JP4498688B2 - Method for producing lithium ion conductive sulfide glass and glass ceramics - Google Patents

Method for producing lithium ion conductive sulfide glass and glass ceramics Download PDF

Info

Publication number
JP4498688B2
JP4498688B2 JP2003120176A JP2003120176A JP4498688B2 JP 4498688 B2 JP4498688 B2 JP 4498688B2 JP 2003120176 A JP2003120176 A JP 2003120176A JP 2003120176 A JP2003120176 A JP 2003120176A JP 4498688 B2 JP4498688 B2 JP 4498688B2
Authority
JP
Japan
Prior art keywords
lithium
glass
sulfide
ion conductive
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003120176A
Other languages
Japanese (ja)
Other versions
JP2004348972A (en
Inventor
美勝 清野
昌弘 辰巳砂
安司 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Osaka Prefecture University
Original Assignee
Idemitsu Kosan Co Ltd
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Osaka Prefecture University filed Critical Idemitsu Kosan Co Ltd
Priority to JP2003120176A priority Critical patent/JP4498688B2/en
Priority to PCT/JP2004/005914 priority patent/WO2004095474A1/en
Priority to TW093111508A priority patent/TWI415140B/en
Publication of JP2004348972A publication Critical patent/JP2004348972A/en
Application granted granted Critical
Publication of JP4498688B2 publication Critical patent/JP4498688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン伝導性硫化物ガラス及びガラスセラミックスの製造方法に関するものである。
【0002】
【従来の技術】
リチウムイオン伝導性硫化物ガラス及びガラスセラミックスは、全固体型リチウム二次電池の電解質として利用可能であることが公知である。このような硫化物ガラスは、ガラス形成剤であるSiS2 、五硫化リン(P2 5 )及びB2 3 等と、ガラス修飾剤である硫化リチウム(Li2 S)を混合し加熱溶融した後、急冷することによって得られる(例えば、特許文献1参照)。
また、本発明者らは、このような硫化物ガラスが硫化物結晶を室温でメカニカルミリングすることにより得られることを開示している(特許文献2参照)。
【0003】
【発明が解決しようとする課題】
これらの方法では、ガラス修飾剤である硫化リチウムを出発原料の一つとして用いているが、硫化リチウムは反応性が低く、上記ガラス形成剤等と効率良く反応せず、未反応の硫化リチウムが多量に残存するため、目的とする硫化物ガラスを得ることができない。また、多量の未反応の硫化リチウムが残存すると、電解質としての性能が低くなり、全固体型リチウム電池の電解質として使用できなくなるという問題がある。
本発明者らは、より入手が容易で且つ安価な原料を出発物質とするリチウムイオン伝導性硫化物ガラスの製造法について検討を行ってきた。
例えば、本発明者らは、金属リチウム(Li)又は硫化リチウム(Li2 S)と単体ケイ素(Si)及び単体硫黄(S)を出発原料として、メカニカルミリングを行うことによりリチウムイオン伝導性硫化物ガラスが得られることを開示した(特許文献2参照)。
しかしながら、この硫化物ガラスは、硫化リチウムとSiS2 を原料とした場合に比べ、メカニカルミリングの時間が長くなり、得られる硫化物ガラスの電気伝導度も低いという問題点がある。
本発明者らは、より電気伝導度の高い硫化物ガラスの製造を目的に検討を続け、硫化リチウム及び五硫化リンを主成分とした硫化物セラミックスが高いリチウムイオン伝導性を示すことを見出した(特許文献3参照) 。
また、硫化リチウムと五硫化リンをメカニカルミリングすることにより得られる硫化物を、ガラス転移温度以上で焼成処理することにより、室温での電気伝導度が向上することも見出した(非特許文献1参照)。更に、より入手可能な原料として、単体リン(P)と単体硫黄(S)をメカニカルミリングによりガラス化したものに、金属リチウムを加え、更にメカニカルミリングすることによって、室温での電気伝導度が10-5S/cmオーダーの硫化物ガラスが得られることも見出した(非特許文献2参照)。
【0004】
【特許文献1】
特開平9−283156号公報
【特許文献2】
特開平11−134937号公報
【特許文献3】
特開2001−250580号公報
【非特許文献1】
Chemistry Letters 2001
【非特許文献2】
辰巳砂ら: 日本化学会2001年春季大会講演要旨集2E341
【0005】
【課題を解決するための手段】
本発明者らは、更に、簡便かつ入手が容易な原料を用いた製造方法について検討を行い、金属リチウム又は硫化リチウムと、単体硫黄(S)と単体リン(P)を出発原料として用い、メカニカルミリングにより得られた硫化物ガラスが、 硫化リチウムと五硫化リンを原料とし、メカニカルミリングにより製造したリチウムイオン伝導性硫化物ガラスと同等の性能を有することを見出した(特願2002−005855号)。更に、簡便かつ効率的な製造方法について検討を行い、ガラス修飾剤として硫酸リチウム(Li2 SO4 )及びチオ硫酸リチウム(Li2 2 3 )から選ばれる一種以上を用いることにより、固体電解質として有用な硫化物ガラスが得られることを見出し、本発明を完成するに至った。
更に、本発明で得られる硫化物ガラスは、ガラス転移温度以上で一旦焼成処理を行うことにより、室温での電気伝導度が10-4S/cm以上に向上することも見出した。
【0006】
すなわち、本発明は、
(1) リチウムイオン伝導性硫化物ガラスを製造するにあたり、出発原料として、硫化リチウムと、五硫化リン、単体リン及び単体イオウから選ばれる一種以上を含む原料を用い、該原料に、ガラス修飾剤として、硫化リチウム100質量部に対して7〜20質量部の硫酸リチウム及び2.7〜15質量部のチオ硫酸リチウムを添加し、該原料をメカニカルミリングによりガラス化させることを特徴とする、リチウムイオン伝導性硫化物ガラスの製造方法、
(2) 前記(1)に記載の、メカニカルミリングによりガラス化したリチウムイオン伝導性硫化物ガラスをガラス転移温度以上で焼成することを特徴とする、リチウムイオン伝導性硫化物ガラスセラミックスの製造方法、
(3) 150℃以上で焼成することを特徴とする前記(2)に記載のリチウムイオン伝導性硫化物ガラスセラミックスの製造方法、
(4) 前記焼成を真空下又は不活性ガス存在下で行なうことを特徴とする前記(2)又は(3)に記載のリチウムイオン伝導性硫化物ガラスセラミックスの製造方法
提供するものである。
【0007】
【発明の実施の形態】
本発明においては、出発原料として、硫化リチウム(Li2 S)と、五硫化リン(P2 5 )、単体リン(P)及び単体イオウ(S)から選ばれる一種以上を含む原料を用いる。本発明で用いる硫化リチウム(Li2 S)は、いかなる製造方法により製造されたものでもよく、工業的に生産され、販売されているものであれば、特に限定なく使用することができるが、特開2000−247609号公報に記載された製造方法により製造されたものが好ましい。
五硫化リン、単体硫黄及び単体リンは工業的に生産され、販売されているものであれば、特に限定なく使用することができる。更に、単体硫黄は、製油所等で生産される溶融硫黄をそのまま使用することもできる。
【0008】
出発原料として、硫化リチウム(Li2 S)、単体硫黄(S)及び単体リン(P)を用いる場合、硫化リチウム単体硫黄及び単体リンの混合割合は、モル比で硫化リチウム1に対して、単体硫黄0.5〜3.5、単体リン0.2〜1.5が好ましい。また、出発原料として、硫化リチウム(Li2 S)及び五硫化リン(P2 5 )を用いる場合、モル比で硫化リチウム1に対して、五硫化リン0.05〜1.0が好ましい。更に、単体ケイ素(Si)、金属ゲルマニウム(Ge)、金属アルミニウム(Al)、金属鉄(Fe)、金属亜鉛(Zn)及び単体ホウ素(B)も単体硫黄とメカニカルミリングによって、非晶質又は結晶性の硫化物を生成する(辰巳砂ら:日本化学会2001年春季大会講演要旨集2E341)ため、上記リチウムイオン伝導性硫化物ガラスの出発原料の一部をこれらと置換することができる。
本発明においては、ガラス修飾剤として、硫酸リチウム(Li2 SO4 )及びチオ硫酸リチウム(Li2 2 3 )から選ばれる一種以上を用いる。硫酸リチウムの添加量は、硫化リチウム100質量部に対して6.5質量部以上であることを要し、好ましくは7〜20質量部である。また、チオ硫酸リチウムの添加量は、硫化リチウム100質量部に対して2.2質量部以上であることを要し、好ましくは2.7〜15質量部である。硫酸リチウム(Li2 SO4 )とチオ硫酸リチウム(Li2 2 3 )とを併用する場合、その使用割合は質量比でLi2 SO4 :Li2 2 3 =1:0.135〜2が好ましく、Li2 SO4 :Li2 2 3 =1:0.15〜1.8がより好ましい。
