JP4498843B2 - Catalyst for fuel cell and method for producing the same - Google Patents

Catalyst for fuel cell and method for producing the same Download PDF

Info

Publication number
JP4498843B2
JP4498843B2 JP2004206231A JP2004206231A JP4498843B2 JP 4498843 B2 JP4498843 B2 JP 4498843B2 JP 2004206231 A JP2004206231 A JP 2004206231A JP 2004206231 A JP2004206231 A JP 2004206231A JP 4498843 B2 JP4498843 B2 JP 4498843B2
Authority
JP
Japan
Prior art keywords
catalyst
alcohol
solution
fuel cell
ptrup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004206231A
Other languages
Japanese (ja)
Other versions
JP2005205394A5 (en
JP2005205394A (en
Inventor
英夫 大門
友紀子 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2004206231A priority Critical patent/JP4498843B2/en
Publication of JP2005205394A publication Critical patent/JP2005205394A/en
Publication of JP2005205394A5 publication Critical patent/JP2005205394A5/ja
Application granted granted Critical
Publication of JP4498843B2 publication Critical patent/JP4498843B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は燃料電池用三元系触媒に関する。更に詳細には、本発明は直接メタノール型燃料電池用触媒或いは高分子電解質型燃料電池用触媒に好適なPtRuP触媒及びその製造方法に関する。   The present invention relates to a three-way catalyst for a fuel cell. More specifically, the present invention relates to a PtRuP catalyst suitable for a direct methanol fuel cell catalyst or a polymer electrolyte fuel cell catalyst and a method for producing the same.

従来、電気エネルギーの大部分は、火力発電、水力発電又は原子力発電などにより供給されてきた。しかし、火力発電は石油や石炭などの化石燃料を燃焼させるため大規模な環境汚染をもたらすばかりか、石油などの資源枯渇が問題視されるようになってきた。また、水力発電は大規模なダム建設を必要とし、それによる自然破壊が懸念されるばかりか、建設適地も限られている。原子力発電は事故の際の放射能汚染が致命的であるばかりか、寿命を迎えた原子炉の廃炉問題などもあり、世界的には建設が抑制される方向に動いている。   Conventionally, most of electric energy has been supplied by thermal power generation, hydroelectric power generation or nuclear power generation. However, thermal power generation not only causes large-scale environmental pollution because it burns fossil fuels such as oil and coal, but depletion of resources such as oil has become a problem. In addition, hydropower generation requires large-scale dam construction, and not only is there concern about the destruction of nature, but there are also limited areas for construction. Nuclear power generation is not only fatal in the radioactive contamination at the time of the accident, but also has a problem of decommissioning nuclear reactors that have reached the end of their life, and is moving in a direction that suppresses construction worldwide.

大規模な施設を必要とせず、環境汚染も起こさない発電方法として風力発電や太陽光発電が世界各国で利用されるようになり、我が国でも一部の地域で実際に風力発電や太陽光発電が実用化されている。しかし、風力発電は風が吹かなければ発電できず、また太陽光発電は日光照射がなければ発電できないなど、自然現象に左右され、安定的な電力供給ができないという欠点がある。また、風力発電では、風の強さにより、発電した電力の周波数が変動し、電気機器の故障原因となっていた。   Wind power generation and solar power generation have been used around the world as power generation methods that do not require large-scale facilities and do not cause environmental pollution. In Japan, wind power generation and solar power generation are actually used in some areas. It has been put into practical use. However, wind power generation has a drawback in that it cannot generate power without wind, and solar power generation cannot generate power without sunlight, and is affected by natural phenomena and cannot provide stable power supply. Further, in wind power generation, the frequency of the generated power fluctuates due to the strength of the wind, causing a failure of electrical equipment.

そこで、最近は、水素エネルギーから電気エネルギーを取り出すことができる発電装置例えば、水素燃料電池などの開発研究が活発になってきた。水素は水を分解することにより得られ、地球上に無尽蔵に存在するばかりか、物質量当たりに含まれる化学エネルギー量が大きく、しかも、エネルギー源として利用するときに有害物質や地球温暖化ガスを発生しないという利点を有する。   Therefore, recently, research and development on a power generation device that can extract electric energy from hydrogen energy, such as a hydrogen fuel cell, has become active. Hydrogen is obtained by decomposing water and not only exists infinitely on the earth, but also contains a large amount of chemical energy per amount of substance. Moreover, when it is used as an energy source, harmful substances and global warming gases are used. It has the advantage that it does not occur.

水素ガスの代わりに、メタノールを使用する燃料電池の研究も活発に行われている。液体燃料であるメタノールを直接使用するメタノール燃料電池は、燃料の取り扱い易さに加え、安価な燃料ということで家庭用や産業用の比較的小出力規模の電源として期待されている。メタノールー酸素燃料電池の理論出力電圧は、水素燃料のものとほぼ同じ1.2V(25℃)であり、原理的には同様の特性が期待できる。   Research on fuel cells using methanol instead of hydrogen gas is also actively conducted. A methanol fuel cell that directly uses methanol, which is a liquid fuel, is expected to be a relatively small output power source for household and industrial use because it is an inexpensive fuel in addition to easy handling of the fuel. The theoretical output voltage of the methanol-oxygen fuel cell is 1.2 V (25 ° C.) which is almost the same as that of hydrogen fuel, and in principle the same characteristics can be expected.

高分子固体電解質型燃料電池や直接メタノール型燃料電池ではアノードで水素やメタノールを酸化させると同時に、カソードでは酸素を還元して電気エネルギーを取り出している。これらの酸化還元反応は常温では進み難いため、燃料電池には触媒が使用されている。初期の燃料電池では白金(Pt)を炭素基材上に析出担持させ触媒として使用してきた。Ptは水素酸化やメタノール酸化に対して充分な触媒活性を有しており、これまで炭素基材上へのPt触媒の析出雰囲気、つまり、析出時の外部因子を制御することにより、Pt触媒粒子を出来るだけ小さくし、Pt触媒の反応表面積を高めて使用することが試みられてきた。例えば、特許文献1では、アルコールでPtイオンを還元してPtを炭素基材上に担持させる際、反応溶液中に保護コロイドとしてポリビニルアルコールを添加し、Pt触媒粒子表面に保護コロイドを弱く吸着させ、Pt触媒の微粒子化を図っている。この方法では、Pt触媒表面に保護コロイドが吸着している。このため、Pt微粒子生成後に、水素気流中で400℃で熱処理を行っているが、この処理方法では保護コロイドを完全にPt触媒表面から取り去ることは出来ず、Pt触媒の性能を完全に発揮させることができないという問題点があった。   In a solid polymer electrolyte fuel cell and a direct methanol fuel cell, hydrogen and methanol are oxidized at the anode, and at the same time oxygen is reduced at the cathode to extract electric energy. Since these oxidation-reduction reactions are difficult to proceed at room temperature, a catalyst is used in the fuel cell. In early fuel cells, platinum (Pt) has been deposited on a carbon substrate and used as a catalyst. Pt has sufficient catalytic activity for hydrogen oxidation and methanol oxidation, and so far, by controlling the precipitation atmosphere of the Pt catalyst on the carbon substrate, that is, by controlling the external factors at the time of precipitation, Pt catalyst particles Attempts have been made to make the Pt catalyst as small as possible and increase the reaction surface area of the Pt catalyst. For example, in Patent Document 1, when Pt ions are reduced with alcohol and Pt is supported on a carbon substrate, polyvinyl alcohol is added as a protective colloid to the reaction solution, and the protective colloid is weakly adsorbed on the surface of the Pt catalyst particles. , Pt catalyst is made fine. In this method, the protective colloid is adsorbed on the surface of the Pt catalyst. For this reason, although heat treatment is performed at 400 ° C. in a hydrogen stream after the generation of Pt fine particles, the protective colloid cannot be completely removed from the surface of the Pt catalyst, and the performance of the Pt catalyst is fully exhibited. There was a problem that it was not possible.

また、Pt触媒には、メタノール酸化過程で発生する一酸化炭素(CO)、或いは水素ガス中に含まれるCOがPt触媒上に化学吸着し、最終的には触媒活性が失活する問題があった。この現象はCOによる触媒被毒と呼ばれている。COによるPt触媒の被毒を抑えるため、Ptへの添加元素の探索が行われた。その結果、PtにRuを添加することにより、COによる触媒被毒が大きく軽減されることが発見された(例えば、特許文献2参照)。   In addition, the Pt catalyst has a problem that carbon monoxide (CO) generated in the methanol oxidation process or CO contained in hydrogen gas is chemically adsorbed on the Pt catalyst, and eventually the catalytic activity is deactivated. It was. This phenomenon is called catalyst poisoning by CO. In order to suppress the poisoning of the Pt catalyst by CO, an element added to Pt was searched. As a result, it has been discovered that catalyst poisoning by CO is greatly reduced by adding Ru to Pt (see, for example, Patent Document 2).

このRuはそれ自身に水素やメタノールの酸化活性は無いが、Pt上に被着したCOを素早くCOに酸化して逃がす働きを持った助触媒である。直接メタノール型燃料電池を例に挙げると、下記反応式(1)に示されるように、Pt触媒粒子上で脱プロトン反応が起こり、Pt触媒粒子上にCOが化学吸着する。これがCOにより触媒被毒である。しかし、Ruを含んだPtRu触媒では、下記反応式(2)で示されるように、Ruが水と反応してRu−OHを生成し、次いで、下記反応式(3)で示されるように、Pt触媒粒子表面に化学吸着したCOをCOに酸化して除去する。
Pt+CHOH → Pt−CO +4H+4e 式(1)
Ru+HO → Ru−OH+H+e 式(2)
Pt−CO+Ru−OH → Pt+Ru+H+e+CO↑ 式(3)
Although this Ru itself has no oxidation activity of hydrogen or methanol, it is a co-catalyst having a function of quickly oxidizing CO deposited on Pt to CO 2 and letting it escape. Taking a direct methanol fuel cell as an example, as shown in the following reaction formula (1), a deprotonation reaction occurs on the Pt catalyst particles, and CO is chemically adsorbed on the Pt catalyst particles. This is catalyst poisoning by CO. However, in the PtRu catalyst containing Ru, as shown in the following reaction formula (2), Ru reacts with water to produce Ru-OH, and then, as shown in the following reaction formula (3), CO chemisorbed on the surface of the Pt catalyst particles is oxidized to CO 2 and removed.
Pt + CH 3 OH → Pt-CO + 4H + + 4e - formula (1)
Ru + H 2 O → Ru—OH + H + + e Formula (2)
Pt—CO + Ru—OH → Pt + Ru + H + + e + CO 2 ↑ Equation (3)

含浸法や無電解メッキ法或いはアルコール還元法でPtRu触媒を合成すると、その粒径は5〜10nmの範囲内に集中する。PtRuの粒径が大きいままだと触媒の有効表面積が増大せず、触媒活性も向上しない。従って、PtRuの触媒活性を高めるためには、PtRuの粒径を5nm未満とし、触媒の有効表面積を高めることが有効である。この場合、保護コロイドを添加してPtRu触媒の粒径を小さくする方法は、前記の理由により使用できない。5nm未満のPtRu触媒を製造する有効な方法の開発が強く求められているが、未だ成功していない。   When a PtRu catalyst is synthesized by an impregnation method, an electroless plating method, or an alcohol reduction method, the particle size is concentrated within a range of 5 to 10 nm. If the PtRu particle size remains large, the effective surface area of the catalyst will not increase and the catalytic activity will not be improved. Therefore, in order to increase the catalytic activity of PtRu, it is effective to increase the effective surface area of the catalyst by setting the PtRu particle size to less than 5 nm. In this case, the method of reducing the particle size of the PtRu catalyst by adding a protective colloid cannot be used for the above reason. There is a strong demand for the development of an effective method for producing PtRu catalysts of less than 5 nm, but has not been successful.

特開昭56−155645号公報JP-A-56-155645 特開昭57−5266号公報JP-A-57-5266

従って、本発明の目的は、5nm未満の粒径を有する新規なPtRu触媒及びその製造方法を提供することである。   Accordingly, an object of the present invention is to provide a novel PtRu catalyst having a particle size of less than 5 nm and a method for producing the same.

前記課題を解決するための手段として、請求項1に係る発明は、燃料電池用触媒の製造方法において、
(1)一種類以上のアルコールからなる有機溶剤中に、60m /g〜300m /gの範囲内の比表面積を有する炭素基材を分散させるステップと、
(2)前記炭素基材が分散されたアルコール系有機溶剤中に、Ptの塩又は錯体と、Ruの塩又は錯体と、P原子含有化合物を溶解させるステップと、
(3)炭素粉末が分散されたアルコール溶液のpH値を2〜5の範囲に調整するステップと、
(4)不活性ガス雰囲気中で、アルコールの沸点近傍の温度で加熱還流を行うステップを含み、
前記炭素基材上に、下記の一般式、
PtRuP
(式中、PtとRuの原子比が60:40〜90:10であり、Pの含有率はPtRuの総モル数に対して、3モル%〜50モル%の範囲内である。)で示される三元系微粒子を担持した燃料電池用触媒を生成することを特徴とする燃料電池用触媒の製造方法である。
As means for solving the above problems, the invention according to claim 1 is directed to a method for producing a fuel cell catalyst,
(1) in an organic solvent comprising one or more alcohols, a step of dispersing the carbon substrate having a specific surface area within the range of 60m 2 / g~300m 2 / g,
(2) dissolving a Pt salt or complex, a Ru salt or complex, and a P atom-containing compound in an alcohol-based organic solvent in which the carbon substrate is dispersed;
(3) adjusting the pH value of the alcohol solution in which the carbon powder is dispersed to a range of 2 to 5,
(4) including heating and refluxing in an inert gas atmosphere at a temperature near the boiling point of the alcohol,
On the carbon substrate, the following general formula:
PtRuP
(Wherein the atomic ratio of Pt and Ru is 60:40 to 90:10, and the P content is in the range of 3 mol% to 50 mol% with respect to the total number of moles of PtRu). A fuel cell catalyst production method comprising producing a fuel cell catalyst carrying the ternary fine particles shown.

前記課題を解決するための手段として、請求項2に係る発明は、前記ステップ(2)において、前記P原子含有化合物はPtの塩又は錯体とRuの塩又は錯体の合計モル数に対して、5モル%〜50モル%であることを特徴とする請求項1に記載の燃料電池用触媒の製造方法である。 As a means for solving the above-mentioned problem, the invention according to claim 2 is characterized in that, in the step (2), the P atom-containing compound is based on the total number of moles of the salt or complex of Pt and the salt or complex of Ru. It is 5 mol%-50 mol%, The manufacturing method of the catalyst for fuel cells of Claim 1 characterized by the above-mentioned.

前記課題を解決するための手段として、請求項3に係る発明は、前記ステップ(3)において、硫酸を滴下することによりアルコール溶液のpH値を2〜5に調整することを特徴とする請求項1に記載の燃料電池用触媒の製造方法である。 As a means for solving the problems, claim the invention according to claim 3, wherein in step (3), characterized by adjusting the pH value of the alcohol solution to 2-5 by the dropwise addition of sulfuric acid 1. A method for producing a fuel cell catalyst according to 1 .

前記課題を解決するための手段として、請求項4に係る発明は、前記P原子含有化合物は、亜燐酸、亜燐酸塩(正塩及び酸性塩の両方を含む)、次亜燐酸及び次亜燐酸塩からなる群から選択される少なくとも一種類の化合物であることを特徴とする請求項1に記載の製造方法である。 As a means for solving the above-mentioned problems, the invention according to claim 4 is characterized in that the P atom-containing compound contains phosphorous acid, phosphorous acid salt (including both normal salt and acidic salt), hypophosphorous acid and hypophosphorous acid. The production method according to claim 1 , wherein the production method is at least one compound selected from the group consisting of salts.

前記課題を解決するための手段として、請求項5に係る発明は、前記P原子含有化合物は、亜燐酸、亜燐酸水素ナトリウム、亜燐酸水素アンモニウム、次亜燐酸、次亜燐酸ナトリウム及び次亜燐酸アンモニウムからなる群から選択される少なくとも一種類の化合物であることを特徴とする請求項4に記載の製造方法である。 As means for solving the above-mentioned problems, the invention according to claim 5 is characterized in that the P atom-containing compound is phosphorous acid, sodium hydrogen phosphite, ammonium hydrogen phosphite, hypophosphorous acid, sodium hypophosphite and hypophosphorous acid. The production method according to claim 4 , wherein the production method is at least one compound selected from the group consisting of ammonium.

前記課題を解決するための手段として、請求項6に係る発明は、前記炭素基材は、カーボンブラック、グラファイト、カーボンナノチューブ及び活性炭からなる群から選択される少なくとも一種類の材料を用いることを特徴とする請求項1に記載の製造方法である。 As a means for solving the above problem, the invention according to claim 6, wherein the carbon substrate, characterized by the use of mosquito over carbon black, graphite, at least one kind of material selected from the group consisting of carbon nanotubes and active charcoal The manufacturing method according to claim 1.

本発明によれば、アルコール還元法により炭素基材上にPtRu触媒微粒子を析出させる際、PtRu二元系触媒に対してP原子を添加して三元系触媒とすると、Ruの添加効果は維持しつつ、PtRu触媒粒子が炭素基材上に析出する際、そのP添加元素が粒子の内部から作用し、析出するPtRu触媒粒子を微細化し、触媒の表面積を増大させ、その結果、触媒活性が向上されることが発見された。更に、燃料電池のアノードとカソードとの間には一般的に、高分子固体導電膜としてデュポン社製のナフィオン膜が使用されるが、ナフィオン膜ではスルホン酸基の水素原子がHとなってプロトン導電性を発揮する。従って、ナフィオン膜と電極触媒との界面は強酸性になる。従来のPtRu触媒に添加されていた第三金属元素(例えば、Mo、Mn、Fe,Co等)は耐酸性が無いため溶けてHと変換してしまうが、P元素は従来の第三金属元素とは異なり、耐酸性があるため酸に溶けず、燃料電池用の触媒添加元素として極めて好適であることも発見された。 According to the present invention, when the PtRu catalyst fine particles are deposited on the carbon substrate by the alcohol reduction method, the addition effect of Ru is maintained when P atoms are added to the PtRu binary catalyst to form a ternary catalyst. However, when the PtRu catalyst particles are deposited on the carbon base material, the P-added element acts from the inside of the particles, and the precipitated PtRu catalyst particles are refined to increase the surface area of the catalyst. It was discovered that it would improve. Furthermore, a Nafion membrane manufactured by DuPont is generally used as the polymer solid conductive film between the anode and the cathode of the fuel cell. In the Nafion membrane, the hydrogen atom of the sulfonic acid group becomes H +. Proton conductivity is exhibited. Therefore, the interface between the Nafion membrane and the electrode catalyst becomes strongly acidic. The third metal element (for example, Mo, Mn, Fe, Co, etc.) added to the conventional PtRu catalyst has no acid resistance and is dissolved and converted into H + , but the P element is a conventional third metal. It has also been discovered that, unlike an element, it has acid resistance, so it does not dissolve in acid and is extremely suitable as a catalyst additive element for fuel cells.

本発明による燃料電池用の触媒は、炭素基材上に担持された下記の一般式、
PtRuP
で示される三元系微粒子からなる。
前記式中、Pの含有率はPtRuの総モル数に対して、3モル%〜50モル%の範囲内であることが好ましい。Pの含有率が3モル%未満では所期の効果が期待できない。一方、Pの含有率が50モル%超の場合、PtRuの含有率が低くなり過ぎ、電池出力に悪影響を及ぼす。
The fuel cell catalyst according to the present invention has the following general formula supported on a carbon substrate:
PtRuP
It consists of ternary fine particles represented by
In said formula, it is preferable that the content rate of P exists in the range of 3 mol%-50 mol% with respect to the total number of moles of PtRu. If the P content is less than 3 mol%, the desired effect cannot be expected. On the other hand, when the P content exceeds 50 mol%, the PtRu content is too low, which adversely affects the battery output.

また、前記三元系触媒におけるPtとRuの原子比率(at%)は、60:40〜90:10の範囲内であることが好ましい。Ruが10at%未満の場合、十分にCO被毒特性を改善させることができないなどの不都合が生じるので好ましくない。また、Ptが60at%未満の場合、メタノール酸化に対する触媒活性が不十分となるので好ましくない。   The atomic ratio (at%) of Pt and Ru in the ternary catalyst is preferably in the range of 60:40 to 90:10. If Ru is less than 10 at%, it is not preferable because inconveniences such as failure to sufficiently improve CO poisoning characteristics occur. Moreover, when Pt is less than 60 at%, the catalytic activity for methanol oxidation becomes insufficient, which is not preferable.

PtRuの原子組成をPt60Ru40〜Pt90Ru10とし、Pt原子の多い組成にすることにより触媒の最表面組成が最適化されて触媒活性が高まると考えられる。また、P組成をPtRuの総モル数に対して3モル%〜50モル%とした場合、PtRu触媒の粒子成長を一層抑え、比表面積の大きい触媒を得ることが出来る。その結果、前記反応式(2)及び(3)の反応がより速く進行し、メタノール酸化活性が向上するものと考えられる。 The atomic composition of the PtRu and Pt 60 Ru 40 ~Pt 90 Ru 10 , the outermost surface composition of the catalyst by the high composition of Pt atoms is considered optimized catalytic activity is increased by. Moreover, when the P composition is 3 mol% to 50 mol% with respect to the total number of moles of PtRu, it is possible to further suppress the particle growth of the PtRu catalyst and obtain a catalyst having a large specific surface area. As a result, it is considered that the reactions of the reaction formulas (2) and (3) proceed faster and the methanol oxidation activity is improved.

本発明のPtRuP触媒微粒子の製造方法は基本的に、
(1)一種類以上のアルコールからなる有機溶剤中に炭素基材を分散させるステップと、
(2)前記炭素基材が分散されたアルコール系有機溶剤中に、Ptの塩又は錯体と、Ruの塩又は錯体と、P原子含有化合物を溶解させるステップと、
(3)炭素粉末が分散されたアルコール溶液のpH値を2〜5の範囲に調整するステップと、
(4)不活性雰囲気中で、アルコールによる加熱還流を行うステップを含み、
前記炭素基材上に、下記の一般式、
PtRuP
で示される三元系微粒子を担持した燃料電池用触媒を生成することからなる。
The production method of the PtRuP catalyst fine particles of the present invention is basically as follows:
(1) dispersing a carbon base material in an organic solvent composed of one or more alcohols;
(2) dissolving a Pt salt or complex, a Ru salt or complex, and a P atom-containing compound in an alcohol-based organic solvent in which the carbon substrate is dispersed;
(3) adjusting the pH value of the alcohol solution in which the carbon powder is dispersed to a range of 2 to 5,
(4) including a step of heating and refluxing with alcohol in an inert atmosphere,
On the carbon substrate, the following general formula:
PtRuP
The catalyst for fuel cells which carry | supported the ternary system fine particle shown by these is produced | generated.

図1は前記の製造方法により得られた本発明のPtRuP触媒微粒子1の模式的断面図である。炭素基材3に担持されたPtRu粒子5の外表面にP原子7が配位している。P原子7はX線光電子分光分析により、酸化物として存在することが示されている。このPtRu粒子5の外表面P原子7が配位することにより、PtRu粒子5の成長が止められ、PtRuP触媒微粒子1全体が微細化されるものと思われる。   FIG. 1 is a schematic cross-sectional view of the PtRuP catalyst fine particles 1 of the present invention obtained by the above production method. P atoms 7 are coordinated on the outer surface of the PtRu particles 5 supported on the carbon substrate 3. P atoms 7 are present as oxides by X-ray photoelectron spectroscopy. The coordination of the outer surface P atoms 7 of the PtRu particles 5 seems to stop the growth of the PtRu particles 5 and make the entire PtRuP catalyst fine particles 1 finer.

本発明の製造方法により生成されたPtRuP触媒微粒子の粒径は、P原子の存在により従来のPtRu触媒微粒子の粒径よりも小さくなる。一般的に、従来の製造方法により生成されたPtRu触媒の粒径は〜10nm程度であったが、本発明によりP原子が添加されたPtRu触媒の粒径は1〜3nmに大きく減少する。この粒径減少によりPtRu触媒の表面積が増加し、水素酸化能或いはメタノール酸化能が大きく向上すると考えられる。本発明のPtRuP触媒微粒子の別の特徴は、粒径の分布範囲が従来のPtRu触媒微粒子の粒径分布範囲に比べて狭いことである。従来の方法で製造されたPtRu触媒微粒子の粒径分布の中心は5nm超になり、粒子の更なる微細化は困難であった。これに対し、本発明では、PtRu二元触媒にP原子を加え、PtRuP三元触媒とすることによりこの問題点を解決することに成功した。   The particle size of the PtRuP catalyst fine particles produced by the production method of the present invention is smaller than the particle size of the conventional PtRu catalyst fine particles due to the presence of P atoms. Generally, the particle size of the PtRu catalyst produced by the conventional production method is about 10 nm, but the particle size of the PtRu catalyst to which P atoms are added according to the present invention is greatly reduced to 1 to 3 nm. This decrease in particle size increases the surface area of the PtRu catalyst, which is considered to greatly improve the hydrogen oxidizing ability or methanol oxidizing ability. Another feature of the PtRuP catalyst fine particles of the present invention is that the particle size distribution range is narrower than the particle size distribution range of conventional PtRu catalyst fine particles. The center of the particle size distribution of the PtRu catalyst fine particles produced by the conventional method exceeds 5 nm, and it is difficult to further refine the particles. On the other hand, in this invention, it succeeded in solving this problem by adding P atom to a PtRu two-way catalyst, and setting it as a PtRuP three-way catalyst.

白金、ルテニウム及び燐化合物が溶解されたアルコール溶液のpH値を2〜5に調整することにより、PtRuP微粒子表面のPtとRuの組成が最適化し、前記の反応式(3)で示したCOの酸化反応が効率的に進行し、メタノール酸化活性が高まるものと思われる。pH2未満では粒径が増加してメタノール酸化に有効な表面積が減少して、触媒活性が低下する。一方、pH5超の場合、粒径の減少によりメタノール酸化に不活性な結晶面が表面に現れるため、触媒活性が低下する。特に、触媒微粒子の粒径が1nmよりも小さくなりすぎると、結晶の安定な面、例えば(111)面を触媒表面に出そうとするので、活性が低下すると推測される。   By adjusting the pH value of the alcohol solution in which the platinum, ruthenium and phosphorus compounds are dissolved to 2 to 5, the composition of Pt and Ru on the surface of the PtRuP fine particles is optimized, and the CO concentration shown in the above reaction formula (3) is optimized. It is considered that the oxidation reaction proceeds efficiently and the methanol oxidation activity is increased. If the pH is less than 2, the particle size increases, the surface area effective for methanol oxidation decreases, and the catalytic activity decreases. On the other hand, when the pH is more than 5, the crystal surface inactive to methanol oxidation appears on the surface due to the decrease in particle size, so that the catalytic activity decreases. In particular, if the particle size of the catalyst fine particles is too small, the activity is estimated to decrease because a stable surface of the crystal, for example, the (111) surface tends to appear on the catalyst surface.

アルコール溶液のpH値を2〜5に調整するために使用される酸としては沸点が200℃以上の酸であることが好ましい。その理由は、アルコールの加熱還流が190℃程度の温度で行われるからである。沸点が200℃未満の酸の場合、アルコールの加熱還流の際に消散しまう可能性があり、pH値を所定範囲内に維持することが困難になる。従って、例えば、塩酸及び硝酸は沸点が低いため、加熱還流中に蒸発するため好ましくない。本発明で使用する酸としては沸点が290℃の硫酸が好ましい。   The acid used for adjusting the pH value of the alcohol solution to 2 to 5 is preferably an acid having a boiling point of 200 ° C. or higher. This is because the alcohol is heated and refluxed at a temperature of about 190 ° C. In the case of an acid having a boiling point of less than 200 ° C., it may be dissipated when the alcohol is heated to reflux, making it difficult to maintain the pH value within a predetermined range. Therefore, for example, hydrochloric acid and nitric acid are not preferable because they have a low boiling point and evaporate during heating under reflux. The acid used in the present invention is preferably sulfuric acid having a boiling point of 290 ° C.

本発明のPtRuP触媒微粒子の製造方法において使用できるP原子含有化合物は、亜燐酸、亜燐酸塩(正塩及び酸性塩の両方を含む)、次亜燐酸、次亜燐酸塩である。+5価の原子価を有するP原子は、Neと同じ電子配置であるため、オクテット則により化学的に安定となるので本発明の目的には適さない。従って、+5価のP原子を有する燐酸(HPO)は本発明では使用できない。塩としてはアルカリ金属塩(例えば、亜燐酸ナトリウム、亜燐酸水素ナトリウム、次亜燐酸ナトリウム等)又はアンモニウム塩(亜燐酸アンモニウム、亜燐酸水素アンモニウム、次亜燐酸アンモニウム等)が好ましい。P原子含有化合物の添加量は、PtとRuの総モル数に対して5%〜50%の範囲内であることが好ましい。添加量が5%未満ではPtRu触媒を微粒子化する効果が十分ではなく、一方、50%を超えると触媒の特性が劣化する。 P atom-containing compounds that can be used in the method for producing fine PtRuP catalyst particles of the present invention are phosphorous acid, phosphite (including both normal and acidic salts), hypophosphorous acid, and hypophosphite. A P atom having a valence of +5 is not suitable for the purpose of the present invention because it has the same electronic configuration as Ne and is chemically stable by the octet rule. Therefore, phosphoric acid (H 3 PO 4 ) having +5 valent P atoms cannot be used in the present invention. The salt is preferably an alkali metal salt (for example, sodium phosphite, sodium hydrogen phosphite, sodium hypophosphite, etc.) or an ammonium salt (ammonium phosphite, ammonium hydrogen phosphite, ammonium hypophosphite, etc.). The addition amount of the P atom-containing compound is preferably in the range of 5% to 50% with respect to the total number of moles of Pt and Ru. If the addition amount is less than 5%, the effect of making the PtRu catalyst fine is not sufficient, while if it exceeds 50%, the characteristics of the catalyst deteriorate.

本発明で使用されるPtの塩又は錯体は、例えば、酢酸白金、硝酸白金、白金エチレンジアミン錯体、白金トリフェニルホスフィン錯体、白金アンミン錯体、ビス(アセチルアセトナト)白金(II)及び六塩化白金酸などである。これらの白金化合物は単独で使用することもできるし又は2種類以上を併用することもできる。   Examples of the salt or complex of Pt used in the present invention include platinum acetate, platinum nitrate, platinum ethylenediamine complex, platinum triphenylphosphine complex, platinum ammine complex, bis (acetylacetonato) platinum (II) and hexachloroplatinic acid. Etc. These platinum compounds can be used alone or in combination of two or more.

本発明で使用されるRuの塩又は錯体は、例えば、塩化ルテニウム水和物、酢酸ルテニウム、硝酸ルテニウム、ルテニウムトリフェニルホスフィン錯体、ルテニウムアンミン錯体、ルテニウムエチレンジアミン錯体、ルテニウムアセチルアセトナート錯体(例えば、トリス(アセチルアセトナト)ルテニウム(III)等)などである。これらのルテニウム化合物は単独で使用することもできるし又は2種類以上を併用することもできる。   Examples of the Ru salt or complex used in the present invention include ruthenium chloride hydrate, ruthenium acetate, ruthenium nitrate, ruthenium triphenylphosphine complex, ruthenium ammine complex, ruthenium ethylenediamine complex, ruthenium acetylacetonate complex (for example, tris (Acetylacetonato) ruthenium (III) and the like). These ruthenium compounds can be used alone or in combination of two or more.

アルコール系溶媒に各触媒微粒子形成用金属原子含有化合物を溶解させ、アルコール系溶媒の沸点近傍の温度で還流すると、アルコール(R-OH)が加熱還流中に金属イオンを還元し、自らは酸化されてアルデヒド(R-CHO)に変化する。   When each metal atom-containing compound for forming catalyst fine particles is dissolved in an alcohol-based solvent and refluxed at a temperature near the boiling point of the alcohol-based solvent, the alcohol (R—OH) reduces metal ions during heating to reflux and is oxidized by itself. To aldehyde (R-CHO).

本発明の加熱還流処理で使用されるとしては、沸点の高いアルコールが高温での還流が出来るため還元速度が高まり好ましい。使用に適したアルコールとしては、エチルアルコール、エチレングリコール、グリセリン、プロピレングリコール、イソアミルアルコール、n-アミルアルコール、sec-ブチルアルコール、n-ブチルアルコール、イソブチルアルコール、アリルアルコール、n-プロピルアルコール、2-エトキシアルコール及び1,2-ヘキサデカンジオールが挙げられる。これらアルコールは1種類又は2種類以上を適宜選択して使用することができる。また、エチルアルコールの様な沸点の低いアルコールでも加圧下(オートクレープ法)で還流すれば使用する事が出来る。還流の際、微粒子の酸化を防止するため、反応系内を窒素或いはアルゴン等の不活性ガスで置換しながら還流を行うことが好ましい。   As used in the heat-refluxing treatment of the present invention, alcohol having a high boiling point can be refluxed at a high temperature, so that the reduction rate is increased. Suitable alcohols for use include ethyl alcohol, ethylene glycol, glycerin, propylene glycol, isoamyl alcohol, n-amyl alcohol, sec-butyl alcohol, n-butyl alcohol, isobutyl alcohol, allyl alcohol, n-propyl alcohol, 2- Examples include ethoxy alcohol and 1,2-hexadecanediol. These alcohols can be used by appropriately selecting one kind or two or more kinds. In addition, alcohol having a low boiling point such as ethyl alcohol can be used if it is refluxed under pressure (autoclave method). In refluxing, in order to prevent oxidation of the fine particles, it is preferable to perform reflux while replacing the inside of the reaction system with an inert gas such as nitrogen or argon.

アルコール加熱還流処理における加熱温度及び還流時間は使用するアルコールの種類に応じて変化する。しかし、一般的に、加熱温度は200℃程度であり、還流時間は30分間〜6時間の範囲内である。   The heating temperature and reflux time in the alcohol heating reflux treatment vary depending on the type of alcohol used. However, in general, the heating temperature is about 200 ° C., and the reflux time is in the range of 30 minutes to 6 hours.

本発明において、Pt及びRuの塩又は錯体とP原子含有化合物は、少なくとも一種類以上のアルコールからなる有機溶剤に溶解される。このアルコールは、アルコールのみからなる場合の他、水又はアルコール混和性の他の有機溶剤を含有するものであることもできる。アルコールは第一級アルコール又は第二級アルコールが好ましい。例えば、エチルアルコール、エチレングリコール、グリセリン、プロピレングリコール、イソアミルアルコール、n-アミルアルコール、sec-ブチルアルコール、n-ブチルアルコール、イソブチルアルコール、アリルアルコール、n-プロピルアルコール、2-エトキシアルコール及び1,2-ヘキサデカンジオールなどが挙げられる。アルコール混和性の他の有機溶剤は例えば、エーテルジオキサン、テトラヒドロフラン、N-メチルピロリドン、アセトンなどが挙げられる。アルコールは二種類以上を併用することもできる。Pt及びRuの塩又は錯体及びP原子含有化合物の溶解用アルコールは加熱還流処理に使用されるアルコールと同種のアルコールを使用することが好ましいが、異なる種類のアルコールも使用できる。   In the present invention, the salt or complex of Pt and Ru and the P atom-containing compound are dissolved in an organic solvent composed of at least one kind of alcohol. The alcohol may contain water or other organic solvent miscible with alcohol in addition to the case of consisting of alcohol alone. The alcohol is preferably a primary alcohol or a secondary alcohol. For example, ethyl alcohol, ethylene glycol, glycerin, propylene glycol, isoamyl alcohol, n-amyl alcohol, sec-butyl alcohol, n-butyl alcohol, isobutyl alcohol, allyl alcohol, n-propyl alcohol, 2-ethoxy alcohol, and 1,2 -Hexadecanediol etc. are mentioned. Other organic solvents miscible with alcohol include ether dioxane, tetrahydrofuran, N-methylpyrrolidone, acetone and the like. Two or more types of alcohol can be used in combination. As the alcohol for dissolving the salt or complex of Pt and Ru and the P atom-containing compound, it is preferable to use the same type of alcohol as that used in the heating and refluxing process, but a different type of alcohol can also be used.

本発明のアルコール還元法において使用される担持用炭素粉末は、60m/g〜300m/g程度の比表面積を有するものが好ましく、具体的には導電性カーボンブラック、アセチレンブラック、グラファイト、カーボンナノチユーブ、活性炭などが好適である。比表面積が60m/g未満では触媒微粒子を十分に担持させることができず、比表面積が300m/gを超えると、担体に存在する微細孔中に析出する触媒の割合が増加し、実効的な触媒表面積が減少するため好ましくない。また、触媒の担持率は10wt%〜70wt%の範囲内であることが好ましい。担持率が10wt%未満の場合、所期の効果が得られない。一方、担持率が70wt%超の場合、目的とする効果が飽和し、不経済となる。 For supporting the carbon powder used in the alcohol reduction method of the present invention is preferably one having a specific surface area of about 60m 2 / g~300m 2 / g, specifically conductive carbon black, acetylene black, graphite, carbon Nanotubes, activated carbon and the like are suitable. When the specific surface area is less than 60 m 2 / g, the catalyst fine particles cannot be sufficiently supported, and when the specific surface area exceeds 300 m 2 / g, the ratio of the catalyst deposited in the micropores existing on the support increases, This is not preferable because the surface area of the catalyst is reduced. The catalyst loading is preferably in the range of 10 wt% to 70 wt%. If the loading rate is less than 10 wt%, the desired effect cannot be obtained. On the other hand, when the loading rate is more than 70 wt%, the intended effect is saturated and uneconomical.

ビス(アセチルアセトナト)白金(II)1.69ミリモルとトリス(アセチルアセトナト)ルテニウム(III)1.69ミリモルと次亜燐酸ナトリウム0.338ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、炭素基材(バルカンXC−72R,比表面積254m/g)0.5gを分散させた100mlのエチレングリコール溶液を加えた。硫酸水溶液を滴下し、pH試験紙を用いて溶液をpH3に調整した。窒素ガス雰囲気下、200℃でこの溶液を攪拌しながら4時間還流し、PtRuP触媒微粒子を炭素基材上に析出担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。 Dissolve 1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and 0.338 mmol of sodium hypophosphite in 100 ml of ethylene glycol, respectively. 100 ml of an ethylene glycol solution in which 0.5 g of a material (Vulcan XC-72R, specific surface area of 254 m 2 / g) was dispersed was added. A sulfuric acid aqueous solution was dropped, and the solution was adjusted to pH 3 using pH test paper. This solution was refluxed for 4 hours with stirring at 200 ° C. in a nitrogen gas atmosphere, and PtRuP catalyst fine particles were deposited and supported on the carbon substrate. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

ビス(アセチルアセトナト)白金(II)1.69ミリモルとトリス(アセチルアセトナト)ルテニウム(III)1.69ミリモルと亜燐酸二水素ナトリウム0.338ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、炭素基材(バルカンXC−72R,比表面積254m/g)0.5gを分散させた100mlのエチレングリコール溶液を加えた。硫酸水溶液を滴下し、pH試験紙を用いて溶液をpH3に調整した。窒素ガス雰囲気下、200℃でこの溶液を攪拌しながら4時間還流し、PtRuP触媒微粒子を炭素基材上に析出担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。 Dissolve 1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and 0.338 mmol of sodium dihydrogen phosphite in 100 ml of ethylene glycol, respectively. 100 ml of ethylene glycol solution in which 0.5 g of a base material (Vulcan XC-72R, specific surface area 254 m 2 / g) was dispersed was added. A sulfuric acid aqueous solution was dropped, and the solution was adjusted to pH 3 using pH test paper. This solution was refluxed for 4 hours with stirring at 200 ° C. in a nitrogen gas atmosphere, and PtRuP catalyst fine particles were deposited and supported on the carbon substrate. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

比較例1Comparative Example 1

ビス(アセチルアセトナト)白金(II)1.69ミリモルとトリス(アセチルアセトナト)ルテニウム(III)1.69ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、炭素基材(バルカンXC−72R,比表面積254m/g)0.5gを分散させた100mlのエチレングリコール溶液を加えた。硫酸水溶液を滴下し、pH試験紙を用いて溶液をpH3に調整した。窒素ガス雰囲気下、200℃でこの溶液を攪拌しながら4時間還流し、PtRu触媒微粒子を炭素基材上に析出担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。 1.69 mmol of bis (acetylacetonato) platinum (II) and 1.69 mmol of tris (acetylacetonato) ruthenium (III) were dissolved in 100 ml of ethylene glycol, respectively, and a carbon substrate (Vulcan XC-72R, specific surface area). (254 m 2 / g) 100 ml of ethylene glycol solution in which 0.5 g was dispersed was added. A sulfuric acid aqueous solution was dropped, and the solution was adjusted to pH 3 using pH test paper. This solution was refluxed for 4 hours with stirring at 200 ° C. in a nitrogen gas atmosphere, and PtRu catalyst fine particles were deposited and supported on the carbon substrate. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

比較例2Comparative Example 2

ビス(アセチルアセトナト)白金(II)1.69ミリモルとトリス(アセチルアセトナト)ルテニウム(III)1.69ミリモル及びモリブデン酸アンモニウム0.338ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、炭素基材(バルカンXC−72R,比表面積254m/g)0.5gを分散させた100mlのエチレングリコール溶液を加えた。硫酸水溶液を滴下し、pH試験紙を用いて溶液をpH3に調整した。窒素ガス雰囲気下、200℃でこの溶液を攪拌しながら4時間還流し、PtRuMo触媒微粒子を炭素基材上に析出担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。 1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and 0.338 mmol of ammonium molybdate were dissolved in 100 ml of ethylene glycol, respectively, (Vulcan XC-72R, specific surface area 254 m 2 / g) 100 ml of ethylene glycol solution in which 0.5 g was dispersed was added. A sulfuric acid aqueous solution was dropped, and the solution was adjusted to pH 3 using pH test paper. This solution was refluxed for 4 hours with stirring at 200 ° C. in a nitrogen gas atmosphere, and PtRuMo catalyst fine particles were deposited and supported on the carbon substrate. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

比較例3Comparative Example 3

ビス(アセチルアセトナト)白金(II)1.69ミリモルとトリス(アセチルアセトナト)ルテニウム(III)1.69ミリモルとタングステン酸ナトリウム0.338ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、炭素基材(バルカンXC−72R,比表面積254m/g)0.5gを分散させた100mlのエチレングリコール溶液を加えた。硫酸水溶液を滴下し、pH試験紙を用いて溶液をpH3に調整した。窒素ガス雰囲気下、200℃でこの溶液を攪拌しながら4時間還流し、PtRuW触媒微粒子を炭素基材上に析出担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。 1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and 0.338 mmol of sodium tungstate were dissolved in 100 ml of ethylene glycol, respectively, (Vulcan XC-72R, specific surface area 254 m 2 / g) 100 ml of ethylene glycol solution in which 0.5 g was dispersed was added. A sulfuric acid aqueous solution was dropped, and the solution was adjusted to pH 3 using pH test paper. This solution was refluxed for 4 hours with stirring at 200 ° C. in a nitrogen gas atmosphere, and PtRuW catalyst fine particles were deposited and supported on the carbon substrate. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

比較例4Comparative Example 4

ビス(アセチルアセトナト)白金(II)1.69ミリモルとトリス(アセチルアセトナト)ルテニウム(III)1.69ミリモルとトリス(アセチルアセトナト)鉄(III)0.338ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、炭素基材(バルカンXC−72R,比表面積254m/g)0.5gを分散させた100mlのエチレングリコール溶液を加えた。硫酸水溶液を滴下し、pH試験紙を用いて溶液をpH3に調整した。窒素ガス雰囲気下、200℃でこの溶液を攪拌しながら還流し、PtRuFe触媒微粒子を炭素基材上に析出担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。 100 ml of ethylene glycol each with 1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and 0.338 mmol of tris (acetylacetonato) iron (III) And 100 ml of an ethylene glycol solution in which 0.5 g of a carbon base material (Vulcan XC-72R, specific surface area of 254 m 2 / g) was dispersed was added. A sulfuric acid aqueous solution was dropped, and the solution was adjusted to pH 3 using pH test paper. This solution was refluxed with stirring at 200 ° C. in a nitrogen gas atmosphere, and PtRuFe catalyst fine particles were deposited and supported on the carbon substrate. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

比較例5Comparative Example 5

ビス(アセチルアセトナト)白金(II)1.69ミリモルとトリス(アセチルアセトナト)ルテニウム(III)1.69ミリモルとビス(アセチルアセトナト)コバルト(II)0.338ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、炭素基材(バルカンXC−72R,比表面積254m/g)0.5gを分散させた100mlのエチレングリコール溶液を加えた。硫酸水溶液を滴下し、pH試験紙を用いて溶液をpH3に調整した。窒素ガス雰囲気下、200℃でこの溶液を攪拌しながら4時間還流し、PtRuCo触媒微粒子を炭素基材上に担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。 100 ml of ethylene glycol each with 1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and 0.338 mmol of bis (acetylacetonato) cobalt (II) And 100 ml of an ethylene glycol solution in which 0.5 g of a carbon base material (Vulcan XC-72R, specific surface area of 254 m 2 / g) was dispersed was added. A sulfuric acid aqueous solution was dropped, and the solution was adjusted to pH 3 using pH test paper. This solution was refluxed for 4 hours with stirring at 200 ° C. in a nitrogen gas atmosphere, and PtRuCo catalyst fine particles were supported on the carbon substrate. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

実施例1、2及び比較例1〜5で得られた各触媒の粒径を電子顕微鏡で調べた。その結果を下記の表1に示す。比較例1〜5で得られた触媒の粒径は〜10nmとなっているのに対し、実施例1及び2で得られたPtRuP触媒の粒径は1〜3nmの範囲内に収まっていた。   The particle diameters of the catalysts obtained in Examples 1 and 2 and Comparative Examples 1 to 5 were examined with an electron microscope. The results are shown in Table 1 below. The particle diameters of the catalysts obtained in Comparative Examples 1 to 5 were 10 nm, whereas the particle diameters of the PtRuP catalysts obtained in Examples 1 and 2 were within the range of 1 to 3 nm.

実施例1で得られた炭素担持PtRuP微粒子触媒と比較例1で得られた炭素担持PtRu微粒子触媒の表面を透過型電子顕微鏡で観察した。結果を図2に示す。(A)は実施例1の炭素担持PtRuP微粒子触媒の電顕写真であり、(B)は比較例1の炭素担持PtRu微粒子触媒の電顕写真である。電顕写真における黒色〜灰黒色部分は触媒粒子であり、薄灰色又は灰白色部分は炭素担体である。(A)の電顕写真から明らかなように、本発明のPtRuP触媒微粒子の場合、粒径は殆どが1〜3nm程度であり、しかも粒子が分散し、凝集塊は殆ど存在していない。これに対して、(B)の電顕写真から明らかなように、比較例1のPtRu触媒微粒子の場合、粒径が〜10nmのものや凝集塊も存在する。これにより、P原子の添加による触媒の微粒子化が確認できた。   The surfaces of the carbon-supported PtRuP fine particle catalyst obtained in Example 1 and the carbon-supported PtRu fine particle catalyst obtained in Comparative Example 1 were observed with a transmission electron microscope. The results are shown in FIG. (A) is an electron micrograph of the carbon-supported PtRuP fine particle catalyst of Example 1, and (B) is an electron micrograph of the carbon-supported PtRu fine particle catalyst of Comparative Example 1. The black to grayish black portions in the electron micrographs are catalyst particles, and the light gray or grayish white portions are carbon supports. As apparent from the electron micrograph of (A), in the case of the PtRuP catalyst fine particles of the present invention, the particle diameter is almost 1 to 3 nm, the particles are dispersed, and there are almost no aggregates. On the other hand, as is clear from the electron micrograph of (B), in the case of the PtRu catalyst fine particles of Comparative Example 1, those having a particle diameter of 10 nm and aggregates are also present. Thereby, the formation of fine particles of the catalyst by the addition of P atoms was confirmed.

実施例1〜2及び比較例1〜5で得られた各炭素基材担持触媒:ナフィオン(デュポン社製)=7:6になるようにスラリーを作製し、これを厚さ200μm、直径20mmのカーボンペーパー(東レ製)上に、触媒が5mg/cmとなるように塗布した。乾燥後、100kg/cmでプレスを行い電極とした。その後、アノード電極特性を温度25℃、メタノール濃度25vol%、電解質1.5MHSOの条件で調べた。電位0.5V(vs.NHE)における電流密度を下記の表2に示す。表2に示された結果から、実施例1〜2で得られたPtRuP触媒では、比較例1〜5で得られたPtRu触媒に比べて大きな電流密度が得られ、メタノール酸化活性が向上したことが理解できる。 Slurries were prepared so that each of the carbon-base-supported catalysts obtained in Examples 1 and 2 and Comparative Examples 1 to 5: Nafion (manufactured by DuPont) = 7: 6, and this was 200 μm in thickness and 20 mm in diameter. It apply | coated so that a catalyst might be set to 5 mg / cm < 2 > on carbon paper (made by Toray). After drying, pressing was performed at 100 kg / cm 2 to obtain an electrode. Thereafter, the anode electrode characteristics were examined under the conditions of a temperature of 25 ° C., a methanol concentration of 25 vol%, and an electrolyte of 1.5 MH 2 SO 4 . The current density at a potential of 0.5 V (vs. NHE) is shown in Table 2 below. From the results shown in Table 2, the PtRuP catalysts obtained in Examples 1 and 2 had a larger current density than the PtRu catalysts obtained in Comparative Examples 1 to 5, and improved methanol oxidation activity. Can understand.

実施例1で得られたバルカンXC−72Rに担持したPtRuP触媒に純水とナフィオン(デュポン社製)のアルコール溶液を加えて撹拌した後、その粘度を調整して触媒用インクとした。これをテフロン(登録商標)シート上に、PtRuP触媒の塗布量が5mg/cmになるように塗布した。乾燥後、テフロン(登録商標)シートを剥がし、メタノール極触媒とした。また、ケッチェンECに担持したPt触媒に純水とナフィオン(デュポン社製)のアルコール溶液を加えて撹拌した後、その粘度を調整して触媒用インクとした。これをテフロン(登録商標)シート上に、Pt触媒の塗布量が5mg/cmになるように塗布した。乾燥後、テフロン(登録商標)シートを剥がし、酸素極触媒とした。その後、PtRuP電極触媒と、Pt電極触媒を固体高分子電解質膜(デュポン社製ナフィオン膜)の両側にホットプレスして膜電極接合体を作製した。これらのメタノール極、高分子固体電解質膜及び酸素極と、液体燃料として15wt%のメタノール水溶液を用い、図3に示す直接メタノール型燃料電池を作製した。
図3において、符号10は直接メタノール型燃料電池を示す。また、符号12は酸素極側集電体、14は酸素極側拡散層、16は固体高分子電解質膜、18はメタノール極側拡散層、20はメタノール極側集電体、22はメタノール燃料タンク、24は空気導入孔、26は酸素極(Pt)触媒層、28はメタノール極(PtRuP)触媒層、30はメタノール燃料導入孔をそれぞれ示す。
酸素極側集電体12は、空気導入孔24を介して空気(酸素)を取り込む構造体としての機能を有すると共に、集電機能も有している。固体高分子電解質膜(デュポン社製ナフィオン膜)16は、メタノール極で発生したプロトンを酸素極側に輸送する機能と、更に、メタノール極と酸素極の短絡を防止するセパレータとしての機能を備えてなるものである。このように構成される直接メタノール型燃料電池10において、メタノール極側集電体20から供給される液体燃料はメタノール極側拡散層18を介してメタノール極触媒層28に導かれて酸化され、COと電子とプロトンに変換され、このプロトンは固体高分子電解質膜16を介して酸素極側に移動する。酸素極では酸素極側集電体12から取り込まれた酸素がメタノール極で生成した電子により還元され、これと上記のプロトンとが反応して水を生成する。図3に示される直接メタノール型燃料電池10では、このようなメタノールの酸化反応及び酸素の還元反応により発電が起こる。
Pure water and an alcohol solution of Nafion (manufactured by DuPont) were added to the PtRuP catalyst supported on Vulcan XC-72R obtained in Example 1 and stirred, and then the viscosity was adjusted to obtain a catalyst ink. This was coated on a Teflon (registered trademark) sheet so that the coating amount of the PtRuP catalyst was 5 mg / cm 2 . After drying, the Teflon (registered trademark) sheet was peeled off to obtain a methanol electrode catalyst. Further, after adding pure water and an alcohol solution of Nafion (manufactured by DuPont) to the Pt catalyst supported on the ketjen EC and stirring, the viscosity was adjusted to obtain a catalyst ink. This was applied onto a Teflon (registered trademark) sheet so that the amount of Pt catalyst applied was 5 mg / cm 2 . After drying, the Teflon (registered trademark) sheet was peeled off to obtain an oxygen electrode catalyst. Thereafter, a PtRuP electrode catalyst and a Pt electrode catalyst were hot pressed on both sides of a solid polymer electrolyte membrane (Nafion membrane manufactured by DuPont) to prepare a membrane electrode assembly. Using these methanol electrode, solid polymer electrolyte membrane and oxygen electrode, and a 15 wt% aqueous methanol solution as the liquid fuel, a direct methanol fuel cell shown in FIG. 3 was produced.
In FIG. 3, reference numeral 10 denotes a direct methanol fuel cell. Reference numeral 12 denotes an oxygen electrode side current collector, 14 denotes an oxygen electrode side diffusion layer, 16 denotes a solid polymer electrolyte membrane, 18 denotes a methanol electrode side diffusion layer, 20 denotes a methanol electrode side current collector, and 22 denotes a methanol fuel tank. , 24 is an air introduction hole, 26 is an oxygen electrode (Pt) catalyst layer, 28 is a methanol electrode (PtRuP) catalyst layer, and 30 is a methanol fuel introduction hole.
The oxygen electrode side current collector 12 has a function as a structure that takes in air (oxygen) through the air introduction hole 24 and also has a current collecting function. The solid polymer electrolyte membrane (Nafion membrane manufactured by DuPont) 16 has a function of transporting protons generated at the methanol electrode to the oxygen electrode side and a function as a separator for preventing a short circuit between the methanol electrode and the oxygen electrode. It will be. In the direct methanol fuel cell 10 configured as described above, the liquid fuel supplied from the methanol electrode-side current collector 20 is led to the methanol electrode catalyst layer 28 via the methanol electrode-side diffusion layer 18 and oxidized, and CO 2 2 is converted into an electron and a proton, and the proton moves to the oxygen electrode side through the solid polymer electrolyte membrane 16. At the oxygen electrode, oxygen taken in from the oxygen electrode side current collector 12 is reduced by electrons generated at the methanol electrode, and this reacts with the protons to generate water. In the direct methanol fuel cell 10 shown in FIG. 3, power generation occurs due to such methanol oxidation reaction and oxygen reduction reaction.

比較例6Comparative Example 6

実施例3におけるPtRuP触媒の代わりに、PtRu触媒をメタノール極触媒として使用したこと以外は、実施例3と同様にして直接メタノール型燃料電池を作製した。   A direct methanol fuel cell was produced in the same manner as in Example 3, except that a PtRu catalyst was used as the methanol electrode catalyst instead of the PtRuP catalyst in Example 3.

比較例7Comparative Example 7

実施例3におけるPtRuP触媒の代わりに、PtRuMo触媒をメタノール極触媒として使用したこと以外は、実施例3と同様にして直接メタノール型燃料電池を作製した。   A direct methanol fuel cell was produced in the same manner as in Example 3, except that a PtRuMo catalyst was used as the methanol electrode catalyst instead of the PtRuP catalyst in Example 3.

比較例8Comparative Example 8

実施例3におけるPtRuP触媒の代わりに、PtRuW触媒をメタノール極触媒として使用したこと以外は、実施例3と同様にして直接メタノール型燃料電池を作製した。   A direct methanol fuel cell was produced in the same manner as in Example 3 except that a PtRuW catalyst was used as the methanol electrode catalyst instead of the PtRuP catalyst in Example 3.

比較例9Comparative Example 9

実施例3におけるPtRuP触媒の代わりに、PtRuFe触媒をメタノール極触媒として使用したこと以外は、実施例3と同様にして直接メタノール型燃料電池を作製した。   A direct methanol fuel cell was produced in the same manner as in Example 3, except that a PtRuFe catalyst was used as the methanol electrode catalyst instead of the PtRuP catalyst in Example 3.

比較例10Comparative Example 10

実施例3におけるPtRuP触媒の代わりに、PtRuCo触媒をメタノール極触媒として使用したこと以外は、実施例3と同様にして直接メタノール型燃料電池を作製した。   A direct methanol fuel cell was produced in the same manner as in Example 3 except that a PtRuCo catalyst was used as the methanol electrode catalyst instead of the PtRuP catalyst in Example 3.

実施例3及び比較例6〜10でそれぞれ得られた各直接メタノール型燃料電池において、電池電圧が0.2〜0.3Vにおける出力密度を測定した。測定結果を下記の表3に示す。表3に示された結果から明らかなように、実施例3の、PtRuP触媒をメタノール極触媒として使用した直接メタノール型燃料電池が50mW/cmであるのに対し、比較例6〜10の、PtRuP触媒以外の触媒をメタノール極触媒として使用した直接メタノール型燃料電池では出力密度が40mW/cm以下となっており、メタノール極触媒として粒径が1〜3nmのPtRuP触媒を用いることにより、電池特性が向上したことが理解できる。 In each direct methanol fuel cell obtained in Example 3 and Comparative Examples 6 to 10, the output density at a cell voltage of 0.2 to 0.3 V was measured. The measurement results are shown in Table 3 below. As is clear from the results shown in Table 3, the direct methanol fuel cell of Example 3 using the PtRuP catalyst as the methanol electrode catalyst has a capacity of 50 mW / cm 2 , while that of Comparative Examples 6 to 10 In a direct methanol fuel cell using a catalyst other than the PtRuP catalyst as the methanol electrode catalyst, the output density is 40 mW / cm 2 or less, and by using a PtRuP catalyst having a particle diameter of 1 to 3 nm as the methanol electrode catalyst, the battery It can be understood that the characteristics are improved.

ビス(アセチルアセトナト)白金(II)1.69ミリモルとトリス(アセチルアセトナト)ルテニウム(III)1.69ミリモルと次亜燐酸ナトリウム0.34ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、炭素基材(バルカンXC−72R、比表面積254m/g)0.5gを分散させた170mlのエチレングリコール溶液を加えた。この溶液に硫酸水溶液を滴下し、pH試験紙を用いて溶液のpHを2に調整した。窒素雰囲気下、200℃のオイルバス中でこの溶液を攪拌しながら還流し、PtRuP微粒子を炭素基材上に担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。 Dissolve 1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and 0.34 mmol of sodium hypophosphite in 100 ml of ethylene glycol, respectively. 170 ml of ethylene glycol solution in which 0.5 g of a material (Vulcan XC-72R, specific surface area of 254 m 2 / g) was dispersed was added. A sulfuric acid aqueous solution was dropped into this solution, and the pH of the solution was adjusted to 2 using pH test paper. The solution was refluxed with stirring in an oil bath at 200 ° C. in a nitrogen atmosphere, and PtRuP fine particles were supported on the carbon substrate. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

ビス(アセチルアセトナト)白金(II)1.69ミリモルとトリス(アセチルアセトナト)ルテニウム(III)1.69ミリモルと次亜燐酸ナトリウム0.338ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、炭素基材(バルカンXC−72R、比表面積254m/g)0.5gを分散させた170mlのエチレングリコール溶液を加えた。この溶液に硫酸水溶液を滴下し、pH試験紙を用いて溶液のpHを3に調整した。窒素雰囲気下、200℃のオイルバス中でこの溶液を攪拌しながら還流し、PtRuP微粒子を炭素基材上に担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。 Dissolve 1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and 0.338 mmol of sodium hypophosphite in 100 ml of ethylene glycol, respectively. 170 ml of ethylene glycol solution in which 0.5 g of a material (Vulcan XC-72R, specific surface area of 254 m 2 / g) was dispersed was added. A sulfuric acid aqueous solution was dropped into this solution, and the pH of the solution was adjusted to 3 using pH test paper. The solution was refluxed with stirring in an oil bath at 200 ° C. in a nitrogen atmosphere, and PtRuP fine particles were supported on the carbon substrate. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

ビス(アセチルアセトナト)白金(II)1.69ミリモルとトリス(アセチルアセトナト)ルテニウム(III)1.69ミリモルと次亜燐酸ナトリウム0.338ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、炭素基材(バルカンXC−72R、比表面積254m/g)0.5gを分散させた170mlのエチレングリコール溶液を加えた。この溶液に硫酸水溶液を滴下し、pH試験紙を用いて溶液のpHを4に調整した。窒素雰囲気下、200℃のオイルバス中でこの溶液を攪拌しながら還流し、PtRuP微粒子を炭素基材上に担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。 Dissolve 1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and 0.338 mmol of sodium hypophosphite in 100 ml of ethylene glycol, respectively. 170 ml of ethylene glycol solution in which 0.5 g of a material (Vulcan XC-72R, specific surface area of 254 m 2 / g) was dispersed was added. A sulfuric acid aqueous solution was dropped into this solution, and the pH of the solution was adjusted to 4 using pH test paper. The solution was refluxed with stirring in an oil bath at 200 ° C. in a nitrogen atmosphere, and PtRuP fine particles were supported on the carbon substrate. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

比較例11Comparative Example 11

ビス(アセチルアセトナト)白金(II)1.69ミリモルとトリス(アセチルアセトナト)ルテニウム(III)1.69ミリモルと次亜燐酸ナトリウム0.338ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、炭素基材(バルカンXC−72R、比表面積254m/g)0.5gを分散させた170mlのエチレングリコール溶液を加えた。この溶液のpHをpH試験紙を用いて測定した結果、5.5〜6.0であった。窒素雰囲気下、200℃のオイルバス中でこの溶液を攪拌しながら還流し、PtRuP微粒子を炭素基材上に担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。 Dissolve 1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and 0.338 mmol of sodium hypophosphite in 100 ml of ethylene glycol, respectively. 170 ml of ethylene glycol solution in which 0.5 g of a material (Vulcan XC-72R, specific surface area of 254 m 2 / g) was dispersed was added. It was 5.5-6.0 as a result of measuring pH of this solution using pH test paper. The solution was refluxed with stirring in an oil bath at 200 ° C. in a nitrogen atmosphere, and PtRuP fine particles were supported on the carbon substrate. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

比較例12Comparative Example 12

ビス(アセチルアセトナト)白金(II)1.69ミリモルとトリス(アセチルアセトナト)ルテニウム(III)1.69ミリモルと次亜燐酸ナトリウム0.338ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、炭素基材(バルカンXC−72R、比表面積254m/g)0.5gを分散させた170mlのエチレングリコール溶液を加えた。この溶液に水酸化ナトリウム水溶液を滴下し、pH試験紙を用いて溶液のpHを10に調整した。窒素雰囲気下、200℃のオイルバス中でこの溶液を攪拌しながら還流し、PtRuP微粒子を炭素基材上に担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。 Dissolve 1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and 0.338 mmol of sodium hypophosphite in 100 ml of ethylene glycol, respectively. 170 ml of ethylene glycol solution in which 0.5 g of a material (Vulcan XC-72R, specific surface area of 254 m 2 / g) was dispersed was added. A sodium hydroxide aqueous solution was dropped into this solution, and the pH of the solution was adjusted to 10 using a pH test paper. The solution was refluxed with stirring in an oil bath at 200 ° C. in a nitrogen atmosphere, and PtRuP fine particles were supported on the carbon substrate. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

比較例13Comparative Example 13

ビス(アセチルアセトナト)白金(II)1.69ミリモルとトリス(アセチルアセトナト)ルテニウム(III)1.69ミリモルと次亜燐酸ナトリウム0.338ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、炭素基材(バルカンXC−72R、比表面積254m/g)0.5gを分散させた170mlのエチレングリコール溶液を加えた。この溶液に硫酸水溶液を滴下し、pH試験紙を用いて溶液のpHを1に調整した。窒素雰囲気下、200℃のオイルバス中でこの溶液を攪拌しながら還流し、PtRuP微粒子を炭素基材上に担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た Dissolve 1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and 0.338 mmol of sodium hypophosphite in 100 ml of ethylene glycol, respectively. 170 ml of ethylene glycol solution in which 0.5 g of a material (Vulcan XC-72R, specific surface area of 254 m 2 / g) was dispersed was added. A sulfuric acid aqueous solution was dropped into this solution, and the pH of the solution was adjusted to 1 using a pH test paper. The solution was refluxed with stirring in an oil bath at 200 ° C. in a nitrogen atmosphere, and PtRuP fine particles were supported on the carbon substrate. After completion of the reaction, it was filtered, washed and dried to obtain a catalyst.

実施例4〜6及び比較例11〜13で得られたPtRuP触媒について、X線回折実験を行い、シェラーの式を適用してPtRuP触媒の粒径を見積もった。また。蛍光X線により触媒の組成を調べた。さらにこれらのPtRuP触媒についてメタノール酸化特性を測定した。測定法を以下に示す。PtRuP担持カーボンとイオン交換水とナフィオン溶液(アルドリッチ社製)を混合し撹拌した後、その粘度を調整して触媒層用インクとした。これを、カーボンペーパー上に塗布し、乾燥後ホットプレスして電極を作製した。対極をAu線とし、1.5モル/Lの硫酸水溶液に25vol%のメタノールを添加した溶液中でメタノール酸化活性を測定した。測定結果を下記の表4に示す。表4に示された結果から分かるように、反応溶液のpHを2〜4に調整する事により、Ptの組成が60at%以上、P組成が約6%となり、pHが1、5.5及び10の場合に比べて高いメタノール酸化電流が得られる。   X-ray diffraction experiments were conducted on the PtRuP catalysts obtained in Examples 4 to 6 and Comparative Examples 11 to 13, and the particle size of the PtRuP catalyst was estimated by applying Scherrer's equation. Also. The composition of the catalyst was examined by fluorescent X-ray. Furthermore, methanol oxidation characteristics of these PtRuP catalysts were measured. The measurement method is shown below. PtRuP-supported carbon, ion-exchanged water, and Nafion solution (Aldrich) were mixed and stirred, and the viscosity was adjusted to obtain an ink for a catalyst layer. This was applied on carbon paper, dried and hot pressed to produce an electrode. The counter electrode was Au wire, and the methanol oxidation activity was measured in a solution obtained by adding 25 vol% methanol to a 1.5 mol / L sulfuric acid aqueous solution. The measurement results are shown in Table 4 below. As can be seen from the results shown in Table 4, by adjusting the pH of the reaction solution to 2 to 4, the Pt composition is 60 at% or more, the P composition is about 6%, the pH is 1, 5.5 and Compared with the case of 10, a higher methanol oxidation current can be obtained.

ビス(アセチルアセトナト)白金(II)1.69ミリモルとトリス(アセチルアセトナト)ルテニウム(III)1.69ミリモル及び次亜燐酸ナトリウム(NaPH)をPtとRuの総モル数に対して5モル%、10モル%、20モル%、50モル%、70モル%及び100モル%の割合で、それぞれ100mlのエチレングリコールに溶解させ、炭素基材(バルカンXC−72R、比表面積254m/g)0.5gを分散させた170mlのエチレングリコール溶液を加えた。この溶液に硫酸水溶液を滴下し、pH試験紙を用いて溶液のpHを3に調整した。窒素雰囲気下、200℃のオイルバス中でこの溶液を攪拌しながら還流し、PtRuP微粒子を炭素基材上に担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。なお、前記次亜燐酸ナトリウム(NaPH )をPtとRuの総モル数に対して70モル%及び100モル%の割合で添加した事例は、本発明の効果と比較するための比較例である。 1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and sodium hypophosphite (NaPH 2 O 2 ) with respect to the total number of moles of Pt and Ru 5 mol%, 10 mol%, 20 mol%, 50 mol%, 70 mol% and 100 mol% , respectively, in 100 ml of ethylene glycol and dissolved in a carbon substrate (Vulcan XC-72R, specific surface area of 254 m 2). / G) 170 ml of ethylene glycol solution in which 0.5 g was dispersed was added. A sulfuric acid aqueous solution was dropped into this solution, and the pH of the solution was adjusted to 3 using pH test paper. The solution was refluxed with stirring in an oil bath at 200 ° C. in a nitrogen atmosphere, and PtRuP fine particles were supported on the carbon substrate. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst. Incidentally, the following sodium phosphite (NaPH 2 O 2) the case added in a proportion of 70 mol% and 100 mol% relative to the total number of moles of Pt and Ru are comparative examples for comparison with the effects of the present invention It is.

実施例7で得られたPtRuP触媒についてX線回折実験を行い、シェラーの式を適用してPtRuP触媒の粒径を見積もった。また。蛍光X線(XRF)及びX線光電子分光分析法(XPS)により触媒の組成を調べた。各種の分析からPはPtRu触媒の表面上に存在している可能性が高いため、P濃度については、より触媒表面に近い組成を測定できるXPSを使用した。更に、これらのPtRuP触媒についてメタノール酸化特性を測定した。測定法を以下に示す。PtRuP担持カーボンとイオン交換水とナフィオン溶液(アルドリッチ社製)を混合し撹拌したのちその粘度を調整して触媒層用インクとした。これを、カーボンペーパー上に塗布し、乾燥後ホットプレスして電極を作製した。対極をAu線とし、1.5モル/Lの硫酸水溶液に25Vol%のメタノールを添加した溶液中でメタノール酸化活性を測定した。測定結果を下記の表5に示す。下記の表5に示された結果から分かるように、次亜燐酸ナトリウムをPtRuの総モル数に対して5〜50モル%添加した場合、高いメタノール酸化電流を得る事が出来る。特に次亜燐酸を50モル%添加した場合、粒径が小さくなり高いメタノール酸化活性が得られる。次亜燐酸ナトリウムをPtRuの総モル数に対して70モル%以上添加した場合は、過剰の次亜燐酸ナトリウムがPtRu微粒子形成を阻害し、原料であるビス(アセチルアセトナト)白金(II)の析出が見られ、メタノール酸化活性は急激に低下した。   An X-ray diffraction experiment was performed on the PtRuP catalyst obtained in Example 7, and the particle size of the PtRuP catalyst was estimated by applying Scherrer's equation. Also. The composition of the catalyst was examined by X-ray fluorescence (XRF) and X-ray photoelectron spectroscopy (XPS). From various analyzes, there is a high possibility that P is present on the surface of the PtRu catalyst. Therefore, XPS that can measure a composition closer to the catalyst surface was used for the P concentration. Furthermore, methanol oxidation characteristics of these PtRuP catalysts were measured. The measurement method is shown below. After mixing PtRuP-supported carbon, ion-exchanged water, and Nafion solution (manufactured by Aldrich) and stirring, the viscosity was adjusted to obtain an ink for a catalyst layer. This was applied on carbon paper, dried and hot pressed to produce an electrode. The counter electrode was Au wire, and the methanol oxidation activity was measured in a solution in which 25 Vol% methanol was added to a 1.5 mol / L sulfuric acid aqueous solution. The measurement results are shown in Table 5 below. As can be seen from the results shown in Table 5 below, when 5 to 50 mol% of sodium hypophosphite is added to the total number of moles of PtRu, a high methanol oxidation current can be obtained. In particular, when 50 mol% of hypophosphorous acid is added, the particle size becomes small and high methanol oxidation activity is obtained. When sodium hypophosphite is added in an amount of 70 mol% or more based on the total number of moles of PtRu, excess sodium hypophosphite inhibits the formation of PtRu fine particles, and the raw material bis (acetylacetonato) platinum (II) Precipitation was observed, and the methanol oxidation activity decreased rapidly.

ビス(アセチルアセトナト)白金(II)とトリス(アセチルアセトナト)ルテニウム(III)の仕込み割合を1:3、1:2.5、1:2、1:1.5、1:1、1.5:1及び2:1に変化させ、次亜燐酸ナトリウムをPtとRuの総モル数に対して50モル%それぞれ100mlのエチレングリコールに溶解させ、炭素基材(バルカンXC−72R、比表面積254m/g)0.5gを分散させた170mlのエチレングリコール溶液を加えた。この溶液に硫酸水溶液を滴下し、pH試験紙を用いて溶液のpHを3に調整した。窒素雰囲気下、200℃のオイルバス中でこの溶液を攪拌しながら還流し、PtRuP微粒子を炭素基材上に担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。なお、ビス(アセチルアセトナト)白金(II)とトリス(アセチルアセトナト)ルテニウム(III)の仕込み割合を1:3、1:2.5、1:2及び1:1.5とした事例は、本発明の効果と比較するための比較例である。 The charging ratio of bis (acetylacetonato) platinum (II) and tris (acetylacetonato) ruthenium (III) is 1: 3 , 1: 2.5, 1: 2, 1: 1.5, 1: 1, 1 .5: 1 and 2: 1, sodium hypophosphite is dissolved in 100 ml of ethylene glycol, 50 mol% each with respect to the total number of moles of Pt and Ru, and a carbon substrate (Vulcan XC-72R, specific surface area) 254 m 2 / g) 170 ml of ethylene glycol solution in which 0.5 g was dispersed was added. A sulfuric acid aqueous solution was dropped into this solution, and the pH of the solution was adjusted to 3 using pH test paper. The solution was refluxed with stirring in an oil bath at 200 ° C. in a nitrogen atmosphere, and PtRuP fine particles were supported on the carbon substrate. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst. Examples where the charging ratio of bis (acetylacetonato) platinum (II) and tris (acetylacetonato) ruthenium (III) was 1: 3, 1: 2.5, 1: 2, and 1: 1.5 It is a comparative example for comparing with the effect of the present invention.

実施例8で得られたPtRuP触媒についてX線回折実験を行い、シェラーの式を適用してPtRuP触媒の粒径を見積もった。また。蛍光X線により触媒の組成を調べた。さらにこれらのPtRuP触媒についてメタノール酸化特性を測定した。測定法を以下に示す。PtRuP担持カーボンとイオン交換水とナフィオン溶液(アルドリッチ社製)を混合し撹拌したのちその粘度を調整して触媒層用インクとした。これを、カーボンペーパー上に塗布し、乾燥後ホットプレスして電極を作製した。対極をAu線とし、1.5モル/Lの硫酸水溶液に25vol%のメタノールを添加した溶液中でメタノール酸化活性を測定した。測定結果を下記の表6に示す。   X-ray diffraction experiments were performed on the PtRuP catalyst obtained in Example 8, and the particle size of the PtRuP catalyst was estimated by applying Scherrer's equation. Also. The composition of the catalyst was examined by fluorescent X-ray. Furthermore, methanol oxidation characteristics of these PtRuP catalysts were measured. The measurement method is shown below. After mixing PtRuP-supported carbon, ion-exchanged water, and Nafion solution (manufactured by Aldrich) and stirring, the viscosity was adjusted to obtain an ink for a catalyst layer. This was applied on carbon paper, dried and hot pressed to produce an electrode. The counter electrode was Au wire, and the methanol oxidation activity was measured in a solution obtained by adding 25 vol% methanol to a 1.5 mol / L sulfuric acid aqueous solution. The measurement results are shown in Table 6 below.

表6に示された結果から、PtとRuの仕込み割合を1:1〜2:1にする事によりPt組成が60〜90at%、Pが5.7%以上のPtRuP触媒となり、高いメタノール酸化電流が得られることが理解できる。   From the results shown in Table 6, by setting the charging ratio of Pt and Ru to 1: 1 to 2: 1, a PtRuP catalyst having a Pt composition of 60 to 90 at% and P of 5.7% or more was obtained, and high methanol oxidation It can be seen that current is obtained.

ビス(アセチルアセトナト)白金(II)1.69ミリモルとトリス(アセチルアセトナト)ルテニウム(III)1.69ミリモルと次亜燐酸ナトリウム0.338ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、炭素基材(バルカンP、比表面積140m/g)0.5gを分散させた100mlのエチレングリコール溶液を加えた。この溶液に硫酸水溶液を滴下し、pH試験紙を用いて溶液のpHを3に調整した。窒素ガス雰囲気下、200℃のオイルバス中でこの溶液を攪拌しながら4時間還流し、PtRuP微粒子を炭素基材上に析出担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。 Dissolve 1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and 0.338 mmol of sodium hypophosphite in 100 ml of ethylene glycol, respectively. 100 ml of ethylene glycol solution in which 0.5 g of material (Vulcan P, specific surface area 140 m 2 / g) was dispersed was added. A sulfuric acid aqueous solution was dropped into this solution, and the pH of the solution was adjusted to 3 using pH test paper. This solution was refluxed for 4 hours with stirring in an oil bath at 200 ° C. in a nitrogen gas atmosphere, and PtRuP fine particles were deposited and supported on the carbon substrate. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

比較例14Comparative Example 14

ビス(アセチルアセトナト)白金(II)1.69ミリモルとトリス(アセチルアセトナト)ルテニウム(III)1.69ミリモルと次亜燐酸ナトリウム0.338ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、炭素基材(ケッチェンEC、比表面積800m/g)0.5gを分散させた100mlのエチレングリコール溶液を加えた。この溶液に硫酸水溶液を滴下し、pH試験紙を用いて溶液のpHを3に調整した。窒素ガス雰囲気下、200℃のオイルバス中でこの溶液を攪拌しながら4時間還流し、PtRuP微粒子を炭素基材上に析出担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。 Dissolve 1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and 0.338 mmol of sodium hypophosphite in 100 ml of ethylene glycol, respectively. 100 ml of ethylene glycol solution in which 0.5 g of material (Ketjen EC, specific surface area 800 m 2 / g) was dispersed was added. A sulfuric acid aqueous solution was dropped into this solution, and the pH of the solution was adjusted to 3 using pH test paper. This solution was refluxed for 4 hours with stirring in an oil bath at 200 ° C. in a nitrogen gas atmosphere, and PtRuP fine particles were deposited and supported on the carbon substrate. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

実施例9及び比較例14で得られた触媒の粒径を電子顕微鏡で調べた。その結果を下記の表7に示す。実施例9及び比較例14では、PtRuP触媒の粒径が1〜3nmであった。   The particle diameters of the catalysts obtained in Example 9 and Comparative Example 14 were examined with an electron microscope. The results are shown in Table 7 below. In Example 9 and Comparative Example 14, the particle size of the PtRuP catalyst was 1 to 3 nm.

実施例1と9及び比較例14で得られた炭素基材担持触媒:ナフィオン(デュポン社製)=7:6になるようにスラリーを作製し、これを厚さ200μm、直径10mmのカーボンペーパー(東レ製)上に炭素基材担持触媒が5mg/cmとなるように塗布した。乾燥後、100kg/cmでプレスを行い電極とした。その後、アノード電極特性を温度25℃、メタノール濃度20wt%、電解質1.5モルHSOの条件で調べた。電位0.5v(vs.NHE)における電流密度を下記の表8に示す。表8に示された結果から、担体の比表面積が254m/g及び140m/gである実施例1及び9では高い電流密度が得られるが、比較例14の場合、担体の比表面積が800m/gになると電流密度が減少することが理解できる。これは、担体がケッチェンECのように細孔の径が小さく比表面積が大きい場合、PtRuP触媒が担体の細孔内に析出し、実効的に働く触媒の表面積が減少したためと考えられる。 A slurry was prepared so that the carbon substrate-supported catalyst obtained in Examples 1 and 9 and Comparative Example 14: Nafion (manufactured by DuPont) = 7: 6, and this was made into carbon paper (thickness 200 μm, diameter 10 mm) ( The carbon base material-supported catalyst was applied so as to be 5 mg / cm 2 . After drying, pressing was performed at 100 kg / cm 2 to obtain an electrode. Thereafter, the anode electrode characteristics were examined under the conditions of a temperature of 25 ° C., a methanol concentration of 20 wt%, and an electrolyte of 1.5 mol H 2 SO 4 . The current density at a potential of 0.5 v (vs. NHE) is shown in Table 8 below. From the results shown in Table 8, high current densities can be obtained in Examples 1 and 9 in which the specific surface areas of the supports are 254 m 2 / g and 140 m 2 / g, but in the case of Comparative Example 14, the specific surface area of the support is It can be seen that the current density decreases at 800 m 2 / g. This is considered to be because when the support has a small pore diameter and a large specific surface area, such as Ketjen EC, the PtRuP catalyst is precipitated in the pores of the support, and the surface area of the catalyst that works effectively is reduced.

本発明の炭素担持PtRuP微粒子からなる燃料電池用触媒は、直接メタノール型燃料電池(DMFC)として特に有用であるが、固体高分子型燃料電池(PEFC)の触媒としても使用できる。   The fuel cell catalyst comprising the carbon-supported PtRuP fine particles of the present invention is particularly useful as a direct methanol fuel cell (DMFC), but can also be used as a catalyst for a polymer electrolyte fuel cell (PEFC).

本発明のPtRuP触媒微粒子の模式的断面図である。It is a typical sectional view of PtRuP catalyst fine particles of the present invention. (A)は実施例1で得られたPtRuP触媒微粒子表面の電子顕微鏡写真であり、(B)は比較例1で得られたPtRu触媒微粒子表面の電子顕微鏡写真である。(A) is an electron micrograph of the surface of PtRuP catalyst fine particles obtained in Example 1, and (B) is an electron micrograph of the surface of PtRu catalyst fine particles obtained in Comparative Example 1. 直接メタノール型燃料電池の一例の部分概要構成図である。It is a partial schematic block diagram of an example of a direct methanol fuel cell.

符号の説明Explanation of symbols

1 本発明のPtRuP触媒微粒子
3 炭素基材
5 PtRu粒子
7 P原子
10 直接メタノール型燃料電池
12 酸素極側集電体
14 酸素極側拡散層
16 固体高分子電解質膜
18 メタノール極側拡散層
20 メタノール極側集電体
22 メタノール燃料タンク
24 空気導入孔
26 酸素極(Pt)触媒層
28 メタノール極(PtRuP)触媒層
30 メタノール燃料導入孔
DESCRIPTION OF SYMBOLS 1 PtRuP catalyst fine particle of this invention 3 Carbon base material 5 PtRu particle 7 P atom 10 Direct methanol fuel cell 12 Oxygen electrode side current collector 14 Oxygen electrode side diffusion layer 16 Solid polymer electrolyte membrane 18 Methanol electrode side diffusion layer 20 Methanol Electrode-side current collector 22 Methanol fuel tank 24 Air introduction hole 26 Oxygen electrode (Pt) catalyst layer 28 Methanol electrode (PtRuP) catalyst layer 30 Methanol fuel introduction hole

Claims (6)

燃料電池用触媒の製造方法において、
(1)一種類以上のアルコールからなる有機溶剤中に、60m /g〜300m /gの範囲内の比表面積を有する炭素基材を分散させるステップと、
(2)前記炭素基材が分散されたアルコール系有機溶剤中に、Ptの塩又は錯体と、Ruの塩又は錯体と、P原子含有化合物を溶解させるステップと、
(3)炭素粉末が分散されたアルコール溶液のpH値を2〜5の範囲に調整するステップと、
(4)不活性ガス雰囲気中で、アルコールの沸点近傍の温度で加熱還流を行うステップを含み、
前記炭素基材上に、下記の一般式、
PtRuP
(式中、PtとRuの原子比が60:40〜90:10であり、Pの含有率はPtRuの総モル数に対して、3モル%〜50モル%の範囲内である。)で示される三元系微粒子を担持した燃料電池用触媒を生成することを特徴とする燃料電池用触媒の製造方法。
In the method for producing a fuel cell catalyst,
(1) in an organic solvent comprising one or more alcohols, a step of dispersing the carbon substrate having a specific surface area within the range of 60m 2 / g~300m 2 / g,
(2) dissolving a Pt salt or complex, a Ru salt or complex, and a P atom-containing compound in an alcohol-based organic solvent in which the carbon substrate is dispersed;
(3) adjusting the pH value of the alcohol solution in which the carbon powder is dispersed to a range of 2 to 5,
(4) including heating and refluxing in an inert gas atmosphere at a temperature near the boiling point of the alcohol,
On the carbon substrate, the following general formula:
PtRuP
(Wherein the atomic ratio of Pt and Ru is 60:40 to 90:10, and the P content is in the range of 3 mol% to 50 mol% with respect to the total number of moles of PtRu). A method for producing a fuel cell catalyst, characterized in that a fuel cell catalyst carrying the indicated ternary fine particles is produced.
前記ステップ(2)において、前記P原子含有化合物はPtの塩又は錯体とRuの塩又は錯体の合計モル数に対して、5モル%〜50モル%であることを特徴とする請求項1に記載の燃料電池用触媒の製造方法。 In the step (2), the P atom-containing compound is 5 mol% to 50 mol% with respect to the total number of moles of the salt or complex of Pt and the salt or complex of Ru. The manufacturing method of the catalyst for fuel cells of description. 前記ステップ(3)において、硫酸を滴下することによりアルコール溶液のpH値を2〜5に調整することを特徴とする請求項1に記載の燃料電池用触媒の製造方法。 The method for producing a fuel cell catalyst according to claim 1, wherein in step (3), the pH value of the alcohol solution is adjusted to 2 to 5 by dropping sulfuric acid. 前記P原子含有化合物は、亜燐酸、亜燐酸塩(正塩及び酸性塩の両方を含む)、次亜燐酸及び次亜燐酸塩からなる群から選択される少なくとも一種類の化合物であることを特徴とする請求項1に記載の製造方法。 The P atom-containing compound is at least one compound selected from the group consisting of phosphorous acid, phosphites (including both normal and acidic salts), hypophosphorous acid and hypophosphites. The manufacturing method according to claim 1. 前記P原子含有化合物は、亜燐酸、亜燐酸水素ナトリウム、亜燐酸水素アンモニウム、次亜燐酸、次亜燐酸ナトリウム及び次亜燐酸アンモニウムからなる群から選択される少なくとも一種類の化合物であることを特徴とする請求項4に記載の製造方法。 The P atom-containing compound is at least one compound selected from the group consisting of phosphorous acid, sodium hydrogen phosphite, ammonium hydrogen phosphite, hypophosphorous acid, sodium hypophosphite, and ammonium hypophosphite. The manufacturing method according to claim 4. 前記炭素基材は、カーボンブラック、グラファイト、カーボンナノチューブ及び活性炭からなる群から選択される少なくとも一種類の材料を用いることを特徴とする請求項1に記載の製造方法。 The carbon substrate, The method according to claim 1 which comprises using mosquitoes over carbon black, graphite, at least one kind of material selected from the group consisting of carbon nanotubes and active charcoal.
JP2004206231A 2003-12-26 2004-07-13 Catalyst for fuel cell and method for producing the same Expired - Fee Related JP4498843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004206231A JP4498843B2 (en) 2003-12-26 2004-07-13 Catalyst for fuel cell and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003433758 2003-12-26
JP2004206231A JP4498843B2 (en) 2003-12-26 2004-07-13 Catalyst for fuel cell and method for producing the same

Publications (3)

Publication Number Publication Date
JP2005205394A JP2005205394A (en) 2005-08-04
JP2005205394A5 JP2005205394A5 (en) 2007-08-09
JP4498843B2 true JP4498843B2 (en) 2010-07-07

Family

ID=34914287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004206231A Expired - Fee Related JP4498843B2 (en) 2003-12-26 2004-07-13 Catalyst for fuel cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP4498843B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110010449A (en) * 2019-04-10 2019-07-12 北京大学 A kind of efficient preparation one-dimensional carbon nanotube/two dimension Transition-metal dichalcogenide hetero-junctions method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059248A (en) * 2005-08-25 2007-03-08 Hitachi Maxell Ltd Fuel cell and membrane electrode junction

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303541A (en) * 1989-05-17 1990-12-17 Tanaka Kikinzoku Kogyo Kk Production of high-surface area metal-deposited catalyst
JPH11250918A (en) * 1997-12-19 1999-09-17 Degussa Ag Platinum/ruthenium alloy catalyst, its manufacture, gas diffusion electrode, membrane electrode unit, and proton conductive polymer membrane for pem fuel cell
JP2003226901A (en) * 2002-02-05 2003-08-15 Hitachi Maxell Ltd Binary alloy fine particle and production method therefor
JP2004079244A (en) * 2002-08-12 2004-03-11 Toshiba Corp Catalyst for fuel cell and fuel cell
JP2005515063A (en) * 2001-12-03 2005-05-26 スリーエム イノベイティブ プロパティズ カンパニー Supported nanoparticle catalyst
JP2005161186A (en) * 2003-12-02 2005-06-23 Hitachi Maxell Ltd Method for producing platinum/ruthenium alloy catalyst
JP2005224800A (en) * 2005-03-14 2005-08-25 Hitachi Maxell Ltd Pt-BASED CATALYST AND METHANOL FUEL CELL USING THE SAME
JP2005526596A (en) * 2002-03-16 2005-09-08 シュトゥディエンゲゼルシャフト・コーレ・ミット・ベシュレンクテル・ハフツング Method for fixing water-soluble nano-dispersed metal oxide colloids as they are

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303541A (en) * 1989-05-17 1990-12-17 Tanaka Kikinzoku Kogyo Kk Production of high-surface area metal-deposited catalyst
JPH11250918A (en) * 1997-12-19 1999-09-17 Degussa Ag Platinum/ruthenium alloy catalyst, its manufacture, gas diffusion electrode, membrane electrode unit, and proton conductive polymer membrane for pem fuel cell
JP2005515063A (en) * 2001-12-03 2005-05-26 スリーエム イノベイティブ プロパティズ カンパニー Supported nanoparticle catalyst
JP2003226901A (en) * 2002-02-05 2003-08-15 Hitachi Maxell Ltd Binary alloy fine particle and production method therefor
JP2005526596A (en) * 2002-03-16 2005-09-08 シュトゥディエンゲゼルシャフト・コーレ・ミット・ベシュレンクテル・ハフツング Method for fixing water-soluble nano-dispersed metal oxide colloids as they are
JP2004079244A (en) * 2002-08-12 2004-03-11 Toshiba Corp Catalyst for fuel cell and fuel cell
JP2005161186A (en) * 2003-12-02 2005-06-23 Hitachi Maxell Ltd Method for producing platinum/ruthenium alloy catalyst
JP2005224800A (en) * 2005-03-14 2005-08-25 Hitachi Maxell Ltd Pt-BASED CATALYST AND METHANOL FUEL CELL USING THE SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110010449A (en) * 2019-04-10 2019-07-12 北京大学 A kind of efficient preparation one-dimensional carbon nanotube/two dimension Transition-metal dichalcogenide hetero-junctions method
CN110010449B (en) * 2019-04-10 2020-12-29 北京大学 Method for efficiently preparing one-dimensional carbon nanotube/two-dimensional transition metal chalcogenide heterojunction

Also Published As

Publication number Publication date
JP2005205394A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
US7192670B2 (en) Fuel cell and membrane electrode assembly
JP4452889B2 (en) ELECTRODE CATALYST FOR FUEL CELL, METHOD FOR PRODUCING THE SAME, AND FUEL CELL USING THE CATALYST
Wang et al. Graphitized nanodiamond supporting PtNi alloy as stable anodic and cathodic electrocatalysts for direct methanol fuel cell
KR101679809B1 (en) Preparation method of N-doped carbon-supported Pt catalyst and N-doped carbon-supported Pt catalyst using the same
Lin et al. Effect of heat treatment on the activity and stability of PtCo/C catalyst and application of in-situ X-ray absorption near edge structure for proton exchange membrane fuel cell
Capelo et al. Stability and durability under potential cycling of Pt/C catalyst with new surface-functionalized carbon support
Zeng A simple eco-friendly solution phase reduction method for the synthesis of polyhedra platinum nanoparticles with high catalytic activity for methanol electrooxidation
Jiang et al. Influence of preparation method on the performance of PtSn/C anode electrocatalyst for direct ethanol fuel cells
Sharma et al. Graphene-manganite-Pd hybrids as highly active and stable electrocatalysts for methanol oxidation and oxygen reduction
CN100479240C (en) Fuel cell, membrane electrode assembly, catalyst used therefor, and method of producing catalyst
Feng et al. Platinum catalysts promoted by In doped SnO2 support for methanol electrooxidation in alkaline electrolyte
KR20060052555A (en) Fuel cell, membrane-electrode assembly, and catalyst used for them and the producing method of catalyst
Di Noto et al. Correlation between precursor properties and performance in the oxygen reduction reaction of Pt and Co “core-shell” carbon nitride-based electrocatalysts
US7625660B2 (en) Fuel cell and membrane electrode assembly
Di et al. Hierarchical porous N-doped carbon-supported PtCu nanoparticles as an efficient catalyst for oxygen reduction reaction
Xu A comparative study on electrocatalytic performance of PtAu/C and PtRu/C nanoparticles for methanol oxidation reaction
JP2006252797A (en) Manufacturing method of oxygen electrode catalyst for fuel cell, and of direct methanol fuel cell and catalyst
JP2006269096A (en) Fuel cell and membrane electrode assembly
JP2005322430A (en) Ternary alloy, catalyst for fuel cell, and fuel cell
JP2006114469A (en) Fuel-cell and membrane electrode assembly
JP2006278217A (en) Fuel cell and membrane electrode assembly
JP4498843B2 (en) Catalyst for fuel cell and method for producing the same
JP2006252798A (en) Manufacturing method of oxygen electrode catalyst for fuel cell, and of direct methanol fuel cell and catalyst
JP2007005152A (en) Catalyst for fuel cell
JP4565961B2 (en) Method for producing fuel electrode catalyst for fuel cell

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070620

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100302

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R255 Notification that request for automated payment was rejected

Free format text: JAPANESE INTERMEDIATE CODE: R2525

LAPS Cancellation because of no payment of annual fees