JP4507614B2 - Chlorine production method - Google Patents

Chlorine production method Download PDF

Info

Publication number
JP4507614B2
JP4507614B2 JP2004027765A JP2004027765A JP4507614B2 JP 4507614 B2 JP4507614 B2 JP 4507614B2 JP 2004027765 A JP2004027765 A JP 2004027765A JP 2004027765 A JP2004027765 A JP 2004027765A JP 4507614 B2 JP4507614 B2 JP 4507614B2
Authority
JP
Japan
Prior art keywords
hydrogen chloride
reaction
oxygen
chlorine
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004027765A
Other languages
Japanese (ja)
Other versions
JP2005219948A (en
Inventor
浩二 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2004027765A priority Critical patent/JP4507614B2/en
Priority to PCT/JP2005/001043 priority patent/WO2005075346A1/en
Publication of JP2005219948A publication Critical patent/JP2005219948A/en
Application granted granted Critical
Publication of JP4507614B2 publication Critical patent/JP4507614B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Description

本発明は、塩素の製造方法に関するものである。更に詳しくは、本発明は、固定床の触媒反応による塩化水素を酸素で酸化する塩素の製造方法であって、塩化水素の転化率が高いという優れた特徴を有する塩素の製造方法に関するものである。   The present invention relates to a method for producing chlorine. More specifically, the present invention relates to a method for producing chlorine by oxidizing hydrogen chloride with oxygen by a catalytic reaction in a fixed bed, and relates to a method for producing chlorine having an excellent feature that the conversion rate of hydrogen chloride is high. .

固定床の触媒反応による塩化水素を酸素で酸化する塩素の製造方法は公知である。たとえば、特許文献1には、担持金属ルテニウム触媒、酸化ルテニウム触媒またはルテニウム複合酸化物触媒の存在下に塩化水素を酸素で酸化することにより塩素を製造する方法が開示されている。しかしながら、従来の方法においては、原料である塩化水素と酸素を供給する順番についての記載はない。   A method for producing chlorine in which hydrogen chloride is oxidized with oxygen by catalytic reaction in a fixed bed is known. For example, Patent Document 1 discloses a method for producing chlorine by oxidizing hydrogen chloride with oxygen in the presence of a supported metal ruthenium catalyst, ruthenium oxide catalyst or ruthenium composite oxide catalyst. However, in the conventional method, there is no description about the order of supplying the raw material hydrogen chloride and oxygen.

特許3284879号公報Japanese Patent No. 3284879

かかる状況において、本発明が解決しようとする課題は、固定床の触媒反応による塩化水素を酸素で酸化する塩素の製造方法であって、塩化水素の転化率が高いという優れた特徴を有する塩素の製造方法を提供する点にある。   In such a situation, the problem to be solved by the present invention is a method for producing chlorine in which hydrogen chloride is oxidized with oxygen by a catalytic reaction in a fixed bed, and has a superior characteristic that the conversion rate of hydrogen chloride is high. The manufacturing method is provided.

すなわち、本発明は、固定床の触媒反応による塩化水素を酸素で酸化する塩素の製造方法において、下記の工程を順番に行うことにより反応を開始することを特徴とする塩素の製造方法に係るものである。
第1工程:該固定床の触媒層の温度を200〜400℃に保持する工程
第2工程:第1工程の後、触媒層に酸素を供給する工程
第3工程:第2工程の後、酸素の供給に加えて、塩化水素を供給して反応を開始する工程
That is, the present invention relates to a chlorine production method in which hydrogen chloride is oxidized with oxygen by catalytic reaction in a fixed bed, and the reaction is started by sequentially performing the following steps. It is.
1st process: The process of maintaining the temperature of the catalyst bed of this fixed bed at 200-400 degreeC 2nd process: The process of supplying oxygen to a catalyst layer after a 1st process 3rd process: After a 2nd process, oxygen In addition to supplying hydrogen, a step of starting the reaction by supplying hydrogen chloride

本発明により、固定床の触媒反応による塩化水素を酸素で酸化する塩素の製造方法であって、塩化水素の転化率が高いという優れた特徴を有する塩素の製造方法を提供することができる。   INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for producing chlorine in which hydrogen chloride is oxidized with oxygen by a catalytic reaction in a fixed bed, and has an excellent characteristic that the conversion rate of hydrogen chloride is high.

