JP3729347B2 - Electric regenerative desalination equipment - Google Patents

Electric regenerative desalination equipment Download PDF

Info

Publication number
JP3729347B2
JP3729347B2 JP2002136603A JP2002136603A JP3729347B2 JP 3729347 B2 JP3729347 B2 JP 3729347B2 JP 2002136603 A JP2002136603 A JP 2002136603A JP 2002136603 A JP2002136603 A JP 2002136603A JP 3729347 B2 JP3729347 B2 JP 3729347B2
Authority
JP
Japan
Prior art keywords
chamber
desalting
exchange membrane
small
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002136603A
Other languages
Japanese (ja)
Other versions
JP2003326270A (en
Inventor
修行 井上
淳 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002136603A priority Critical patent/JP3729347B2/en
Publication of JP2003326270A publication Critical patent/JP2003326270A/en
Application granted granted Critical
Publication of JP3729347B2 publication Critical patent/JP3729347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気再生式脱塩装置に係り、特に弱陰イオン成分の除去能力が高い電気再生式脱塩装置に関する。
【0002】
【従来の技術】
従来の純水製造方法としては、イオン交換樹脂を充填した容器に脱塩室入口水を通過させ、脱塩室入口水中のイオンをH+、OH-イオンに交換することにより純水を製造するイオン交換法が知られている。
しかし、このイオン交換法では、イオン交換樹脂の交換能力が飽和すると、イオン交換樹脂の種類に応じて酸、アルカリを用いてイオン交換能力の再生をする必要がある。イオン交換樹脂の再生操作は、煩雑で、多量の酸、アルカリの貯蔵、取り扱い、廃棄に細心の注意が必要であると共に設備が大きくなる、という問題を有している。
それに対し、近年、電気によってイオン交換体を再生し、連続的に純水を製造する電気再生式脱塩装置が開発された。これは図4に示すように、脱塩室入口水10中のイオン分を装置の両端に印可した直流電源により、濃縮室出口水13及び陰極液、陽極液に移動させることにより除去する装置であり、陰極1を有する陰極室2と陽極3を有する陽極室4、陰極室2と陽極室4の間に陰イオン交換膜5と陽イオン交換膜6を配置することにより形成された脱塩室7と濃縮室8を備え、少なくとも脱塩室7内にはイオン交換体9が充填されているものである。
【0003】
ここで、イオン交換体9は、イオン交換樹脂、イオン交換繊維、グラフト重合法によりイオン交換体を導入されたイオン交換不織布、スペーサ等イオン交換機能を持つ物であればどのようなイオン交換体でもよく、陰イオン交換体、陽イオン交換体を単一、もしくは混合、もしくは複層状に充填してある。
陰極室2に陰極室入口水14を、陽極室4に陽極室入口水16を、濃縮室8に濃縮室入口水12を、脱塩室7に脱塩室入口水10を導入し、陰極1と陽極3間に直流電流を印可することにより、脱塩室入口水10中に含まれているイオン分は、イオン交換体9の表面を電位の方向に移動し、陰イオンは陰イオン交換膜5、陽イオンは陽イオン交換膜6を透過して濃縮室8中の濃縮水、陰極室2中の陰極液及び陽極室4中の陽極液に移動し、脱塩室入口水10は脱イオン処理され純水11が製造される。
【0004】
脱塩室7内に充填されたイオン交換体9は、水解によって発生するH+、OH-により連続的に再生されるため、酸あるいはアルカリによる再生作業は必要なく、このようにして、純水11を連続的に製造することが可能となる(特許第1782943号、特許第2751090号、特許第2699256号各明細書、特願平10−153697号)。
また、最近では脱塩室7を中間イオン交換膜で2つの小脱塩室に分割し、片方の小脱塩室の流出水をもう片方の小脱塩室に導入することで、脱塩性能を改善した電気再生式脱塩装置も開発されている(特開2001−239270、特開2001−327971各公報)。
従来の電気再生式脱塩装置では、炭酸、シリカなどの弱陰イオン成分の除去能力が他のイオン分の除去能力に比べて劣っていることが一般に知られている。
これらの弱陰イオン成分は、電気再生式脱塩装置に直流電流を過大に印可すればその除去率が多少改善することも知られているが、その場合でも弱陰イオン成分は十分には除去できなく、単位流量当りの消費電力は大きくなってしまう。
【0005】
そのため、後段にイオン交換樹脂によるカートリッジポリッシャを設置してイオン交換させる、電気再生式脱塩装置を多段に構成し、第1の電気再生式脱塩装置で脱塩を行った後、第2の電気再生式脱塩装置でさらに脱塩処理を行う、などの処置が必要に応じて行われている。
しかし、このような処置を行うと、設置面積の増大機器数の増加、価格の上昇を招くことになる。
また、脱塩室を中間イオン交換膜で2つの小脱塩室に分割し、片方の小脱塩室の流出水をもう片方の小脱塩室に導入して脱塩性能を向上させた電気再生式脱塩装置においては、内部に充填するイオン交換体がイオン交換樹脂の場合は前述の弱陰イオン成分の除去能力も十分改善されるとの報告があるが(前述の公開公報参照)、イオン交換繊維からなる不織布織布、網目状のスペーサ等を充填した場合には、その接触効率等の問題から、弱陰イオン成分の除去性能は十分とは言い難い。
【0006】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点を解消し、脱塩室内部に充填するイオン交換体の種類によらず、上述の弱陰イオン成分の除去性能を改善し、弱陰イオン成分を十分に除去できる電気再生式脱塩装置を提供することを課題とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明では、陰極を有する陰極室と、陽極を有する陽極室とを有し、この両極室の間に、陽イオン交換膜及び陰イオン交換膜を配置し、これらのイオン交換膜と室枠を用いて脱塩室と濃縮室を形成した電気再生式脱塩装置であって、前記脱塩室は、電気の流れ方向に複数枚のイオン交換膜で分割されており、前記存在する室のうちの少なくとも脱塩室内部にはイオン交換体が充填されていることを特徴とする電気再生式脱塩装置としたものである。
また、本発明では、陰極を有する陰極室と、陽極を有する陽極室とを有し、この両極室の間に、陽イオン交換膜及び陰イオン交換膜を配置し、これらのイオン交換膜と室枠を用いて脱塩室と濃縮室を形成した電気再生式脱塩装置であって、前記脱塩室は2枚のイオン交換膜で電気の流れ方向に3つの小脱塩室に分割されており、前記存在する室のうちの少なくとも該3つの小脱塩室内にはイオン交換体が充填されており、該第1の小脱塩室出口水が第2の小脱塩室入口に、さらに第2の小脱塩室出口水が第3の小脱塩室に供給されるように3つの小脱塩室が構成されていることを特徴とする電気再生式脱塩装置としたものである。
【0008】
前記電気再生式脱塩装置において、脱塩室には、陽極側に陰イオン交換膜、陰極側に陽イオン交換膜を配置すると共に、該脱塩室を分割する複数枚のイオン交換膜は、陽イオン交換膜、もしくは陰イオン交換膜の単一膜、もしくはバイポーラ膜とすることができ、前記イオン交換体は、放射線グラフト重合法によりイオン交換体が導入されたイオン交換繊維からなるイオン交換体であるのがよく、また、前記イオン交換繊維からなるイオン交換体は、不織布又は織布、及び網目状のスペーサであるのがよい。
【0009】
【発明の実施の形態】
本発明によれば、従来1対のイオン交換膜で仕切られていた脱塩室を、複数枚のイオン交換膜で分割し、かつ被脱塩水を分割した各小脱塩室内を直列に流れるように構成することによって、弱アニオン成分の除去能力を高めることができると共に、脱塩室を複数枚のイオン交換膜で分割するため、その分の濃縮室を省略することができ、運転電圧の低減もはかることが可能な電気再生式脱塩装置を提供することが可能となる。
次に、本発明を図面を用いて詳細に説明する。
図1は、本発明の電気再生式脱塩装置の一例を示す概略構成図であり、先に示した図4の構成と同一構成を同一符号で示して説明する。
【0010】
陰極1を有する陰極室2と、陽極3を有する陽極室4を対向して配置し、この陰極室2と陽極室4の間に、陰イオン交換膜5と陽イオン交換膜6を交互に配置することにより、脱塩室7と濃縮室8を構成し、脱塩室7は複数枚のイオン交換膜で複数の小脱塩室に分割され、脱塩室7には、イオン交換体9を充填することにより、本発明による電気再生式脱塩装置が構成される。
ここで、図1では、脱塩室7の分割の一例として、陰イオン交換膜5を2枚用いて第1の小脱塩室71、第2の小脱塩室72、第3の小脱塩室73の3つの小脱塩室に分割して示してある。
第1の小脱塩室71の出口が第2の小脱塩室72の入口に、第2の小脱塩室72の出口が第3の小脱塩室73の入口に接続されており、第1の小脱塩室71、第2の小脱塩室72の両側に存在するイオン交換膜は、陰イオン交換膜5であるため、内部に充填するイオン交換体9は陰イオン交換体とし、小脱塩室73は、陰イオン交換膜5と陽イオン交換膜6で形成されているため、充填するイオン交換体9は、陰イオン交換体と陽イオン交換体の混合イオン交換体とした。
【0011】
これは、小脱塩室の両側にあるイオン交換膜が、陰イオン交換膜5と陽イオン交換膜6である場合には、電極間に直流電流を印可すると、被処理水中の陰イオンは、陰イオン交換膜5を通過して濃縮室8へ、陽イオンは、陽イオン交換膜6を通過して濃縮室8へ移動するため、陰イオン交換体と陽イオン交換体の両方を小脱塩室に充填すると脱イオン効果があるのに対し、小脱塩室の両側にあるイオン交換膜が、両方とも陰イオン交換膜5の場合は、被処理水中の陽イオンは、陰イオン交換膜5を通過できないため、陽イオン交換体を内部に充填していても、連続脱塩効果が発揮できないためである。同様に、両側に陽イオン交換膜6を配置した小脱塩室を用いる場合には、陰イオンは陽イオン交換膜6を通過できないため、内部には陽イオン交換体のみを充填するのがよい。
また、濃縮室8、及び両極室2、4にも、イオン交換体9を充填することが望ましく、このイオン交換体9は、その形状、種類に特に制限はないが、濃縮室8には陽イオン交換体と陰イオン交換体の両者を使用し、陽イオン交換膜側に陽イオン交換体を、陰イオン父換膜側に陰イオン交換体を配置するのが析出の防止に効果的である。
【0012】
陰極室2には、脱塩室7が隣接する場合には陽イオン交換体を、濃縮室8が隣接する場合には陰イオン交換体を充填するのがよく、陽極室4には、脱塩室7が隣接する場合には陰イオン交換体を、濃縮室8が隣接する場合には陽イオン交換体を充填するのがよい。
濃縮室8、両極室2、4には、一部にイオン交換体以外の、例えばスペーサを充填することもできる。
陰極室2に陰極室入口水14を、陽極室4に陽極室入口水16を、濃縮室8に濃縮室入口水12を、脱塩室7に脱塩室入口水10を導入し、陰極1と陽極3間に直流電流を印可することにより、脱塩室入口水10中に含まれているイオン分は、イオン交換体9の表面を電位の方向に移動し、陰イオンは陰イオン交換膜5、陽イオンは陽イオン交換膜6を透過して、濃縮室8中の濃縮水、陰極室2中の陰極水、陽極室4中の陽極水に移動し系外に排出され、脱塩室入口水10は、脱イオン処理され純水11が製造される。
【0013】
脱塩室7について詳しく説明すると、第1の小脱塩室71に導入された脱塩室入口水10中の陰イオン分は、両極に印可された直流電流により陽極3側に移動し、陰イオン交換膜5を透過して濃縮室8中に移動する。陽イオン分は、陰極側に配置されている陰イオン交換膜5を透過することができないため、第1の小脱塩室71に留まる。これにより、第1の小脱塩室71内は、陰イオン分のみが減少するためpHが高くなり、弱陰イオン成分もイオン化することで除去しやすくなる。陰極側に配置されているイオン交換膜5からは、第2の小脱塩室72で除去される残存陰イオン分とOH-が第1の小脱塩室71に透過してくる。このOH-の作用で、第1の小脱塩室71内に充填されている陰イオン交換体は再生され、再び脱塩室入口水10中の陰イオン分を除去できるようになる。
【0014】
第1の小脱塩室71で、上述の脱塩処理をされた処理水は、続いて第2の小脱塩室72に導入される。ここでも、第1の小脱塩室71での脱塩処理と同様に、陰イオン分は陰イオン交換膜5を透過して第1の小脱塩室へ移動し、陽イオン分は処理水中に留まるため、処理水は第2の小脱塩室72に導入された時点からpHが高いまま保持され、さらに弱陰イオン成分の脱塩効果を高くしている。これにより、第1の小脱塩室71で脱塩しきれなかった、主に弱陰イオン分からなる残存陰イオン分が除去される。
陰極1側に存在する陰イオン交換膜5からは、主にOH-が第2の小脱塩室72に透過してくるため、第2の小脱塩室中の陰イオン交換体は第1の小脱塩室71中の陰イオン交換体よりも効率よく再生され、第1の小脱塩室で除去しきれなかった陰イオン成分の除去を効率よく行うことができる。
【0015】
第2の小脱塩室72で、さらに脱塩処理された処理水は、第3の小脱塩室73に導入され、最終的な脱塩処理が行われる。第3の小脱塩室73に導入された時点で、処理水中の陰イオン成分はほとんどなくなっており、極微量の弱陰イオン成分及び陽イオン成分が除去の対象となる。
第3の小脱塩室73には、陽イオン交換体と陰イオン交換体が充填されており、陽イオン分は陽イオン交換体とイオン交換された後、陰極1側に存在する陽イオン交換膜6を透過して濃縮室8に移動する。残存する微量の弱陰イオン成分は、第3の小脱塩室73中の陰イオン交換体とイオン交換した後、陽極3側にある陰イオン交換膜5を透過して、第2の小脱塩室72に移動する。
【0016】
第3の小脱塩室では、イオン分の移動の他、水解によって水がH+とOH-に分解されており、これが第3の小脱塩室73中の陽イオン交換体、陰イオン交換体を再生すると共に、OH-は、第1、第2の小脱塩室71、72内に充填された陰イオン交換体の再生にも用いられるため、酸、アルカリによるイオン交換体の再生作業は必要なく、このようにして、脱塩室入口水10中のイオン分は、弱陰イオン成分も含めて十分に除去され、連続的に純水11を得ることができる。
ここで、陽イオン分は、弱陰イオン分に比べ遙かに除去し易いため、第3の小脱塩室73だけで十分除去されるが、脱塩室入口水10中にアンモニアのような弱陽イオン成分が多量に含まれている場合には、第1の小脱塩室71と第2の小脱塩室72を隔てているイオン交換膜を陽イオン交換膜とし、第2と第3の小脱塩室72、73に充填しているイオン交換体を陽イオン交換体とし、脱塩室入口水10を第3の小脱塩室73、第2の小脱塩室72、第1の小脱塩室71という具合に通水、脱塩処理を行っても良い。
この場合、第1の小脱塩室71には、陰イオン交換体、もしくは陰イオン交換体と陽イオン交換体を充填するとよい。
【0017】
また、図2に示すように、図1であげている第2の小脱塩室の陽極側のイオン交換膜を陽イオン交換膜6に変更し、第2の小脱塩室72に充填されているイオン交換体を陽イオン交換体と陰イオン交換体の混合イオン交換体とすると共に、第3の小脱塩室73中のイオン交換体を陽イオン交換体とし、第1の小脱塩室71から流出した処理水を第3の小脱塩室73に導入し、さらに陰イオン交換体と陽イオン交換体の充填された第3の小脱塩室73に導入する、という脱塩処理を行っても良い。
図1の第3の小脱塩室73の陽極側に、さらに第4、第5・・・の小脱塩室を設けるように脱塩室7をイオン交換膜で分割し、第3の小脱塩室73の出口水をさらに第4、第5・・・の小脱塩室に通水、脱塩処理を行うことも可能である。脱塩室7の分割用にバイポーラ膜を使用する場合には、例えば脱塩室7を2枚のイオン交換膜を用いて3つの小脱塩室に分割する場合には、陰極1側のイオン交換膜を陰イオン交換膜、陽極3側のイオン交換膜をバイポーラ膜として小脱塩室71、72、73を形成する。
【0018】
この場合、両側を陰イオン交換膜で形成された小脱塩室内部、陰イオン交換膜とバイポーラ膜で形成された小脱塩室内部には陰イオン交換体を、バイポーラ膜と陽イオン交換膜で形成された小脱塩室内部には陽イオン交換体を充填すると最も脱塩効率が高い。バイポーラ膜の特性から、バイポーラ膜にて低電圧で効率的に水解によるH+、OH-が発生し、H+は陽イオン交換体をOH-は陰イオン交換体を再生させ、脱塩室入口水10中のイオン分を除去することが可能となる。
水解を効率的に発生させられるため、バイポーラ膜を用いた場合は、さらに運転電圧を低減することが可能となる。
電気再生式脱塩装置においては、従来脱塩室の数に±1の濃縮室が必要であったのが、上述のように、複数枚のイオン交換膜で分割された小脱塩室を用いて電気再生式脱塩装置を形成することにより、濃縮室の室数を減らすことが可能になり、その分運転電圧を軽減することが可能となる。
【0019】
【実施例】
以下、本発明を実施例により具体的に説明する。
実施例1
次に、本発明の効果を比較例との対比において説明する。試験設備は図3に示すように、脱塩室入口水10、濃縮室入口水1、陰極室入口水14、陽極室入口水16として、藤沢市水を活性炭濾過器保安フィルタ、逆浸透膜装置で前処理したものを使用し、その水質は、比抵抗0.20MΩ・cmであった。
実施例として、図3に示す試験装置中の電気再生式脱塩装置に、図1に示す構成の電気再生式脱塩装置を用い、脱塩室入口水10の流量は1000L/h、濃縮室入口水12の流量は80L/h、陰極室入口水14の流量及び陽極室入口水16の流量をそれぞれ40L/hとして、1.2Aの直流電流を陰極1と陽極3に印可して運転を行った。
【0020】
電気再生式脱塩装置は、電極面積0.256m2、脱塩室は3室、濃縮室は2室とし、両端に陰極室と陽極室を設け、脱塩室は陰イオン交換膜2枚で3つの小脱塩室に分割し、両側を陰イオン交換膜で形成された第1と第2の小脱塩室には陰イオン交換不織布と陰イオン交換スペーサを、陰イオン交換膜と陽イオン交換膜で形成された第3の小脱塩室には陽イオン交換不織布、陰イオン交換不織布、陽イオン交換スペーサ、陰イオン交換スペーサを充填した。
また、濃縮室内部には陰イオン交換体と陽イオン交換体を、陰極室には陽イオン交換体と導電性をもたないスペーサを、陽極室には陰イオン交換体と導電性を持たないスペーサを充填した。
上記条件で運転した結果、比抵抗17.7MΩ・cmの純水11が連続して製造され、純水の水質も大幅に向上したほか、運転電圧は120Vに低減され、さらに炭酸除去率、シリカ除去率とも99%以上と、弱陰イオン分の除去率も大幅に向上された。
【0021】
比較例では、図4に示す構成の電気再生式脱塩装置を用い、脱塩室入口水10の流量は1000L/h、濃縮室入口水12の流量は360L/h、陰極室入口水14の流量及び陽極室入口水16の流量をそれぞれ40L/hとして、1.2Aの直流電流を陰極1と陽極3に印可して運転を行った。電気再生式脱塩装置は、電極面積0.256m2、脱塩室は10室、濃縮室は9室とし、両端に陰極室と陽極室を設け、脱塩室と濃縮室の内部には陰イオン交換体と陽イオン交換体を、陰極室には陽イオン交換体を陽極室には陰イオン交換体を充填してある。
上記条件で運転した結果、比抵抗10.4MΩ・cm程度の純水11が連続して製造された。
この運転において、運転電圧は150V、炭酸除去率94%、シリカ除去率88%であった。
【0022】
【発明の効果】
本発明の電気再生式脱塩装置によれば、上述したように、被処理水中の弱陰イオン成分を除去する能力を高めると共に、運転電圧を低減することが可能となる。
【図面の簡単な説明】
【図1】本発明の電気再生式脱塩装置の一例を示す概略構成図。
【図2】本発明の電気再生式脱塩装置の他の例を示す概略構成図。
【図3】実施例で用いた装置の試験フロー図。
【図4】従来の電気再生式脱塩装置の一例を示す概略構成図。
【符号の説明】
1:陰極、2:陰極室、3:陽極、4:陽極室、5:陰イオン交換膜、6:陽イオン交換膜、7:脱塩室、8:濃縮室、9:イオン交換体、10:脱塩室入口水、11:純水、12:濃縮室入口水、13:濃縮室出口水、14:陰極室入口水、15:陰極室出口水、16:陽極室入口水、17:陽極室出口水、71:第1の小脱塩室、72:第2の小脱塩室、73:第3の小脱塩室
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric regeneration type desalination apparatus, and more particularly to an electric regeneration type desalination apparatus having a high ability to remove weak anion components.
[0002]
[Prior art]
As a conventional pure water production method, pure water is produced by passing deionization chamber inlet water through a container filled with an ion exchange resin and exchanging ions in the demineralization chamber inlet water with H + and OH ions. Ion exchange methods are known.
However, in this ion exchange method, when the exchange capacity of the ion exchange resin is saturated, it is necessary to regenerate the ion exchange capacity using an acid or an alkali according to the type of the ion exchange resin. The regeneration operation of the ion exchange resin is complicated and has a problem that a great deal of attention is required for storage, handling and disposal of a large amount of acid and alkali, and the equipment becomes large.
On the other hand, in recent years, an electric regenerative desalination apparatus that regenerates ion exchangers by electricity and continuously produces pure water has been developed. As shown in FIG. 4, this is a device that removes ions in the desalination chamber inlet water 10 by moving them to the concentration chamber outlet water 13 and the catholyte and anolyte by a DC power source applied to both ends of the device. A desalting chamber formed by disposing an anion exchange membrane 5 and a cation exchange membrane 6 between a cathode chamber 2 having a cathode 1 and an anode chamber 4 having an anode 3, and between the cathode chamber 2 and the anode chamber 4. 7 and a concentrating chamber 8, and at least the desalting chamber 7 is filled with an ion exchanger 9.
[0003]
Here, the ion exchanger 9 may be any ion exchanger as long as it has an ion exchange function, such as an ion exchange resin, an ion exchange fiber, an ion exchange nonwoven fabric into which the ion exchanger is introduced by a graft polymerization method, and a spacer. Often, anion exchangers and cation exchangers are filled in a single, mixed, or multilayered form.