【0009】
本発明では、硫化リチウム(Li2 S)と、五硫化リン(P2 5 )、単体リン(P)及び単体イオウ(S)から選ばれる一種以上を含む出発原料をガラス化するために、メカニカルミリングを用いる。メカニカルミリングによれば、室温付近でガラスを合成できるため、出発原料の熱分解が起らず、仕込み組成のガラスを得ることができるという利点がある。また、メカニカルミリングでは、ガラスの合成と同時に、ガラスを微粉末化できるという利点もある。
本発明の方法では、イオン伝導性硫化物ガラスを微粉末化するに際し、改めて粉砕することや、切削する必要がない。かかる微粉末化ガラスは、例えば、直接又はペレット状に加圧成形したものを全固体型電池に組み込み、固体電解質として用いることができる。
本発明の方法によれば、電池用固体電解質としてのイオン伝導性硫化物ガラスの製造工程を簡略化することができ、コストダウンも図れる。更に、メカニカルミリングによれば、微粉末で均一な粒子サイズを有するイオン伝導性硫化物ガラスを生成できる。
このようなガラスセラミックスを、固体電解質として用いれば、正極及び負極との接触界面の増大と密着性を向上できる。
【0010】
メカニカルミリングによる反応は不活性ガス(窒素ガス、アルゴンガス等)雰囲気下で行う。メカニカルミリングは種々の形式を用いることができるが、遊星型ボールミルを使用するのが特に好ましい。遊星型ボールミルは、ポットが自転回転しながら、台盤が公転回転し、非常に高い衝撃エネルギーを効率良く発生させることができる。
メカニカルミリングの回転速度及び回転時間は特に限定されないが、回転速度が速いほど硫化物ガラスの生成速度は速くなり、回転時間が長いほど硫化物ガラスヘの出発原料の転化率は高くなる。
メカニカルミリングにより得られた硫化物ガラスをガラス転移温度(150℃)以上、好ましくは200〜500℃で焼成することにより、室温(25℃)での電気伝導度が向上した、硫化物ガラスセラミックスが得られる。焼成処理を行う硫化物ガラスの形状は特に限定されないが、粉末状のままでもよいし、ペレット状に加圧成形したものでもよい。
焼成処理は不活性ガス(窒素ガス、アルゴンガス等)存在下又は真空下で行うのが好ましい。焼成処理時の昇温速度、降温速度並びに焼成時間は特に限定されない。
このようにして得られた硫化物ガラスセラミックスは、固体電解質として好適なものである。
【0011】
【実施例】
次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
実施例1
出発原料として、硫化リチウム結晶(Li2 S)及び五硫化リン(P2 5 )を用い、ガラス修飾剤として、硫酸リチウム(Li2 SO4 )及びチオ硫酸リチウム(Li2 2 3 )を用いた。
アルゴンを雰囲気下のドライボックス中で、硫化リチウム結晶と五硫化リンとをモル比6.9/2(Li2 S/P2 5 )の割合で秤量し、また、硫化リチウム結晶(Li2 S)100質量部に対して、硫酸リチウム(Li2 SO4 )11.4質量部及びチオ硫酸リチウム(Li2 2 3 )3.6質量部の割合で秤量し、これらの粉末をアルミナ製のポットに投入し、完全密閉した。このポットを遊星型ボールミル機に取り付け、初期は出発原料を十分混合する目的で数分間、低速回転(回転速度:85rpm)でミリングを行った。その後、徐々に回転数を増大させていき、370rpmで20時間メカニカルミリングを行った。
得られた粉末ガラスのX線回折を行った結果、硫化リチウム(Li2 S)のピークは消失し、ガラス化が進行していることが確認された。
この粉末試料を不活性ガス(窒素)雰囲気下で20MPa(200kg/cm2 )の加圧下でペレット状に成形後、電極としてカーボンペーストを塗布し、交流二端子法により電気伝導度の測定を行ったところ、室温(25℃)での電気伝導度は1.7×10-4S/cmであった。
【0012】
実施例2
実施例1で得られたペレットを不活性ガス(窒素)の存在下で、250℃で焼成処理を行い、硫化物ガラスセラミックスを得た。冷却後、実施例1と同様の方法で電気伝導度を測定したところ、室温(25℃)での電気伝導度は7.2×10-4S/cmであり、焼成により電気伝導度が向上した。
【0013】
比較例1
硫化リチウム結晶(Li2 S)100質量部に対して、硫酸リチウム(Li2 SO4 )6.3質量部及びチオ硫酸リチウム(Li2 2 3 )1.93質量部の割合で秤量し、使用した以外は実施例1と同様にしてガラス粉末を得た。得られた粉末ガラスのX線回折を行った結果、未反応硫化リチウム(Li2 S)の大きなピークが検出された。
この粉末ガラスを実施例1と同様にしてペレット状に加圧成形し、電極としてカーボンペーストを塗布し、実施例1と同じ方法で電気伝導度の測定を行ったところ、室温(25℃)での電気伝導度は1.0×10-5S/cmと非常に低い値であった。
【0014】
比較例2
硫化リチウム結晶(Li2 S)100質量部に対して、硫酸リチウム(Li2 SO4 )5.6質量部及びチオ硫酸リチウム(Li2 2 3 )2.0質量部の割合で秤量し、使用した以外は実施例1と同様にしてガラス粉末を得た。得られた粉末ガラスのX線回折を行った結果、未反応硫化リチウム(Li2 S)の大きなピークが検出された。
この粉末ガラスを実施例1と同様にしてペレット状に加圧成形し、電極としてカーボンペーストを塗布し、実施例1と同じ方法で電気伝導度の測定を行ったところ、室温(25℃)での電気伝導度は5.0×10-6S/cmと非常に低い値であった。
【0015】
実施例3
実施例2で得られたペレット状の硫化物ガラスセラミックスを固体電解質に用いて全固体型リチウム二次電池を作製した。
正極として4Vを超える電位を示すコバルト酸リチウム、負極にはインジウム金属を使用した。電流密度50μA/cm2 で、定電流放電測定を行ったところ、充放電が可能であった。また、充放電効率も100%であり、優れたサイクル特性を示すことが判明した。
【0016】
【発明の効果】
本発明によれば、入手が容易で且つ安価な原料を出発物質として、簡便な方法で室温での電気伝導度の高いリチウムイオン伝導性硫化物ガラス及びセラミックスを製造することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the production how the lithium ion conductive sulfide glass and glass ceramic.
[0002]
[Prior art]
It is known that lithium ion conductive sulfide glass and glass ceramics can be used as an electrolyte for an all-solid-state lithium secondary battery. Such a sulfide glass is prepared by mixing glass forming agents SiS 2 , phosphorus pentasulfide (P 2 S 5 ), B 2 S 3 and the like with a glass modifier lithium sulfide (Li 2 S) and heating and melting them. Then, it is obtained by quenching (see, for example, Patent Document 1).
The present inventors have also disclosed that such a sulfide glass can be obtained by mechanically milling a sulfide crystal at room temperature (see Patent Document 2).
[0003]
[Problems to be solved by the invention]
In these methods, lithium sulfide, which is a glass modifier, is used as one of the starting materials. However, lithium sulfide has low reactivity, does not react efficiently with the above glass forming agent, and unreacted lithium sulfide is generated. Since a large amount remains, the target sulfide glass cannot be obtained. Further, if a large amount of unreacted lithium sulfide remains, there is a problem that the performance as an electrolyte is lowered, and it cannot be used as an electrolyte for an all-solid-state lithium battery.
The inventors of the present invention have studied a method for producing a lithium ion conductive sulfide glass starting from an easily available and inexpensive raw material.
For example, the present inventors perform lithium ion conductive sulfide by performing mechanical milling using metallic lithium (Li) or lithium sulfide (Li 2 S), simple silicon (Si), and simple sulfur (S) as starting materials. It disclosed that glass was obtained (refer patent document 2).