本発明においては、固定床の触媒反応による塩化水素を酸素で酸化する塩素の製造方法において、下記の工程を順番に行うことにより反応を開始する必要がある。このことにより、塩化水素の高い転化率を得ることができる。
第1工程:該固定床の触媒層の温度を200〜400℃に保持する工程
第2工程:第1工程の後、触媒層に酸素を供給する工程
第3工程:第2工程の後、酸素の供給に加えて、塩化水素を供給して反応を開始する工程
In the present invention, in the method for producing chlorine in which hydrogen chloride is oxidized with oxygen by catalytic reaction in a fixed bed, it is necessary to start the reaction by sequentially performing the following steps. Thereby, a high conversion rate of hydrogen chloride can be obtained.
1st process: The process of maintaining the temperature of the catalyst bed of this fixed bed at 200-400 degreeC 2nd process: The process of supplying oxygen to a catalyst layer after a 1st process 3rd process: After a 2nd process, oxygen In addition to supplying hydrogen, a step of starting the reaction by supplying hydrogen chloride

本発明の第1工程は、固定床の触媒層の温度を200〜400℃に保持する工程である。触媒層の温度が低すぎる場合は、第3工程で塩化水素を供給して反応を開始すると塩化水素の転化率が低くなり、一方触媒層の温度が高すぎる場合は、触媒成分が揮発する。   The first step of the present invention is a step of maintaining the temperature of the fixed bed catalyst layer at 200 to 400 ° C. If the temperature of the catalyst layer is too low, hydrogen chloride is supplied in the third step and the reaction is started to lower the conversion rate of hydrogen chloride. On the other hand, if the temperature of the catalyst layer is too high, the catalyst component volatilizes.

本発明の第2工程は、第1工程の後、触媒層に酸素を供給する工程である。該酸素としては、酸素又は空気を使用することができる。また、塩化水素を酸素で酸化することによって生成した塩素と分離された未反応酸素を含むガスを該酸素の一部として使用することができる。   The second step of the present invention is a step of supplying oxygen to the catalyst layer after the first step. As the oxygen, oxygen or air can be used. Further, a gas containing unreacted oxygen separated from chlorine generated by oxidizing hydrogen chloride with oxygen can be used as a part of the oxygen.

本発明の第3工程は、第2工程の後、酸素の供給に加えて、塩化水素を供給して反応を開始する工程である。該塩化水素としては、水素と塩素の反応、塩素化合物の熱分解反応や燃焼反応、有機化合物のホスゲン化反応又は塩素化反応、クロロフルオロアルカンの製造、塩酸の加熱、焼却炉の燃焼等において発生した塩化水素を含むいかなるものを使用することができる。   The third step of the present invention is a step of starting the reaction by supplying hydrogen chloride in addition to supplying oxygen after the second step. The hydrogen chloride is generated in the reaction of hydrogen and chlorine, pyrolysis reaction or combustion reaction of chlorine compounds, phosgenation reaction or chlorination reaction of organic compounds, chlorofluoroalkane production, hydrochloric acid heating, incinerator combustion, etc. Any containing hydrogen chloride can be used.

塩素化合物の熱分解としては、1,2−ジクロロエタンから塩化ビニルの製造、クロロジフルオロメタンからテトラフルオロエチレンの製造などが挙げられる。   Examples of thermal decomposition of a chlorine compound include production of vinyl chloride from 1,2-dichloroethane, production of tetrafluoroethylene from chlorodifluoromethane, and the like.

有機化合物のホスゲン化反応としては、アミン化合物とホスゲンとの反応によるイソシアネートの製造、ヒドロキシ化合物とホスゲンとの反応による炭酸エステルの製造が挙げられる。   Examples of the phosgenation reaction of an organic compound include production of isocyanate by reaction of an amine compound and phosgene, and production of carbonate ester by reaction of a hydroxy compound and phosgene.

有機化合物の塩素化反応としては、プロピレンと塩素との反応による塩化アリルの製造、エタンと塩素との反応による塩化エチルの製造、1,2−ジクロロエタンと塩素との反応によるトリクロロエチレンとテトラクロロエチレンの製造、ベンゼンと塩素との反応によるクロロベンゼンの製造などが挙げられる。   The chlorination reaction of organic compounds includes the production of allyl chloride by the reaction of propylene and chlorine, the production of ethyl chloride by the reaction of ethane and chlorine, the production of trichlorethylene and tetrachloroethylene by the reaction of 1,2-dichloroethane and chlorine, Examples include production of chlorobenzene by reaction of benzene and chlorine.

クロロフルオロアルカンの製造としては、四塩化炭素とフッ化水素との反応によるジクロロジフルオロメタンとトリクロロモノフルオロメタンの製造、メタンと塩素とフッ化水素との反応によるジクロロジフルオロメタンとトリクロロモノフルオロメタンの製造などが挙げられる。   The production of chlorofluoroalkanes includes the production of dichlorodifluoromethane and trichloromonofluoromethane by the reaction of carbon tetrachloride and hydrogen fluoride, and the production of dichlorodifluoromethane and trichloromonofluoromethane by the reaction of methane, chlorine and hydrogen fluoride. Manufacturing etc. are mentioned.

酸素の塩化水素に対するモル比は0.25〜2であることが好ましく、更に好ましくは0.25〜1.5、最も好ましくは0.25〜1である。酸素の塩化水素に対するモル比が過小であると塩化水素の転化率が低くなる場合があり、一方、該モル比が過多であると生成した塩素と未反応酸素の分離が困難になる場合がある。   The molar ratio of oxygen to hydrogen chloride is preferably 0.25 to 2, more preferably 0.25 to 1.5, and most preferably 0.25 to 1. If the molar ratio of oxygen to hydrogen chloride is too small, the conversion rate of hydrogen chloride may be low. On the other hand, if the molar ratio is excessive, separation of generated chlorine and unreacted oxygen may be difficult. .

本発明の塩化水素を酸素で酸化して塩素を製造する反応の触媒としては、酸化ルテニウムを含む触媒、好ましくは酸化ルテニウムおよび酸化チタンを含む触媒が用いられる。酸化ルテニウムを含む触媒は、たとえば、特許3284879号公報、特開平10−338502号公報、特開2002−292279号公報に記載されている。酸化ルテニウムおよび酸化チタンを含む触媒は、たとえば、特開2000−229239号公報、特開2000−281314号公報、特開2002−79093号公報に記載されている。   A catalyst containing ruthenium oxide, preferably a catalyst containing ruthenium oxide and titanium oxide, is used as a catalyst for the reaction of oxidizing hydrogen chloride with oxygen to produce chlorine. Catalysts containing ruthenium oxide are described in, for example, Japanese Patent No. 3284879, Japanese Patent Application Laid-Open No. 10-338502, and Japanese Patent Application Laid-Open No. 2002-292279. Catalysts containing ruthenium oxide and titanium oxide are described in, for example, JP 2000-229239 A, JP 2000-281314 A, and JP 2002-79093 A.

塩化水素を酸素で酸化して塩素を製造する反応の方式としては、たとえば、特開2000−34105号公報、特開2000−272906号公報、特開2000−272907号公報、特開2001−199710号公報に記載されている。   Examples of the reaction method for producing chlorine by oxidizing hydrogen chloride with oxygen include, for example, JP 2000-34105 A, JP 2000-272906 A, JP 2000-272907 A, and JP 2001-199710 A. It is described in the publication.

本発明においては、第1工程で触媒層へ窒素および/または酸素を含有するガスを供給することが、触媒層の温度を均一化できるために好ましい。該窒素および/または酸素を含有するガスの供給は、第2工程の開始前、若しくは第3工程の開始前または第3工程での塩化水素の供給後のいずれの場合に停止してもよい。   In the present invention, it is preferable to supply a gas containing nitrogen and / or oxygen to the catalyst layer in the first step because the temperature of the catalyst layer can be made uniform. The supply of the gas containing nitrogen and / or oxygen may be stopped either before the start of the second step, or before the start of the third step or after the supply of hydrogen chloride in the third step.