The cathode chamber inlet water 14 is introduced into the cathode chamber 2, the anode chamber inlet water 16 is introduced into the anode chamber 4, the concentration chamber inlet water 12 is introduced into the concentration chamber 8, and the desalination chamber inlet water 10 is introduced into the desalting chamber 7. By applying a direct current between the anode 3 and the anode 3, ions contained in the desalting chamber inlet water 10 move on the surface of the ion exchanger 9 in the direction of the potential, and the anions are converted into anion exchange membranes. 5. The cation passes through the cation exchange membrane 6 and moves to the concentrated water in the concentration chamber 8, the catholyte in the cathode chamber 2, and the anolyte in the anode chamber 4, and the demineralization chamber inlet water 10 is deionized. The pure water 11 is manufactured by processing.
[0004]
Since the ion exchanger 9 filled in the desalting chamber 7 is continuously regenerated by H + and OH generated by hydrolysis, there is no need to regenerate with acid or alkali. 11 can be produced continuously (Japanese Patent No. 1784243, Japanese Patent No. 2751090, Japanese Patent No. 2699256, Japanese Patent Application No. 10-153697).
Recently, the desalination chamber 7 is divided into two small desalination chambers by an intermediate ion exchange membrane, and the effluent water from one small desalination chamber is introduced into the other small desalination chamber. An electric regenerative desalination apparatus that improves the above has been developed (Japanese Patent Laid-Open Nos. 2001-239270 and 2001-327971).
It is generally known that a conventional electric regenerative desalting apparatus is inferior in ability to remove weak anion components such as carbonic acid and silica as compared with other ion contents.
These weak anion components are known to have a slightly improved removal rate if DC current is excessively applied to an electric regeneration-type desalination apparatus, but even in this case, the weak anion components are sufficiently removed. The power consumption per unit flow rate becomes large.
[0005]
For this reason, an electric regeneration type desalination apparatus in which a cartridge polisher made of an ion exchange resin is installed in the subsequent stage to perform ion exchange is configured in multiple stages, and after the desalting is performed by the first electric regeneration type desalination apparatus, the second Treatments such as further desalting using an electric regeneration type desalting apparatus are performed as necessary.
However, if such a treatment is performed, the installation area increases, the number of devices increases, and the price increases.
In addition, the desalination chamber is divided into two small desalination chambers by an intermediate ion exchange membrane, and the effluent water from one small desalination chamber is introduced into the other small desalination chamber to improve the desalination performance. In the regenerative desalting apparatus, when the ion exchanger filled inside is an ion exchange resin, there is a report that the above-described weak anion component removal capability is sufficiently improved (see the above-mentioned publication). When a nonwoven fabric woven fabric made of ion exchange fibers, a mesh-like spacer or the like is filled, it is difficult to say that the performance of removing weak anion components is sufficient due to problems such as contact efficiency.
[0006]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, improves the above-mentioned weak anion component removal performance regardless of the type of ion exchanger filled in the desalting chamber, and sufficiently reduces the weak anion component. It is an object of the present invention to provide an electric regeneration type desalting apparatus that can be removed.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention has a cathode chamber having a cathode and an anode chamber having an anode, and a cation exchange membrane and an anion exchange membrane are disposed between the two electrode chambers. An electric regenerative desalination apparatus in which a desalination chamber and a concentration chamber are formed using an ion exchange membrane and a chamber frame, wherein the desalination chamber is divided by a plurality of ion exchange membranes in the direction of electricity flow. In addition, at least an inside of the desalting chamber among the existing chambers is filled with an ion exchanger.
In the present invention, a cathode chamber having a cathode and an anode chamber having an anode are provided, and a cation exchange membrane and an anion exchange membrane are disposed between the bipolar chambers. An electric regeneration type desalination apparatus using a frame to form a desalination chamber and a concentration chamber, wherein the desalination chamber is divided into three small desalination chambers in the direction of electricity flow by two ion exchange membranes. And at least the three small desalting chambers of the existing chambers are filled with an ion exchanger, and the first small desalting chamber outlet water is further supplied to the second small desalting chamber inlet, The electric regeneration type desalination apparatus is characterized in that three small desalination chambers are configured such that the outlet water of the second small desalination chamber is supplied to the third small desalination chamber. .
[0008]
In the electric regenerative desalination apparatus, an anion exchange membrane on the anode side and a cation exchange membrane on the cathode side are disposed in the desalination chamber, and a plurality of ion exchange membranes dividing the desalination chamber are: The ion exchanger can be a cation exchange membrane, a single membrane of an anion exchange membrane, or a bipolar membrane, and the ion exchanger comprises an ion exchange fiber into which an ion exchanger is introduced by a radiation graft polymerization method. In addition, the ion exchanger made of the ion exchange fiber may be a nonwoven fabric or a woven fabric, and a mesh spacer.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, a desalination chamber that has been partitioned by a pair of ion exchange membranes in the past is divided by a plurality of ion exchange membranes and flows in series in each of the small desalting chambers into which the desalted water is divided. In addition to improving the ability to remove weak anion components, the desalination chamber is divided by a plurality of ion exchange membranes, so that the concentration chamber can be omitted and the operating voltage can be reduced. It is possible to provide an electric regenerative desalination apparatus that can be measured.
Next, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an example of an electric regeneration type desalination apparatus according to the present invention. The same configuration as that of FIG.
[0010]
A cathode chamber 2 having a cathode 1 and an anode chamber 4 having an anode 3 are arranged facing each other, and an anion exchange membrane 5 and a cation exchange membrane 6 are alternately arranged between the cathode chamber 2 and the anode chamber 4. As a result, a desalting chamber 7 and a concentrating chamber 8 are formed, and the desalting chamber 7 is divided into a plurality of small desalting chambers by a plurality of ion exchange membranes. By filling, the electric regeneration type desalination apparatus according to the present invention is constituted.
Here, in FIG. 1, as an example of the division of the desalting chamber 7, the first small desalting chamber 71, the second small desalting chamber 72, and the third small desalting chamber using two anion exchange membranes 5 are used. The salt chamber 73 is divided into three small desalting chambers.
The outlet of the first small desalting chamber 71 is connected to the inlet of the second small desalting chamber 72, and the outlet of the second small desalting chamber 72 is connected to the inlet of the third small desalting chamber 73, Since the ion exchange membranes present on both sides of the first small desalting chamber 71 and the second small desalting chamber 72 are anion exchange membranes 5, the ion exchanger 9 filled therein is an anion exchanger. Since the small desalting chamber 73 is formed of the anion exchange membrane 5 and the cation exchange membrane 6, the ion exchanger 9 to be filled is a mixed ion exchanger of an anion exchanger and a cation exchanger. .
[0011]
This is because, when the ion exchange membranes on both sides of the small desalting chamber are the anion exchange membrane 5 and the cation exchange membrane 6, when a direct current is applied between the electrodes, the anions in the water to be treated are Since the anion exchange membrane 5 passes through the anion exchange membrane 5 to the concentration chamber 8 and the cation passes through the cation exchange membrane 6 to the concentration chamber 8, both the anion exchanger and the cation exchanger are subjected to small desalting. When the chamber is filled with a deionizing effect, both ion exchange membranes on both sides of the small desalting chamber are anion exchange membranes 5, and the cations in the water to be treated are anion exchange membranes 5. This is because the continuous desalting effect cannot be exhibited even if the cation exchanger is filled inside. Similarly, in the case of using a small desalination chamber in which cation exchange membranes 6 are arranged on both sides, anions cannot pass through the cation exchange membrane 6, so it is preferable to fill only the cation exchanger inside. .
Further, it is desirable that the concentration chamber 8 and the bipolar chambers 2 and 4 are also filled with the ion exchanger 9, and the shape and type of the ion exchanger 9 are not particularly limited. Using both an ion exchanger and an anion exchanger, placing a cation exchanger on the cation exchange membrane side and an anion exchanger on the anion father membrane side is effective in preventing precipitation. .
[0012]
The cathode chamber 2 may be filled with a cation exchanger when the desalting chamber 7 is adjacent, and an anion exchanger when the concentrating chamber 8 is adjacent. When the chamber 7 is adjacent, an anion exchanger may be filled, and when the concentration chamber 8 is adjacent, a cation exchanger may be filled.
The concentration chamber 8 and the bipolar chambers 2 and 4 can be partially filled with, for example, a spacer other than the ion exchanger.
The cathode chamber inlet water 14 is introduced into the cathode chamber 2, the anode chamber inlet water 16 is introduced into the anode chamber 4, the concentration chamber inlet water 12 is introduced into the concentration chamber 8, and the desalination chamber inlet water 10 is introduced into the desalting chamber 7. By applying a direct current between the anode 3 and the anode 3, ions contained in the desalting chamber inlet water 10 move on the surface of the ion exchanger 9 in the direction of the potential, and the anions are converted into anion exchange membranes. 5. The cation permeates the cation exchange membrane 6, moves to the concentrated water in the concentration chamber 8, the cathode water in the cathode chamber 2, and the anode water in the anode chamber 4, and is discharged out of the system to be desalted. The inlet water 10 is deionized to produce pure water 11.
[0013]
The desalination chamber 7 will be described in detail. The anion content in the desalination chamber inlet water 10 introduced into the first small desalination chamber 71 is moved to the anode 3 side by the direct current applied to the two electrodes, It passes through the ion exchange membrane 5 and moves into the concentration chamber 8. Since the cation content cannot pass through the anion exchange membrane 5 disposed on the cathode side, it remains in the first small desalting chamber 71. Thereby, in the 1st small desalting chamber 71, since only an anion content reduces, pH becomes high and it becomes easy to remove by ionizing a weak anion component. From the ion exchange membrane 5 arranged on the cathode side, the remaining anion component and OH removed in the second small desalting chamber 72 are transmitted to the first small desalting chamber 71. By the action of OH , the anion exchanger filled in the first small desalting chamber 71 is regenerated, and the anion content in the desalting chamber inlet water 10 can be removed again.
[0014]
The treated water that has been subjected to the above desalting treatment in the first small desalting chamber 71 is then introduced into the second small desalting chamber 72. Here too, as in the desalting process in the first small desalting chamber 71, the anion content passes through the anion exchange membrane 5 and moves to the first small desalting chamber, and the cation content is in the treated water. Therefore, the treated water is kept at a high pH from the time when it is introduced into the second small desalting chamber 72, and the desalting effect of the weak anion component is further enhanced. As a result, residual anions mainly composed of weak anions that could not be desalted in the first small desalting chamber 71 are removed.
From the anion exchange membrane 5 present on the cathode 1 side, mainly OH permeates into the second small desalting chamber 72, so that the anion exchanger in the second small desalting chamber is the first. Thus, it is possible to efficiently remove an anion component that is regenerated more efficiently than the anion exchanger in the small desalting chamber 71 and could not be removed in the first small desalting chamber.
[0015]
The treated water further desalted in the second small desalting chamber 72 is introduced into the third small desalting chamber 73, and a final desalting process is performed. At the time of introduction into the third small desalting chamber 73, the anion component in the treated water is almost gone, and a very small amount of weak anion component and cation component are to be removed.
The third small desalting chamber 73 is filled with a cation exchanger and an anion exchanger, and the cation is exchanged with the cation exchanger, and then the cation exchange present on the cathode 1 side. It passes through the membrane 6 and moves to the concentration chamber 8. The remaining trace amount of weak anion component is ion-exchanged with the anion exchanger in the third small desalting chamber 73 and then permeates through the anion exchange membrane 5 on the anode 3 side to form the second small deionization. Move to the salt chamber 72.
[0016]
In the third small desalting chamber, water is decomposed into H + and OH by the hydrolysis in addition to the movement of ions, and this is the cation exchanger and anion exchange in the third small desalting chamber 73. As the body is regenerated, OH - is also used to regenerate the anion exchanger filled in the first and second small desalting chambers 71 and 72, so that the ion exchanger is regenerated with acid and alkali. Thus, the ion content in the desalination chamber inlet water 10 is sufficiently removed including the weak anion component, and the pure water 11 can be continuously obtained.
Here, since the cation content is much easier to remove than the weak anion content, the cation content is sufficiently removed only by the third small desalination chamber 73. When a weak cation component is contained in a large amount, the ion exchange membrane separating the first small desalting chamber 71 and the second small desalting chamber 72 is used as a cation exchange membrane, and the second and second The ion exchanger filled in the third small desalting chambers 72, 73 is a cation exchanger, and the desalting chamber inlet water 10 is used as the third small desalting chamber 73, the second small desalting chamber 72, the second One small desalting chamber 71 may be used for water flow and desalting treatment.
In this case, the first small desalting chamber 71 may be filled with an anion exchanger, or an anion exchanger and a cation exchanger.
[0017]
Further, as shown in FIG. 2, the ion exchange membrane on the anode side of the second small desalting chamber shown in FIG. 1 is changed to the cation exchange membrane 6, and the second small desalting chamber 72 is filled. And the ion exchanger in the third small desalting chamber 73 is a cation exchanger, and the first small desalting is performed. Desalination treatment in which treated water flowing out of the chamber 71 is introduced into the third small desalting chamber 73 and further introduced into the third small desalting chamber 73 filled with the anion exchanger and the cation exchanger. May be performed.
The desalting chamber 7 is divided by an ion exchange membrane so that fourth, fifth,... Small desalting chambers are further provided on the anode side of the third small desalting chamber 73 in FIG. The outlet water of the desalting chamber 73 can be further passed through the fourth, fifth,... When a bipolar membrane is used for dividing the desalting chamber 7, for example, when the desalting chamber 7 is divided into three small desalting chambers using two ion exchange membranes, ions on the cathode 1 side are used. Small desalting chambers 71, 72, 73 are formed by using an anion exchange membrane as the exchange membrane and a bipolar membrane as the ion exchange membrane on the anode 3 side.
[0018]
In this case, both sides of the small desalting chamber formed of an anion exchange membrane, the small desalting chamber formed of an anion exchange membrane and a bipolar membrane, an anion exchanger, a bipolar membrane and a cation exchange membrane When the inside of the small desalting chamber formed in is filled with a cation exchanger, the desalting efficiency is highest. Due to the characteristics of the bipolar membrane, H + and OH are efficiently generated by hydrolysis at a low voltage at the bipolar membrane. H + regenerates the cation exchanger and OH regenerates the anion exchanger, and enters the desalination chamber. It becomes possible to remove the ion content in the water 10.
Since hydrolysis can be generated efficiently, the operating voltage can be further reduced when a bipolar membrane is used.
In the electric regeneration type desalination apparatus, a concentration chamber of ± 1 was conventionally required for the number of desalination chambers, but as described above, a small desalination chamber divided by a plurality of ion exchange membranes was used. By forming an electric regeneration type desalination apparatus, the number of concentration chambers can be reduced, and the operation voltage can be reduced accordingly.
[0019]
【Example】
Hereinafter, the present invention will be specifically described by way of examples.
Example 1
Next, the effect of the present invention will be described in comparison with a comparative example. As shown in FIG. 3, the test facility is a desalination chamber inlet water 10, a concentration chamber inlet water 1, a cathode chamber inlet water 14, an anode chamber inlet water 16, and water from Fujisawa city using an activated carbon filter, a safety filter, and a reverse osmosis membrane device. The water quality was 0.20 MΩ · cm in specific resistance.
As an example, the electric regeneration type desalination apparatus in the test apparatus shown in FIG. 3 uses the electric regeneration type desalination apparatus having the configuration shown in FIG. 1, the flow rate of the desalination chamber inlet water 10 is 1000 L / h, and the concentration chamber The flow rate of the inlet water 12 is 80 L / h, the flow rate of the cathode chamber inlet water 14 and the flow rate of the anode chamber inlet water 16 are 40 L / h, respectively, and a 1.2 A DC current is applied to the cathode 1 and the anode 3 for operation. went.
[0020]
The electric regenerative desalination equipment has an electrode area of 0.256 m 2 , 3 desalting chambers, 2 concentrating chambers, a cathode chamber and an anode chamber at both ends, and a desalting chamber with two anion exchange membranes. The first and second small desalting chambers, which are divided into three small desalting chambers and formed on both sides with anion exchange membranes, are provided with an anion exchange nonwoven fabric and anion exchange spacers, an anion exchange membrane and a cation. The third small desalting chamber formed of the exchange membrane was filled with a cation exchange nonwoven fabric, an anion exchange nonwoven fabric, a cation exchange spacer, and an anion exchange spacer.
Also, an anion exchanger and a cation exchanger are provided in the concentration chamber, a spacer having no conductivity with the cation exchanger is provided in the cathode chamber, and no anion exchanger and conductivity are provided in the anode chamber. Filled with spacers.
As a result of operating under the above conditions, pure water 11 having a specific resistance of 17.7 MΩ · cm was continuously produced, the quality of pure water was greatly improved, the operating voltage was reduced to 120 V, and the carbonation removal rate, silica The removal rate was 99% or more, and the removal rate of weak anions was greatly improved.
[0021]
In the comparative example, the electric regeneration type desalination apparatus having the configuration shown in FIG. 4 is used, the flow rate of the desalination chamber inlet water 10 is 1000 L / h, the flow rate of the concentration chamber inlet water 12 is 360 L / h, and the cathode chamber inlet water 14 The operation was performed by applying a 1.2 A direct current to the cathode 1 and the anode 3 with the flow rate and the flow rate of the anode chamber inlet water 16 being 40 L / h, respectively. The electroregenerative desalination apparatus has an electrode area of 0.256 m 2 , 10 desalination chambers, 9 concentrating chambers, a cathode chamber and an anode chamber at both ends, and a negative chamber inside the desalting chamber and the concentrating chamber. The ion exchanger and the cation exchanger are filled, the cathode chamber is filled with the cation exchanger, and the anode chamber is filled with the anion exchanger.
As a result of operating under the above conditions, pure water 11 having a specific resistance of about 10.4 MΩ · cm was continuously produced.
In this operation, the operating voltage was 150 V, the carbonation removal rate was 94%, and the silica removal rate was 88%.
[0022]
【The invention's effect】
According to the electric regeneration type desalination apparatus of the present invention, as described above, it is possible to increase the ability to remove weak anion components in the water to be treated and to reduce the operating voltage.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of an electric regeneration type desalination apparatus according to the present invention.
FIG. 2 is a schematic configuration diagram showing another example of the electric regeneration type desalination apparatus of the present invention.
FIG. 3 is a test flowchart of the apparatus used in the examples.
FIG. 4 is a schematic configuration diagram showing an example of a conventional electric regenerative desalination apparatus.
[Explanation of symbols]
1: cathode, 2: cathode chamber, 3: anode, 4: anode chamber, 5: anion exchange membrane, 6: cation exchange membrane, 7: desalination chamber, 8: concentration chamber, 9: ion exchanger, 10 : Demineralization chamber inlet water, 11: pure water, 12: concentration chamber inlet water, 13: concentration chamber outlet water, 14: cathode chamber inlet water, 15: cathode chamber outlet water, 16: anode chamber inlet water, 17: anode Room outlet water, 71: first small desalting chamber, 72: second small desalting chamber, 73: third small desalting chamber

Claims (5)

陰極を有する陰極室と、陽極を有する陽極室とを有し、この両極室の間に、陽イオン交換膜及び陰イオン交換膜を配置し、これらのイオン交換膜と室枠を用いて脱塩室と濃縮室を形成した電気再生式脱塩装置であって、前記脱塩室は、電気の流れ方向に複数枚のイオン交換膜で分割されており、前記存在する室のうちの少なくとも脱塩室内部にはイオン交換体が充填されていることを特徴とする電気再生式脱塩装置。A cathode chamber having a cathode and an anode chamber having an anode, and a cation exchange membrane and an anion exchange membrane are disposed between the two electrode chambers, and desalting is performed using the ion exchange membrane and the chamber frame. An electric regenerative desalination apparatus having a chamber and a concentration chamber, wherein the desalting chamber is divided by a plurality of ion exchange membranes in the direction of electricity flow, and at least the desalting of the existing chambers An electric regenerative desalination apparatus, characterized in that an indoor portion is filled with an ion exchanger. 陰極を有する陰極室と、陽極を有する陽極室とを有し、この両極室の間に、陽イオン交換膜及び陰イオン交換膜を配置し、これらのイオン交換膜と室枠を用いて脱塩室と濃縮室を形成した電気再生式脱塩装置であって、前記脱塩室は2枚のイオン交換膜で電気の流れ方向に3つの小脱塩室に分割されており、前記存在する室のうちの少なくとも該3つの小脱塩室内にはイオン交換体が充填されており、該第1の小脱塩室出口水が第2の小脱塩室入口に、さらに第2の小脱塩室出口水が第3の小脱塩室に供給されるように3つの小脱塩室が構成されていることを特徴とする電気再生式脱塩装置。A cathode chamber having a cathode and an anode chamber having an anode, and a cation exchange membrane and an anion exchange membrane are disposed between the two electrode chambers, and desalting is performed using the ion exchange membrane and the chamber frame. An electric regeneration type desalination apparatus having a chamber and a concentration chamber, wherein the desalting chamber is divided into three small desalting chambers in the direction of electricity flow by two ion exchange membranes, At least three of the small desalting chambers are filled with an ion exchanger, and the first small desalting chamber outlet water enters the second small desalting chamber inlet and the second small desalting chamber further. An electric regenerative desalination apparatus characterized in that three small desalination chambers are configured such that room outlet water is supplied to the third small desalination chamber. 前記脱塩室には、陽極側に陰イオン交換膜、陰極側に陽イオン交換膜を配置すると共に、該脱塩室を分割する複数枚のイオン交換膜は、陽イオン交換膜、もしくは陰イオン交換膜の単一膜、もしくはバイポーラ膜であることを特徴とする請求項1又は2に記載の電気再生式脱塩装置。In the desalting chamber, an anion exchange membrane on the anode side and a cation exchange membrane on the cathode side, and a plurality of ion exchange membranes dividing the desalting chamber are a cation exchange membrane or an anion. The electric regenerative desalination apparatus according to claim 1, wherein the apparatus is a single membrane of an exchange membrane or a bipolar membrane. 前記イオン交換体は、放射線グラフト重合法によりイオン交換体が導入されたイオン交換繊維からなるイオン交換体であることを特徴とする請求項1、2又は3に記載の電気再生式脱塩装置。The electric regenerative desalination apparatus according to claim 1, 2 or 3, wherein the ion exchanger is an ion exchanger made of an ion exchange fiber into which an ion exchanger has been introduced by a radiation graft polymerization method. 前記イオン交換繊維からなるイオン交換体は、不織布又は織布、及び網目状のスペーサであることを特徴とする請求項1〜4のいずれか1項に記載の電気再生式脱塩装置。The ion regenerative desalination apparatus according to any one of claims 1 to 4, wherein the ion exchanger made of the ion exchange fiber is a nonwoven fabric or a woven fabric, and a mesh-like spacer.
JP2002136603A 2002-05-13 2002-05-13 Electric regenerative desalination equipment Expired - Fee Related JP3729347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002136603A JP3729347B2 (en) 2002-05-13 2002-05-13 Electric regenerative desalination equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002136603A JP3729347B2 (en) 2002-05-13 2002-05-13 Electric regenerative desalination equipment

Publications (2)

Publication Number Publication Date
JP2003326270A JP2003326270A (en) 2003-11-18
JP3729347B2 true JP3729347B2 (en) 2005-12-21

Family

ID=29698573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002136603A Expired - Fee Related JP3729347B2 (en) 2002-05-13 2002-05-13 Electric regenerative desalination equipment

Country Status (1)

Country Link
JP (1) JP3729347B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803649B2 (en) * 2005-11-01 2011-10-26 オルガノ株式会社 Operation method of electric deionized water production apparatus and electric deionized water production apparatus
JP4978098B2 (en) * 2006-08-02 2012-07-18 栗田工業株式会社 Electrodeionization equipment
JP5058217B2 (en) * 2009-06-22 2012-10-24 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP5620229B2 (en) * 2010-11-02 2014-11-05 オルガノ株式会社 Electric deionized water production equipment
CN113337848A (en) * 2021-05-31 2021-09-03 桂林正翰实业投资有限公司 Method for purifying gold from gold pregnant solution based on electrodeionization and electrodeposition equipment
CN115028242A (en) * 2021-06-17 2022-09-09 上海安江环保科技合伙企业(有限合伙) Electrochemical assembly, device and method for realizing particle confinement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3200458B2 (en) * 1991-03-13 2001-08-20 日本原子力研究所 Electric regeneration type desalination equipment
JP2504885B2 (en) * 1991-11-12 1996-06-05 日本原子力研究所 Ion exchanger manufacturing method
JP3718096B2 (en) * 2000-01-31 2005-11-16 株式会社荏原製作所 Electric regenerative desalination equipment
JP4481417B2 (en) * 2000-03-23 2010-06-16 オルガノ株式会社 Deionized water production method
JP4497387B2 (en) * 2000-05-12 2010-07-07 オルガノ株式会社 Secondary pure water production equipment
JP4552273B2 (en) * 2000-05-19 2010-09-29 栗田工業株式会社 Electrodeionization equipment

Also Published As

Publication number Publication date
JP2003326270A (en) 2003-11-18

Similar Documents

Publication Publication Date Title
JP6078074B2 (en) Desalination system and method
MXPA01003822A (en) Method and apparatus for preventing scaling in electrodeionization units.
JPWO2003097536A1 (en) Electric desalination equipment
JP3956836B2 (en) Electrodeionization equipment
JP5295927B2 (en) Electric deionized water production equipment
JP4403621B2 (en) Electrodeionization equipment
JP5145305B2 (en) Electric deionized water production equipment
KR101526093B1 (en) Electric device for producing deionized water
JP4710176B2 (en) Ultrapure water production equipment
JP3729347B2 (en) Electric regenerative desalination equipment
JP5114307B2 (en) Electric deionized water production equipment
JP3729349B2 (en) Electric regenerative desalination equipment
JP3788318B2 (en) Electrodeionization apparatus and electrodeionization method
JP3781352B2 (en) Electric deionized water production apparatus and deionized water production method
JP5379025B2 (en) Electric deionized water production equipment
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method
JP2003001258A (en) Electrolytic deionizing apparatus
JP2011121027A (en) Electric type deionized water producing apparatus
JP3729348B2 (en) Electric regenerative desalination equipment
JP5806038B2 (en) Electric deionized water production equipment
JP4552273B2 (en) Electrodeionization equipment
JP5415966B2 (en) Electric deionized water production apparatus and deionized water production method
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
CN212198606U (en) One-way cation mixed exchange type water purification system and water purifier
JP4599668B2 (en) Operation method of electrodeionization equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050928

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees