JP4510542B2 - Cutlery and manufacturing method thereof - Google Patents

Cutlery and manufacturing method thereof Download PDF

Info

Publication number
JP4510542B2
JP4510542B2 JP2004222853A JP2004222853A JP4510542B2 JP 4510542 B2 JP4510542 B2 JP 4510542B2 JP 2004222853 A JP2004222853 A JP 2004222853A JP 2004222853 A JP2004222853 A JP 2004222853A JP 4510542 B2 JP4510542 B2 JP 4510542B2
Authority
JP
Japan
Prior art keywords
blade
alloy
hardness
aging treatment
plastic working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004222853A
Other languages
Japanese (ja)
Other versions
JP2006037206A (en
Inventor
修 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2004222853A priority Critical patent/JP4510542B2/en
Publication of JP2006037206A publication Critical patent/JP2006037206A/en
Application granted granted Critical
Publication of JP4510542B2 publication Critical patent/JP4510542B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Knives (AREA)

Description

本発明は、耐食性、耐摩耗性、強度、靭性に優れてなおかつ非磁性である刃物及びその製造方法に関するものである。   The present invention relates to a blade that is excellent in corrosion resistance, wear resistance, strength, toughness, and is nonmagnetic, and a method for producing the same.

従来、海水などの腐食環境下で使うダイバー用ナイフ、海釣り用ナイフなどの刃物は、ステンレス鋼、Ti合金、金属間化合物を析出させたNi基合金などを用いて製造されていた(例えば、特許文献1参照)。   Conventionally, blades such as knives for divers and knives for sea fishing used in corrosive environments such as seawater have been manufactured using stainless steel, Ti alloys, Ni-based alloys on which intermetallic compounds are precipitated, etc. (for example, Patent Document 1).

また、非磁性を必要とする刃物、例えば、磁気影響を嫌う磁気テープの裁断用刃物としては、セラミック、Ti合金、Ti合金へのイオンプレーティングなどの表面処理、NiTi金属間化合物を析出させたNiTi合金刃物などが知られていた(例えば、特許文献2参照)。
特開平5−117828公報(第2項から第3項) 特開平5−318380公報(第2項から第3項)
In addition, as a blade that requires non-magnetism, for example, a blade for cutting magnetic tape that does not like magnetic influence, surface treatment such as ion plating on ceramic, Ti alloy, Ti alloy, NiTi intermetallic compound was deposited. NiTi alloy blades have been known (see, for example, Patent Document 2).
JP-A-5-117828 (2nd to 3rd terms) JP-A-5-318380 (2nd to 3rd terms)

ステンレス鋼やTi合金製刃物は、耐食性に優れているが硬度や強度が低く、すぐに切れ味が悪くなったり、折れ曲がったり、破断したりして、満足できるものではなかった。金属間化合物を析出させたNi基合金を用いた刃物もあるが析出硬化処理時間が長くかかるなどの課題があった。   Stainless steel and Ti alloy blades are not satisfactory because they are excellent in corrosion resistance but have low hardness and strength, and the sharpness, bending, and rupture of the blades are not satisfactory. Although there is a blade using a Ni-based alloy on which an intermetallic compound is precipitated, there are problems such as a long precipitation hardening treatment time.

非磁性刃物として、セラミックは靭性が低いために刃が欠けやすく、Ti合金は硬度が不十分のために刃の磨耗が早く、Ti合金へのイオンプレーティングは硬化層が剥離しやすいなどの問題があった。また、NiTi金属間化合物を析出させたNiTi合金刃物は、セラミックやTi合金製刃物に比べ優れているが、さらなる硬度、強度の向上が求められていた。   As a non-magnetic blade, ceramics have low toughness, so the blades are easily chipped. Ti alloys have insufficient hardness, so the blades wear quickly. was there. Moreover, although the NiTi alloy blade with NiTi intermetallic compound precipitated is superior to ceramic and Ti alloy blades, further improvements in hardness and strength have been demanded.

本発明は、耐食性、引張り強度、靭性に優れてなおかつ非磁性である刃物を提供することを目的とする。   An object of this invention is to provide the cutter which is excellent in corrosion resistance, tensile strength, and toughness, and is nonmagnetic.

本発明に係る刃物は、Co−Ni基合金を用いる。Co−Ni基合金の組成は、質量%で少なくとも、Co30〜40%、Ni30〜35%、Cr18〜26%、Mo6〜11%、かつNb又はWの少なくとも一方を質量%で0≦Nb≦2%、0≦W≦8%の範囲で含む。 The cutter according to the present invention uses a Co—Ni based alloy. The composition of the Co—Ni-based alloy is at least 30% to 40% by mass , 30% to 35% Ni, 18% to 26% Cr, 6% to 11% Mo, and at least one of Nb or W by mass% 0 ≦ Nb ≦ 2. %, 0 ≦ W ≦ 8%.

本発明は、前記Co−Ni基合金を熱間圧延する工程と、溶体化処理する工程と、冷間塑性加工を施す工程と、時効処理する工程と、研磨する工程とからなる。   The present invention comprises a step of hot rolling the Co—Ni based alloy, a step of solution treatment, a step of cold plastic working, a step of aging treatment, and a step of polishing.

好ましくは、Co−Ni基合金の冷間塑性加工の加工率は70%以上である。   Preferably, the processing rate of the cold plastic working of the Co—Ni based alloy is 70% or more.

また、用途によっては刃物の刃先よりも峰の加工率が低くなるように塑性加工を施すことにより、刃先のみを高硬度にして、刃物全体は適度な靭性を有して刃物を破断し難くしても良い。   In addition, depending on the application, plastic working is performed so that the cutting rate of the peak is lower than the cutting edge of the blade, so that only the cutting edge has high hardness, and the entire blade has appropriate toughness, making it difficult to break the blade. May be.

本発明によれば、従来の耐食性刃物に比べ、耐磨耗性、強度に優れているため、刃先が磨耗したり欠けたりし難く、強靭で破断し難い刃物を実現できる。例えば、ダイバー用、海釣り用のレジャーナイフなどとして適している。   According to the present invention, since it is superior in wear resistance and strength compared to conventional corrosion-resistant cutting tools, it is possible to realize a tough and hard-to-break cutting tool in which the cutting edge is hardly worn or chipped. For example, it is suitable as a leisure knife for divers and sea fishing.

また、本発明に係る刃物は非磁性であるため、非磁性を必要とする刃物、例えば、磁気テープの裁断用刃物に適している。磁気テープに磁気影響を与えず、耐摩耗性に優れて刃先の鋭利さを長く保つため、再研磨するまでの使用時間、すなわちランニングタイムを長くすることができる効果がある。   Moreover, since the blade according to the present invention is non-magnetic, it is suitable for a blade that requires non-magnetism, for example, a blade for cutting magnetic tape. Since the magnetic tape is not affected magnetically and has excellent wear resistance and the sharpness of the blade edge is kept long, there is an effect that the use time until re-polishing, that is, the running time can be extended.

本発明に係る刃物に用いるCo−Ni基合金の組成は、質量%で少なくとも、Co30〜40%、Ni30〜35%、Cr18〜26%、Mo6〜11%、NbもしくはWの少なくとも一方を含み、前記元素の質量%が0≦Nb≦2%、0≦W≦8%である。このCo−Ni基合金は、硬度、強度、耐食性に優れ、非磁性である。この合金を好ましくは真空溶解にて溶製し、インゴットに鋳造する。そのインゴットを用いて鍛造、熱間圧延加工を行い、1100℃〜1200℃で溶体化処理し、その後、冷間塑性加工を施す。 The composition of the Co-Ni base alloy used for the blade according to the present invention includes at least one of Co 30 to 40%, Ni 30 to 35%, Cr 18 to 26%, Mo 6 to 11%, Nb or W in mass% . The mass% of the element is 0 ≦ Nb ≦ 2% and 0 ≦ W ≦ 8%. This Co—Ni based alloy is excellent in hardness, strength and corrosion resistance, and is non-magnetic. This alloy is preferably melted by vacuum melting and cast into an ingot. Forging and hot rolling are performed using the ingot, solution treatment is performed at 1100 ° C. to 1200 ° C., and then cold plastic working is performed.

この合金の母相はオーステナイト単一相であり、冷間塑性加工を施すことにより母相内に微細なΣ3変形双晶が形成され加工硬化させ、その後、時効処理を施すことによりひずみ時効硬化させて硬度、強度をさらに増大させる。この合金の母相は非常に安定したオーステナイト相であるために、冷間塑性加工を施しても加工誘起マルテンサイト相などのような磁性相の生成がない。加工硬化、時効硬化は全てオーステナイト相内で起こるので、非磁性を維持したまま強度を増大することができる。   The parent phase of this alloy is an austenite single phase, and by subjecting it to cold plastic working, fine Σ3 deformation twins are formed in the parent phase and work hardened, followed by strain aging hardening by applying an aging treatment. To further increase hardness and strength. Since the parent phase of this alloy is a very stable austenite phase, no magnetic phase such as a work-induced martensite phase is generated even when cold plastic working is performed. Since work hardening and age hardening all occur within the austenite phase, the strength can be increased while maintaining non-magnetism.

刃物としての十分な硬度、強度を得るためには、70%以上、好ましくは80%以上の塑性加工を施す。ただし、加工率が高くなりすぎると靭性は低下してくるので、用途によっては刃物の峰の加工率が40%以上、刃先の加工率が70%以上になるように塑性加工を施す。刃先の加工率を峰の部分より高くすることにより、刃先のみを高硬度にして、刃物全体は適度な靭性を有して刃物を破断し難くくすることが可能である。   In order to obtain sufficient hardness and strength as a cutting tool, plastic working of 70% or more, preferably 80% or more is performed. However, since the toughness decreases when the processing rate becomes too high, plastic working is performed so that the processing rate of the edge of the cutter is 40% or more and the processing rate of the cutting edge is 70% or more depending on the application. By making the processing rate of the cutting edge higher than the peak portion, it is possible to make only the cutting edge high in hardness, and the entire cutting tool has appropriate toughness, making it difficult to break the cutting tool.

塑性加工は通常の圧延、鍛造などでよい。この合金は冷間塑性加工率を高めても加工誘起マルテンサイト相のような磁性相を生じることはない。その後、時効処理を施すことによりひずみ時効硬化して、さらに硬度、強度が増大する。ひずみ時効硬化は母相内で溶質原子が積層欠陥に偏析して転位を固着することにより硬化するものである。このように、冷間塑性加工や時効処理を施して合金の硬度や強度を刃物に適するまで増大させても、母相はオーステナイト相のままであり非磁性を維持する。時効処理は400℃〜650℃、好ましくは500℃〜600℃の温度範囲で1〜2時間行う。400℃未満の温度での時効処理では十分な時効硬化が得られず、650℃を越える温度での時効処理では焼鈍領域に入ってしまい硬度が低下するからである。時効処理後、各種刃物に適した形状に研磨して仕上げる。   The plastic working may be ordinary rolling or forging. This alloy does not produce a magnetic phase such as a work-induced martensite phase even when the cold plastic working rate is increased. Thereafter, by applying an aging treatment, strain age hardening is performed, and the hardness and strength are further increased. In strain age hardening, solute atoms segregate in stacking faults in the matrix and harden by fixing dislocations. Thus, even if cold plastic working or aging treatment is performed to increase the hardness and strength of the alloy to suit the blade, the parent phase remains austenite and remains non-magnetic. The aging treatment is performed at a temperature range of 400 ° C. to 650 ° C., preferably 500 ° C. to 600 ° C. for 1 to 2 hours. This is because an aging treatment at a temperature lower than 400 ° C. does not provide sufficient age hardening, and an aging treatment at a temperature higher than 650 ° C. enters the annealing region and decreases the hardness. After aging treatment, it is polished into a shape suitable for various blades.

なお、刃物全体を前記Co−Ni基合金で作製しても良いし、Ti合金など他の非磁性耐食合金と組み合わせたクラッド構造にして刃先のみを前記Co−Ni基合金にしても良い。   Note that the entire blade may be made of the Co—Ni base alloy, or a clad structure combined with another nonmagnetic corrosion resistant alloy such as a Ti alloy, and only the blade tip may be made of the Co—Ni base alloy.

次に、合金の組成を前記の範囲とした理由を述べる。   Next, the reason why the alloy composition is within the above range will be described.

Co30〜40%、Ni30〜35%としたのは、安定したオーステナイト相を形成し、良好な塑性加工性と高い加工硬化能を得るための最適範囲であることによる。Crは耐食性を向上させる効果、及び積層欠陥エネルギーを低下させて加工硬化能を高める効果があるが、優れた耐食性を得るためには18%以上必要であり、26%を越えると金属間化合物のσ相を析出して脆くなる危険性があることから、18〜26%が最適範囲である。Moはオーステナイト相を固溶強化する効果、及びCrと共に用いることにより耐食性を向上させる効果がある。十分な効果を得るためには6%以上必要であるが、11%を越えると金属間化合物のσ相を析出して脆くなる危険性があることから、6%〜11%が最適範囲である。Nbはひずみ時効硬化能を高める効果があるが、2%を越えると塑性加工性が低下するため、0≦Nb≦2%が最適範囲である。Wはオーステナイト相を固溶強化する効果があるが、8%を越えると塑性加工性が低下するため、0≦W≦8%が最適範囲である。   Co 30-40% and Ni 30-35% are due to the optimum range for forming a stable austenite phase and obtaining good plastic workability and high work hardening ability. Cr has the effect of improving the corrosion resistance and the effect of increasing the work hardening ability by reducing the stacking fault energy, but 18% or more is necessary to obtain excellent corrosion resistance, and if it exceeds 26%, the intermetallic compound Since there is a risk that the σ phase precipitates and becomes brittle, 18 to 26% is the optimum range. Mo has an effect of solid solution strengthening of the austenite phase and an effect of improving corrosion resistance when used together with Cr. In order to obtain a sufficient effect, 6% or more is necessary. However, if it exceeds 11%, the σ phase of the intermetallic compound may be precipitated and become brittle, so 6% to 11% is the optimum range. . Nb has the effect of increasing the strain age hardening ability, but if it exceeds 2%, the plastic workability deteriorates, so 0 ≦ Nb ≦ 2% is the optimum range. W has the effect of strengthening the austenite phase by solid solution, but if it exceeds 8%, the plastic workability is lowered, so 0 ≦ W ≦ 8% is the optimum range.

以下実施例により詳細に説明する。
(実施例1〜14)
高周波誘導式の真空溶解炉を用いて各種組成のCo−Ni基合金を溶製して20kgのインゴットを鋳造し、鍛造、溶体化、熱間圧延、焼鈍の工程を経た後、圧延加工率40%、60%、70%、80%の冷間圧延により厚さ2mmに仕上げ、その後、350℃〜750℃の各温度で2時間の時効処理を行った。
Examples will be described in detail below.
(Examples 1-14)
A high-frequency induction-type vacuum melting furnace is used to melt a Co—Ni based alloy of various compositions to cast a 20 kg ingot, and after undergoing forging, solution forming, hot rolling, and annealing steps, a rolling processing rate of 40 %, 60%, 70% and 80% were cold-rolled to a thickness of 2 mm, followed by aging treatment at 350 ° C. to 750 ° C. for 2 hours.

表1に本発明に係る合金a〜合金iの組成を示す。   Table 1 shows the compositions of Alloy a to Alloy i according to the present invention.

Figure 0004510542
Figure 0004510542

Ti−6Al−4V合金、NiTi合金、Ni基合金(14Cr−16Mo−4W−5Fe−残Ni)を用いて作製した従来例1〜3の製造条件と各測定結果も合わせて表2に示す。   Table 2 also shows the manufacturing conditions and measurement results of Conventional Examples 1 to 3 manufactured using Ti-6Al-4V alloy, NiTi alloy, and Ni-based alloy (14Cr-16Mo-4W-5Fe-residual Ni).

Figure 0004510542
実施例1〜5は本発明に係るCo−Ni基合金を用いており鋭利な刃物として望ましい硬度Hv550以上を示している。
Figure 0004510542
Examples 1-5 use the Co-Ni base alloy which concerns on this invention, and have shown hardness Hv550 or more desirable as a sharp cutter.

実施例6〜14は、圧延加工率が70%以上で、かつ時効処理温度が400℃〜650℃の間で2時間処理したものである。
実施例6〜14は、実施例1〜5に比べ更に硬度が高く、特に鋭利な刃物として望ましい硬度Hv650以上を示していた。特に圧延加工率が80%で、温度が500℃、及び600℃で2時間時効処理したものはHv700を越える高い硬度を示している。実施例6〜14の引張り強さは全て2600MPa以上の高い値を示している。従来例に比べて、硬度、引っ張り強さが高く、刃物として優れており、容易に刃が磨耗したり欠けたりしないことを示している。飽和磁束密度は0.01kG前後の値を示しており非磁性である。
In Examples 6 to 14, the rolling rate was 70% or more and the aging treatment temperature was 400 ° C. to 650 ° C. for 2 hours.
Examples 6-14 showed higher hardness than Examples 1-5, and showed hardness Hv650 or more desirable as a sharp blade. In particular, the ones subjected to aging treatment at a rolling rate of 80%, temperatures of 500 ° C. and 600 ° C. for 2 hours show high hardness exceeding Hv700. The tensile strengths of Examples 6 to 14 all show high values of 2600 MPa or more. Compared to the conventional example, the hardness and tensile strength are high, and it is excellent as a blade, and it is shown that the blade is not easily worn or chipped. The saturation magnetic flux density shows a value around 0.01 kG and is nonmagnetic.

一方の従来例1、従来例2は硬度が低く刃物には不適である。従来例3は、硬度は高いものの引張り強さが弱く、やはり刃物に適していない。
(実施例15)
曲げ負荷に対しての破断し難さを重視した刃物が実施例15である。
実施例15として、合金b製の厚さ6mmの焼鈍材を用いて、冷間圧延により図1に示す厚さイ(3.6mm)、厚さハ(1.8mm)、幅ロ(20mm)の楔形断面の異形材に加工した。
イ:楔形刃物の峰の厚さ
ロ:楔形刃物の幅
ハ:楔形刃物の刃先の厚さ
ニ:楔形刃物の峰の断面硬度測定部
ホ:楔形刃物の峰と刃先の中間の断面硬度測定部
ヘ:楔形刃物の刃先の断面硬度測定部
このときのイの圧延加工率は40%で、ハの圧延加工率は70%である。その後、500℃で2時間時効処理を施し、研磨して楔形断面の刃物に仕上げた。刃物の楔形断面における峰付近ニ部、峰と刃先の中間付近ホ部、刃先付近ヘ部の硬度(Hv)、および刃物を刃物の長手方向と直角に90度折り曲げたときの破断の有無を表3に記した。実施例15は、刃先付近の硬度はHv725と刃物として十分の硬度になっているが、峰部付近の硬度はHv466と低いため、90度曲げに対して柔軟性があり破断しなかった。比較として前述の実施例8の刃物について同様の折り曲げを行ったが、こちらは破断してしまった。刃物の刃先よりも峰の加工率が低くなるように塑性加工を施すことにより、刃先のみを高硬度にして刃物全体は適度な靭性を有することにより、刃物の硬度と折れ難さを両立した。
On the other hand, Conventional Example 1 and Conventional Example 2 have low hardness and are not suitable for cutting tools. Conventional Example 3 is high in hardness but low in tensile strength and is not suitable for a blade.
(Example 15)
A cutter with emphasis on the difficulty of breaking against a bending load is Example 15.
As Example 15, a 6 mm thick annealed material made of alloy b was used, and the thickness a (3.6 mm), the thickness c (1.8 mm), and the width b (20 mm) shown in FIG. Was processed into a profile with a wedge-shaped cross section.
B: Wedge thickness C F: Section hardness measuring section of the edge of a wedge-shaped cutter The rolling rate of a at this time is 40% and the rolling rate of c is 70%. Thereafter, an aging treatment was performed at 500 ° C. for 2 hours, and the resulting product was polished and finished into a blade having a wedge-shaped cross section. Indicates the hardness (Hv) of the edge near the ridge, the center near the peak between the ridge and the edge of the blade, the height of the edge near the edge (Hv), and whether or not the blade is broken 90 degrees perpendicular to the longitudinal direction of the blade. 3. In Example 15, the hardness in the vicinity of the cutting edge was Hv 725 and sufficient hardness as a cutter, but the hardness in the vicinity of the peak portion was as low as Hv 466, so that it was flexible to 90-degree bending and did not break. For comparison, the blade of Example 8 was bent in the same manner, but it was broken. By performing plastic working so that the processing rate of the peak is lower than the cutting edge of the cutting tool, only the cutting edge is made high hardness, and the entire cutting tool has appropriate toughness, so that both the hardness of the cutting tool and the difficulty of breaking are achieved.

Figure 0004510542
(実施例16)
刃先のみを本発明のCo−Ni基合金で作り、残りの刃物の部分をTi合金と組み合わせたクラッド構造にしたものが実施例16である。図2に実施例16の断面図を示す。刃物1の先端の刃先2が本発明のCo−Ni基合金で作られており、残りの刃物の部分をTi合金作製した。高耐食性であり、かつ非磁性の刃物が得られた。
Figure 0004510542
(Example 16)
In Example 16, only the cutting edge was made of the Co—Ni-based alloy of the present invention, and the remaining blade portion was made into a clad structure combined with a Ti alloy. FIG. 2 shows a cross-sectional view of the sixteenth embodiment. The blade edge 2 at the tip of the blade 1 is made of the Co—Ni based alloy of the present invention, and the remaining blade portion is made of a Ti alloy. A high-corrosion resistance and non-magnetic blade was obtained.

本発明の刃物の断面図である。It is sectional drawing of the cutter of this invention. 本発明の刃物の断面図である。It is sectional drawing of the cutter of this invention.

符号の説明Explanation of symbols

1 刃物
2 刃先
1 Cutting tool 2 Cutting edge

Claims (9)

合金の組成がCo、Ni、Cr、Moの元素を含み、前記合金の組成の質量%がCo30〜40%、Ni30〜35%、Cr18〜26%、Mo6〜11%、及びNb、Wのうち一種類以上の元素を質量%で各々、Nb≦2%、W≦8%の範囲で含み、残部が不可避不純物よりなるCo−Ni基合金を用いて、熱間圧延する工程と、溶体化処理する工程と、冷間塑性加工を施す工程と、時効処理する工程と、研磨する工程を含む刃物の製造方法であって、
前記冷間塑性加工は、前記刃物の刃先よりも峰の加工率を低く加工し、前記刃先の冷間塑性加工率は70%以上であり、前記峰の冷間塑性加工率は40%以上であることを特徴とする刃物の製造方法。
The composition of the alloy includes elements of Co, Ni, Cr, and Mo, and the mass% of the composition of the alloy is Co 30 to 40%, Ni 30 to 35%, Cr 18 to 26%, Mo 6 to 11%, and Nb and W. A step of hot rolling using a Co—Ni-based alloy containing one or more elements in mass% in a range of Nb ≦ 2% and W ≦ 8%, the balance being inevitable impurities , and a solution treatment A manufacturing method of a blade including a step of performing a step of performing cold plastic working, a step of aging treatment, and a step of polishing ,
The cold plastic working is performed with a peak machining rate lower than the cutting edge of the blade, the cold plastic working rate of the cutting edge is 70% or more, and the cold plastic working rate of the peak is 40% or more. A method for manufacturing a blade, characterized by being.
前記時効処理を行う工程は、時効処理温度が400℃〜650℃で1〜2時間行うことを特徴とする請求項1に記載の刃物の製造方法。 2. The method for manufacturing a blade according to claim 1, wherein the aging treatment is performed at an aging treatment temperature of 400 ° C. to 650 ° C. for 1 to 2 hours . 前記時効処理を行う工程は、時効処理温度が500℃〜600℃で1〜2時間行うことを特徴とする請求項1に記載の刃物の製造方法。 The method for manufacturing a blade according to claim 1, wherein the aging treatment is performed at an aging treatment temperature of 500C to 600C for 1 to 2 hours . 合金の組成がCo、Ni、Cr、Moの元素を含み、前記合金の組成の質量%がCo30〜40%、Ni30〜35%、Cr18〜26%、Mo6〜11%、及びNb、Wのうち一種類以上の元素を質量%で各々、Nb≦2%、W≦8%の範囲で含み、残部が不可避不純物よりなるCo−Ni基合金を用いた刃物であって、The composition of the alloy includes elements of Co, Ni, Cr, and Mo, and the mass% of the composition of the alloy is Co 30 to 40%, Ni 30 to 35%, Cr 18 to 26%, Mo 6 to 11%, and Nb and W. A blade using a Co—Ni-based alloy containing one or more elements in mass% each in a range of Nb ≦ 2% and W ≦ 8%, the balance being inevitable impurities,
前記刃物の合金母相がオーステナイト単一相であり、母層内に微細な変形双晶が形成されていることを特徴とする刃物。  The blade is characterized in that the alloy matrix of the blade is an austenite single phase, and fine deformation twins are formed in the mother layer.
前記刃物の刃先の硬度が峰の硬度よりも高いことを特徴とする請求項4に記載の刃物。The cutter according to claim 4, wherein the hardness of the cutting edge of the cutter is higher than the hardness of the peak. 硬度が553Hvから728Hvである請求項4または5に記載の刃物。The blade according to claim 4 or 5, having a hardness of 553 Hv to 728 Hv. 引張り強さが2413MPaから2714MPaである請求項4から6のいずれか一項に記載の刃物。The blade according to any one of claims 4 to 6, wherein the tensile strength is 2413 MPa to 2714 MPa. 飽和磁束密度が0.008kGから0.013kGである請求項4から7のいずれか一項に記載の刃物。The blade according to any one of claims 4 to 7, wherein a saturation magnetic flux density is 0.008 kG to 0.013 kG. 前記刃物の刃先部分以外の両側面にTi合金を組み合わせてクラッド構造としたことを特徴とする請求項4から請求項8のいずれか一項に記載の刃物。The blade according to any one of claims 4 to 8, wherein a Ti structure is combined with both side surfaces other than the blade edge portion of the blade to form a clad structure.
JP2004222853A 2004-07-30 2004-07-30 Cutlery and manufacturing method thereof Expired - Fee Related JP4510542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222853A JP4510542B2 (en) 2004-07-30 2004-07-30 Cutlery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004222853A JP4510542B2 (en) 2004-07-30 2004-07-30 Cutlery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006037206A JP2006037206A (en) 2006-02-09
JP4510542B2 true JP4510542B2 (en) 2010-07-28

Family

ID=35902511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222853A Expired - Fee Related JP4510542B2 (en) 2004-07-30 2004-07-30 Cutlery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4510542B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736140B2 (en) * 2010-09-16 2015-06-17 セイコーインスツル株式会社 Co-Ni base alloy and method for producing the same
JP6740071B2 (en) * 2016-09-26 2020-08-12 セイコーインスツル株式会社 knife
CN111041278B (en) * 2019-11-08 2021-06-08 厦门大学 Gamma' phase reinforced Co-Ni-Al-Ta-based high-temperature alloy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130251A (en) * 1985-11-29 1987-06-12 Hiroyuki Kanai Traveller for spinning machine
JPH05117828A (en) * 1991-02-18 1993-05-14 Mitsubishi Materials Corp Production of edged tool material having excellent toughness
JPH0867940A (en) * 1994-06-24 1996-03-12 Seiko Instr Inc Wire for aligning malalignment of teeth and its production
JPH09119945A (en) * 1995-10-24 1997-05-06 S I I Micro Parts:Kk Contact terminal for contact probe pin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130251A (en) * 1985-11-29 1987-06-12 Hiroyuki Kanai Traveller for spinning machine
JPH05117828A (en) * 1991-02-18 1993-05-14 Mitsubishi Materials Corp Production of edged tool material having excellent toughness
JPH0867940A (en) * 1994-06-24 1996-03-12 Seiko Instr Inc Wire for aligning malalignment of teeth and its production
JPH09119945A (en) * 1995-10-24 1997-05-06 S I I Micro Parts:Kk Contact terminal for contact probe pin

Also Published As

Publication number Publication date
JP2006037206A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
KR101905784B1 (en) HIGH-STRENGTH α+β TYPE HOT-ROLLED TITANIUM ALLOY WITH EXCELLENT COIL HANDLING PROPERTIES WHEN COLD, AND PRODUCTION METHOD THEREFOR
JP7186859B2 (en) Steel wire, its manufacturing method, and spring or medical wire product manufacturing method
WO2015111403A1 (en) Material for cold-rolled stainless steel sheet and method for producing same
JP6719216B2 (en) α-β type titanium alloy
KR20070086564A (en) Precipitation hardenable martensitic stainless steel
KR20230098875A (en) Manufacturing method of austenitic stainless steel strip
JP3976003B2 (en) Nickel-based alloy and method for producing the same
JPH11343528A (en) High-strength beta-type titanium alloy
JP5010819B2 (en) Stainless steel strip
US20070137050A1 (en) Razor blades and compositions and processes for the production of razor blades
JPS6119738A (en) Manufacture of weldable austenite stainless steel slab
JP3449126B2 (en) Austenitic stainless cold-rolled steel sheet with small springback amount and method for producing the same
JP4510542B2 (en) Cutlery and manufacturing method thereof
US3281287A (en) Corrosion resistant edge tool and method of making the same
JPH01275738A (en) Austenite stainless steel
JP6279118B1 (en) High-strength duplex stainless steel with excellent corrosion resistance and bending workability
JPH06316736A (en) Ni-fe magnetic alloy excellent in magnetic property and producibility and its production
US6733603B1 (en) Cobalt-based industrial cutting tool inserts and alloys therefor
JP6044870B2 (en) Manufacturing method of steel strip for blades
JPH0830253B2 (en) Precipitation hardening type martensitic stainless steel with excellent workability
JP6485692B2 (en) Heat resistant alloy with excellent high temperature strength, method for producing the same and heat resistant alloy spring
JPH0547611B2 (en)
JP6337514B2 (en) Precipitation hardening type Fe-Ni alloy and manufacturing method thereof
JP5218897B2 (en) Titanium alloy
US20060128496A1 (en) Maraging steel golf club head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070626

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071116

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4510542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees