部3を浸け、次に、
アビジンを含んだ水溶液に、再度、サンプリング部3を
浸けて、AFMで一辺数十nmあるサイコロ状のアビジンの
存在の有無を確認することで局部的な生体組織(細胞)
内のm-RNAの存在を測定することができる。
Next, the sampling needle 1 to which the complementary nucleotide sequence of the m-RNA to be analyzed is adsorbed is inserted into the sample in the same manner as in Example 1, and the m-RNA to be adsorbed to the sampling unit 3 is adsorbed.
Observe RNA. In this case, in order to make it easy to recognize the presence of m-RNA, a molecule having a binding ability specific to m-RNA is reacted and the molecule is observed by AFM. For example, the sampling unit 3 is dipped in an aqueous solution containing a biotinylated molecule of methionine (base sequence: AUG) that is always present in m-RNA, and then
By immersing the sampling unit 3 again in an aqueous solution containing avidin and confirming the presence or absence of dice-shaped avidin with a side length of several tens of nm by AFM, local biological tissue (cells)
The presence of m-RNA within can be measured.

【0012】勿論、目的のm-RNAの相補的な塩基配列を
吸着させた試料採取針1にm-RNAを吸着させただけでもm
-RNAの存在が確認出来る可能性はあるが、基本的にAFM
は表面の形状のみの情報しか与えないので上記のような
m-RNA確認のための過程をトルコとが、詳細な分析のた
めには有用である。
Of course, even if m-RNA is adsorbed only on the sampling needle 1 on which the complementary nucleotide sequence of the target m-RNA is adsorbed,
-It is possible to confirm the presence of RNA, but basically AFM
Since only gives information on the surface shape,
Turkey has a process for confirmation of m-RNA, but is useful for detailed analysis.

【0013】実施例3 本実施例では、生体組織(細胞)内のタンパク質を試料
採取針1の表面に電気的に吸着し、その存在の有無を電
界蒸発型質量分析法で分析する。
Example 3 In this example, proteins in living tissues (cells) are electrically adsorbed on the surface of the sampling needle 1, and the presence or absence thereof is analyzed by field evaporation mass spectrometry.

【0014】本実施例では試料採取針1は金属針(例え
ば、タングステン(直径100μm))とされ、サンプリ
ング部3となる部分以外は絶縁層12で覆われる。
In this embodiment, the sampling needle 1 is a metal needle (for example, tungsten (diameter 100 μm)), and the portion other than the portion to be the sampling portion 3 is covered with the insulating layer 12.

【0015】実施例1と同様に試料採取針1を目的の個
所に移動して試料を試料採取針1で刺し、試料採取針1
にプラスの電位をかけ、数分間そのままに保持した後抜
き取る。生体組織(細胞)内に存在しているタンパク質
は通常マイナスの電荷を持っているので、存在している
ものは、ほとんどがサンプリング部3に吸着される。
Similar to the first embodiment, the sample-collecting needle 1 is moved to a desired position, and the sample is pierced with the sample-collecting needle 1, and the sample-collecting needle 1 is inserted.
Apply a positive potential to, hold it for a few minutes, and then remove. Since proteins existing in living tissues (cells) usually have a negative charge, most of the existing proteins are adsorbed by the sampling unit 3.

【0016】この場合、複数のタンパク質がサンプリン
グされるが、そのタンパク質の同定は、電界蒸発型質量
分析により求められた質量スペクトルより既存のタンパ
ク質の質量スペクトルと比較することにより行う。ま
た、試料採取針1は先端部分の吸着物を非常に効率的に
蒸発させるので、もし先端部以外に吸着されたタンパク
質が存在した場合でもほとんど電界蒸発されない。従っ
て、先端部分以外にもタンパク質の吸着が起こった場合
でも試料採取針1による局部的分析が可能となる。
In this case, a plurality of proteins are sampled, and the proteins are identified by comparing the existing mass spectra of the proteins with the mass spectra obtained by the field evaporation mass spectrometry. Further, since the sample collecting needle 1 evaporates the adsorbate at the tip portion very efficiently, even if there is adsorbed protein other than the tip portion, almost no electric field evaporation occurs. Therefore, even if protein adsorption occurs in other than the tip portion, local analysis by the sampling needle 1 is possible.

【0017】[0017]

【発明の効果】試料採取針の先端部をサンプリング部と
することにより、生体組織(細胞)の局部的分析が可能
になり、また、原子間力顕微鏡や質量分析法などのサン
プルとして、採取したサンプルのほぼすべてを利用でき
るので、非常に高感度な分析が可能となる。
EFFECTS OF THE INVENTION By using the tip of the sample collecting needle as a sampling part, it becomes possible to perform local analysis of living tissue (cells), and the sample is collected as a sample for an atomic force microscope or mass spectrometry. Almost all of the samples are available, allowing for very sensitive analysis.

【図面の簡単な説明】[Brief description of drawings]

【図1】先端部分を親水性にし、サンプリング部とした
試料採取針。
FIG. 1 is a sampling needle that has a hydrophilic tip portion and is used as a sampling portion.

【図2】試料採取針を用いた生体組織及び細胞サンプリ
ング装置。
FIG. 2 shows a biological tissue and cell sampling device using a sampling needle.

【図3】先端部分を導電性にし、サンプリング部とした
試料採取針。
FIG. 3 is a sampling needle that has a conductive tip portion and is used as a sampling portion.

【符号の説明】[Explanation of symbols]

1…試料採取針、2…界面活性剤、3…サンプリング
部、6…光学顕微鏡、7…試料採取針スキャナー、9…
試料細胞片、10…サンプルホルダー、12…絶縁層。
DESCRIPTION OF SYMBOLS 1 ... Sampling needle, 2 ... Surfactant, 3 ... Sampling part, 6 ... Optical microscope, 7 ... Sampling needle scanner, 9 ...
Sample cell piece, 10 ... Sample holder, 12 ... Insulating layer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01N 1/10 P // C12N 15/09 C12Q 1/68 Z 9453−4B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G01N 1/10 P // C12N 15/09 C12Q 1/68 Z 9453-4B

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】細胞内に試料採取針を刺し、静電気的また
は化学的に針先端に核酸及びタンパク質等を吸着させる
ことを特徴とするサンプリング法。
1. A sampling method, which comprises puncturing a cell with a sampling needle and electrostatically or chemically adsorbing a nucleic acid, a protein and the like to the tip of the needle.
【請求項2】針先端部のみが親水性とされたことを特徴
とする請求項1記載のサンプリング法。
2. The sampling method according to claim 1, wherein only the tip of the needle is made hydrophilic.
【請求項3】針先端部のみが導電性とされたことを特徴
とする請求項1記載のサンプリング法。
3. The sampling method according to claim 1, wherein only the tip of the needle is made conductive.
【請求項4】生化学的方法及び質量分析法を利用して、
試料採取針先端部に吸着された核酸及びタンパク質等を
同定、定量化することを特徴とする分析方法。
4. Utilizing biochemical methods and mass spectrometry,
An analysis method characterized by identifying and quantifying nucleic acids, proteins, etc. adsorbed on the tip of a sampling needle.
【請求項5】原子間力顕微鏡を用いて、試料採取針先端
部に吸着された核酸及びタンパク質等を同定、定量化す
ることを特徴とする分析方法。
5. An analysis method characterized by identifying and quantifying nucleic acids and proteins adsorbed on the tip of a sampling needle using an atomic force microscope.
JP16885593A 1993-07-08 1993-07-08 Intracellular sampling and analyzing method therefor Pending JPH0723796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16885593A JPH0723796A (en) 1993-07-08 1993-07-08 Intracellular sampling and analyzing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16885593A JPH0723796A (en) 1993-07-08 1993-07-08 Intracellular sampling and analyzing method therefor

Publications (1)

Publication Number Publication Date
JPH0723796A true JPH0723796A (en) 1995-01-27

Family

ID=15875810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16885593A Pending JPH0723796A (en) 1993-07-08 1993-07-08 Intracellular sampling and analyzing method therefor

Country Status (1)

Country Link
JP (1) JPH0723796A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945678A (en) * 1996-05-21 1999-08-31 Hamamatsu Photonics K.K. Ionizing analysis apparatus
JP2006246731A (en) * 2005-03-09 2006-09-21 National Institute Of Advanced Industrial & Technology Method for detecting living cell protein by immunodynamic measurement
EP2017610A1 (en) * 2006-04-28 2009-01-21 University of Yamanashi Ionizing method and device by electrospray
JP2009041931A (en) * 2007-08-06 2009-02-26 Nippon Telegr & Teleph Corp <Ntt> Protein function analyzer
JP2011523064A (en) * 2008-06-06 2011-08-04 ユニバーシティー・オブ・ワシントン Method and system for concentrating particles from solution
US8940092B1 (en) 2008-10-27 2015-01-27 University Of Washington Through Its Center For Commercialization Hybrid fibers, devices using hybrid fibers, and methods for making hybrid fibers

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945678A (en) * 1996-05-21 1999-08-31 Hamamatsu Photonics K.K. Ionizing analysis apparatus
JP2006246731A (en) * 2005-03-09 2006-09-21 National Institute Of Advanced Industrial & Technology Method for detecting living cell protein by immunodynamic measurement
JP4517074B2 (en) * 2005-03-09 2010-08-04 独立行政法人産業技術総合研究所 Detection method of live cell protein by immunodynamic measurement
EP2017610A1 (en) * 2006-04-28 2009-01-21 University of Yamanashi Ionizing method and device by electrospray
EP2017610A4 (en) * 2006-04-28 2010-02-03 Univ Yamanashi Ionizing method and device by electrospray
US7902499B2 (en) 2006-04-28 2011-03-08 University Of Yamanashi Ionization method and apparatus using electrospray
JP2009041931A (en) * 2007-08-06 2009-02-26 Nippon Telegr & Teleph Corp <Ntt> Protein function analyzer
JP2011523064A (en) * 2008-06-06 2011-08-04 ユニバーシティー・オブ・ワシントン Method and system for concentrating particles from solution
US8632669B2 (en) 2008-06-06 2014-01-21 University Of Washington Method and system for concentrating particles from a solution
US9097664B2 (en) 2008-06-06 2015-08-04 University Of Washington Method and system for concentrating particles from a solution
US9518956B2 (en) 2008-06-06 2016-12-13 University Of Washington Particle concentration system
US8940092B1 (en) 2008-10-27 2015-01-27 University Of Washington Through Its Center For Commercialization Hybrid fibers, devices using hybrid fibers, and methods for making hybrid fibers

Similar Documents

Publication Publication Date Title
JP4381820B2 (en) Micro extractor for biological tissue examination
US7259019B2 (en) Multiple sampling device and method for investigating biological systems
Drexler et al. Utility of imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) on an ion trap mass spectrometer in the analysis of drugs and metabolites in biological tissues
Garden et al. Heterogeneity within MALDI samples as revealed by mass spectrometric imaging
Cornett et al. MALDI imaging mass spectrometry: molecular snapshots of biochemical systems
Pu et al. Direct sampling mass spectrometry for clinical analysis
Bokhart et al. Infrared matrix-assisted laser desorption electrospray ionization mass spectrometry imaging analysis of biospecimens
US8008064B2 (en) Calibration procedure for investigating biological systems
JP4607223B2 (en) Sampling probe for microarray reading using electrospray mass spectrometry
Guzman Determination of immunoreactive gonadotropin-releasing hormone in serum and urine by on-line immunoaffinity capillary electrophoresis coupled to mass spectrometry
Lapainis et al. Contributions of capillary electrophoresis to neuroscience
EP3423808B1 (en) Method and instrument for extracting a component from a sample
US11139157B2 (en) Multiplexed inductive ionization systems and methods
Walworth et al. Hydrophobic treatment enabling analysis of wettable surfaces using a liquid microjunction surface sampling probe/electrospray ionization-mass spectrometry system
Tagliaro et al. Hair analysis by using radioimmunoassay, high-performance liquid chromatography and capillary electrophoresis to investigate chronic exposure to heroin, ***e and/or ecstasy in applicants for driving licences
Romanova et al. Small-volume analysis of cell–cell signaling molecules in the brain
Yoshimura et al. Physical properties of the probe electrospray ionization (PESI) needle applied to the biological samples
Luconi et al. Determination of lead in human saliva by combined cloud point extraction–capillary zone electrophoresis with indirect UV detection
Walles et al. Approaches for coupling solid-phase microextraction to nanospray
JPH0723796A (en) Intracellular sampling and analyzing method therefor
Baker et al. On the intersection of electrochemistry and mass spectrometry
Kovács et al. Automatic target location strategy–a novel approach in scanning electrochemical microscopy
Cottingham The single-cell scene
CN113720894B (en) Direct sampling ionization analysis system and method and application
Liu et al. Paper spray