However, this sulfide glass has a problem that the mechanical milling time becomes longer and the electrical conductivity of the obtained sulfide glass is low as compared with the case where lithium sulfide and SiS 2 are used as raw materials.
The present inventors have continued to study for the purpose of producing a sulfide glass having higher electric conductivity, and found that sulfide ceramics mainly composed of lithium sulfide and phosphorus pentasulfide exhibit high lithium ion conductivity. (See Patent Document 3).
It has also been found that the electrical conductivity at room temperature is improved by firing a sulfide obtained by mechanical milling of lithium sulfide and phosphorus pentasulfide at a glass transition temperature or higher (see Non-Patent Document 1). ). Furthermore, as a more available raw material, metallic lithium is added to a material obtained by vitrification of simple phosphorus (P) and simple sulfur (S) by mechanical milling, and further, electrical conductivity at room temperature is 10 by further mechanical milling. It was also found that sulfide glass of -5 S / cm order can be obtained (see Non-Patent Document 2).
[0004]
[Patent Document 1]
JP-A-9-283156 [Patent Document 2]
Japanese Patent Laid-Open No. 11-134937 [Patent Document 3]
JP 2001-250580 A [Non-Patent Document 1]
Chemistry Letters 2001
[Non-Patent Document 2]
Kasuna et al: Chemical Society of Japan 2001 Spring Conference Abstracts 2E341
[0005]
[Means for Solving the Problems]
The present inventors further examined a production method using a simple and easily available raw material, and used metallic lithium or lithium sulfide, simple sulfur (S) and simple phosphorus (P) as starting materials, and mechanical It has been found that the sulfide glass obtained by milling has the same performance as lithium ion conductive sulfide glass produced by mechanical milling using lithium sulfide and phosphorus pentasulfide as raw materials (Japanese Patent Application No. 2002-005855). . Furthermore, a simple and efficient production method is studied, and a solid electrolyte is obtained by using one or more kinds selected from lithium sulfate (Li 2 SO 4 ) and lithium thiosulfate (Li 2 S 2 O 3 ) as a glass modifier. As a result, the inventors have found that a useful sulfide glass can be obtained, and have completed the present invention.
Furthermore, it has also been found that the sulfide glass obtained in the present invention is improved in electrical conductivity at room temperature to 10 −4 S / cm or more by performing a baking treatment once at a glass transition temperature or higher.
[0006]
That is, the present invention
(1) In manufacturing lithium ion conductive sulfide glass, a raw material containing at least one selected from lithium sulfide and phosphorus pentasulfide, elemental phosphorus and elemental sulfur is used as a starting material. Lithium sulfate is characterized in that 7 to 20 parts by mass of lithium sulfate and 2.7 to 15 parts by mass of lithium thiosulfate are added to 100 parts by mass of lithium sulfide, and the raw material is vitrified by mechanical milling. Production method of ion-conductive sulfide glass,
(2) The method for producing a lithium ion conductive sulfide glass ceramic according to (1) , wherein the lithium ion conductive sulfide glass vitrified by mechanical milling is fired at a glass transition temperature or higher,
(3) The method for producing a lithium ion conductive sulfide glass ceramic according to (2) , characterized by firing at 150 ° C. or higher,
(4) The method for producing a lithium ion conductive sulfide glass ceramic according to (2) or (3) , wherein the firing is performed in a vacuum or in the presence of an inert gas ,
Is to provide.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a raw material containing at least one selected from lithium sulfide (Li 2 S), phosphorus pentasulfide (P 2 S 5 ), simple phosphorus (P) and simple sulfur (S) is used as a starting material. The lithium sulfide (Li 2 S) used in the present invention may be produced by any production method and can be used without particular limitation as long as it is industrially produced and sold. What was manufactured by the manufacturing method described in Kai 2000-247609 is preferable.
As long as phosphorus pentasulfide, elemental sulfur, and elemental phosphorus are industrially produced and sold, they can be used without particular limitation. Further, as the elemental sulfur, molten sulfur produced at a refinery or the like can be used as it is.
