JP4497387B2 - Secondary pure water production equipment - Google Patents

Secondary pure water production equipment Download PDF

Info

Publication number
JP4497387B2
JP4497387B2 JP2000140144A JP2000140144A JP4497387B2 JP 4497387 B2 JP4497387 B2 JP 4497387B2 JP 2000140144 A JP2000140144 A JP 2000140144A JP 2000140144 A JP2000140144 A JP 2000140144A JP 4497387 B2 JP4497387 B2 JP 4497387B2
Authority
JP
Japan
Prior art keywords
pure water
water
chamber
water production
production apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000140144A
Other languages
Japanese (ja)
Other versions
JP2001314867A (en
Inventor
康孝 新明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2000140144A priority Critical patent/JP4497387B2/en
Publication of JP2001314867A publication Critical patent/JP2001314867A/en
Application granted granted Critical
Publication of JP4497387B2 publication Critical patent/JP4497387B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/48Apparatus therefor having one or more compartments filled with ion-exchange material, e.g. electrodeionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エレクトロニクス産業、特に半導体部品や液晶部品を製造する際に使用される洗浄用超純水の製造用二次純水製造装置に関するものである。
【0002】
【従来の技術】
従来、超純水を製造する場合、原水を凝集沈殿装置、砂濾過器、活性炭濾過器、2床3塔式純水製造装置、逆浸透膜装置、紫外線照射装置及びカートリッジポリッシャー等を組み合わせた1次純水製造装置で可能な限り高純度の純水を製造し、半導体部品や液晶部品を洗浄する直前でこの純水を更にカートリッジポリッシャーや限外濾過膜装置などを有する二次純水製造装置で処理して超純水を得、洗浄水として使用に供している。
【0003】
近年、脱イオン能力、殺菌能力及び微粒子除去能力などを有すると共に、運転操作が簡便であり、長期間連続して使用できる電気式脱イオン水製造装置が二次純水製造装置に単独で、あるいはカートリッジポリッシャーに代わるものとして使用されている(特開平7−8948号公報)。図4はその従来の典型的な電気式脱イオン水製造装置(以下、「EDI」とも言う。)の模式断面図を示す。図4に示すように、従来の電気式脱イオン水製造装置は、カチオン交換膜101及びアニオン交換膜102を離間して交互に配置し、カチオン交換膜101とアニオン交換膜102で形成される空間内に一つおきにイオン交換体103を充填して脱塩室とする。脱塩室の被処理水流入側(前段)にはアニオン交換樹脂103aが充填され、脱塩室の被処理水流出側(後段)にはカチオン交換樹脂とアニオン交換樹脂の混合イオン交換樹脂103bが充填されている。また、脱塩室104のそれぞれ隣に位置するアニオン交換膜102とカチオン交換膜101で形成されるイオン交換体103を充填していない部分は濃縮水を流すための濃縮室105としている。また、脱塩室の一側に陰極109を配設すると共に、他端側に陽極110を配設する。なお、前述したスペーサーを挟んだ位置が濃縮室105であり、また両端の濃縮室105の両外側に必要に応じカチオン交換膜101、アニオン交換膜102、あるいはイオン交換性のない単なる隔膜等の仕切り膜を配設し、仕切り膜で仕切られた両電極109、110が接触する部分をそれぞれ陰極室112及び陽極室113とする。このように、従来の電気式脱イオン水製造装置においては、濃縮室の数は脱塩室の数より1つ多い形態のものであるか、あるいは両端に濃縮室を仕切り膜無しで電極室とした場合、1つ少ないものであった。
【0004】
このような電気式脱イオン水製造装置によって脱イオン水を製造する場合を図4を参照して説明する。すなわち、陰極109と陽極110間に直流電流を通じ、また、被処理水流入ライン111から被処理水が流入すると共に、濃縮水流入ライン115から濃縮水が流入し、且つ電極水流入ライン117、117からそれぞれ電極水が流入する。被処理水流入ライン111から流入した被処理水は脱塩室104を流下し、先ず、前段のアニオン交換樹脂103aを通過する際、塩化物イオンや硫酸イオンなどのアニオン成分が除去され、次に、後段のカチオン交換樹脂及びアニオン交換樹脂の混合イオン交換樹脂103bを通過する際、マグネシウム、カルシウム及びナトリウムなどのカチオン成分が除去される。濃縮水流入ライン115から流入した濃縮水は各濃縮室105を上昇し、カチオン交換膜101及びアニオン交換膜102を介して移動してくる不純物イオンを受取り、不純物イオンを濃縮した濃縮水として濃縮水流出ライン116から流出され、さらに電極水流入ライン117、117から流入した電極水は電極水流出ライン118、118から流出される。従って、脱イオン水流出ライン114から脱塩水が得られる。
【0005】
二次純水製造装置に組み込まれたこのような電気式脱イオン水製造装置では、一次純水を被処理水として更なる精製処理を行うが、被処理水から電気的に除去された不純物イオンを装置外に排出する濃縮水に、同様に一次純水を使用した場合、該一次純水の導電性は低いため電気抵抗が著しく高くなる。このため、高電圧を印加しても十分な電流を流すことが困難となる。これを解決する方法として、濃縮水に酸や塩などの電解質を添加する方法、濃縮水に一次純水装置の逆浸透膜装置の透過水を使用する方法、あるいは濃縮水に二次純水製造装置に組み込まれた逆浸透膜装置の濃縮水を使用する方法等がある。このように、導電性を高めた水を用いて電気抵抗の低減を図ると、電気式脱イオン水製造装置に十分な電流が流れて、被処理水の精製が効果的に行われる。これにより、半導体集積度の飛躍的上昇に伴って、洗浄する超純水に限りなく理論純水に近い水質が求められる現状の要求を満足するはずであった。
【0006】
【発明が解決しようとする課題】
しかしながら、実際には、従来の電気式脱イオン水製造装置において、濃縮水に電解質濃度を高めた水を使用すると、その処理水には常に若干量の不純物が残留し、得られる処理水はその抵抗率が理論純水の抵抗率を下回る満足のいかないものであるという問題があった。
【0007】
従って、本発明の目的は、上記課題を解決するものであって、半導体部品などを製造する際に使用される洗浄用超純水の製造用二次純水製造装置に組み込まれる電気式脱イオン水製造装置の濃縮水に電解質濃度を高めた水を使用しても、理論純水に近い処理水質を得ることができる二次純水製造装置を提供することにある。
【0008】
【課題を解決するための手段】
かかる実情において、本発明者らは鋭意検討を行った結果、(1)従来の電気式脱イオン水製造装置において、濃縮水に電解質濃度を高めた水を使用した場合、その処理水に不純物が残留するのは被処理水の精製不足によるものではなく、濃縮水中の高濃度の不純物イオンがイオン交換膜の選択透過性に反して処理水中に移動拡散することにより引き起こされること、(2)なかでも濃縮水中のナトリウムイオンがアニオン交換膜を透過して処理水に混入する現象が顕著であること、(3)従来の電気式脱イオン水製造装置とはその脱塩室構造において全く相違する小脱塩室が中間イオン交換膜によって隣接する複室式電気式脱イオン水製造装置(以下、「複室式EDI」とも言う。)を使用すれば、濃縮水中の高濃度の不純物イオンがイオン交換膜の選択透過性に反して流入する脱塩室は被処理水が最初に流入する小脱塩室であり、該小脱塩室の流出水は更に隣接する他の小脱塩室に流入し、更に脱塩されるから、その処理水、すなわち、精製水は理論純水に近い処理水質となること、などを見出し、本発明を完成するに至った。
【0009】
すなわち、本発明(1)は、一次純水製造装置から供給される純水を更に精製処理してユースポイントへ供給する二次純水製造装置であって、該二次純水製造装置は少なくとも電気式脱イオン水製造装置を組み込んでなり、該電気式脱イオン水製造装置が、一側のカチオン交換膜、他側のアニオン交換膜及び当該カチオン交換膜と当該アニオン交換膜の間に位置する中間イオン交換膜で区画される2つの小脱塩室にイオン交換体を充填して脱塩室を構成し、前記カチオン交換膜、アニオン交換膜を介して脱塩室の両側に濃縮室を設け、これらの脱塩室及び濃縮室を陽極と陰極の間に配置して形成される二次純水製造装置を提供するものである。
【0010】
また、本発明(2)は、前記電気式脱イオン水製造装置の中間イオン交換膜が、アニオン交換膜である前記(1)記載の二次純水製造装置を提供するものである。
また、本発明(3)は、前記二次純水製造装置は、前記電気式脱イオン水製造装置と、限外濾過膜装置又は精密濾過膜装置とを組み込んでなる前記(1)又は(2)記載の二次純水製造装置を提供するものである。
また、本発明(4)は、前記二次純水製造装置は、紫外線殺菌装置又は紫外線酸化装置と、前記電気式脱イオン水製造装置と、限外濾過膜装置又は精密濾過膜装置とを組み込んでなる前記(1)又は(2)記載の二次純水製造装置を提供するものである。
また、本発明(5)は、前記二次純水製造装置は、更に、逆浸透膜装置を組み込んでなる前記(4)記載の二次純水製造装置を提供するものである。
【0011】
本発明によれば、二次純水製造装置に組み込まれる電気式脱イオン水製造装置は全く新規な複室式の脱塩室構造を有するため、この複室式EDIの濃縮水に、電気抵抗を低減するため電解質濃度を高めた水を使用しても、濃縮水中の高濃度の不純物イオンがイオン交換膜の選択透過性に反して流入するのは被処理水が最初に流入する一方の小脱塩室であり、該小脱塩室の流出水は更に他の小脱塩室に流入して、脱塩処理されるため、この処理水、すなわち、精製水は理論純水に近い処理水質となる。また、当該複室式EDIは電気抵抗を低減できるため、省電力型の運転が可能となる。
【0012】
【発明の実施の形態】
本発明の二次純水製造装置は、一次純水製造装置から供給される純水を更に精製処理してユースポイントへ供給する装置であって、該二次純水製造装置は少なくとも後述する特定構造の複室式EDIを組み込んでなるものである。この二次純水製造装置の具体例を次に示す。なお、次の具体例は左から右へ順に被処理水の流れる順序である。
(1)複室式EDI
(2)複室式EDI−限外濾過膜装置
(3)複室式EDI−精密濾過膜装置
(4)紫外線殺菌装置−複室式EDI−限外濾過膜装置
(5)紫外線殺菌装置−複室式EDI−精密濾過膜装置
(6)紫外線酸化装置−アニオンポリッシャー−複室式EDI−限外濾過膜装置
(7)紫外線酸化装置−アニオンポリッシャー−複室式EDI−精密濾過膜装置
(8)逆浸透膜装置−紫外線酸化装置−アニオンポリッシャー−複室式EDI−限外濾過膜装置
(9)逆浸透膜装置−紫外線酸化装置−アニオンポリッシャー−複室式EDI−精密濾過膜装置
(10)逆浸透膜装置−紫外線殺菌装置−アニオンポリッシャー−複室式EDI−限外濾過膜装置
(11)逆浸透膜装置−紫外線殺菌装置−アニオンポリッシャー−複室式EDI−精密濾過膜装置
【0013】
また、上記(1)〜(11)に示す二次純水製造装置に、更に、膜脱気装置や真空脱気装置などの公知の脱気装置を組み合わせることもできる。これにより、被処理水中の溶存酸素や溶存炭酸ガスを除去することができる。被処理水中の溶存炭酸ガスが除去されれば、アニオンポリッシャーや複室式EDIのアニオン負荷を低減できる。脱気装置の設置場所としては、特に制限されないが、溶存酸素の除去を目的とした場合、複室式EDIの直前あるいは直後の設置がよく、溶存炭酸ガスの除去を目的とした場合、複室式EDIの直前あるいはアニオンポリッシャーの直前の設置がよい。
【0014】
次に、本発明の二次純水製造装置の1例として、上記(4)を図面を参照して説明する。図1は上記(4)の二次純水製造装置を示すフロー図である。図1中、二次純水製造装置50は、純水貯槽52、ポンプ53、紫外線殺菌装置54、複室式EDI55、限外濾過膜装置56とから構成されている。記号51は公知の一次純水製造装置であり、例えば、凝集沈殿装置、砂濾過器、活性炭濾過器、2床3塔式純水製造装置、逆浸透膜装置、紫外線照射装置、電気式脱イオン水製造装置及び混床式ポリッシャー等を組み合わせた装置であり、原水を可能な限り高純度の純水に製造するものである。図1中、一次純水製造装置51から純水貯槽52に供給される純水はポンプ53によって、先ず紫外線殺菌装置54に送られ、ここで紫外線が純水に照射されて殺菌が行われる。紫外線殺菌装置54は公知のものが使用できる。殺菌された純水は、次いで複室式EDI55に送られ、ここで+電荷又は−電荷を有する不純物イオン、生菌及び微粒子等が除去される。
【0015】
この複室式EDI55を図面を参照して説明する。図2は複室式EDIの模式図である。図2に示すように、複室式EDIはカチオン交換膜3、中間イオン交換膜5及びアニオン交換膜4を離間して交互に配置し、カチオン交換膜3と中間イオン交換膜5で形成される空間内にイオン交換体8を充填して第1小脱塩室d1 、d3 、d5 、d7 を形成し、中間イオン交換膜5とアニオン交換膜4で形成される空間内にイオン交換体8を充填して第2小脱塩室d2 、d4 、d6 、d8 を形成し、第1小脱塩室d1 と第2小脱塩室d2 で脱塩室D1 、第1小脱塩室d3 と第2小脱塩室d4 で脱塩室D2 、第1小脱塩室d5 と第2小脱塩室d6 で脱塩室D3 、第1小脱塩室d7 と第2小脱塩室d8 で脱塩室D4 とする。また、脱塩室D2 、D3 のそれぞれ隣に位置するアニオン交換膜4とカチオン交換膜3で形成されるイオン交換体8を充填していない部分は濃縮水を流すための濃縮室1とする。これを順次に併設して図中、左より脱塩室D1 、濃縮室1、脱塩室D2 、濃縮室1、脱塩室D3 、濃縮室1、脱塩室D4 を形成する。また、中間膜を介して隣合う2つの小脱塩室において、第2小脱塩室の処理水流出ライン12は第1小脱塩室の被処理水流入ライン13に連接されている。
【0016】
上記のような脱塩室は2つの内部がくり抜かれた枠体と3つのイオン交換膜によって形成される脱イオンモジュールからなる。すなわち、図では省略するが、第1枠体の一側にカチオン交換膜を封着し、第1枠体のくり抜かれた部分にイオン交換体を充填し、次いで、第1枠体の他方の部分に中間イオン交換膜を封着して第1小脱塩室を形成する。次に中間イオン交換膜を挟み込むように第2枠体を封着し、第2枠体のくり抜かれた部分にイオン交換体を充填し、次いで、第2枠体の他方の部分にアニオン交換膜を封着して第2小脱塩室を形成する。なお、イオン交換膜は比較的柔らかいものであり、第1枠体、第2枠体内部にイオン交換体を充填してその両面をイオン交換膜で封着した時、イオン交換膜が湾曲してイオン交換体の充填層が不均一となるのを防止するため、第1枠体、第2枠体の空間部に複数のリブを縦設する。また、第1枠体、第2枠体の上方部に被処理水又は処理水の流出入口が、また枠体の下方部に被処理水又は処理水の流出入口がそれぞれ付設されている。このような脱イオンモジュールの複数個をその間に図では省略するスペーサーを挟んで、並設した状態が図2に示されたものであり、並設した脱イオンモジュールの一側に陰極6を配設すると共に、他端側に陽極7を配設する。なお、前述したスペーサーを挟んだ位置が濃縮室1であり、また両端の脱塩室Dの両外側に必要に応じカチオン交換膜、アニオン交換膜、あるいはイオン交換性のない単なる隔膜等の仕切り膜を配設し、仕切り膜で仕切られた両電極6、7が接触する部分をそれぞれ電極室2、2としてもよい。
【0017】
このような複室式EDIによって脱イオン水を製造する場合、以下のように操作される。すなわち、陰極6と陽極7間に直流電流を通じ、また被処理水流入ライン11から被処理水が流入すると共に、濃縮水流入ライン15から濃縮水が流入し、かつ電極水流入ライン17、17からそれぞれ電極水が流入する。被処理水流入ライン11から流入した被処理水は第2小脱塩室d2 、d4 、d6 、d8 を流下し、例えばアニオン交換体81の充填層を通過する際に不純物イオンが除去される。更に、第2小脱塩室の処理水流出ライン12を通った流出水は第1小脱塩室の被処理水流入ライン13を通って第1小脱塩室d1 、d3 、d5 、d7 を流下し、ここでも例えば、カチオン交換体とアニオン交換体の混合イオン交換体82の充填層を通過する際に不純物イオンが除去され、脱イオン水が脱イオン水流出ライン14から得られる。また、濃縮水流入ライン15から流入した濃縮水は各濃縮室1を上昇し、カチオン交換膜3及びアニオン交換膜4を介して移動してくる不純物イオンを受取り、不純物イオンを濃縮した濃縮水として濃縮水流出ライン16から流出され、さらに電極水流入ライン17、17から流入した電極水は電極水流出ライン18、18から流出される。上述の操作によって、被処理水中の不純物イオンは電気的に除去される。
【0018】
濃縮水流入ライン15から流入した濃縮水は、電解質濃度の濃い、すなわち、導電性を高めた水を用いて電気抵抗の低減を図ることが好ましい。このような場合、従来のEDIにおいては、濃縮水中の不純物イオン、特にナトリウムイオンがアニオン交換膜を透過して処理水に混入する現象がある。その理由はイオン交換膜は輸率と定義されるイオンの符号選択透過性を有するが、この輸率は通常、完全選択透過を意味する1.00ではなく、0.98〜0.99である。従って、イオン交換膜の輸率に依存して濃縮水中のイオンが処理水に混入するから、濃縮水中のイオン濃度が高いほど処理水への混入は顕著となる。一方、複室式EDIの場合、濃縮水中の不純物イオンがイオン交換膜の輸率に依存して混入するのは被処理水が最初に流入する第2小脱塩室d2 、d4 、d6 、d8 であり、この第2小脱塩室の流出水は更に第1小脱塩室d1 、d3 、d5 、d7 に流入して脱塩されるため、複室式EDIの処理水、すなわち、精製水は理論純水に近い処理水質を得ることができるのである。
【0019】
複室式EDIにおいて、中間のイオン交換膜としては、カチオン交換膜又はアニオン交換膜の単一膜、あるいはアニオン交換膜、カチオン交換膜の両方を配置したとした複式膜のいずれであってもよい。装置上部又は装置下部にアニオン交換膜又はカチオン交換膜とした複式膜とする場合、アニオン交換膜及びカチオン膜のそれぞれの高さ(面積)は被処理水の水質又は処理目的などによって適宜決定される。また、単一膜を使用する場合、被処理水中から除去したいイオン種に応じてイオン交換膜が決定されるが、純水製造を目的とする本発明においては、アニオン交換膜が好ましい。
【0020】
第1小脱塩室又は第2小脱塩室の厚さは特に制限されず、第1小脱塩室又は第2小脱塩室に充填されるイオン交換体の種類と充填方法によって、最適な厚さを決定すればよい。従って、第1小脱塩室の厚さを3mm、第2小脱塩室の厚さを6mmとして、全体の厚さ、すなわち脱塩室の厚さを9mmとしてもよい。このように、複数の脱塩室と濃縮室を交互に配置し、脱塩室の両側に配されるカチオン交換膜とアニオン交換膜で区画される脱塩室の厚みは、従来のものよりも厚くでき、1.5〜18mmの範囲、好適には、6.5〜15mm、更に好適には9〜13mmの範囲で適宜決定される。
【0021】
また、脱塩室に充填されるイオン交換体としては、特に制限されず、アニオン交換体(以下、「A」とも言う)単床、カチオン交換体(以下、「K」とも言う)単床及びアニオン交換体とカチオン交換体の混床(以下、「K/A」とも言う)又はこれらの組合せのものが挙げられる。また、イオン交換体としては、イオン交換樹脂、イオン交換繊維などイオン交換機能を有する物質であればいずれでもよく、また、それらを組合せたものであってもよい。
【0022】
また、被処理水の第1小脱塩室及び第2小脱塩室での流れ方向は、特に制限されず、上記実施の形態例の他、第1小脱塩室と第2小脱塩室での流れ方向が異なっていてもよい。また、被処理水が流入する小脱塩室は、上記実施の形態例の他、先ず、被処理水を第1脱塩室に流入させ、流下した後、第1脱塩室の流出水を第2脱塩室に流入させてもよい。また、濃縮水の流れ方向も適宜決定される。
【0023】
上記の如く、複室式EDIで不純物イオン、生菌及び微粒子等が除去された後、処理水は更に限外濾過膜装置56で処理され、超純水としてユースポイントに供給され、その一部が使用に供されると共に、残部は戻り配管57を介して純水貯槽52へ送られる。なお、限外濾過膜装置56は公知のものを使用できる。
【0024】
本実施の形態例は、従来の構成である紫外線殺菌装置−カートリッジポリッシャー−限外濾過膜装置に構成上対応するものであるが、本実施の形態例で使用する複室式EDIは従来の構成で使用するカートリッジポリッシャーよりも殺菌及び微粒子の除去の面で優れており、本実施の形態例の方が処理水の水質は向上する。
【0025】
なお、前記の具体例の中、(1)においては、二次純水製造装置は複室式EDIのみで構成されるから、コンパクトな装置となり設置面及び運転面でもコストが低減された運転ができる。また、従来使用されていたカートリッジポリッシャーのイオン交換体の交換など煩わしい作業が削除できる。
【0026】
前記の具体例の中、前記(2)又は(3)の構成は、上記(1)の構成に対して、更に微粒子のリークを防止するものである。また、前記(6)及び(7)の構成は有機物の除去を目的としたもので、有機物は先ず、紫外線酸化装置で酸化分解され、次いで、分解生成物は炭酸イオンや有機酸の形でアニオンポリッシャーで除去される。また、前記(8)及び(9)の構成は有機物の除去を最重点としたもので、逆浸透膜装置と紫外線酸化装置で、有機物の除去を最大限行うことを意図したものである。また、この構成では微粒子の除去も行えるから、高度に精製された超純水を得ることができる。
【0027】
【実施例】
次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
【0028】
実施例1
図3に示すA系統のフローで示される装置及び下記に示す仕様の装置を使用して超純水を製造した。すなわち、一次純水製造装置61で市水(280μS/cm)を精製処理して得た純水を純水貯槽62に送り、この純水をポンプ63で複室式EDI65、限外濾過膜装置66からなる二次純水製造装置に供給した。また、複室式EDI65の濃縮室には1次純水製造装置に組み込まれた逆浸透膜装置の透過水を供給した。図中、a、b及びcにおける水質の測定結果を表1に示す。
<一次純水製造装置の基本構成>
限外濾過膜装置−逆浸透膜装置−電気式脱イオン水製造装置
(限外濾過膜装置)
型式;LGV−5210(外圧型中空糸膜モジュール;旭化成工業社製)
分画分子量;20,000
(逆浸透膜装置)
型式;ES20−D8(ポリアミド系複合合成膜スパイラル型モジュール;日東 電工社製)
(電気式脱イオン水製造装置)
図4で示される構造で3個の脱イオンモジュールを併設して構成されるEDIを使用した。
型式;EDI−10;オルガノ社製
イオン交換体;脱塩室上流部(1/2) はアニオン交換樹脂(A)、脱塩室下流部 (1/2) は(A)とカチオン交換樹脂(K)の混床イオン交換樹脂
処理量;1m3/h.
濃縮水量;0.3m3/h.
印加電圧;200V
通電電流値;1.5A
<二次純水製造装置>
複室式EDI−限外濾過膜装置
(複室式EDI)
図2で示される構造で3個の脱イオンモジュール(6個の小脱塩室)を併設して構成される複室式EDIを使用した。すなわち、被処理水が最初に流入する小脱塩室は図2中、第2脱塩室である。
第1小脱塩室;幅300mm、高さ600mm、厚さ3mm
第1小脱塩室充填イオン交換樹脂;アニオン交換樹脂(A)とカチオン交換樹脂(K)との混合イオン交換樹脂(混合比は体積比でA:K=1:1)
第2小脱塩室;幅300mm、高さ600mm、厚さ8mm
第2小脱塩室充填イオン交換樹脂;アニオン交換樹脂
装置全体の流量;1m3/h.
濃縮水量;0.3m3/h.
印加電圧;200V
通電電流値;1.5A
(限外濾過膜装置)
型式;OLT−3026(外圧型中空糸膜モジュール;旭化成工業社製)
分画分子量;10,000
【0029】
比較例1
図3に示すB系統のフローで示される装置及び下記に示す仕様の装置を使用して超純水を製造した。すなわち、実施例1と異なる点は複室式EDI65に代えて、電気式脱イオン水製造装置(EDI)601及びカートリッジポリッシャー602を設置した点にある。また、EDIの濃縮室には1次純水製造装置に組み込まれた逆浸透膜装置の透過水を供給した。図中、d及びeにおける水質の測定結果を表1に示す。
<一次純水製造装置>
実施例1と同様である。
<二次純水製造装置>
EDI−カートリッジポリッシャー−限外濾過膜装置
(カートリッジポリッシャー)
アンバーライトIR-124(H 形)とアンバーライトIRA-402BL(OH形) との混合イオン交換樹脂
(EDI及び限外濾過膜装置)
EDIは一次純水製造装置で使用されるものと同様のもので、限外濾過膜装置は実施例1と同様のもの。
【0030】
【表1】

Figure 0004497387
【0031】
表1から、複室式EDIを組み込んだ二次純水製造装置は、カートリッジポリッシャーを使用しなくとも、これを使用したのと同様の高い抵抗率の処理水が得られた。
【0032】
【発明の効果】
本発明によれば、二次純水製造装置に組み込まれる電気式脱イオン水製造装置の濃縮水に、通電抵抗を低減するため電解質濃度を高めた水を使用して、濃縮水中の高濃度の不純物イオンがイオン交換膜の選択透過性に反して脱塩室に流入しても、処理水の抵抗率が低下することを防止できる。このため、従来の電気式脱イオン水製造装置に比べて、高抵抗率の処理水がより簡素なシステムで得ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態における二次純水製造装置のフロー図である。
【図2】本発明で使用する複室式電気式脱イオン水製造装置の模式図である。
【図3】実施例及び比較例の構成を示すフロー図である。
【図4】従来の電気式脱イオン水製造装置の模式図である。
【符号の説明】
D、D1 〜D4 、104 脱塩室
1 、d3 、d5 、d7 、 第1小脱塩室
2 、d4 、d6 、d8 、 第2小脱塩室
1、105 濃縮室
2、112、113 電極室
3、101 カチオン交換膜
4、102 アニオン交換膜
5 中間イオン交換膜
6、109 陰極
7、110 陽極
8、103 イオン交換体
11、111 被処理水流入ライン
12 第2小脱塩室の処理水流出ライン
13 第1小脱塩室の被処理水流入ライン
14、114 脱イオン水流出ライン
15、115 濃縮水流入ライン
16、116 濃縮水流出ライン
17、117 電極水流入ライン
18、118 電極水流出ライン
51、61 一次純水製造装置
52、62 純水貯槽
53、63 ポンプ
54 紫外線殺菌装置
55、65 複室式電気式脱イオン水製造装置
601 電気式脱イオン水製造装置
56、66、603 限外濾過膜装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a secondary pure water production apparatus for producing cleaning ultrapure water used in the electronics industry, particularly when producing semiconductor parts and liquid crystal parts.
[0002]
[Prior art]
Conventionally, when producing ultrapure water, raw water is combined with a coagulating sedimentation device, sand filter, activated carbon filter, two-bed three-column pure water production device, reverse osmosis membrane device, ultraviolet irradiation device, cartridge polisher, etc. 1 A secondary pure water production apparatus that produces pure water as high as possible with the secondary pure water production equipment, and further has a cartridge polisher, an ultrafiltration membrane device, etc. immediately before washing semiconductor parts and liquid crystal parts. To obtain ultrapure water, which is used as washing water.
[0003]
In recent years, an electric deionized water production apparatus that has deionization ability, sterilization ability, particulate removal ability, etc., is easy to operate, and can be used continuously for a long period of time is used as a secondary pure water production apparatus alone, or It is used as an alternative to a cartridge polisher (Japanese Patent Laid-Open No. 7-8948). FIG. 4 shows a schematic cross-sectional view of the conventional typical electric deionized water production apparatus (hereinafter also referred to as “EDI”). As shown in FIG. 4, in the conventional electric deionized water production apparatus, the cation exchange membrane 101 and the anion exchange membrane 102 are arranged alternately and spaced apart to form a space formed by the cation exchange membrane 101 and the anion exchange membrane 102. Every other ion-exchanger 103 is filled into the desalination chamber. The treated water inflow side (front stage) of the desalting chamber is filled with anion exchange resin 103a, and the treated water outflow side (rear stage) of the desalting chamber is filled with a mixed ion exchange resin 103b of a cation exchange resin and an anion exchange resin. Filled. Further, a portion not filled with the ion exchanger 103 formed by the anion exchange membrane 102 and the cation exchange membrane 101 located adjacent to each of the desalting chambers 104 is a concentration chamber 105 for flowing concentrated water. In addition, a cathode 109 is disposed on one side of the desalination chamber, and an anode 110 is disposed on the other end side. In addition, the position where the above-mentioned spacer is sandwiched is the concentrating chamber 105, and on both outer sides of the concentrating chamber 105 at both ends, if necessary, a partition such as a cation exchange membrane 101, an anion exchange membrane 102, or a simple membrane having no ion exchange properties. The portions where the membranes are arranged and the electrodes 109 and 110 that are partitioned by the partition membrane are in contact with each other are referred to as a cathode chamber 112 and an anode chamber 113, respectively. Thus, in the conventional electric deionized water production apparatus, the number of concentrating chambers is one more than the number of demineralizing chambers, or the concentrating chambers are provided at both ends without partition membranes and the electrode chambers. In that case, it was one less.
[0004]
The case where deionized water is manufactured by such an electric deionized water manufacturing apparatus will be described with reference to FIG. That is, a direct current is passed between the cathode 109 and the anode 110, water to be treated flows from the water to be treated inflow line 111, concentrated water from the concentrated water inflow line 115, and electrode water inflow lines 117 and 117. Electrode water flows from each. To-be-treated water flowing in from the to-be-treated water inflow line 111 flows down the desalting chamber 104. First, when passing through the anion exchange resin 103a in the previous stage, anion components such as chloride ions and sulfate ions are removed, and then When passing through the mixed ion exchange resin 103b of the latter cation exchange resin and anion exchange resin, cation components such as magnesium, calcium and sodium are removed. Concentrated water flowing in from the concentrated water inflow line 115 rises in each concentration chamber 105, receives impurity ions moving through the cation exchange membrane 101 and the anion exchange membrane 102, and concentrates as concentrated water in which impurity ions are concentrated. The electrode water flowing out from the outflow line 116 and further flowing in from the electrode water inflow lines 117 and 117 flows out from the electrode water outflow lines 118 and 118. Accordingly, demineralized water is obtained from the deionized water outflow line 114.
[0005]
In such an electrical deionized water production apparatus incorporated in the secondary pure water production apparatus, the primary pure water is further treated as treated water, but impurity ions electrically removed from the treated water are used. When primary pure water is similarly used as the concentrated water discharged from the apparatus, the electrical resistance is remarkably increased because the conductivity of the primary pure water is low. For this reason, it is difficult to pass a sufficient current even when a high voltage is applied. As a method for solving this, a method of adding an electrolyte such as an acid or salt to the concentrated water, a method of using the permeated water of the reverse osmosis membrane device of the primary pure water device for the concentrated water, or the production of secondary pure water to the concentrated water There is a method of using concentrated water of a reverse osmosis membrane device incorporated in the device. As described above, when the electrical resistance is reduced by using the water having improved conductivity, a sufficient current flows through the electric deionized water production apparatus, and the water to be treated is effectively purified. As a result, with the dramatic increase in the degree of integration of semiconductors, the current requirements for water quality close to theoretical pure water as well as ultrapure water to be cleaned should be satisfied.
[0006]
[Problems to be solved by the invention]
However, in practice, in conventional electric deionized water production equipment, when water having a higher electrolyte concentration is used as concentrated water, some amount of impurities always remain in the treated water, and the obtained treated water is There was a problem that the resistivity was unsatisfactory below the resistivity of theoretical pure water.
[0007]
Accordingly, an object of the present invention is to solve the above-mentioned problems, and is an electric deionization incorporated in a secondary pure water production apparatus for producing cleaning ultrapure water used when producing semiconductor parts and the like. An object of the present invention is to provide a secondary pure water production apparatus capable of obtaining treated water quality close to theoretical pure water even when water having an increased electrolyte concentration is used as the concentrated water of the water production apparatus.
[0008]
[Means for Solving the Problems]
Under such circumstances, the present inventors have conducted intensive studies. As a result, (1) in a conventional electric deionized water production apparatus, when water having an increased electrolyte concentration is used as concentrated water, impurities are present in the treated water. What remains is not due to insufficient purification of the water to be treated, but is caused by high-concentration impurity ions in the concentrated water moving and diffusing into the treated water against the selective permeability of the ion exchange membrane. (2) However, the phenomenon that sodium ions in the concentrated water permeate through the anion exchange membrane and mix with the treated water is remarkable. (3) A small difference that is completely different from the conventional electric deionized water production apparatus in the structure of the desalination chamber. If a multi-chamber electric deionized water production apparatus (hereinafter also referred to as “double-chamber EDI”) in which the desalination chamber is adjacent by an intermediate ion exchange membrane is used, high-concentration impurity ions in the concentrated water are ionized. The desalination chamber that flows in contrary to the selective permeability of the exchange membrane is a small desalination chamber into which treated water first flows, and the effluent from the small desalination chamber flows into another adjacent small desalination chamber. Further, since the salt is further desalted, it has been found that the treated water, that is, purified water has a treated water quality close to theoretical pure water, and the present invention has been completed.
[0009]
That is, the present invention (1) is a secondary pure water production apparatus for further purifying the pure water supplied from the primary pure water production apparatus and supplying the purified water to the use point, wherein the secondary pure water production apparatus is at least An electric deionized water production apparatus is incorporated, and the electric deionized water production apparatus is located between one cation exchange membrane, the other anion exchange membrane, and the cation exchange membrane and the anion exchange membrane. Two small desalting chambers partitioned by an intermediate ion exchange membrane are filled with ion exchangers to form a desalting chamber, and concentration chambers are provided on both sides of the desalting chamber via the cation exchange membrane and anion exchange membrane. The present invention provides a secondary pure water production apparatus formed by disposing these desalting chamber and concentration chamber between an anode and a cathode.
[0010]
Moreover, this invention (2) provides the secondary pure water manufacturing apparatus of the said (1) description whose intermediate ion exchange membrane of the said electrical deionized water manufacturing apparatus is an anion exchange membrane.
In the present invention (3), the secondary pure water production apparatus comprises the electric deionized water production apparatus and the ultrafiltration membrane device or the microfiltration membrane device. ) Secondary pure water production apparatus as described above.
In the present invention (4), the secondary pure water production apparatus incorporates an ultraviolet sterilization apparatus or an ultraviolet oxidation apparatus, the electric deionized water production apparatus, and an ultrafiltration membrane apparatus or a microfiltration membrane apparatus. The secondary pure water manufacturing apparatus according to the above (1) or (2) is provided.
Moreover, this invention (5) provides the secondary pure water manufacturing apparatus of the said (4) description in which the said secondary pure water manufacturing apparatus further incorporates a reverse osmosis membrane apparatus.
[0011]
According to the present invention, since the electric deionized water production apparatus incorporated in the secondary pure water production apparatus has a completely new double-chamber demineralization chamber structure, the electric resistance is added to the concentrated water of the double-chamber EDI. Even when water with a high electrolyte concentration is used to reduce the concentration, the high concentration of impurity ions in the concentrated water flows against the selective permeability of the ion exchange membrane. Since the effluent of the small desalting chamber further flows into another small desalting chamber and undergoes desalination treatment, the treated water, that is, the purified water, has a treated water quality close to theoretical pure water. It becomes. Further, since the multi-chamber EDI can reduce electric resistance, a power-saving operation is possible.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The secondary pure water production apparatus of the present invention is an apparatus for further purifying the pure water supplied from the primary pure water production apparatus and supplying it to a use point. It incorporates a multi-chamber EDI with a structure. The example of this secondary pure water manufacturing apparatus is shown next. In the following specific example, the water to be treated flows in order from left to right.
(1) Multi-room EDI
(2) Multi-chamber EDI-ultrafiltration membrane device (3) Multi-chamber EDI-microfiltration membrane device (4) Ultraviolet sterilizer-Multi-chamber EDI-ultrafiltration membrane device (5) Ultraviolet sterilizer-double Chamber EDI-microfiltration membrane device (6) UV oxidation device-anion polisher-multi-chamber EDI-ultrafiltration membrane device (7) UV oxidation device-anion polisher-multi-chamber EDI-microfiltration membrane device (8) Reverse Osmosis Membrane Device-UV Oxidation Device-Anion Polisher-Multi-chamber EDI-Ultrafiltration Membrane Device (9) Reverse Osmosis Membrane Device-UV Oxidation Device-Anion Polisher-Multi-chamber EDI-Microfiltration Membrane Device (10) Reverse Osmosis membrane device-UV sterilizer-Anion polisher-Multi-chamber EDI-Ultrafiltration membrane device (11) Reverse osmosis membrane device-UV sterilizer-Anion polisher-Multi-chamber EDI-Microfiltration membrane device 3]
Moreover, well-known deaeration apparatuses, such as a film | membrane deaeration apparatus and a vacuum deaeration apparatus, can also be combined with the secondary pure water manufacturing apparatus shown to said (1)-(11). Thereby, dissolved oxygen and dissolved carbon dioxide in the water to be treated can be removed. If the dissolved carbon dioxide in the water to be treated is removed, the anion load of the anion polisher and the multi-chamber EDI can be reduced. The installation location of the deaeration device is not particularly limited, but for the purpose of removing dissolved oxygen, it is preferable to install immediately before or after the double-chamber EDI, and for the purpose of removing dissolved carbon dioxide gas, Installation just before the formula EDI or just before the anion polisher is good.
[0014]
Next, as an example of the secondary pure water production apparatus of the present invention, the above (4) will be described with reference to the drawings. FIG. 1 is a flowchart showing the secondary pure water production apparatus (4). In FIG. 1, the secondary pure water production apparatus 50 includes a pure water storage tank 52, a pump 53, an ultraviolet sterilizer 54, a multi-chamber EDI 55, and an ultrafiltration membrane device 56. Symbol 51 is a known primary pure water production apparatus, for example, a coagulation sedimentation apparatus, a sand filter, an activated carbon filter, a two-bed / three-column pure water production apparatus, a reverse osmosis membrane apparatus, an ultraviolet irradiation apparatus, and an electrical deionization. It is a device combining a water production device and a mixed bed type polisher, and produces raw water as pure as possible. In FIG. 1, the pure water supplied from the primary pure water production apparatus 51 to the pure water storage tank 52 is first sent to the ultraviolet sterilization apparatus 54 by the pump 53, where the ultraviolet light is irradiated to the pure water and sterilized. The ultraviolet sterilizer 54 can use a well-known thing. The sterilized pure water is then sent to the multi-chamber EDI 55, where impurity ions having a positive charge or a negative charge, viable bacteria and fine particles are removed.
[0015]
This multi-chamber EDI 55 will be described with reference to the drawings. FIG. 2 is a schematic diagram of a multi-chamber EDI. As shown in FIG. 2, the multi-chamber EDI is formed of the cation exchange membrane 3 and the intermediate ion exchange membrane 5 in which the cation exchange membrane 3, the intermediate ion exchange membrane 5 and the anion exchange membrane 4 are alternately arranged apart from each other. The space is filled with an ion exchanger 8 to form first small desalting chambers d 1 , d 3 , d 5 and d 7 , and ions are formed in the space formed by the intermediate ion exchange membrane 5 and the anion exchange membrane 4. The exchanger 8 is filled to form second small desalting chambers d 2 , d 4 , d 6 , d 8 , and the first small desalting chamber d 1 and the second small desalting chamber d 2 constitute the desalting chamber D. 1, the first small depletion chambers d 3 and desalting D 2 in the second small depletion chamber d 4, the first small depletion chambers d 5 and the second small depletion chambers d 6 desalting compartment D 3, The first small desalting chamber d 7 and the second small desalting chamber d 8 are defined as a desalting chamber D 4 . A portion not filled with the ion exchanger 8 formed by the anion exchange membrane 4 and the cation exchange membrane 3 located next to each of the desalting chambers D 2 and D 3 is a concentration chamber 1 for flowing concentrated water. To do. Drawing and features this sequentially, depletion chamber D 1 from the left, concentrating chamber 1, desalting D 2, concentrating chamber 1, depletion chamber D 3, concentrating chamber 1, to form a depletion chamber D 4 . Further, in two small desalination chambers adjacent via the intermediate membrane, the treated water outflow line 12 of the second small desalination chamber is connected to the treated water inflow line 13 of the first small desalination chamber.
[0016]
The demineralization chamber as described above is composed of a deionization module formed by two inner frames and three ion exchange membranes. That is, although not shown in the figure, a cation exchange membrane is sealed on one side of the first frame, an ion exchanger is filled in the hollowed portion of the first frame, and then the other of the first frame is filled. An intermediate ion exchange membrane is sealed to the part to form a first small desalting chamber. Next, the second frame is sealed so as to sandwich the intermediate ion exchange membrane, and the hollowed portion of the second frame is filled with the ion exchanger, and then the other portion of the second frame is filled with the anion exchange membrane. To form a second small desalting chamber. The ion exchange membrane is relatively soft, and when the first frame and the second frame are filled with the ion exchanger and sealed on both sides with the ion exchange membrane, the ion exchange membrane is curved. In order to prevent the packed bed of the ion exchanger from becoming uneven, a plurality of ribs are provided vertically in the space portion of the first frame body and the second frame body. Moreover, the inflow inlet of to-be-processed water or treated water is attached to the upper part of the 1st frame and the 2nd frame, and the outflow inlet of to-be-processed water or treated water is attached to the lower part of the frame, respectively. FIG. 2 shows a state in which a plurality of such deionization modules are arranged in parallel with a spacer not shown in the figure interposed therebetween, and a cathode 6 is arranged on one side of the deionization modules arranged side by side. And an anode 7 is disposed on the other end side. In addition, the position where the above-mentioned spacer is sandwiched is the concentration chamber 1, and a partition membrane such as a cation exchange membrane, an anion exchange membrane, or a simple membrane having no ion exchange properties on both outer sides of the desalting chamber D at both ends as necessary. The portions where the electrodes 6 and 7 that are partitioned by the partition film are in contact with each other may be electrode chambers 2 and 2, respectively.
[0017]
When producing deionized water by such a multi-chamber EDI, it operates as follows. That is, the DC water is passed between the cathode 6 and the anode 7, the water to be treated flows from the water to be treated inflow line 11, the concentrated water flows from the concentrated water inflow line 15, and from the electrode water inflow lines 17 and 17. Electrode water flows in each. To-be-treated water flowing from the to-be-treated water inflow line 11 flows down the second small desalting chambers d 2 , d 4 , d 6 , d 8 , for example, when impurity ions pass through the packed bed of the anion exchanger 81. Removed. Furthermore, the effluent that has passed through the treated water outflow line 12 of the second small desalination chamber passes through the treated water inflow line 13 of the first small desalination chamber, and the first small desalination chambers d 1 , d 3 , d 5. , D 7, and again, for example, impurity ions are removed when passing through the packed bed of the mixed ion exchanger 82 of cation exchanger and anion exchanger, and deionized water is obtained from the deionized water outflow line 14. It is done. Concentrated water flowing in from the concentrated water inflow line 15 rises in each concentration chamber 1, receives impurity ions moving through the cation exchange membrane 3 and the anion exchange membrane 4, and concentrates the impurity ions as concentrated water. The electrode water flowing out from the concentrated water outflow line 16 and further flowing in from the electrode water inflow lines 17, 17 flows out from the electrode water outflow lines 18, 18. By the above operation, impurity ions in the water to be treated are electrically removed.
[0018]
It is preferable that the concentrated water flowing in from the concentrated water inflow line 15 has a high electrolyte concentration, that is, the electrical resistance is reduced by using water having enhanced conductivity. In such a case, in the conventional EDI, there is a phenomenon in which impurity ions, particularly sodium ions, in the concentrated water permeate through the anion exchange membrane and enter the treated water. The reason for this is that the ion exchange membrane has a sign selective permeability of ions, which is defined as the transport number, but this transport number is usually 0.98 to 0.99, not 1.00 which means full selective permeation. . Therefore, depending on the transport number of the ion exchange membrane, ions in the concentrated water are mixed into the treated water. Therefore, the higher the ion concentration in the concentrated water, the more conspicuous the mixed into the treated water. On the other hand, in the case of the multi-chamber EDI, the impurity ions in the concentrated water are mixed depending on the transport number of the ion exchange membrane, because the second small desalination chambers d 2 , d 4 , d into which the water to be treated flows first. 6, a d 8, the second effluent small depletion chamber further first small depletion chambers d 1, d 3, d 5, to be desalted flows in the d 7, multi-chamber type EDI The treated water, that is, purified water, can obtain a treated water quality close to theoretical pure water.
[0019]
In the multi-chamber EDI, the intermediate ion exchange membrane may be either a single membrane of a cation exchange membrane or an anion exchange membrane, or a multiple membrane in which both an anion exchange membrane and a cation exchange membrane are arranged. . In the case of a dual membrane comprising an anion exchange membrane or a cation exchange membrane in the upper part or lower part of the device, the height (area) of each of the anion exchange membrane and the cation membrane is appropriately determined depending on the quality of the water to be treated or the purpose of treatment. . When a single membrane is used, the ion exchange membrane is determined according to the ion species to be removed from the water to be treated. In the present invention for the purpose of producing pure water, an anion exchange membrane is preferred.
[0020]
The thickness of the first small desalting chamber or the second small desalting chamber is not particularly limited, and is optimal depending on the type and filling method of the ion exchanger filled in the first small desalting chamber or the second small desalting chamber. The thickness should be determined. Therefore, the thickness of the first small desalting chamber may be 3 mm, the thickness of the second small desalting chamber may be 6 mm, and the total thickness, that is, the thickness of the desalting chamber may be 9 mm. In this way, a plurality of desalting chambers and concentration chambers are alternately arranged, and the thickness of the desalting chamber partitioned by the cation exchange membrane and the anion exchange membrane disposed on both sides of the desalting chamber is larger than the conventional one. The thickness can be increased and is appropriately determined within a range of 1.5 to 18 mm, preferably 6.5 to 15 mm, and more preferably 9 to 13 mm.
[0021]
Further, the ion exchanger filled in the desalting chamber is not particularly limited, and an anion exchanger (hereinafter also referred to as “A”) single bed, a cation exchanger (hereinafter also referred to as “K”) single bed, and Examples include a mixed bed of anion exchanger and cation exchanger (hereinafter also referred to as “K / A”) or a combination thereof. The ion exchanger may be any substance having an ion exchange function, such as an ion exchange resin or an ion exchange fiber, or may be a combination thereof.
[0022]
Moreover, the flow direction in the 1st small desalination chamber and 2nd small desalination chamber of to-be-processed water is not restrict | limited in particular, 1st small desalination chamber and 2nd small desalination other than the said embodiment. The flow direction in the chamber may be different. In addition to the above embodiment, the small desalination chamber into which the water to be treated flows first flows the water to be treated into the first desalting chamber and flows down, and then the effluent from the first desalting chamber is discharged. You may make it flow into a 2nd desalination chamber. Further, the flow direction of the concentrated water is also appropriately determined.
[0023]
As described above, after removing impurity ions, viable bacteria, fine particles and the like by the multi-chamber EDI, the treated water is further treated by the ultrafiltration membrane device 56 and supplied to the point of use as ultrapure water. The remaining portion is sent to the pure water storage tank 52 via the return pipe 57. In addition, a well-known thing can be used for the ultrafiltration membrane apparatus 56. FIG.
[0024]
The present embodiment corresponds to the conventional configuration of the ultraviolet sterilization apparatus-cartridge polisher-ultrafiltration membrane apparatus, but the multi-chamber EDI used in this embodiment is a conventional structure. In this embodiment, the quality of the treated water is improved.
[0025]
In the above specific example, in (1), since the secondary pure water production apparatus is composed of only the multi-chamber EDI, it becomes a compact apparatus and can be operated with reduced costs in terms of installation and operation. it can. Further, troublesome work such as replacement of the ion exchanger of the cartridge polisher that has been conventionally used can be eliminated.
[0026]
Among the specific examples described above, the configuration (2) or (3) further prevents fine particle leakage compared to the configuration (1). The constitutions (6) and (7) are for the purpose of removing organic substances. The organic substances are first oxidatively decomposed by an ultraviolet oxidizer, and then the decomposition products are anions in the form of carbonate ions or organic acids. It is removed with a polisher. The configurations (8) and (9) are intended to remove organic matter as much as possible, and are intended to remove organic matter to the maximum with a reverse osmosis membrane device and an ultraviolet oxidation device. In addition, with this configuration, fine particles can be removed, so highly purified ultrapure water can be obtained.
[0027]
【Example】
EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.
[0028]
Example 1
Ultrapure water was produced using the apparatus shown by the flow of the A system shown in FIG. 3 and the apparatus having the specifications shown below. That is, pure water obtained by refining city water (280 μS / cm) in the primary pure water production apparatus 61 is sent to a pure water storage tank 62, and this pure water is pumped by a multi-chamber EDI 65 and an ultrafiltration membrane apparatus. 66 was supplied to a secondary pure water production apparatus consisting of 66. Further, the permeated water of the reverse osmosis membrane device incorporated in the primary pure water production apparatus was supplied to the concentration chamber of the multi-chamber EDI65. Table 1 shows the measurement results of water quality in a, b and c.
<Basic configuration of primary pure water production equipment>
Ultrafiltration membrane device-Reverse osmosis membrane device-Electric deionized water production device (ultrafiltration membrane device)
Model: LGV-5210 (external pressure type hollow fiber membrane module; manufactured by Asahi Kasei Kogyo Co., Ltd.)
Molecular weight cut-off: 20,000
(Reverse osmosis membrane device)
Model: ES20-D8 (polyamide composite composite spiral film module; manufactured by Nitto Denko)
(Electrical deionized water production equipment)
An EDI having a structure shown in FIG. 4 and including three deionization modules was used.
Model: EDI-10; Organo ion exchanger; Desulfurization chamber upstream (1/2) is anion exchange resin (A), Desalination chamber downstream (1/2) is (A) and cation exchange resin ( K) mixed bed ion exchange resin throughput: 1 m 3 / h.
Concentrated water amount: 0.3 m 3 / h.
Applied voltage: 200V
Energizing current value: 1.5A
<Secondary pure water production equipment>
Double-chamber EDI-ultrafiltration membrane device (double-chamber EDI)
A double-chamber EDI configured with three deionization modules (six small demineralization chambers) in the structure shown in FIG. 2 was used. That is, the small desalting chamber into which the water to be treated first flows is the second desalting chamber in FIG.
1st small desalination chamber; width 300mm, height 600mm, thickness 3mm
1st small desalination chamber filling ion exchange resin; mixed ion exchange resin of anion exchange resin (A) and cation exchange resin (K) (mixing ratio is A: K = 1: 1 by volume ratio)
Second small desalination chamber: width 300mm, height 600mm, thickness 8mm
Second small desalting chamber filled ion exchange resin; flow rate of entire anion exchange resin apparatus; 1 m 3 / h.
Concentrated water amount: 0.3 m 3 / h.
Applied voltage: 200V
Energizing current value: 1.5A
(Ultrafiltration membrane device)
Model: OLT-3026 (external pressure type hollow fiber membrane module; manufactured by Asahi Kasei Kogyo Co., Ltd.)
Molecular weight cut-off: 10,000
[0029]
Comparative Example 1
Ultrapure water was manufactured using the apparatus shown by the flow of B system shown in FIG. 3 and the apparatus of the specification shown below. That is, the difference from the first embodiment is that an electric deionized water production apparatus (EDI) 601 and a cartridge polisher 602 are installed in place of the multi-chamber EDI 65. Moreover, the permeated water of the reverse osmosis membrane apparatus incorporated in the primary pure water manufacturing apparatus was supplied to the EDI concentration chamber. Table 1 shows the measurement results of water quality at d and e.
<Primary pure water production equipment>
The same as in the first embodiment.
<Secondary pure water production equipment>
EDI-cartridge polisher-ultrafiltration membrane device (cartridge polisher)
Mixed ion exchange resin of Amberlite IR-124 (H type) and Amberlite IRA-402BL (OH type) (EDI and ultrafiltration membrane device)
EDI is the same as that used in the primary pure water production apparatus, and the ultrafiltration membrane apparatus is the same as in Example 1.
[0030]
[Table 1]
Figure 0004497387
[0031]
From Table 1, the secondary pure water production apparatus incorporating the multi-chamber EDI was able to obtain treated water having the same high resistivity as that using this without using a cartridge polisher.
[0032]
【The invention's effect】
According to the present invention, the concentrated water of the electric deionized water production apparatus incorporated in the secondary pure water production apparatus is water having a high electrolyte concentration in order to reduce the energization resistance. Even if impurity ions flow into the desalting chamber against the selective permeability of the ion exchange membrane, it is possible to prevent the resistivity of the treated water from decreasing. For this reason, compared with the conventional electric deionized water manufacturing apparatus, the process water of high resistivity can be obtained with a simpler system.
[Brief description of the drawings]
FIG. 1 is a flow diagram of a secondary pure water production apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic view of a multi-chamber electric deionized water production apparatus used in the present invention.
FIG. 3 is a flowchart showing configurations of an example and a comparative example.
FIG. 4 is a schematic view of a conventional electric deionized water production apparatus.
[Explanation of symbols]
D, D 1 to D 4 , 104 Desalination chamber d 1 , d 3 , d 5 , d 7 , First small desalination chamber d 2 , d 4 , d 6 , d 8 , Second small desalination chamber 1 105 Concentration chambers 2, 112, 113 Electrode chamber 3, 101 Cation exchange membrane 4, 102 Anion exchange membrane 5 Intermediate ion exchange membrane 6, 109 Cathode 7, 110 Anode 8, 103 Ion exchanger 11, 111 Water to be treated inflow line 12 Processed water outflow line 13 in the second small desalination chamber Processed water inflow line 14, 114 Deionized water outflow line 15, 115 Concentrated water inflow line 16, 116 Concentrated water outflow line 17, 117 Electrode Water inflow line 18, 118 Electrode water outflow line 51, 61 Primary pure water production device 52, 62 Pure water storage tank 53, 63 Pump 54 Ultraviolet sterilization device 55, 65 Multi-chamber electric deionized water production device 601 Electric deionization Water production equipment 5 6, 66, 603 Ultrafiltration membrane device

Claims (5)

一次純水製造装置から供給される純水を更に精製処理してユースポイントへ供給する二次純水製造装置であって、該二次純水製造装置は少なくとも電気式脱イオン水製造装置を組み込んでなり、該電気式脱イオン水製造装置が、一側のカチオン交換膜、他側のアニオン交換膜及び当該カチオン交換膜と当該アニオン交換膜の間に位置する中間イオン交換膜で区画される2つの小脱塩室にイオン交換体を充填して脱塩室を構成し、前記カチオン交換膜、アニオン交換膜を介して脱塩室の両側に濃縮室を設け、これらの脱塩室及び濃縮室を陽極と陰極の間に配置して形成されることを特徴とする二次純水製造装置。A secondary pure water production apparatus for further purifying pure water supplied from a primary pure water production apparatus and supplying it to a use point, wherein the secondary pure water production apparatus incorporates at least an electric deionized water production apparatus The electric deionized water production apparatus is partitioned by a cation exchange membrane on one side, an anion exchange membrane on the other side, and an intermediate ion exchange membrane located between the cation exchange membrane and the anion exchange membrane 2 A small desalting chamber is filled with an ion exchanger to form a desalting chamber, and a concentration chamber is provided on both sides of the desalting chamber via the cation exchange membrane and anion exchange membrane. A device for producing secondary pure water, characterized in that it is disposed between an anode and a cathode. 前記電気式脱イオン水製造装置の中間イオン交換膜が、アニオン交換膜であることを特徴とする請求項1記載の二次純水製造装置。The secondary pure water production apparatus according to claim 1, wherein the intermediate ion exchange membrane of the electric deionized water production apparatus is an anion exchange membrane. 前記二次純水製造装置は、前記電気式脱イオン水製造装置と、限外濾過膜装置又は精密濾過膜装置とを組み込んでなることを特徴とする請求項1又は2記載の二次純水製造装置。The secondary pure water according to claim 1 or 2, wherein the secondary pure water production apparatus incorporates the electric deionized water production apparatus and an ultrafiltration membrane device or a microfiltration membrane device. Manufacturing equipment. 前記二次純水製造装置は、紫外線殺菌装置又は紫外線酸化装置と、前記電気式脱イオン水製造装置と、限外濾過膜装置又は精密濾過膜装置とを組み込んでなることを特徴とする請求項1又は2記載の二次純水製造装置。The secondary pure water production apparatus includes an ultraviolet sterilization apparatus or an ultraviolet oxidation apparatus, the electric deionized water production apparatus, and an ultrafiltration membrane apparatus or a microfiltration membrane apparatus. The secondary pure water manufacturing apparatus according to 1 or 2. 前記二次純水製造装置は、更に、逆浸透膜装置を組み込んでなることを特徴とする請求項4記載の二次純水製造装置。The secondary pure water production apparatus according to claim 4, wherein the secondary pure water production apparatus further includes a reverse osmosis membrane apparatus.
JP2000140144A 2000-05-12 2000-05-12 Secondary pure water production equipment Expired - Lifetime JP4497387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000140144A JP4497387B2 (en) 2000-05-12 2000-05-12 Secondary pure water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000140144A JP4497387B2 (en) 2000-05-12 2000-05-12 Secondary pure water production equipment

Publications (2)

Publication Number Publication Date
JP2001314867A JP2001314867A (en) 2001-11-13
JP4497387B2 true JP4497387B2 (en) 2010-07-07

Family

ID=18647484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000140144A Expired - Lifetime JP4497387B2 (en) 2000-05-12 2000-05-12 Secondary pure water production equipment

Country Status (1)

Country Link
JP (1) JP4497387B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3729347B2 (en) * 2002-05-13 2005-12-21 株式会社荏原製作所 Electric regenerative desalination equipment
KR101688530B1 (en) 2009-12-21 2016-12-21 삼성전자주식회사 Capacitive deionization device
CN110104741A (en) * 2019-06-04 2019-08-09 东北电力大学 Double film room membrane capacitance demineralizers with continuous water-yielding capacity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679268A (en) * 1992-09-03 1994-03-22 Toray Ind Inc Production of ultra-pure water
JPH078948A (en) * 1993-06-21 1995-01-13 Japan Organo Co Ltd Subsystem incorporated with apparatus for producing electrically deionized water
JPH07100391A (en) * 1993-10-05 1995-04-18 Ebara Corp Electric regeneration type continuous ion exchange device and its use method
JPH09192661A (en) * 1996-01-17 1997-07-29 Japan Organo Co Ltd Ultrapure water producing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679268A (en) * 1992-09-03 1994-03-22 Toray Ind Inc Production of ultra-pure water
JPH078948A (en) * 1993-06-21 1995-01-13 Japan Organo Co Ltd Subsystem incorporated with apparatus for producing electrically deionized water
JPH07100391A (en) * 1993-10-05 1995-04-18 Ebara Corp Electric regeneration type continuous ion exchange device and its use method
JPH09192661A (en) * 1996-01-17 1997-07-29 Japan Organo Co Ltd Ultrapure water producing device

Also Published As

Publication number Publication date
JP2001314867A (en) 2001-11-13

Similar Documents

Publication Publication Date Title
JP2001113281A (en) Electro-deionizing apparatus and pure water making apparatus
JP3575271B2 (en) Pure water production method
JP3969221B2 (en) Method and apparatus for producing deionized water
KR101018768B1 (en) Pure water production system
JP2009220060A (en) Electrically deionized water production apparatus and its deionization unit
JP4250922B2 (en) Ultrapure water production system
JP5145305B2 (en) Electric deionized water production equipment
JP4499239B2 (en) Deionized water production equipment
JP4993136B2 (en) Pure water production apparatus and pure water production method
JP4439674B2 (en) Deionized water production equipment
JP3565098B2 (en) Ultrapure water production method and apparatus
JP2011000576A (en) Electric deionized water producing apparatus and method for producing deionized water
JP5114307B2 (en) Electric deionized water production equipment
JP3656458B2 (en) Pure water production method
JP3952127B2 (en) Electrodeionization treatment method
JP4497387B2 (en) Secondary pure water production equipment
JP5158393B2 (en) Pure water production apparatus and pure water production method
JP5379025B2 (en) Electric deionized water production equipment
JP3570279B2 (en) Electric desalination equipment
JP3901107B2 (en) Electrodeionization apparatus and operation method thereof
JP4599668B2 (en) Operation method of electrodeionization equipment
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
JP3480661B2 (en) Water treatment method for electric deionized water production equipment
JPH10216749A (en) Ultrapure water making apparatus
JP4915843B2 (en) Electric softening device, softening device and soft water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4497387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term