本発明においては、触媒層へ水蒸気を供給することが、第3工程で塩化水素を供給して反応を開始した場合に、触媒層の温度を均一化できるために好ましい。該水蒸気の供給は、第2工程の開始前、若しくは第3工程の開始前または第3工程での塩化水素の供給後のいずれの場合に開始しても良い。   In the present invention, it is preferable to supply water vapor to the catalyst layer because the temperature of the catalyst layer can be made uniform when the reaction is started by supplying hydrogen chloride in the third step. The supply of water vapor may be started in any case before the start of the second step, or before the start of the third step or after the supply of hydrogen chloride in the third step.

水蒸気の塩化水素に対するモル比は0.001〜1.0であることが好ましく、更に好ましくは0.005〜0.5、最も好ましくは0.01〜0.2である。水蒸気の塩化水素に対するモル比が過小の場合には触媒層の温度の均一化の効果が小さいことがあり、該モル比が過大な場合には塩化水素の転化率が低くなることがある。水蒸気の温度は50〜400℃であることが好ましく、更に好ましくは150〜300℃である。水蒸気の温度が低すぎる場合には反応管や配管などの腐食が起きることがあり、水蒸気の温度が高すぎる場合には過多なエネルギーが必要になるために経済的ではないことがある。   The molar ratio of water vapor to hydrogen chloride is preferably 0.001 to 1.0, more preferably 0.005 to 0.5, and most preferably 0.01 to 0.2. When the molar ratio of water vapor to hydrogen chloride is too small, the effect of uniformizing the temperature of the catalyst layer may be small, and when the molar ratio is excessive, the conversion rate of hydrogen chloride may be low. The temperature of the water vapor is preferably 50 to 400 ° C, more preferably 150 to 300 ° C. If the temperature of the water vapor is too low, corrosion of the reaction tubes and piping may occur, and if the temperature of the water vapor is too high, excessive energy may be required, which may not be economical.

以下に実施例に基づいて本発明をより詳細に説明するが、本発明はこれら実施例より限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

実施例1
特開2002−79093号公報に記載された方法に準拠して直径3mmの酸化チタン−αアルミナ担持2.0質量%酸化ルテニウム粒状触媒を調製した。酸化チタンとαアルミナの重量比は37:63であった。得られた酸化チタン−αアルミナ担持酸化ルテニウム触媒1.0gをニッケル製の反応管(内径13mm、外径3.2mmの温度測定用鞘管)に充填し、固定床の触媒層を得た。さらに触媒層の上部にα−アルミナ球(ニッカトー(株)製、SSA995)12gを予熱層として充填した。
第1工程:触媒層へ窒素80ml/min(0℃、1気圧換算)を供給させながら、溶融塩(硝酸カリウム/亜硝酸ナトリウム=1/1質量比)を熱媒体とする塩浴中に反応管を浸し、触媒層の温度を253〜254℃に加熱して保持した。続いて反応管入口部の圧力を0.5MPaGに昇圧した。
第2工程:窒素の供給を停止すると同時に、酸素40ml/min(0℃、1気圧換算)を供給した。酸素の供給開始から5時間後、触媒層の温度を281〜282℃に昇温し、更に20分保温した。
第3工程:酸素の供給に加えて、塩化水素80ml/min(0℃、1気圧換算)を供給した。
Example 1
Based on the method described in JP-A-2002-79093, a 2.0% by mass ruthenium oxide granular catalyst carrying titanium oxide-α alumina having a diameter of 3 mm was prepared. The weight ratio of titanium oxide and α-alumina was 37:63. 1.0 g of the obtained titanium oxide-α-alumina-supported ruthenium oxide catalyst was charged into a nickel reaction tube (inner diameter 13 mm, outer diameter 3.2 mm temperature measurement sheath tube) to obtain a fixed bed catalyst layer. Furthermore, 12 g of α-alumina sphere (Nikkato Co., Ltd., SSA995) was filled as the preheating layer on the catalyst layer.
First step: While supplying nitrogen 80 ml / min (converted at 0 ° C., 1 atm) to the catalyst layer, a reaction tube in a salt bath using molten salt (potassium nitrate / sodium nitrite = 1/1 mass ratio) as a heat medium And the temperature of the catalyst layer was heated to 253 to 254 ° C. and held. Subsequently, the pressure at the inlet of the reaction tube was increased to 0.5 MPaG.
Second step: At the same time as the supply of nitrogen was stopped, oxygen 40 ml / min (0 ° C., converted to 1 atm) was supplied. Five hours after the start of oxygen supply, the temperature of the catalyst layer was raised to 281 to 282 ° C., and further kept for 20 minutes.
Third step: In addition to supplying oxygen, hydrogen chloride 80 ml / min (0 ° C., converted to 1 atm) was supplied.

塩化水素の供給による反応開始から1.5時間後の時点で、反応管出口のガスを30重量%ヨウ化カリウム水溶液に流通させることによりサンプリングを行い、ヨウ素滴定法及び中和滴定法によりそれぞれ塩素の生成量及び未反応塩化水素量を測定した。この時、触媒層の温度は反応熱が溶融塩によって除去された結果、282〜283℃であった。
塩素の生成量から下式により計算された塩化水素の転化率を表1に示した。
塩化水素の転化率(%)=(塩素の生成量(mol/min)×2/塩化水素の供給量(mol/min))×100
At 1.5 hours after the start of the reaction by the supply of hydrogen chloride, sampling was performed by circulating the gas at the outlet of the reaction tube through a 30 wt% aqueous potassium iodide solution, and chlorine was obtained by iodine titration method and neutralization titration method, respectively. And the amount of unreacted hydrogen chloride were measured. At this time, the temperature of the catalyst layer was 282 to 283 ° C. as a result of the reaction heat being removed by the molten salt.
Table 1 shows the conversion rate of hydrogen chloride calculated from the amount of chlorine produced by the following equation.
Hydrogen chloride conversion rate (%) = (chlorine production (mol / min) × 2 / hydrogen chloride supply (mol / min)) × 100

実施例2
実施例1と同様に酸化チタン−αアルミナ担持酸化ルテニウム触媒とα−アルミナ球を反応管に充填し、固定床の触媒層と予熱層を得た。さらに、反応管の入口側に、水を充填したテフロン(登録商標)製の容器を設置し、テフロン(登録商標)製の配管(内径4mm)で接続した。
第1工程:容器の内温を51℃に昇温し、窒素16ml/min(0℃、1気圧換算)を容器内の水にバブリングして流通させた。容器出口からの窒素と水蒸気を150℃に加熱させた配管を経由して触媒層へ供給させながら反応管を塩浴に浸し、触媒層の温度を253〜254℃に加熱して保持した。続いて反応管入口部の圧力を0.5MPaGに昇圧した。さらに容器の内温を92℃に昇温し、窒素と水蒸気の供給を継続させた。
第2工程:窒素と水蒸気の供給に加えて、酸素40ml/min(0℃、1気圧換算)を反応管に供給した。酸素の供給開始から5時間後、触媒層を281〜282℃昇温し、更に20分保温した。
第3工程:窒素と水蒸気および酸素の供給に加えて、塩化水素80ml/min(0℃、1気圧換算)を供給した。供給した水蒸気の塩化水素に対するモル比は0.025であった。
Example 2
In the same manner as in Example 1, a reaction tube was filled with a titanium oxide-α alumina-supported ruthenium oxide catalyst and α-alumina spheres to obtain a fixed bed catalyst layer and a preheating layer. Further, a Teflon (registered trademark) container filled with water was installed on the inlet side of the reaction tube, and connected by a Teflon (registered trademark) pipe (inner diameter: 4 mm).
First step: The internal temperature of the container was raised to 51 ° C., and nitrogen 16 ml / min (0 ° C., converted to 1 atm) was bubbled through the water in the container and circulated. While supplying nitrogen and water vapor from the outlet of the vessel to the catalyst layer via a pipe heated to 150 ° C., the reaction tube was immersed in a salt bath, and the temperature of the catalyst layer was heated to 253 to 254 ° C. and held. Subsequently, the pressure at the inlet of the reaction tube was increased to 0.5 MPaG. Furthermore, the internal temperature of the container was raised to 92 ° C., and the supply of nitrogen and water vapor was continued.
Second step: In addition to supplying nitrogen and water vapor, oxygen 40 ml / min (0 ° C., converted to 1 atm) was supplied to the reaction tube. Five hours after the start of the supply of oxygen, the catalyst layer was heated to 281 to 282 ° C., and further kept for 20 minutes.
Third step: In addition to supply of nitrogen, water vapor and oxygen, 80 ml / min of hydrogen chloride (0 ° C., converted to 1 atm) was supplied. The molar ratio of supplied steam to hydrogen chloride was 0.025.

塩化水素の供給による反応開始から1.5時間後の時点で、反応管出口のガスを30重量%ヨウ化カリウム水溶液に流通させることによりサンプリングを行い、ヨウ素滴定法及び中和滴定法によりそれぞれ塩素の生成量及び未反応塩化水素量を測定した。触媒層の温度は、281〜282℃であった。
塩素の生成量から計算された塩化水素の転化率を表1に示した。
At 1.5 hours after the start of the reaction by the supply of hydrogen chloride, sampling was performed by circulating the gas at the outlet of the reaction tube through a 30 wt% aqueous potassium iodide solution, and chlorine was obtained by iodine titration method and neutralization titration method, respectively. And the amount of unreacted hydrogen chloride were measured. The temperature of the catalyst layer was 281 to 282 ° C.
The conversion rate of hydrogen chloride calculated from the amount of chlorine produced is shown in Table 1.

比較例1
第2工程で塩化水素を供給し、第3工程で酸素を供給したこと以外は、実施例1と同様にして行い、塩素の生成量及び未反応塩化水素量を測定した。触媒層の温度は、281〜282℃であった。
塩素の生成量から計算された塩化水素の転化率を表1に示した。
Comparative Example 1
Except that hydrogen chloride was supplied in the second step and oxygen was supplied in the third step, it was performed in the same manner as in Example 1, and the amount of chlorine produced and the amount of unreacted hydrogen chloride were measured. The temperature of the catalyst layer was 281 to 282 ° C.
The conversion rate of hydrogen chloride calculated from the amount of chlorine produced is shown in Table 1.

Figure 0004507614
Figure 0004507614

Claims (1)

固定床の触媒反応による塩化水素を酸素で酸化する塩素の製造方法において、下記の工程を順番に行うことにより反応を開始することを特徴とする塩素の製造方法。
第1工程:該固定床の触媒層の温度を200〜400℃に保持する工程
第2工程:第1工程の後、触媒層に酸素を供給する工程
第3工程:第2工程の後、酸素の供給に加えて、塩化水素を供給して反応を開始する工程
In the manufacturing method of chlorine which oxidizes hydrogen chloride with oxygen by the catalytic reaction of a fixed bed, the reaction is started by performing the following steps in order, and the manufacturing method of chlorine characterized by the above-mentioned.
1st process: The process of maintaining the temperature of the catalyst bed of this fixed bed at 200-400 degreeC 2nd process: The process of supplying oxygen to a catalyst layer after a 1st process 3rd process: After a 2nd process, oxygen In addition to supplying hydrogen, a step of starting the reaction by supplying hydrogen chloride
JP2004027765A 2004-02-04 2004-02-04 Chlorine production method Expired - Lifetime JP4507614B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004027765A JP4507614B2 (en) 2004-02-04 2004-02-04 Chlorine production method
PCT/JP2005/001043 WO2005075346A1 (en) 2004-02-04 2005-01-20 Method for producing chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004027765A JP4507614B2 (en) 2004-02-04 2004-02-04 Chlorine production method

Publications (2)

Publication Number Publication Date
JP2005219948A JP2005219948A (en) 2005-08-18
JP4507614B2 true JP4507614B2 (en) 2010-07-21

Family

ID=34835902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004027765A Expired - Lifetime JP4507614B2 (en) 2004-02-04 2004-02-04 Chlorine production method

Country Status (2)

Country Link
JP (1) JP4507614B2 (en)
WO (1) WO2005075346A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4487975B2 (en) * 2005-10-28 2010-06-23 住友化学株式会社 Method for producing oxidation catalyst, method for producing chlorine, and method for oxidizing carbon monoxide and / or unsaturated hydrocarbon
KR101169123B1 (en) * 2006-04-26 2012-09-13 가부시키가이샤 무라타 세이사쿠쇼 Angular velocity sensor interface circuit and angular velocity determining apparatus
KR20190077008A (en) 2016-12-02 2019-07-02 미쓰이 가가쿠 가부시키가이샤 Process for the production of chlorine by oxidation of hydrogen chloride

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034105A (en) * 1997-06-03 2000-02-02 Sumitomo Chem Co Ltd Production of chlorine
JP2001019405A (en) * 1999-07-12 2001-01-23 Sumitomo Chem Co Ltd Production of chlorine
JP2001199710A (en) * 2000-01-13 2001-07-24 Sumitomo Chem Co Ltd Method of producing chlorine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275104A (en) * 1985-05-28 1986-12-05 Mitsui Toatsu Chem Inc Production of chlorine
JP3543550B2 (en) * 1996-08-08 2004-07-14 住友化学工業株式会社 Method for producing chlorine
CA2229993A1 (en) * 1997-02-27 1998-08-27 Air Products And Chemicals, Inc. Fixed-bed temperature swing catalytic process for chemical reactions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034105A (en) * 1997-06-03 2000-02-02 Sumitomo Chem Co Ltd Production of chlorine
JP2001019405A (en) * 1999-07-12 2001-01-23 Sumitomo Chem Co Ltd Production of chlorine
JP2001199710A (en) * 2000-01-13 2001-07-24 Sumitomo Chem Co Ltd Method of producing chlorine

Also Published As

Publication number Publication date
JP2005219948A (en) 2005-08-18
WO2005075346A1 (en) 2005-08-18

Similar Documents

Publication Publication Date Title
JP5971305B2 (en) Method for producing 2,3,3,3-tetrafluoropropene
JP6378812B2 (en) Method for producing 2,3,3,3-tetrafluoropropene
JP5453757B2 (en) Process for producing trans-1,3,3,3-tetrafluoropropene
JP2010531897A (en) Two-step process for producing hydrofluoroolefins
JP6245013B2 (en) Process for producing 1,2-dichloro-3,3,3-trifluoropropene
JP6673413B2 (en) Method for producing fluoroolefin
JP2002501545A (en) Method for producing hydrofluorocarbon
JP2005289800A (en) Method of producing chlorine
JP2015501300A (en) Method for producing 2,3,3,3-tetrafluoropropene
JP2017537131A (en) Method for preparing 1-chloro-2,2-difluoroethane
JP4367381B2 (en) Method for activating catalyst for producing chlorine and method for producing chlorine
JP4507614B2 (en) Chlorine production method
JP2010047571A (en) Method for producing 2,3,3,3-tetrafluoropropene
JP4507615B2 (en) Chlorine production method
JP2001019405A (en) Production of chlorine
US11780793B2 (en) Method for producing 1,1,2-trifluoroethane (HFC-143)
WO2020171177A1 (en) Method for producing 1,1,2-trifluoroethane (hfc-143)
WO2010137505A1 (en) Method for activating catalyst for chlorine production and method for producing chlorine
JP5267305B2 (en) Chlorine production method
WO2010137504A1 (en) Method for activating catalyst for chlorine production and method for producing chlorine
JPS58110528A (en) Preparation of vinyl chloride
JP2018108962A (en) Production method of 2,2,2,1-tetrafluoroethyl difluoromethyl ether (desflurane)
JP2010120791A (en) Method for producing chlorine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080130

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4507614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term