JP2001199710A - Method of producing chlorine - Google Patents

Method of producing chlorine

Info

Publication number
JP2001199710A
JP2001199710A JP2000004539A JP2000004539A JP2001199710A JP 2001199710 A JP2001199710 A JP 2001199710A JP 2000004539 A JP2000004539 A JP 2000004539A JP 2000004539 A JP2000004539 A JP 2000004539A JP 2001199710 A JP2001199710 A JP 2001199710A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
hydrogen chloride
reaction zone
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000004539A
Other languages
Japanese (ja)
Other versions
JP3570322B2 (en
Inventor
Seiji Iwanaga
清司 岩永
Masayuki Yoshii
政之 吉井
Tetsuya Suzuta
哲也 鈴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2000004539A priority Critical patent/JP3570322B2/en
Publication of JP2001199710A publication Critical patent/JP2001199710A/en
Application granted granted Critical
Publication of JP3570322B2 publication Critical patent/JP3570322B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing chlorine through the process of oxidation of hydrogen chloride in the gas including hydrogen chloride with a gas including oxygen in which the stabilized activity of the catalyst is retained and the objective chlorine can be stably obtained in high yield, as the excessive hot spots in the catalyst-charged layer are inhibited and the catalyst charged layer is effectively utilized with extremely advantage from the view points of the catalyst cost, the installation cost, the operation cost, the operation stability and facility. SOLUTION: In the process for oxidation of hydrogen chloride in a hydrogen chloride-containing gas with a gas including oxygen through the solid bed reaction process in the reaction zone of the catalyst packed bed, the superficial linear gas velocity is set to 0.70-10 m/s.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、塩素の製造方法に
関するものである。更に詳しくは、本発明は、塩化水素
を含むガス中の塩化水素を、酸素を含むガスを用いて、
触媒充填層からなる反応域を有する固定床反応方式で酸
化する塩素の製造方法であって、触媒充填層の過度のホ
ットスポットを抑制し、触媒充填層を有効に活用するこ
とによって、触媒の安定した活性が維持され、かつ塩素
を安定して高収率で得ることができ、よって触媒コス
ト、設備コスト、運転コスト、運転の安定性及び容易性
の観点から極めて有利な塩素の製造方法に関するもので
ある。
[0001] The present invention relates to a method for producing chlorine. More specifically, the present invention provides a method for converting hydrogen chloride in a gas containing hydrogen chloride into a gas containing oxygen.
A method for producing chlorine that is oxidized in a fixed-bed reaction system having a reaction zone consisting of a catalyst-packed layer, which suppresses excessive hot spots in the catalyst-packed layer and stabilizes the catalyst by effectively utilizing the catalyst-packed layer. The present invention relates to a method for producing chlorine, which is capable of maintaining stable activity and obtaining chlorine in a stable and high yield, and which is extremely advantageous from the viewpoint of catalyst cost, equipment cost, operation cost, stability and ease of operation. It is.

【0002】[0002]

【従来の技術】塩素は塩化ビニル、ホスゲンなどの原料
として有用であり、塩化水素の酸化によって得られるこ
ともよく知られている。たとえば、塩化水素を触媒を用
いて分子状酸素で接触酸化し、塩素を製造する方法とし
ては、従来からDeacon触媒と呼ばれる銅系の触媒
が従来優れた活性を有するとされ、塩化銅と塩化カリウ
ムに第三成分として種々の化合物を添加した触媒が多数
提案されている。また、Deacon触媒以外にも、酸
化クロム又はこの化合物を触媒として用いる方法、酸化
ルテニウム又はこの化合物を触媒として用いる方法も提
案されている。
2. Description of the Related Art It is well known that chlorine is useful as a raw material for vinyl chloride, phosgene and the like, and is obtained by oxidation of hydrogen chloride. For example, as a method for producing chlorine by catalytically oxidizing hydrogen chloride with molecular oxygen using a catalyst, a copper-based catalyst called a Deacon catalyst has been conventionally considered to have excellent activity, and copper chloride and potassium chloride have been conventionally used. Many catalysts in which various compounds are added as a third component have been proposed. In addition to the Deacon catalyst, a method using chromium oxide or this compound as a catalyst and a method using ruthenium oxide or this compound as a catalyst have been proposed.

【0003】しかしながら、塩化水素の酸化反応は59
kJ/mol−塩素の発熱反応であり、触媒充填層での
過度のホットスポットを抑制することは、触媒の熱劣化
を低減し、運転の安定性及び容易性を確保する観点から
も重要である。また、過度のホットスポットは、最悪の
場合には暴走反応を引き起こすこともあり、塩化水素及
び/又は塩素による装置材料の高温ガス腐食を起こす問
題もある。
However, the oxidation reaction of hydrogen chloride is 59%.
This is an exothermic reaction of kJ / mol-chlorine, and it is important to suppress excessive hot spots in the catalyst packed bed from the viewpoint of reducing thermal deterioration of the catalyst and ensuring stability and ease of operation. . Excessive hot spots can also cause runaway reactions in the worst case, and cause high temperature gas corrosion of equipment materials due to hydrogen chloride and / or chlorine.

【0004】雑誌「触媒」(Vol.33 No.1
(1991))には、酸化クロムを触媒とした純塩化水
素と純酸素の反応では、固定床反応形式ではホットスポ
ットの除去が困難であり、実装置では流動床反応器の採
用が必要であることが記載されている。
The magazine “Catalyst” (Vol. 33 No. 1)
(1991)), in a reaction between pure hydrogen chloride and pure oxygen using chromium oxide as a catalyst, it is difficult to remove hot spots in a fixed-bed reaction mode, and a fluidized-bed reactor must be used in an actual apparatus. It is described.

【0005】[0005]

【発明が解決しようとする課題】かかる状況において、
本発明が解決しようとする課題は、塩化水素を含むガス
中の塩化水素を、酸素を含むガスを用いて、触媒充填層
からなる反応域を有する固定床反応方式で酸化する塩素
の製造方法であって、触媒充填層の過度のホットスポッ
トを抑制し、触媒充填層を有効に活用することによっ
て、触媒の安定した活性が維持され、かつ塩素を安定し
て高収率で得ることができ、よって触媒コスト、設備コ
スト、運転コスト、運転の安定性及び容易性の観点から
極めて有利な塩素の製造方法を提供する点に存するもの
である。
In such a situation,
The problem to be solved by the present invention is a method for producing chlorine in which hydrogen chloride in a gas containing hydrogen chloride is oxidized using a gas containing oxygen in a fixed bed reaction system having a reaction zone composed of a catalyst packed bed. Therefore, by suppressing excessive hot spots in the catalyst packed bed and effectively utilizing the catalyst packed bed, stable activity of the catalyst is maintained, and chlorine can be obtained in a stable and high yield, Accordingly, it is an object of the present invention to provide a chlorine production method which is extremely advantageous from the viewpoints of catalyst cost, equipment cost, operation cost, operation stability and ease.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明は、塩
化水素を含むガス中の塩化水素を、酸素を含むガスを用
いて、触媒充填層からなる反応域を有する固定床反応方
式で酸化する方法において、空塔基準のガス線速度を
0.70〜10m/sとする塩素の製造方法に係るもの
である。
That is, the present invention oxidizes hydrogen chloride in a gas containing hydrogen chloride by using a gas containing oxygen in a fixed bed reaction system having a reaction zone composed of a catalyst packed bed. The present invention relates to a method for producing chlorine in which a gas linear velocity based on an empty tower is 0.70 to 10 m / s.

【0007】[0007]

【発明の実施の形態】本発明において用いられる塩化水
素を含むガスとしては、塩素化合物の熱分解反応や燃焼
反応、有機化合物のホスゲン化反応、脱塩化水素反応又
は塩素化反応、焼却炉の燃焼等において発生した塩化水
素を含むいかなるものを使用することができる。塩化水
素を含むガスとしては、通常、該ガス中の塩化水素の濃
度は通常10体積%以上、好ましくは50体積%以上、
更に好ましくは80体積%以上のものが用いられる。該
濃度が10体積%よりも低い場合には、生成した塩素の
分離、及び/又は未反応酸素をリサイクルする場合に、
リサイクルが煩雑になることがある。塩化水素を含むガ
ス中の塩化水素以外の成分としては、オルトジクロロベ
ンゼン、モノクロロベンゼン等の塩素化芳香族炭化水
素、及びトルエン、ベンゼン等の芳香族炭化水素、及び
塩化ビニル、1,2−ジクロロエタン、塩化メチル、塩
化エチル、塩化プロピル、塩化アリル等の塩素化脂肪族
炭化水素、及びメタン、アセチレン、エチレン、プロピ
レン等の脂肪族炭化水素、及び窒素、アルゴン、二酸化
炭素、一酸化炭素、ホスゲン、水素、硫化カルボニル、
硫化水素等の無機ガスがあげられる。塩化水素と酸素と
の反応において、塩素化芳香族炭化水素及び塩素化脂肪
族炭化水素は、二酸化炭素と水と塩素に酸化され、芳香
族炭化水素及び脂肪族炭化水素は、二酸化炭素と水に酸
化され、一酸化炭素は二酸化炭素に酸化され、ホスゲン
は、二酸化炭素と塩素に酸化される。
BEST MODE FOR CARRYING OUT THE INVENTION The gas containing hydrogen chloride used in the present invention includes a pyrolysis reaction and a combustion reaction of a chlorine compound, a phosgenation reaction of an organic compound, a dehydrochlorination reaction or a chlorination reaction, and a combustion in an incinerator. Any substance including hydrogen chloride generated in the above method can be used. As a gas containing hydrogen chloride, the concentration of hydrogen chloride in the gas is usually 10% by volume or more, preferably 50% by volume or more,
More preferably, 80% by volume or more is used. When the concentration is lower than 10% by volume, when separating generated chlorine and / or recycling unreacted oxygen,
Recycling can be complicated. Components other than hydrogen chloride in the gas containing hydrogen chloride include chlorinated aromatic hydrocarbons such as orthodichlorobenzene and monochlorobenzene, aromatic hydrocarbons such as toluene and benzene, and vinyl chloride and 1,2-dichloroethane. Chlorinated aliphatic hydrocarbons such as methyl chloride, ethyl chloride, propyl chloride and allyl chloride; and aliphatic hydrocarbons such as methane, acetylene, ethylene and propylene; and nitrogen, argon, carbon dioxide, carbon monoxide, phosgene, Hydrogen, carbonyl sulfide,
Inorganic gas such as hydrogen sulfide; In the reaction between hydrogen chloride and oxygen, chlorinated aromatic hydrocarbons and chlorinated aliphatic hydrocarbons are oxidized to carbon dioxide, water and chlorine, and aromatic hydrocarbons and aliphatic hydrocarbons are converted to carbon dioxide and water. Oxidized, carbon monoxide is oxidized to carbon dioxide, and phosgene is oxidized to carbon dioxide and chlorine.

【0008】酸素を含むガスとしては、酸素又は空気が
使用される。酸素は、空気の圧力スイング法や深冷分離
などの通常の工業的な方法によって得ることができる。
As the gas containing oxygen, oxygen or air is used. Oxygen can be obtained by ordinary industrial methods such as air pressure swinging and cryogenic separation.

【0009】塩化水素1モルに対する酸素の理論モル量
は0.25モルであるが、理論量以上供給することが好
ましく、塩化水素1モルに対し酸素0.25〜2モルが
更に好ましい。酸素の量が過小であると、塩化水素の転
化率が低くなる場合があり、一方酸素の量が過多である
と生成した塩素と未反応酸素の分離が困難になる場合が
ある。
The theoretical molar amount of oxygen to 1 mole of hydrogen chloride is 0.25 mole, but it is preferable to supply more than the theoretical amount, and more preferably 0.25 to 2 moles of oxygen to 1 mole of hydrogen chloride. If the amount of oxygen is too small, the conversion of hydrogen chloride may decrease, while if the amount of oxygen is excessive, it may be difficult to separate generated chlorine from unreacted oxygen.

【0010】本発明においては、触媒充填層を少なくと
も二の反応域に分割し、酸素を含むガスを少なくとも二
に分割して導入することが好ましい。酸素を含むガスを
分割して導入する方法としては、塩化水素を含むガスの
全量と、酸素を含むガスの一部分を第1反応域に導入
し、その反応物と残りの酸素を含むガスを第2反応域以
降の反応域に導入する方法があげられる。ここで、第1
反応域は原料ガスの流れについての最も上流側の反応域
を意味し、第2反応域は第1反応域の下流側の反応域を
意味する。第1反応域に導入される酸素を含むガスの分
割量は、全体量の5〜90%、好ましくは10〜80
%、更に好ましくは30〜60%である。該分割量が少
なすぎる場合は、第2反応域以降の反応域の温度制御が
困難になることがある。
In the present invention, it is preferable that the catalyst-packed layer is divided into at least two reaction zones, and the gas containing oxygen is divided into at least two portions and introduced. As a method of dividing and introducing the gas containing oxygen, the entire amount of the gas containing hydrogen chloride and a part of the gas containing oxygen are introduced into the first reaction zone, and the reactant and the remaining gas containing oxygen are introduced into the first reaction zone. There is a method of introducing the compound into the reaction zone after the second reaction zone. Here, the first
The reaction zone means the most upstream reaction zone for the flow of the raw material gas, and the second reaction zone means the downstream reaction zone of the first reaction zone. The division amount of the gas containing oxygen introduced into the first reaction zone is 5 to 90% of the total amount, preferably 10 to 80%.
%, More preferably 30 to 60%. If the amount of division is too small, it may be difficult to control the temperature of the reaction zone after the second reaction zone.

【0011】本発明の酸化反応の触媒としては、塩化水
素を酸化して塩素を製造する触媒として知られる公知の
触媒を用いることができる。該触媒の一例として、塩化
銅と塩化カリウムに第三成分として種々の化合物を添加
した触媒、酸化クロムを主成分とする触媒、酸化ルテニ
ウムを含有する触媒などをあげることができる。中でも
酸化ルテニウムを含有する触媒が好ましく、酸化ルテニ
ウム及び酸化チタンを含む触媒が更に好ましい。酸化ル
テニウムを含む触媒は、たとえば特開平10−1821
04号公報、ヨーロッパ特許第936184号公報に記
載されている。酸化ルテニウム及び酸化チタンを含む触
媒は、たとえば、特開平10−194705号公報、特
開平10−338502号公報に記載されている。触媒
中の酸化ルテニウムの含有量は、0.1〜20重量%が
好ましい。酸化ルテニウムの量が過小であると触媒の活
性が低く塩化水素の転化率が低くなる場合があり、一
方、酸化ルテニウムの量が過多であると触媒価格が高く
なる場合がある。
As the catalyst for the oxidation reaction of the present invention, a known catalyst known as a catalyst for producing chlorine by oxidizing hydrogen chloride can be used. Examples of the catalyst include a catalyst obtained by adding various compounds as a third component to copper chloride and potassium chloride, a catalyst containing chromium oxide as a main component, a catalyst containing ruthenium oxide, and the like. Among them, a catalyst containing ruthenium oxide is preferable, and a catalyst containing ruthenium oxide and titanium oxide is more preferable. Catalysts containing ruthenium oxide are disclosed, for example, in JP-A-10-1821.
No. 04, EP 936184. Catalysts containing ruthenium oxide and titanium oxide are described, for example, in JP-A-10-194705 and JP-A-10-338502. The content of ruthenium oxide in the catalyst is preferably 0.1 to 20% by weight. If the amount of ruthenium oxide is too small, the activity of the catalyst may be low and the conversion of hydrogen chloride may be low. On the other hand, if the amount of ruthenium oxide is too large, the price of the catalyst may be high.

【0012】触媒の形状は、球形粒状、円柱形ペレット
状、押し出し形状、リング形状、ハニカム状あるいは成
型後に粉砕分級した適度の大きさの顆粒状等で用いられ
る。この際、触媒直径としては10mm以下が好まし
い。触媒直径が10mmを越えると、活性が低下する場
合がある。触媒直径の下限は特に制限はないが、過度に
小さくなると、触媒充填層での圧力損失が大きくなるた
め、通常は0.1mm以上のものが用いられる。なお、
ここでいう触媒直径とは、球形粒状では球の直径、円柱
形ペレット状では断面の直径、その他の形状では断面の
最大直径を意味する。
The catalyst may be used in the form of spherical granules, cylindrical pellets, extruded shapes, ring shapes, honeycomb shapes, or granules of an appropriate size which are pulverized and classified after molding. At this time, the catalyst diameter is preferably 10 mm or less. If the catalyst diameter exceeds 10 mm, the activity may be reduced. The lower limit of the catalyst diameter is not particularly limited. However, when the catalyst diameter is excessively small, the pressure loss in the catalyst packed bed increases. In addition,
The term "catalyst diameter" as used herein means the diameter of a sphere in the case of spherical particles, the diameter of a cross section in the case of a cylindrical pellet, or the maximum diameter of a cross section in other shapes.

【0013】触媒の使用量(体積)は、標準状態(0
℃、0.1MPa)における塩化水素の供給速度との比
(GHSV)で表すと、通常10〜20000h-1で行
われる。原料を反応域に流す方向は、上向きでも下向き
でもよい。反応圧力は、通常0.1〜5MPaで行われ
る。反応温度は、好ましくは200〜500℃、更に好
ましくは200〜380℃である。反応温度が低すぎる
場合は、塩化水素の転化率が低くなる場合があり、一方
反応温度が高すぎる場合は、触媒成分が揮発する場合が
ある。
The amount (volume) of the catalyst used is in a standard state (0
In terms of the ratio (GHSV) to the supply rate of hydrogen chloride at 0.1 ° C. and 0.1 MPa), the reaction is usually performed at 10 to 20,000 h −1 . The direction in which the raw material flows into the reaction zone may be upward or downward. The reaction pressure is usually from 0.1 to 5 MPa. The reaction temperature is preferably from 200 to 500C, more preferably from 200 to 380C. If the reaction temperature is too low, the conversion of hydrogen chloride may decrease, while if the reaction temperature is too high, the catalyst components may volatilize.

【0014】本発明の触媒充填層からなる反応域とは、
充填された触媒、及び触媒を希釈する不活性物質及び/
又は担体のみで成型した充填物の全体を意味する。触媒
充填層からなる反応域の上部及び/又は下部には、不活
性物質を充填してもよい。ただし、不活性物質のみから
なる充填層は、触媒充填層とは見なさない。
The reaction zone comprising the catalyst packed bed of the present invention is:
A packed catalyst, and an inert substance for diluting the catalyst and / or
Alternatively, it means the whole of the filling molded only with the carrier. The upper and / or lower part of the reaction zone composed of the catalyst packed layer may be filled with an inert substance. However, a packed bed composed only of an inert substance is not considered as a catalyst packed bed.

【0015】本発明においては、空塔基準のガス線速度
を0.70〜10m/sとする必要があり、好ましくは
0.70〜6m/sであり、更に好ましくは0.70〜
3m/sである。このことにより、触媒充填層の過度の
ホットスポットを抑制し、触媒充填層を有効に活用する
ことによって、触媒の安定した活性が維持され、かつ塩
素を安定して高収率で得ることができるために、触媒コ
スト、設備コスト、運転コスト、運転の安定性及び容易
性を確保しうる。なお、本発明の空塔基準のガス線速度
とは、触媒充填層に供給される全てのガスの標準状態
(0℃、0.1MPa)における供給速度の合計量と反
応管の断面積の比を意味する。
In the present invention, the gas linear velocity based on the superficial tower must be 0.70 to 10 m / s, preferably 0.70 to 6 m / s, and more preferably 0.70 to 6 m / s.
3 m / s. Thus, by suppressing excessive hot spots in the catalyst packed bed and effectively utilizing the catalyst packed bed, stable activity of the catalyst is maintained, and chlorine can be stably obtained at a high yield. Therefore, catalyst cost, equipment cost, operation cost, operation stability and ease can be ensured. In addition, the gas linear velocity based on the superficial tower of the present invention is the ratio of the total amount of the supply rates in the standard state (0 ° C., 0.1 MPa) of all the gases supplied to the catalyst packed bed to the cross-sectional area of the reaction tube. Means

【0016】本発明においては、反応管内に少なくとも
二の触媒充填層からなる反応域を有する固定床反応方式
で行うことが、触媒充填層を有効に活用することによっ
て、塩素を安定して高収率で得ることができるために好
ましい。少なくとも二の触媒充填層を形成する方法とし
ては、反応管内の触媒充填層を管軸方向に少なくとも二
の反応域に分割して、活性、組成及び/又は粒径の異な
る触媒を充填する方法、又は触媒を不活性物質及び/又
は担体のみで成型した充填物で希釈率を変えて充填する
方法、又は触媒と触媒を不活性物質及び/又は担体のみ
で成型した充填物で希釈したものを充填する方法をあげ
ることができる。通常、連続する反応域は直接に接して
いる状態にあるが、反応域の間に不活性物質を充填して
もよい。ただし、不活性物質のみからなる充填層は、触
媒充填層とは見なさない。触媒充填層の分割数は多くす
るほど、該触媒充填層を有効に利用することができる
が、工業的には通常2〜20反応域、好ましくは2〜8
反応域、更に好ましくは2〜4反応域で実施される。分
割数が多すぎる場合は、充填する触媒の種類が多くなる
といったことがあり、経済的に不利になることがある。
In the present invention, a fixed bed reaction system having a reaction zone comprising at least two catalyst packed beds in a reaction tube is performed. By effectively utilizing the catalyst packed bed, stable and high yield of chlorine is achieved. It is preferable because it can be obtained at a high rate. As a method of forming at least two catalyst-packed layers, a method of dividing the catalyst-packed layer in a reaction tube into at least two reaction zones in the tube axis direction, and filling catalysts having different activities, compositions, and / or particle sizes, Or a method in which the catalyst is filled with a filler molded only with an inert substance and / or a carrier at a different dilution ratio, or a catalyst and a catalyst diluted with a filler molded only with an inert substance and / or a carrier are filled There are ways to do that. Usually, successive reaction zones are in direct contact with each other, but an inert substance may be filled between the reaction zones. However, a packed bed composed only of an inert substance is not considered as a catalyst packed bed. As the number of divisions of the catalyst-packed layer increases, the catalyst-packed layer can be effectively used. However, industrially, it is usually 2 to 20 reaction zones, preferably 2 to 8 reaction zones.
It is carried out in a reaction zone, more preferably in 2 to 4 reaction zones. If the number of divisions is too large, the number of types of catalyst to be filled may increase, which may be economically disadvantageous.

【0017】本発明においては、触媒充填層を管軸方向
に少なくとも二の反応域に分割して、第1反応域の割合
を70体積%以下とすることが好ましく、30体積%以
下が更に好ましい。また、第1反応域の割合を70体積
%以下、好ましくは30体積%以下とし、かつ第2反応
域の温度を第1反応域よりも通常は5℃以上、好ましく
は10℃以上高くする、及び/又は第2反応域の活性が
第1反応域よりも通常は1.1倍以上、好ましくは1.
5倍以上高くなるように、触媒又は触媒と不活性物質及
び/又は担体のみで成型した充填物を充填することが更
に好ましい。ここで、反応域の活性(mol−HCl/
ml−反応域・min)とは、単位触媒重量及び時間当
りの塩化水素反応活性( mol−HCl/g−触媒・
min)と触媒充填量(g)の積を、反応域の体積(m
l)で除した計算値を意味する。単位触媒重量及び時間
当りの塩化水素反応活性は、触媒の体積と標準状態(0
℃、0.1MPa)における塩化水素の供給速度との比
が4400〜4800h-1で、塩化水素1モルに対し酸
素0.5モルを供給し、反応圧力0.1MPa、反応温
度280℃で反応させ、この時に生成した塩素量から計
算された値である。第1反応域では、反応物質である塩
化水素と酸素の濃度が高いために反応速度が大きい。し
たがって、たとえばジャケット部を有する熱交換方式の
固定床反応では、該第1反応域の入口側にホットスポッ
トが生じる。一方、該第1反応域の出口側はジャケット
内の熱媒体の温度に近い温度となる。第1反応域の割合
が70体積%より大きい場合には、該反応域において、
ジャケット内の熱媒体の温度に近い温度の部分が多くな
り、触媒を有効に活用することができない。
In the present invention, the catalyst packed bed is divided into at least two reaction zones in the tube axis direction, and the ratio of the first reaction zone is preferably 70% by volume or less, more preferably 30% by volume or less. . In addition, the ratio of the first reaction zone is 70% by volume or less, preferably 30% by volume or less, and the temperature of the second reaction zone is usually 5 ° C. or higher, preferably 10 ° C. or higher than the first reaction zone. And / or the activity of the second reaction zone is usually 1.1 times or more, preferably 1.
It is further preferable to fill the catalyst or the filler molded only with the catalyst and the inert substance and / or the carrier so as to be at least 5 times higher. Here, the activity (mol-HCl /
ml-reaction zone · min) is the unit of catalyst weight and hydrogen chloride reaction activity per hour (mol-HCl / g-catalyst ·
min) and the catalyst loading (g) are calculated as the volume (m
means the calculated value divided by l). The hydrogen chloride reaction activity per unit catalyst weight and time was determined by comparing the catalyst volume with the standard state (0
(C, 0.1 MPa), the ratio to the supply rate of hydrogen chloride is 4400 to 4800 h -1 , 0.5 mol of oxygen is supplied to 1 mol of hydrogen chloride at a reaction pressure of 0.1 MPa and a reaction temperature of 280 ° C. It is a value calculated from the amount of chlorine generated at this time. In the first reaction zone, the reaction rate is high because the concentrations of the reactants hydrogen chloride and oxygen are high. Therefore, for example, in a fixed bed reaction of a heat exchange system having a jacket portion, a hot spot is generated on the inlet side of the first reaction zone. On the other hand, the outlet side of the first reaction zone has a temperature close to the temperature of the heat medium in the jacket. If the proportion of the first reaction zone is greater than 70% by volume,
The temperature of the portion near the temperature of the heat medium in the jacket increases, and the catalyst cannot be used effectively.

【0018】本発明においては、触媒充填層を管軸方向
に少なくとも二の反応域に分割して、第1反応域の熱伝
導度が最も高くなるように、触媒又は触媒と不活性物質
及び/又は担体のみで成型した充填物を充填することが
好ましく、第1反応域から最終反応域に向かって、ガス
の流れ方向に、反応域の熱伝導度が順次低くなるように
充填することが更に好ましい。ここで、最終反応域はガ
スの流れについての最も下流側の反応域を意味する。反
応域の熱伝導度は、反応域に充填された充填物の熱伝導
度を意味する。原料の入口側の反応域では、反応物質で
ある塩化水素と酸素の濃度が高いために反応速度が大き
く、酸化反応による発熱が大きい。したがって、入口側
の反応域に触媒の熱伝導度が比較的高い触媒を充填する
ことにより、過度なホットスポットを抑制することがで
きる。
In the present invention, the catalyst-packed bed is divided into at least two reaction zones in the direction of the tube axis, and the catalyst or the catalyst and the inert substance and / or the inactive substance and / or the first reaction zone have the highest thermal conductivity. Alternatively, it is preferable to fill a filler molded only with a carrier, and further, from the first reaction zone toward the final reaction zone, in the gas flow direction, so that the thermal conductivity of the reaction zone is gradually reduced. preferable. Here, the final reaction zone means the most downstream reaction zone for the gas flow. The thermal conductivity of the reaction zone means the thermal conductivity of the packing filled in the reaction zone. In the reaction zone on the inlet side of the raw material, the reaction rate is high due to the high concentration of the reactants hydrogen chloride and oxygen, and the heat generated by the oxidation reaction is large. Therefore, by filling the reaction zone on the inlet side with a catalyst having a relatively high thermal conductivity of the catalyst, an excessive hot spot can be suppressed.

【0019】本発明においては、触媒充填層を管軸方向
に少なくとも二の反応域に分割して、第1反応域から最
終反応域に向かって、ガスの流れ方向に、反応域の活性
が順次高くなるように触媒又は触媒と不活性物質及び/
又は担体のみで成型した充填物を充填することにより、
連続する反応域の温度差を小さくすることができ、した
がって、運転を安定して容易に行うことができるために
好ましい。
In the present invention, the catalyst-packed bed is divided into at least two reaction zones in the tube axis direction, and the activity of the reaction zones is sequentially increased in the gas flow direction from the first reaction zone toward the final reaction zone. So that the catalyst or the catalyst and the inert substance and / or
Or by filling the filler molded only with the carrier,
This is preferable because the temperature difference between successive reaction zones can be reduced, and thus the operation can be stably and easily performed.

【0020】本発明においては、触媒充填層を管軸方向
に少なくとも二の反応域に分割して、最終反応域の活性
を、その直前の反応域の活性よりも高くなるように、触
媒又は触媒と不活性物質及び/又は担体のみで成型した
充填物を充填し、かつ最終反応域のホットスポットを、
その直前の反応域のホットスポットよりも低くする方法
が好ましい。最終反応域の活性がその直前の活性よりも
低く、かつ最終反応域のホットスポットがその直前の反
応域のホットスポットよりも高い場合は、塩化水素を酸
素で酸化して塩素と水に変換する反応が平衡反応である
ために、塩化水素の転化率が化学平衡組成に支配されて
低くなる場合がある。
In the present invention, the catalyst packed bed is divided into at least two reaction zones in the tube axis direction, and the activity of the catalyst or the catalyst is increased so that the activity of the final reaction zone is higher than the activity of the immediately preceding reaction zone. And a filler molded only with an inert substance and / or a carrier, and a hot spot in the final reaction zone is
A method in which the temperature is lower than the hot spot in the immediately preceding reaction zone is preferable. If the activity of the final reaction zone is lower than that of the previous reaction zone and the hot spot of the final reaction zone is higher than the hot spot of the immediately preceding reaction zone, hydrogen chloride is oxidized with oxygen and converted to chlorine and water. Since the reaction is an equilibrium reaction, the conversion of hydrogen chloride may be low due to the chemical equilibrium composition.

【0021】本発明においては、触媒充填層を管軸方向
に少なくとも二の反応域に分割して、最終反応域の出口
のガス温度を200〜350℃とする方法が好ましく、
200〜320℃とする方法が更に好ましい。最終反応
域の出口のガス温度が350℃よりも高い場合は、塩化
水素を酸素で酸化して塩素と水に変換する反応が平衡反
応であるために、塩化水素の転化率が化学平衡組成に支
配されて低くなる場合がある。
In the present invention, it is preferable to divide the catalyst packed bed into at least two reaction zones in the direction of the tube axis and to adjust the gas temperature at the outlet of the final reaction zone to 200 to 350 ° C.
A method of setting the temperature to 200 to 320 ° C is more preferable. If the gas temperature at the outlet of the final reaction zone is higher than 350 ° C., the conversion of hydrogen chloride to oxygen and conversion to chlorine and water is an equilibrium reaction. May be dominated and lower.

【0022】本発明においては、触媒充填層からなる反
応域の温度制御を熱交換方式で行う方法が、反応熱が良
好に除去され、運転の安定性及び容易性が確保されるた
めに好ましい。本発明の熱交換方式とは、触媒が充填さ
れた反応管の外側にジャケット部を有し、反応で生成し
た反応熱をジャケット内の熱媒体によって除去する方式
を意味する。熱交換方式では、反応管内の触媒充填層か
らなる反応域の温度が、ジャケット内の熱媒体によって
制御される。工業的には、直列に配列された触媒充填層
からなる反応域を有する反応管を並列に配列し、外側に
ジャケット部を有する多管式熱交換器型の固定床多管式
反応器を用いることもできる。熱交換方式以外の方法と
しては、電気炉方式があげられるが、反応域の温度制御
が難しいといった問題がある。
In the present invention, a method in which the temperature of the reaction zone comprising the catalyst packed bed is controlled by a heat exchange method is preferable because the reaction heat is well removed and the stability and operability of the operation are ensured. The heat exchange method of the present invention means a method in which a jacket is provided outside a reaction tube filled with a catalyst, and reaction heat generated by the reaction is removed by a heating medium in the jacket. In the heat exchange method, the temperature of a reaction zone formed of a catalyst packed bed in a reaction tube is controlled by a heat medium in a jacket. Industrially, a reaction tube having reaction zones consisting of catalyst packed layers arranged in series is arranged in parallel, and a fixed tube multi-tube reactor of a multi-tube heat exchanger type having a jacket portion on the outside is used. You can also. As a method other than the heat exchange method, there is an electric furnace method, but there is a problem that it is difficult to control the temperature of the reaction zone.

【0023】熱媒体としては、溶融塩、スチーム、有機
化合物又は溶融金属をあげることができるが、熱安定性
や取り扱いの容易さ等の点から溶融塩又はスチームが好
ましく、より良好な熱安定性の点から溶融塩が更に好ま
しい。溶融金属は、コストが高く、取り扱いが難しいと
いった問題がある。溶融塩の組成としては、硝酸カリウ
ム50重量%と亜硝酸ナトリウム50重量%の混合物、
硝酸カリウム53重量%と亜硝酸ナトリウム40重量%
と硝酸ナトリウム7重量%の混合物などをあげることが
できる。有機化合物としては、ダウサムA(ジフェニル
オキサイドとジフェニルの混合物)をあげることができ
る。
Examples of the heat medium include a molten salt, steam, an organic compound and a molten metal, but a molten salt or steam is preferred in terms of thermal stability and ease of handling, and more favorable thermal stability. In view of this, a molten salt is more preferred. Molten metal has problems such as high cost and difficulty in handling. As the composition of the molten salt, a mixture of 50% by weight of potassium nitrate and 50% by weight of sodium nitrite,
53% by weight of potassium nitrate and 40% by weight of sodium nitrite
And 7% by weight of sodium nitrate. Examples of the organic compound include Dowsome A (a mixture of diphenyl oxide and diphenyl).

【0024】本発明においては、触媒充填層からなる反
応域の温度を、少なくとも二の独立した温度制御で行う
ことが、触媒充填層を有効に活用することによって、塩
素を安定して高収率で得ることができるために好まし
い。この方法としては、反応管内の触媒充填層を管軸方
向に少なくとも二の反応域に分割して、熱交換方式と熱
交換方式以外の方法の組み合わせで該反応域の温度制御
を行う方法、少なくとも二に分割された反応域に独立し
たジャケット部を作り、独立に熱媒体を循環させて該反
応域の温度制御を行う方法、及び/又は仕切り板によっ
てジャケット部を少なくとも二に分割して、仕切られた
部分に独立して熱媒体を循環させて該反応域の温度制御
を行う方法をあげることができる。仕切り板は、反応管
に溶接などにより直接固定されていてもよいが、仕切り
板や反応管に熱的な歪みが生じることを防ぐために、実
質的に独立して熱媒体を循環できる範囲内において、仕
切り板と反応管との間に適当な間隔を設けることができ
る。ジャケット内の熱媒体の流れは、下方から上方に流
れるようにするのが好ましい。独立した温度制御による
反応域の数は多くするほど、該反応域を有効に利用する
ことができるが、工業的には通常2〜20反応域、好ま
しくは2〜8反応域、更に好ましくは2〜4反応域で実
施される。制御する反応域数が多すぎる場合は、温度制
御のための機器が多くなるといったことがあり、経済的
に不利になることがある。
In the present invention, the temperature of the reaction zone composed of the catalyst-packed layer is controlled by at least two independent temperature controls. It is preferable because it can be obtained by As this method, a method in which the catalyst packed bed in the reaction tube is divided into at least two reaction regions in the tube axis direction and the temperature of the reaction region is controlled by a combination of a heat exchange method and a method other than the heat exchange method, at least A method in which an independent jacket portion is formed in the reaction region divided into two, and a heating medium is independently circulated to control the temperature of the reaction region, and / or the jacket portion is divided into at least two parts by a partition plate and partitioned. A method of controlling the temperature of the reaction zone by independently circulating a heat medium in the portion where the heat medium is circulated. The partition plate may be directly fixed to the reaction tube by welding or the like, but in order to prevent thermal distortion from occurring in the partition plate and the reaction tube, within a range where the heat medium can be substantially independently circulated. An appropriate distance can be provided between the partition plate and the reaction tube. It is preferable that the flow of the heat medium in the jacket is made to flow upward from below. The more the number of reaction zones by independent temperature control, the more effectively the reaction zone can be utilized. However, industrially, usually 2 to 20 reaction zones, preferably 2 to 8 reaction zones, more preferably 2 to 8 reaction zones. 44 reaction zones. If the number of reaction zones to be controlled is too large, the number of devices for temperature control may increase, which may be economically disadvantageous.

【0025】本発明においては、触媒充填層を管軸方向
に少なくとも二の反応域に分割して、全反応域の温度制
御を熱交換方式によって行う方法が、反応熱が良好に除
去され、運転の安定性及び容易性が確保されるために好
ましい。
In the present invention, a method in which the catalyst packed bed is divided into at least two reaction zones in the tube axis direction and the temperature of the entire reaction zone is controlled by a heat exchange method is a method in which the reaction heat is removed satisfactorily. Is preferable because the stability and easiness of the above are ensured.

【0026】反応管の内径は、通常10〜50mm、好
ましくは10〜40mm、更に好ましくは10〜30m
mである。反応管の内径が小さすぎる場合は、工業用反
応装置で塩化水素の満足いく処理量を得るためには、過
剰数の反応管が必要とされるので不利益である場合があ
り、反応管の内径が大きすぎる場合は、触媒充填層に過
度のホットスポットを生じさせる場合がある。
The inner diameter of the reaction tube is usually 10 to 50 mm, preferably 10 to 40 mm, more preferably 10 to 30 m.
m. If the inner diameter of the reaction tube is too small, it may be disadvantageous because an excessive number of reaction tubes is required in order to obtain a satisfactory throughput of hydrogen chloride in an industrial reactor. If the inner diameter is too large, an excessive hot spot may be generated in the catalyst packed bed.

【0027】反応管の内径(D)と触媒直径(d)の比
率(D/d)は、通常5/1〜100/1、好ましくは
5/1〜50/1、更に好ましくは5/1〜20/1で
ある。比率が小さすぎる場合は、触媒充填層に過度のホ
ットスポットを生じさせる場合、或いは工業用反応装置
で塩化水素の満足いく処理量を得るためには、過剰数の
反応管が必要とされるので不利益である場合があり、比
率が大きすぎる場合は、触媒充填層に過度のホットスポ
ットを生じさせる場合、或いは触媒充填層の圧力損失が
大きくなる場合がある。
The ratio (D / d) of the inner diameter (D) of the reaction tube to the catalyst diameter (d) is usually 5/1 to 100/1, preferably 5/1 to 50/1, more preferably 5/1. 2020/1. If the ratio is too small, excessive hot spots may occur in the catalyst packed bed, or an excessive number of reaction tubes may be required to obtain a satisfactory throughput of hydrogen chloride in an industrial reactor. If it is disadvantageous and the ratio is too large, excessive hot spots may be generated in the catalyst packed bed, or pressure loss of the catalyst packed bed may be large.

【0028】[0028]

【実施例】以下、本発明を実施例により説明する。 実施例1 反応器には、溶融塩(硝酸カリウム/亜硝酸ナトリウム
=1/1重量比)を熱媒体とするジャケットを備えた内
径18mm及び長さ1mのNi製反応管(外径5mmの
温度測定用鞘管)からなる固定床反応器を用いた。反応
管内には、直径1〜2mmのアナターゼ結晶形TiO2
担持6.6重量%酸化ルテニウム球形粒状触媒99.4
g(100ml)を充填し、触媒充填層とした。触媒充
填層の上部及び下部には、直径2mmのα−Al23
(ニッカト(株)製、SSA995)をそれぞれ238
g及び164g充填した。なお、直径1〜2mmのアナ
ターゼ結晶形TiO2担持6.6重量%酸化ルテニウム
球形粒状触媒は、特開平10−338502号公報に記
載された方法に準拠して調製され、890h使用したも
のを再使用した。塩化水素9.4l/min(標準状
態、塩化水素:99体積%以上)及び酸素4.7l/m
in(標準状態、酸素:99体積%以上)を電気炉で3
80℃に加熱した内径30mmのNi製予熱管(外径6
mmの温度測定用鞘管)に供給して加熱し、水0.75
6g/minを電気炉で380℃に加熱した内径2mm
のステンレス製予熱管に供給して水蒸気に気化させた。
続いて、予熱された塩化水素と酸素の混合ガスを水蒸気
と混合させた後、反応管の上部から下部へダウンフロー
で流通させた。塩化水素/酸素/水のモル比は10/5
/1、GHSVは5639h-1、空塔基準のガス線速度
は1.1m/sと計算される。ジャケット内の溶融塩の
温度が336℃で、触媒層の反応温度は入口337℃、
出口356℃、ホットスポット368℃であった。この
時、反応管入口部の圧力は0.12MPa−Gであっ
た。出口ガスをよう化カリウム水溶液にサンプリングし
て、生成した塩素と未反応の塩化水素と生成水を吸収さ
せ、よう素滴定法及び中和滴定法によって、それぞれ塩
素の生成量及び未反応塩化水素量を測定した。塩化水素
の塩素への転化率は21.5%であった。
The present invention will be described below with reference to examples. Example 1 In a reactor, a Ni reaction tube having an inner diameter of 18 mm and a length of 1 m equipped with a jacket using a molten salt (potassium nitrate / sodium nitrite = 1/1 weight ratio) (temperature measurement of an outer diameter of 5 mm) was used. A fixed-bed reactor comprising a sheath tube was used. In the reaction tube, anatase crystalline TiO 2 having a diameter of 1 to 2 mm was placed.
Supported 6.6% by weight ruthenium oxide spherical granular catalyst 99.4
g (100 ml) to form a catalyst-packed layer. 238 of α-Al 2 O 3 spheres having a diameter of 2 mm (manufactured by Nikkat Co., Ltd., SSA995) were respectively placed on the upper and lower parts of the catalyst packed bed.
g and 164 g. The anatase crystalline TiO 2 supported 6.6 wt% ruthenium oxide spherical granular catalyst having a diameter of 1 to 2 mm was prepared according to the method described in JP-A-10-338502. used. 9.4 l / min of hydrogen chloride (standard condition, hydrogen chloride: 99% by volume or more) and 4.7 l / m of oxygen
in (standard condition, oxygen: 99% by volume or more) in an electric furnace
A 30 mm inner diameter Ni preheated tube heated to 80 ° C. (outer diameter 6 mm)
mm of a temperature measuring sheath tube) and heated, and water 0.75
6mm / min heated to 380 ° C in an electric furnace 2mm inner diameter
Was supplied to a stainless steel preheating tube and vaporized into steam.
Subsequently, the preheated mixed gas of hydrogen chloride and oxygen was mixed with water vapor, and then flowed downflow from the upper part to the lower part of the reaction tube. The molar ratio of hydrogen chloride / oxygen / water is 10/5
/ 1, GHSV is calculated to be 5639 h -1 , and the gas linear velocity based on an empty tower is calculated to be 1.1 m / s. The temperature of the molten salt in the jacket is 336 ° C, the reaction temperature of the catalyst layer is 337 ° C at the inlet,
The outlet temperature was 356 ° C and the hot spot was 368 ° C. At this time, the pressure at the inlet of the reaction tube was 0.12 MPa-G. The outlet gas is sampled in an aqueous potassium iodide solution to absorb generated chlorine, unreacted hydrogen chloride and generated water, and the amount of chlorine generated and the amount of unreacted hydrogen chloride are determined by iodine titration and neutralization titration, respectively. Was measured. The conversion of hydrogen chloride to chlorine was 21.5%.

【0029】比較例1 触媒量を48.1g(49ml)とし、塩化水素4.7
l/min、酸素2.4l/min及び水0.378g
/minとしたこと以外は、実施例1に準拠して行っ
た。塩化水素/酸素/水のモル比は10/5/1、GH
SVは5761h-1、空塔基準のガス線速度は0.54
m/sと計算される。ジャケット内の溶融塩の温度が3
36℃で、反応熱のために触媒層のホットスポットは3
80℃を越えて制御不能となった。
Comparative Example 1 The amount of the catalyst was 48.1 g (49 ml), and the amount of hydrogen chloride was 4.7.
1 / min, 2.4 l / min of oxygen and 0.378 g of water
The procedure was performed in the same manner as in Example 1 except that / min was used. The molar ratio of hydrogen chloride / oxygen / water is 10/5/1, GH
The SV is 5761 h -1 and the gas linear velocity based on the superficial tower is 0.54
m / s. The temperature of the molten salt in the jacket is 3
At 36 ° C., the hot spot of the catalyst layer is 3 due to the heat of reaction.
The temperature exceeded 80 ° C and became uncontrollable.

【0030】比較例2 触媒量を18.8g(20ml)とし、塩化水素1.9
l/min、酸素0.96l/min及び水0.151
g/minとしたこと以外は、実施例1に準拠して行っ
た。塩化水素/酸素/水のモル比は10/5/1、GH
SVは5724h-1、空塔基準のガス線速度は0.22
m/sと計算される。ジャケット内の溶融塩の温度が3
36℃で、反応熱のために触媒層のホットスポットは3
80℃を越えて制御不能となった。
Comparative Example 2 The amount of the catalyst was changed to 18.8 g (20 ml), and 1.9 hydrogen chloride was used.
l / min, oxygen 0.96 l / min and water 0.151
Except having set it as g / min, it carried out based on Example 1. The molar ratio of hydrogen chloride / oxygen / water is 10/5/1, GH
The SV is 5724 h -1 and the gas linear velocity based on the superficial tower is 0.22.
m / s. The temperature of the molten salt in the jacket is 3
At 36 ° C., the hot spot of the catalyst layer is 3 due to the heat of reaction.
The temperature exceeded 80 ° C and became uncontrollable.

【0031】[0031]

【発明の効果】以上説明したとおり、本発明により、塩
化水素を含むガス中の塩化水素を、酸素を含むガスを用
いて酸化する塩素の製造方法であって、触媒充填層の過
度のホットスポットを抑制し、触媒充填層を有効に活用
することによって、触媒の安定した活性が維持され、か
つ塩素を安定して高収率で得ることができ、よって触媒
コスト、設備コスト、運転コスト、運転の安定性及び容
易性の観点から極めて有利な塩素の製造方法を提供する
ことができた。
As described above, according to the present invention, there is provided a method for producing chlorine by oxidizing hydrogen chloride in a gas containing hydrogen chloride using a gas containing oxygen, the method comprising: By effectively controlling the catalyst packed bed, the stable activity of the catalyst can be maintained, and chlorine can be obtained in a stable and high yield. From the viewpoint of the stability and easiness of the production of chlorine.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 塩化水素を含むガス中の塩化水素を、酸
素を含むガスを用いて、触媒充填層からなる反応域を有
する固定床反応方式で酸化する方法において、空塔基準
のガス線速度を0.70〜10m/sとする塩素の製造
方法。
1. A method for oxidizing hydrogen chloride in a gas containing hydrogen chloride by using a gas containing oxygen in a fixed bed reaction system having a reaction zone comprising a catalyst packed bed, wherein a gas linear velocity based on an empty column is used. Is 0.70 to 10 m / s.
【請求項2】 少なくとも二の触媒充填層からなる反応
域を有する固定床反応方式で酸化する請求項1記載の塩
素の製造方法。
2. The method for producing chlorine according to claim 1, wherein the oxidation is carried out by a fixed bed reaction system having a reaction zone comprising at least two catalyst packed beds.
【請求項3】 触媒充填層からなる反応域の温度を、少
なくとも二の独立した温度制御で行う請求項1記載の塩
素の製造方法。
3. The method for producing chlorine according to claim 1, wherein the temperature of the reaction zone comprising the catalyst packed bed is controlled by at least two independent temperature controls.
JP2000004539A 2000-01-13 2000-01-13 Method for producing chlorine Expired - Lifetime JP3570322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000004539A JP3570322B2 (en) 2000-01-13 2000-01-13 Method for producing chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000004539A JP3570322B2 (en) 2000-01-13 2000-01-13 Method for producing chlorine

Publications (2)

Publication Number Publication Date
JP2001199710A true JP2001199710A (en) 2001-07-24
JP3570322B2 JP3570322B2 (en) 2004-09-29

Family

ID=18533315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000004539A Expired - Lifetime JP3570322B2 (en) 2000-01-13 2000-01-13 Method for producing chlorine

Country Status (1)

Country Link
JP (1) JP3570322B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005072859A1 (en) * 2004-01-29 2005-08-11 Sumitomo Chemical Company, Limited Filler for vapor-phase reaction
WO2005075345A1 (en) * 2004-02-04 2005-08-18 Sumitomo Chemical Company, Limited Method for producing chlorine
JP2005219948A (en) * 2004-02-04 2005-08-18 Sumitomo Chemical Co Ltd Chlorine production method
WO2006035951A1 (en) * 2004-09-27 2006-04-06 Sumitomo Chemical Company, Limited Multitubular reaction apparatus for contact gas-phase reaction
WO2006137583A1 (en) * 2005-06-22 2006-12-28 Sumitomo Chemical Company, Limited Reactor for chlorine production and process for producing chlorine
JP2007530403A (en) * 2004-03-25 2007-11-01 ビーエーエスエフ アクチェンゲゼルシャフト Fluidized bed method for performing exothermic chemical equilibrium reaction and reactor used therefor
JP2008105862A (en) * 2006-10-23 2008-05-08 Sumitomo Chemical Co Ltd Method for producing chlorine
US10882026B2 (en) 2008-08-28 2021-01-05 Sumitomo Chemical Company, Limited Process for producing chlorine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197302A (en) * 1986-02-21 1987-09-01 Mitsui Toatsu Chem Inc Production of chlorine
JPS62270405A (en) * 1986-05-19 1987-11-24 Mitsui Toatsu Chem Inc Production of chlorine
JPH10251002A (en) * 1997-02-27 1998-09-22 Air Prod And Chem Inc Method for recovering chlorine from hydrogen chloride by fixed bed temperature swing and chemical reaction method
JPH11180701A (en) * 1997-10-15 1999-07-06 Sumitomo Chem Co Ltd Production of chlorine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197302A (en) * 1986-02-21 1987-09-01 Mitsui Toatsu Chem Inc Production of chlorine
JPS62270405A (en) * 1986-05-19 1987-11-24 Mitsui Toatsu Chem Inc Production of chlorine
JPH10251002A (en) * 1997-02-27 1998-09-22 Air Prod And Chem Inc Method for recovering chlorine from hydrogen chloride by fixed bed temperature swing and chemical reaction method
JPH11180701A (en) * 1997-10-15 1999-07-06 Sumitomo Chem Co Ltd Production of chlorine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005072859A1 (en) * 2004-01-29 2005-08-11 Sumitomo Chemical Company, Limited Filler for vapor-phase reaction
JP4507615B2 (en) * 2004-02-04 2010-07-21 住友化学株式会社 Chlorine production method
JP2005219948A (en) * 2004-02-04 2005-08-18 Sumitomo Chemical Co Ltd Chlorine production method
JP2005219949A (en) * 2004-02-04 2005-08-18 Sumitomo Chemical Co Ltd Chlorine production method
JP4507614B2 (en) * 2004-02-04 2010-07-21 住友化学株式会社 Chlorine production method
WO2005075345A1 (en) * 2004-02-04 2005-08-18 Sumitomo Chemical Company, Limited Method for producing chlorine
JP2007530403A (en) * 2004-03-25 2007-11-01 ビーエーエスエフ アクチェンゲゼルシャフト Fluidized bed method for performing exothermic chemical equilibrium reaction and reactor used therefor
JP4664968B2 (en) * 2004-03-25 2011-04-06 ビーエーエスエフ ソシエタス・ヨーロピア Fluidized bed method for carrying out an exothermic chemical reaction and reactor used therefor
WO2006035951A1 (en) * 2004-09-27 2006-04-06 Sumitomo Chemical Company, Limited Multitubular reaction apparatus for contact gas-phase reaction
US7771674B2 (en) 2004-09-27 2010-08-10 Sumitomo Chemical Company, Limited Multitubular reaction apparatus for contact gas-phase reaction
WO2006137583A1 (en) * 2005-06-22 2006-12-28 Sumitomo Chemical Company, Limited Reactor for chlorine production and process for producing chlorine
KR101299903B1 (en) * 2005-06-22 2013-08-23 스미또모 가가꾸 가부시끼가이샤 Reactor for producing chlorine and process for producing chlorine
JP2008105862A (en) * 2006-10-23 2008-05-08 Sumitomo Chemical Co Ltd Method for producing chlorine
US10882026B2 (en) 2008-08-28 2021-01-05 Sumitomo Chemical Company, Limited Process for producing chlorine

Also Published As

Publication number Publication date
JP3570322B2 (en) 2004-09-29

Similar Documents

Publication Publication Date Title
KR101513298B1 (en) Method for producing chlorine
KR101513299B1 (en) Method for producing chlorine
SK282577B6 (en) Method for single stage fixed bed oxychlorination of ethylene
JPH0569042B2 (en)
JP3606147B2 (en) Chlorine production method
JP3124455B2 (en) Method for producing phosgene
JP2005289800A (en) Method of producing chlorine
JP3058696B2 (en) Oxychlorination of ethylene in a two-stage fixed bed reactor
JP3570322B2 (en) Method for producing chlorine
JP2006137669A (en) Method for producing phosgene
JP4081591B2 (en) Chlorine production method
EP0146925B1 (en) Method for the oxychlorination of ethylene
JP2010189206A (en) Method for producing chlorine
KR100241085B1 (en) Oxychlorination of ethylene in two stage fixed-bed reactor
JPS6015561B2 (en) Method for purifying hydrogen chloride obtained from thermal decomposition of 1,2-dichloroethane
JP2008105862A (en) Method for producing chlorine
WO2010024461A1 (en) Process for producing chlorine
JPS6356210B2 (en)
JP4854193B2 (en) Method for producing phosgene
CN102216207A (en) Chlorine production method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

R151 Written notification of patent or utility model registration

Ref document number: 3570322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

EXPY Cancellation because of completion of term