[0008]
When using lithium sulfide (Li 2 S), elemental sulfur (S) and elemental phosphorus (P) as starting materials, the mixing ratio of lithium sulfide elemental sulfur and elemental phosphorus is in terms of molar ratio to elemental lithium sulfide 1 Sulfur 0.5-3.5 and simple phosphorus 0.2-1.5 are preferred. Further, as a starting material, when using the lithium sulfide (Li 2 S) and phosphorus pentasulfide (P 2 S 5), with respect to the lithium sulfide at a molar ratio of 1, preferably phosphorus pentasulfide 0.05 to 1.0. Furthermore, simple silicon (Si), metallic germanium (Ge), metallic aluminum (Al), metallic iron (Fe), metallic zinc (Zn) and simple boron (B) are also amorphous or crystalline by simple sulfur and mechanical milling. In order to produce a water-soluble sulfide (Sasara et al .: Abstracts of Annual Meeting 2001 Spring Meeting of the Chemical Society of Japan 2E341), a part of the starting material of the lithium ion conductive sulfide glass can be replaced with these.
In the present invention, at least one selected from lithium sulfate (Li 2 SO 4 ) and lithium thiosulfate (Li 2 S 2 O 3 ) is used as the glass modifier. The addition amount of lithium sulfate needs to be 6.5 parts by mass or more, preferably 7 to 20 parts by mass with respect to 100 parts by mass of lithium sulfide. Moreover, the addition amount of lithium thiosulfate needs to be 2.2 mass parts or more with respect to 100 mass parts of lithium sulfide, Preferably it is 2.7-15 mass parts. When lithium sulfate (Li 2 SO 4 ) and lithium thiosulfate (Li 2 S 2 O 3 ) are used in combination, the use ratio is Li 2 SO 4 : Li 2 S 2 O 3 = 1: 0.135 in terms of mass ratio. ˜2 is preferable, and Li 2 SO 4 : Li 2 S 2 O 3 = 1: 0.15 to 1.8 is more preferable.
[0009]
In the present invention, in order to vitrify a starting material containing at least one selected from lithium sulfide (Li 2 S), phosphorus pentasulfide (P 2 S 5 ), elemental phosphorus (P) and elemental sulfur (S), Use mechanical milling. According to mechanical milling, since glass can be synthesized near room temperature, there is an advantage that glass having a charged composition can be obtained without thermal decomposition of the starting material. Mechanical milling also has the advantage that glass can be made into fine powder simultaneously with the synthesis of glass.
In the method of the present invention, there is no need to pulverize or cut the ion-conductive sulfide glass again when it is pulverized. Such finely powdered glass can be used, for example, as a solid electrolyte by incorporating it directly or in a pellet form into an all-solid battery.
According to the method of the present invention, the production process of the ion conductive sulfide glass as the solid electrolyte for a battery can be simplified, and the cost can be reduced. Furthermore, according to mechanical milling, ion-conductive sulfide glass having a uniform particle size with fine powder can be generated.
If such a glass ceramic is used as a solid electrolyte, an increase in contact interface with the positive electrode and the negative electrode and adhesion can be improved.
[0010]
The reaction by mechanical milling is performed in an inert gas (nitrogen gas, argon gas, etc.) atmosphere. Although various types of mechanical milling can be used, it is particularly preferable to use a planetary ball mill. The planetary ball mill can efficiently generate very high impact energy by rotating the platform while the pot rotates.
The rotation speed and rotation time of mechanical milling are not particularly limited, but the higher the rotation speed, the faster the generation rate of sulfide glass, and the longer the rotation time, the higher the conversion rate of the starting material to sulfide glass.
A sulfide glass ceramic having improved electrical conductivity at room temperature (25 ° C.) by firing the sulfide glass obtained by mechanical milling at a glass transition temperature (150 ° C.) or higher, preferably 200 to 500 ° C. can get. The shape of the sulfide glass to be baked is not particularly limited, but may be a powder or may be pressure-molded into a pellet.
The firing treatment is preferably performed in the presence of an inert gas (nitrogen gas, argon gas, etc.) or under vacuum. There are no particular limitations on the rate of temperature rise, the rate of temperature drop, and the firing time during the firing treatment.
The sulfide glass ceramic thus obtained is suitable as a solid electrolyte.
[0011]
【Example】
EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited at all by these examples.
Example 1
Lithium sulfide crystals (Li 2 S) and phosphorus pentasulfide (P 2 S 5 ) are used as starting materials, and lithium sulfate (Li 2 SO 4 ) and lithium thiosulfate (Li 2 S 2 O 3 ) are used as glass modifiers. Was used.
In a dry box under an atmosphere of argon, lithium sulfide crystals and phosphorus pentasulfide were weighed at a molar ratio of 6.9 / 2 (Li 2 S / P 2 S 5 ), and lithium sulfide crystals (Li 2 S) 100 parts by mass of lithium sulfate (Li 2 SO 4 ) 11.4 parts by mass and lithium thiosulfate (Li 2 S 2 O 3 ) 3.6 parts by mass, and these powders were alumina. It was put into a pot made of metal and completely sealed. This pot was attached to a planetary ball mill and initially milled at a low speed (rotation speed: 85 rpm) for several minutes in order to sufficiently mix the starting materials. Thereafter, the rotational speed was gradually increased, and mechanical milling was performed at 370 rpm for 20 hours.
As a result of X-ray diffraction of the obtained powder glass, the peak of lithium sulfide (Li 2 S) disappeared, and it was confirmed that vitrification was progressing.
This powder sample was formed into a pellet under pressure of 20 MPa (200 kg / cm 2 ) under an inert gas (nitrogen) atmosphere, and then carbon paste was applied as an electrode, and the electrical conductivity was measured by the AC two-terminal method. As a result, the electric conductivity at room temperature (25 ° C.) was 1.7 × 10 −4 S / cm.
[0012]
Example 2
The pellets obtained in Example 1 were fired at 250 ° C. in the presence of an inert gas (nitrogen) to obtain sulfide glass ceramics. After cooling, the electrical conductivity was measured in the same manner as in Example 1. As a result, the electrical conductivity at room temperature (25 ° C.) was 7.2 × 10 −4 S / cm, and the electrical conductivity was improved by firing. did.
[0013]
Comparative Example 1
Weighed at a ratio of 6.3 parts by mass of lithium sulfate (Li 2 SO 4 ) and 1.93 parts by mass of lithium thiosulfate (Li 2 S 2 O 3 ) with respect to 100 parts by mass of the lithium sulfide crystal (Li 2 S). A glass powder was obtained in the same manner as in Example 1 except that it was used. As a result of X-ray diffraction of the obtained powder glass, a large peak of unreacted lithium sulfide (Li 2 S) was detected.
This powder glass was pressure-molded into a pellet shape in the same manner as in Example 1, and a carbon paste was applied as an electrode. The electrical conductivity was measured in the same manner as in Example 1. At room temperature (25 ° C.) The electrical conductivity of was as low as 1.0 × 10 −5 S / cm.
[0014]
Comparative Example 2
Weighing at a ratio of 5.6 parts by mass of lithium sulfate (Li 2 SO 4 ) and 2.0 parts by mass of lithium thiosulfate (Li 2 S 2 O 3 ) with respect to 100 parts by mass of the lithium sulfide crystal (Li 2 S). A glass powder was obtained in the same manner as in Example 1 except that it was used. As a result of X-ray diffraction of the obtained powder glass, a large peak of unreacted lithium sulfide (Li 2 S) was detected.
This powder glass was pressure-molded into a pellet shape in the same manner as in Example 1, and a carbon paste was applied as an electrode. The electrical conductivity was measured in the same manner as in Example 1. At room temperature (25 ° C.) The electrical conductivity of was as low as 5.0 × 10 −6 S / cm.
[0015]
Example 3
An all-solid-state lithium secondary battery was fabricated using the pelletized sulfide glass ceramic obtained in Example 2 as a solid electrolyte.
Lithium cobaltate showing a potential exceeding 4 V was used as the positive electrode, and indium metal was used for the negative electrode. When constant current discharge measurement was performed at a current density of 50 μA / cm 2 , charging / discharging was possible. The charge / discharge efficiency was also 100%, and it was found that excellent cycle characteristics were exhibited.
[0016]
【The invention's effect】
According to the present invention, lithium ion conductive sulfide glass and ceramics having high electrical conductivity at room temperature can be produced by a simple method using an easily available and inexpensive raw material as a starting material.

Claims (4)

リチウムイオン伝導性硫化物ガラスを製造するにあたり、出発原料として、硫化リチウムと、五硫化リン、単体リン及び単体イオウから選ばれる一種以上を含む原料を用い、該原料に、ガラス修飾剤として、硫化リチウム100質量部に対して7〜20質量部の硫酸リチウム及び2.7〜15質量部のチオ硫酸リチウムを添加し、該原料をメカニカルミリングによりガラス化させることを特徴とする、リチウムイオン伝導性硫化物ガラスの製造方法。In producing a lithium ion conductive sulfide glass, a raw material containing at least one selected from lithium sulfide and phosphorus pentasulfide, single phosphorus and single sulfur is used as a starting raw material. Lithium ion conductivity characterized by adding 7 to 20 parts by mass of lithium sulfate and 2.7 to 15 parts by mass of lithium thiosulfate to 100 parts by mass of lithium and vitrifying the raw material by mechanical milling A method for producing sulfide glass. 請求項1に記載の、メカニカルミリングによりガラス化したリチウムイオン伝導性硫化物ガラスをガラス転移温度以上で焼成することを特徴とする、リチウムイオン伝導性硫化物ガラスセラミックスの製造方法。  A method for producing a lithium ion conductive sulfide glass ceramic according to claim 1, wherein the lithium ion conductive sulfide glass vitrified by mechanical milling is fired at a glass transition temperature or higher. 150℃以上で焼成することを特徴とする請求項2に記載のリチウムイオン伝導性硫化物ガラスセラミックスの製造方法。  The method for producing a lithium ion conductive sulfide glass ceramic according to claim 2, wherein firing is performed at 150 ° C. or higher. 前記焼成を真空下又は不活性ガス存在下で行なうことを特徴とする請求項2又は3に記載のリチウムイオン伝導性硫化物ガラスセラミックスの製造方法。  The method for producing a lithium ion conductive sulfide glass ceramic according to claim 2 or 3, wherein the firing is performed in a vacuum or in the presence of an inert gas.
JP2003120176A 2003-04-24 2003-04-24 Method for producing lithium ion conductive sulfide glass and glass ceramics Expired - Fee Related JP4498688B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003120176A JP4498688B2 (en) 2003-04-24 2003-04-24 Method for producing lithium ion conductive sulfide glass and glass ceramics
PCT/JP2004/005914 WO2004095474A1 (en) 2003-04-24 2004-04-23 Lithium ion-conductive sulfide glass, process for producing glass ceramic, and wholly solid type cell made with the glass ceramic
TW093111508A TWI415140B (en) 2003-04-24 2004-04-23 Lithium-ion conductive sulfide glass and glass-ceramic manufacturing method, and a solid-state battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003120176A JP4498688B2 (en) 2003-04-24 2003-04-24 Method for producing lithium ion conductive sulfide glass and glass ceramics

Publications (2)

Publication Number Publication Date
JP2004348972A JP2004348972A (en) 2004-12-09
JP4498688B2 true JP4498688B2 (en) 2010-07-07

Family

ID=33524461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003120176A Expired - Fee Related JP4498688B2 (en) 2003-04-24 2003-04-24 Method for producing lithium ion conductive sulfide glass and glass ceramics

Country Status (1)

Country Link
JP (1) JP4498688B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134305A (en) 2005-10-13 2007-05-31 Ohara Inc Lithium ion conductive solid electrolyte and method for manufacturing same
DE112006003276T5 (en) 2005-12-09 2008-10-23 Idemitsu Kosan Co., Ltd. Lithium ion conductive solid electrolyte sulfide-based and lithium battery entirely of solid using selbigem
JP4834442B2 (en) * 2006-03-31 2011-12-14 出光興産株式会社 Solid electrolyte, method for producing the same, and all-solid-state secondary battery
JP5414143B2 (en) * 2006-06-21 2014-02-12 出光興産株式会社 Method for producing sulfide solid electrolyte
JP5848801B2 (en) * 2006-10-19 2016-01-27 出光興産株式会社 Lithium ion conductive solid electrolyte sheet and method for producing the same
JP5001621B2 (en) * 2006-10-20 2012-08-15 出光興産株式会社 Solid electrolyte and solid secondary battery using the same
JP5448020B2 (en) 2007-03-23 2014-03-19 トヨタ自動車株式会社 Method for producing composite layer and method for producing solid battery
JP2008235227A (en) 2007-03-23 2008-10-02 Toyota Motor Corp Solid battery and manufacturing method
JP5102056B2 (en) 2008-01-31 2012-12-19 株式会社オハラ Solid battery and method of manufacturing electrode thereof
JP5625351B2 (en) * 2009-12-25 2014-11-19 トヨタ自動車株式会社 Electrode layer, solid electrolyte layer, and all-solid secondary battery
JP6234665B2 (en) 2011-11-07 2017-11-22 出光興産株式会社 Solid electrolyte
JP5888610B2 (en) * 2011-12-22 2016-03-22 国立大学法人東京工業大学 Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material
US10388985B2 (en) * 2012-02-06 2019-08-20 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, battery, and producing method for sulfide solid electrolyte material
JP6243103B2 (en) 2012-06-29 2017-12-06 出光興産株式会社 Positive electrode composite
JP6003376B2 (en) * 2012-08-08 2016-10-05 トヨタ自動車株式会社 Sulfide solid electrolyte glass, lithium solid battery and method for producing sulfide solid electrolyte glass
EP2919313A4 (en) 2012-11-06 2016-03-30 Idemitsu Kosan Co Solid electrolyte
JPWO2014073467A1 (en) * 2012-11-07 2016-09-08 株式会社村田製作所 All solid battery
KR101586536B1 (en) 2013-10-10 2016-01-19 한양대학교 산학협력단 Manufacturing method of carbon fiber sheet current collector for all solid state rechargeable thin film lithium secondary battery, and all solid state rechargeable thin film lithium secondary battery comprising carbon fiber sheet current collector
JP6320983B2 (en) 2015-12-01 2018-05-09 出光興産株式会社 Method for producing sulfide glass ceramics
KR102651625B1 (en) * 2016-06-22 2024-03-27 주식회사 솔리비스 Lithium secondary battery solid electrolytes and method of preparing the same
CN112670559A (en) * 2019-10-15 2021-04-16 通用汽车环球科技运作有限责任公司 Solid electrolyte and method for preparing the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202024A (en) * 1990-11-29 1992-07-22 Matsushita Electric Ind Co Ltd Lithium ion conductive solid electrolyte
JPH06279049A (en) * 1993-03-26 1994-10-04 Matsushita Electric Ind Co Ltd Sulfide-based lithium ion-conductive solid electrolyte and synthesis thereof
JPH06279050A (en) * 1993-03-26 1994-10-04 Matsushita Electric Ind Co Ltd Sulfide-based lithium ion-conductive solid electrolyte and synthesis thereof
JPH09245828A (en) * 1996-03-13 1997-09-19 Matsushita Electric Ind Co Ltd Lithium ion conductive solid electrolyte and totally solid lithium secondary battery
JPH11134937A (en) * 1997-10-31 1999-05-21 Osaka Prefecture Manufacture of ion conductive sulfide glass, ion conductive sulfide glass, solid-type electrolyte and totally solid-type secondary battery
JP2000173588A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2000173587A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2001250580A (en) * 2000-03-06 2001-09-14 Masahiro Tatsumisuna Sulfide ceramics with high lithium ion conductivity and all solid cell using the same
JP2002109955A (en) * 2000-10-02 2002-04-12 Osaka Prefecture Sulfide crystallized glass, solid electrolyte, and fully solid secondary cell
JP2002329524A (en) * 2001-02-28 2002-11-15 Sumitomo Electric Ind Ltd Inorganic solid electrolyte and lithium battery member

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202024A (en) * 1990-11-29 1992-07-22 Matsushita Electric Ind Co Ltd Lithium ion conductive solid electrolyte
JPH06279049A (en) * 1993-03-26 1994-10-04 Matsushita Electric Ind Co Ltd Sulfide-based lithium ion-conductive solid electrolyte and synthesis thereof
JPH06279050A (en) * 1993-03-26 1994-10-04 Matsushita Electric Ind Co Ltd Sulfide-based lithium ion-conductive solid electrolyte and synthesis thereof
JPH09245828A (en) * 1996-03-13 1997-09-19 Matsushita Electric Ind Co Ltd Lithium ion conductive solid electrolyte and totally solid lithium secondary battery
JPH11134937A (en) * 1997-10-31 1999-05-21 Osaka Prefecture Manufacture of ion conductive sulfide glass, ion conductive sulfide glass, solid-type electrolyte and totally solid-type secondary battery
JP2000173588A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2000173587A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2001250580A (en) * 2000-03-06 2001-09-14 Masahiro Tatsumisuna Sulfide ceramics with high lithium ion conductivity and all solid cell using the same
JP2002109955A (en) * 2000-10-02 2002-04-12 Osaka Prefecture Sulfide crystallized glass, solid electrolyte, and fully solid secondary cell
JP2002329524A (en) * 2001-02-28 2002-11-15 Sumitomo Electric Ind Ltd Inorganic solid electrolyte and lithium battery member

Also Published As

Publication number Publication date
JP2004348972A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP4498688B2 (en) Method for producing lithium ion conductive sulfide glass and glass ceramics
JP2003208919A (en) Manufacturing method of lithium ion conductive sulfide glass and glass ceramics as well as all solid-type battery using same glass ceramics
JP4580149B2 (en) Lithium ion conductive sulfide glass manufacturing method and lithium ion conductive sulfide glass ceramic manufacturing method
JP6686860B2 (en) Method for producing sulfide solid electrolyte
JP5957144B2 (en) Sulfide-based solid electrolyte for lithium-ion battery
JP3233345B2 (en) Method for producing ion-conductive sulfide glass fine powder for all-solid-state battery, ion-conductive sulfide glass fine powder for all-solid-state battery, solid electrolyte, and all-solid-state secondary battery
JP5873533B2 (en) Sulfide-based solid electrolyte for lithium-ion battery
JP2004235155A (en) Solid electrolyte, its manufacturing method, and battery adopting it
JP2004265685A (en) Manufacturing method of lithium ion conductive sulfide glass and glass ceramic and all solid type battery using the glass ceramic
JP5561023B2 (en) Method for producing sulfide solid electrolyte material
JP2009283344A (en) Negative electrode mix for lithium battery, negative electrode for lithium battery, lithium battery, device, and manufacturing method of negative electrode mix for lithium battery
JP2014035987A (en) METHOD FOR MANUFACTURING Si-CONTAINING ACTIVE MATERIAL LAYER, METHOD FOR MANUFACTURING SOLID-STATE BATTERY, Si-CONTAINING ACTIVE MATERIAL LAYER, AND SOLID-STATE BATTERY
JP5428545B2 (en) All solid state battery system
JP7176937B2 (en) Method for producing composite solid electrolyte
JP2019125502A (en) Sulfide solid electrolyte
WO2012161055A1 (en) Production method for material employed in energy device and/or electrical storage device, and material employed in energy device and/or electrical storage device
TWI415140B (en) Lithium-ion conductive sulfide glass and glass-ceramic manufacturing method, and a solid-state battery using the same
KR20100088492A (en) Cathodal pellet for thermal battery, method for fablicatign the same, and thermal battery having the same
JP5036686B2 (en) Lithium copper sulfide and method for producing the same
JP6780479B2 (en) Method for producing sulfide solid electrolyte
JPH0664928A (en) Lithium-transition metal double oxide particle, its production and non-aqueous electrolyte secondary battery
CN113644314B (en) Fluoride ion solid electrolyte material and preparation method thereof
JP5652132B2 (en) Inorganic solid electrolyte and lithium secondary battery
JP6783736B2 (en) Sulfide solid electrolyte
JPH0782857B2 (en) Method for producing positive electrode active material for thermal battery and thermal battery using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160423

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees