JP4493285B2 - Optical semiconductor element storage package and optical semiconductor device - Google Patents

Optical semiconductor element storage package and optical semiconductor device Download PDF

Info

Publication number
JP4493285B2
JP4493285B2 JP2003151448A JP2003151448A JP4493285B2 JP 4493285 B2 JP4493285 B2 JP 4493285B2 JP 2003151448 A JP2003151448 A JP 2003151448A JP 2003151448 A JP2003151448 A JP 2003151448A JP 4493285 B2 JP4493285 B2 JP 4493285B2
Authority
JP
Japan
Prior art keywords
optical semiconductor
metal
semiconductor element
metal substrate
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003151448A
Other languages
Japanese (ja)
Other versions
JP2004356334A5 (en
JP2004356334A (en
Inventor
将章 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003151448A priority Critical patent/JP4493285B2/en
Publication of JP2004356334A publication Critical patent/JP2004356334A/en
Publication of JP2004356334A5 publication Critical patent/JP2004356334A5/ja
Application granted granted Critical
Publication of JP4493285B2 publication Critical patent/JP4493285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光半導体デバイスに使用する光半導体素子収納用パッケージおよび光半導体装置に関する。
【0002】
【従来の技術】
従来、光通信分野で用いられているLD(レーザーダイオード)やPD(フォトダイオド)等の光半導体素子を収納するための光半導体装置を図4(a)、(b)、(c)に示す。ここで図4(a)は光半導体装置の断面図であり、図4(b)は蓋体を外した状態での上面図であり、図4(c)は下面図である。
【0003】
従来の光半導体装置は、上面の中央部に光半導体素子S’の搭載部101aを有するとともにこの搭載部101aの近傍に上面から下面にかけて形成された直径0.5〜2mmの貫通孔101bを有する、鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金やFe−Ni合金等の金属から成る円板状の金属基板101と、貫通孔101bに挿通され、少なくとも下面側の端部が貫通孔101bから突出するように封止材102を介して固定された、上面側の端部が光半導体素子S’の電極と電気的に接続される、Fe−Ni−Co合金やFe−Ni合金等の金属から成る金属製端子103と、搭載部101aに搭載されてその電極が金属製端子103の上面側の端部と電気的に接続された光半導体素子S’と、主面にその一辺から対向する他辺にかけて形成された直線状の配線導体104を有し、金属基板101に配線導体104と金属製端子103の下面側に突出した部位とが平行かつ対向して接合するように取着された絶縁基板105とを具備している。
【0004】
なお、封止材102は絶縁ガラスから成り、この封止材102によって金属基板101と金属製端子103とが電気的に絶縁されている。また、金属基板101に形成された貫通孔101bの内径は金属基板101の上面から下面にかけて同一径となっている。また、光半導体素子S’は、金属基板101に200〜400℃の融点を有する金(Au)−錫(Sn)等の低融点ろう材によりろう付け固定され、光半導体素子S’の電極がボンディングワイヤ106を介して金属端子103に電気的に接続される。
【0005】
また、金属基板101の上面には、外周端から幅1mm以内の外周部に、光半導体素子S’の保護を目的として、Fe−Ni−Co合金等から成る第1の蓋体107aがYAGレーザ溶接、シーム溶接またはろう付け等により固定され、そして、金属基板101の上面に第1の蓋体107aを、例えばYAGレーザで溶接,接合し、さらに光半導体素子S’に対向する部位に光ファイバ108が固定される第2の蓋体107bを接合することにより、製品としての光半導体装置となる。
【0006】
この光半導体装置は、外部電気回路(図示せず)から供給される駆動信号によって光半導体素子S’を光励起させ、励起した光を戻り光防止用の光アイソレータ(図示せず)を介して光ファイバ108に授受させるとともに光ファイバ108内を伝達させることによって、大容量の光通信等に使用される。そして、その適応範囲は40km以下の伝送距離、かつ2.5Gbps(Giga bit per second)以下の伝送容量の範囲で多用されている。
【0007】
近年、40km以下の伝送距離での高速通信に対する需要が急激に増加しており、高速大容量伝送に関する研究開発が進められている。とりわけ、光通信装置において光信号を発信する光半導体装置等の光発信装置が注目されており、光信号の高出力化と高速化が伝送容量を向上させるための課題となっている。
【0008】
従来の光半導体装置の光出力は0.2〜0.5mW程度であり、光半導体素子は5mW程度の駆動電力であった。しかし、より大出力の光半導体装置では、光出力が1mWのレベルまで向上してきており、また、光半導体素子も10mW以上の駆動電力が要求されている。さらに、従来の光半導体装置に用いられていた高周波信号は2.4Gbps程度であったが、10Gbps程度まで向上してきており、より高出力化および高速化が要求されてきている。
【0009】
【特許文献1】
特開平8−130266号公報
【0010】
【発明が解決しようとする課題】
しかしながら、従来の光半導体素子収納用パッケージに10mW以上の駆動電力および10GHz程度の高周波信号で駆動される光半導体素子を搭載した、光出力が1mW程度の光半導体装置を構成しようとすると、光半導体素子と金属製端子との特性インピーダンスのばらつきが大きいため、光半導体素子が正常に作動し難く、特に10Gbps以上の高周波信号を損失を小さくして円滑に伝送することが困難であるという問題点があった。
【0011】
これは、金属製端子の金属基板の貫通孔から突出した部位が同軸構造となっておらず、そのため、伝送される高周波信号の周波数が高くなると、同軸構造になっていない部分の特性インピーダンスが大きくなり、かつ信号の伝播モードにずれを生じ、絶縁基板の配線導体と金属製端子間の特性インピーダンスのギャップおよび信号の伝播モードのずれが非常に大きくなることによるものであり、その結果、高周波信号の入出力時における反射損失が大きくなり、光半導体素子の作動性が劣化してしまうことによるものである。
【0012】
すなわち、従来の構成では、金属基板、金属製端子の貫通孔の内部に位置する部位およびマイクロストリップ線路構造である配線導体での高周波信号の伝播モードはTEM(Transverse Electro Magnetic)モードであり、それに対して、金属製端子の金属基板の貫通孔から突出した部位であって、配線導体との接合部以外の部位の伝播モードはTE(Transverse Electric)モードであり、このため高周波信号はTEMモード、TEモード、TEMモードと伝播モードが変化するため、伝播モードの変化部で特性インピーダンスがステップ状に変化し、高周波信号の反射損失が大きくなってしまう問題点を有していた。
【0013】
また、従来の光半導体素子収納用パッケージにおいては、光半導体素子と金属製端子とを電気的に接続するボンディングワイヤのL成分(誘導性成分)が非常に大きいために、ボンディングワイヤの特性インピーダンスが非常に大きくなって高周波信号の損失の原因となり、その結果、ボンディングワイヤを介することで高周波信号の損失および信号の伝播モードのずれが非常に大きくなってしまい、高周波信号の入出力時における反射損失が大きくなり、具体的には10GHz程度の高周波信号における反射損失が−15dB以上と大きなものとなってしまうという問題点も有していた。
【0014】
従って、本発明は上記従来の問題点に鑑み完成されたものであり、その目的は、高周波信号の反射損失を低減することが可能な光半導体素子収納用パッケージおよび光半導体装置を提供することにある。
【0015】
【課題を解決するための手段】
本発明の光半導体素子収納用パッケージは、上面に光半導体素子が搭載される金属基板と、該金属基板の下面に接合され、表面に配線導体が形成された絶縁基板と、前記金属基板が有する貫通孔に封止材を介して固定されて、前記金属基板の下面側に突出した部位が前記配線導体上に配置されており、前記金属基板の上面側の端部が前記光半導体素子と電気的に接続される、前記金属基板の前記貫通孔から前記配線導体上にかけての径が同じである金属端子と、前記金属基板の前記下面に接合され、前記金属端子を覆う金属製部材とを備え、前記金属製部材と前記配線導体および前記金属製端子との間の距離は、前記金属製部材が前記金属基板と接合されている側が反対側と比べて短いことを特徴とする。
【0016】
本発明の半導体素子収納用パッケージによれば、高周波信号の伝送時に、金属製端子の下面側に突出した部位の特性インピーダンスが、金属製端子の金属基板の貫通孔内に位置し、同軸構造となっている部位の特性インピーダンスと絶縁基板の配線導体の特性インピーダンスとの間の大きさであるとともに、特性インピーダンスを滑らかに変化させることができるため、金属製端子の特性インピーダンスと配線導体の特性インピーダンスとの急激な変化を抑えることができ、反射損失を極めて小さくすることができ、その結果、10GHz以上の高周波信号の挿入損失や反射損失を良好に抑制でき、10GHz以上の高周波信号の損失を非常に小さくして伝送することが可能となる。
【0017】
また、本発明の光半導体素子収納用パッケージは、上記構成において、前記金属製端子前記光半導体素子とは、長さが0.1〜2mmのボンディングワイヤを介して電気的に接続されることを特徴とするものである。
【0018】
本発明の光半導体素子収納用パッケージによれば、金属製端子の上面側の端部が、光半導体素子の電極に長さが0.1〜2mmのボンディングワイヤを介して電気的に接続される場合には、ボンディングワイヤはそのL成分(誘電性成分)および特性インピーダンスが非常に小さなものとなり、その結果、光半導体素子への高周波信号の入出力時における反射損失を−15dB以下と小さくすることができ、10GHz以上の高周波信号を低損失で伝送することが可能となる。
【0019】
さらに、本発明の光半導体素子収納用パッケージは、上記構成において前記金属基板に形成された前記貫通孔は、前記金属基板の前記上面側が前記下面側と比べて径が小さく形成されていることを特徴とするものである。
【0020】
本発明の光半導体素子収納用パッケージによれば、貫通孔は、金属基板の下面側に大径部を、上面側に大径部と同軸で連なる小径部を有し、金属製端子が大径部に封止材を介して固定されている場合には、金属製端子は大径部で十分な量の封止材により貫通孔の内面に固定されるので気密封止が良好なものとなり、また、金属製端子を小径部の開口を基準として位置決めすることにより位置精度よく金属基板に封止材を介して固定でき、貫通孔の内面や屋根状部材である金属製部材と良好な同軸構造とすることができる。さらに、ボンディングワイヤの長さを、封止材の気密封止を劣化させることなく、容易に0.1〜2mmとすることができる。
【0021】
また、本発明の光半導体装置は、上記の光半導体素子収納用パッケージと、前記搭載部に搭載されてその電極が前記金属製端子の前記上面側の端部と電気的に接続された光半導体素子とを具備していることを特徴とするものである。
【0022】
本発明の光半導体装置によれば、上記の光半導体素子収納用パッケージと、搭載部に搭載されてその電極が金属製端子の上面側の端部と電気的に接続された光半導体素子とを具備していることから、10GHz以上の高周波信号の挿入損失や反射損失を良好に抑制でき、10GHz以上の高周波信号の伝送損失を小さくして伝送することが可能な半導体装置とすることができる。
【0023】
【発明の実施の形態】
次に、本発明の光半導体素子収納用パッケージおよび光半導体装置について添付の図面を参照しつつ詳細に説明する。
【0024】
図1(a)は、本発明の光半導体素子収納用パッケージに光半導体素子を搭載して成る光半導体装置の実施の形態の一例を示した断面図であり、図1(b)および(c)は、それぞれ図1(a)に示す光半導体装置の蓋体を外した状態での上面図および下面図である。
【0025】
これらの図において、光半導体素子収納用パッケージは、金属基板1と、金属基板1の下面に接合され、表面に配線導体4が形成された絶縁基板5と、金属基板1が有する貫通孔1bに封止材2を介して固定されて、金属基板1の下面側に突出した部位が配線導体4上に配置された金属端子3と、金属基板1の下面に接合され、金属端子3を覆う金属製部材(屋根状部材)Tとを備えている。また、光半導体装置は、光半導体素子収納用パッケージの金属端子3と電気的に接続された光半導体素子Sを、金属基板1の上面に備えている。
【0026】
金属基板1は、光半導体素子Sを搭載するとともに搭載する光半導体素子Sが発生する熱を放散する機能を有し、その形状が円形状,半円形状,四角形状等で、厚みが0.5〜2mmの平板状であり、その上面には光半導体素子Sを搭載する搭載部1aを有するとともに搭載部1aの近傍には上面から下面にかけて形成された直径0.5〜2mmの貫通孔1bを有する。
【0027】
なお、貫通孔1bの大きさが0.5mm未満の場合、金属製端子3を封止する封止材2の、貫通孔1b内面−金属製端子3間の厚みが薄いものとなり、あるいは封止材2が貫通孔1b内面−金属製端子3間に入り込むことが困難となり気密不良を発生し易くなる傾向がある。他方2.0mmを超えると金属基板1に搭載する光半導体素子Sの配置の設計自由度が小さくなり、そのため半導体素子収納用パッケージや半導体装置の大きさが不要に大きいものになり小型化をすることが困難となる傾向がある。従って、貫通孔1bの大きさは0.5〜2.0mmが好ましい。
【0028】
このような金属基板1は、Fe−Ni−Co合金やFe−Ni合金等の金属から成り、例えば金属基板1がFe−Ni−Co合金から成る場合は、このインゴット(塊)に圧延加工や打ち抜き加工等の従来周知の金属加工方法を施すことによって所定形状に製作される。
【0029】
また、金属基板1の表面には耐食性に優れ、かつ、ろう材との濡れ性に優れた厚さ0.5〜9μmのNi層と厚さ0.5〜5μmのAu層をめっき法により順次被着させておくと、金属基板1が酸化腐食するのを有効に防止するとともに各部品を金属基板1に良好にろう付けすることができる。
【0030】
なお、金属基板1の厚みは0.5mm以上が好ましく、厚みが0.5mm未満の場合、後述する第1の蓋体7aや第2の蓋体7bを金属基体1に溶接する際に、溶接の条件(温度等)により金属基板1が曲がったりして変形し易くなる傾向があり、2mmを超えると半導体素子収納用パッケージや半導体装置の厚みが不要に厚いものとなり小型化をすることが困難となる傾向がある。従って、金属基体1の厚みは0.5〜2mmが好ましい。
【0031】
なお、図1(a)〜(c)には、半導体素子Sを1個搭載し、貫通孔1bを1個形成した例を示しているが、複数の半導体素子Sを搭載し、複数の貫通孔1bを形成してもよい。また、ここでいう光半導体素子Sとは、具体的にはLDやPD、VCSEL等の光半導体素子をいい、これらはAu−Sn等の金属ろう材を介して金属基板1に搭載される。
【0032】
金属基板1に形成された貫通孔1bには、長さが1.5〜22mmで、直径が0.1〜1mmのピン状の金属製端子3が封止材2を介して固定されている。金属製端子3は、光半導体素子Sが送受信する電気信号を外部電気回路(図示せず)に伝送する機能を有する。なお、金属製端子3は、少なくとも金属基板1の下面側の端部が貫通孔1bから1〜20mm程度突出するように、貫通孔1bに封止材2を介して固定されており、金属基板1の下面側に突出した部位が後述する絶縁基板5に形成された配線導体4と電気的に接続される。
【0033】
なお、金属製端子3の金属基板1の上面側の端部は中央部に比べて径大のネールヘッドとなっており、また、端面は平坦で金属基板1の上面と平行あるいは上面より高い位置に位置しており、光半導体素子Sにボンディングワイヤ6等の電気的接続手段を介して接続される。
【0034】
このような金属製端子3は、Fe−Ni−Co合金やFe−Ni合金等の金属から成り、例えば金属製端子3がFe−Ni−Co合金から成る場合は、このインゴットを圧延加工や打ち抜き加工等の従来周知の金属加工方法を施すことによって、長さが1.5〜22mm、直径が0.1〜1mmのピン状に製作される。
【0035】
なお、金属製端子3の金属基板1の下面に突出した部位の長さが1mm未満であると、後述する配線導体4とろう材等を用いて強固に接合することが困難とる傾向があり、20mmを超えると絶縁基板5の長さが不要に長いものとなり、光半導体素子収納用パッケージや光半導体装置を小型化することが困難となる傾向がある。従って、金属製端子3は、少なくとも金属基板1の下面側の端部が貫通孔1bから1〜20mm程度突出するように、金属基板1に固定することが好ましい。また、図1に示すように、ピン状である金属製端子3は、金属基板1の貫通孔1bから配線導体4上にかけての径が同じである。
【0036】
また、封止材2は、金属基板1と金属製端子3との絶縁間隔を確保するとともに、金属製端子3を金属基板1の貫通孔1bに固定する機能を有し、通常、ガラスやセラミックスなどの無機材料が用いられる。
【0037】
なお、金属製端子3は、例えば厚みが金属基板1の厚みと同等で、外径が貫通孔1bの径より小さく、内径が金属製端子3の外径より大きいガラス製のリングを貫通孔1bに挿入するとともにリングに金属製端子3を挿入し、しかる後、ガラスを所定の温度で加熱,溶融することにより、金属製端子3の外周面が貫通孔1bの内面に気密に固定される。
【0038】
また、金属基板1の下面には主面にその一辺から対向する他辺にかけて被着された直線状の配線導体4を有する四角平板状の絶縁基板5が、配線導体4を金属製端子3の下面側に突出した部位に平行に接合させて取着されている。
【0039】
絶縁基板5は、配線導体4を支持する機能を有し、ポリイミド樹脂やエポキシ樹脂等の熱硬化性樹脂や、酸化アルミニウム質焼結体や窒化アルミニウム質焼結体,ムライト質焼結体,炭化珪素質焼結体,窒化珪素質焼結体,ガラス−セラミックス等の無機材料から成る。例えば酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム,酸化珪素,酸化マグネシウム,酸化カルシウム等のセラミック原料粉末に適当な有機バインダ,溶剤,可塑剤,分散剤を添加混合して泥漿状となすとともにこれを従来周知のドクタブレード法を採用してシート状に成形することにより複数枚のセラミックグリーンシートを得、しかる後、これらのセラミックグリーンシートに適当な打ち抜き加工,積層加工,切断加工を施すことにより絶縁基板5用の生セラミック成形体を得るとともにこの生セラミック成形体を約1600℃の温度で焼成することにより製作される。
【0040】
配線導体4は、光半導体素子Sおよび外部電気回路間の電気信号を伝送する機能を有し、絶縁基板5の主面にその一辺から対向する他辺にかけて直線状に形成されている。
【0041】
このような配線導体4は、絶縁基板5がポリイミド樹脂やエポキシ樹脂等の熱硬化性樹脂から成る場合は一般に銅めっきにより形成され、絶縁基板5が酸化アルミニウム質焼結体等の無機材料から成る場合は、タングステンやモリブデン、マンガン等から成る。例えば、絶縁基板5が酸化アルミニウム質焼結体から成る場合であれば、タングステンの粉末に有機溶剤,溶媒を添加混合して得た金属ペーストを、あらかじめ主面となるセラミックグリーンシートにスクリーン印刷法により所定パターンに印刷塗布し、セラミックグリーンシートを焼成することによって絶縁基板5の主面に形成される。
【0042】
なお、配線導体4はその表面に、酸化防止のためおよび金属製端子3等を強固に接続するために、厚みが0.5〜9μmのNi層や厚さ0.5〜5μmのAu層等の金属層をめっき法により順次被着させておくことが好ましい。
【0043】
また、絶縁基板5は、配線導体4の表面に半田や温度が200〜400℃に融点を有するAu−Sn等の低融点ろう材を従来周知のスクリーン印刷法を用いて印刷し、次に、金属製端子3を固定した金属基板1を配線導体4と金属製端子3の金属基板1の下面側に突出した部位とを平行かつ対向するように載置し、しかる後、200〜400℃の温度で加熱することにより金属基板1に固定される。
【0044】
そして、図1に示すように、絶縁基板5の主面に、金属製端子3の下面側に突出した部位を絶縁基板5の主面で同軸状に囲む、金属基板1と電気的に接続された金属製の屋根状部材Tが設けられており、屋根状部材Tと配線導体4および金属製端子3との間の距離は、屋根状部材Tが金属基板1と接合されている側が反対側と比べて短い。
【0045】
これにより、高周波信号の伝送時に、金属製端子3の下面側に突出した部位の特性インピーダンスが、金属製端子3の金属基板1の貫通孔1b内に位置し、同軸構造となっている部位の特性インピーダンスと絶縁基板5の配線導体4の特性インピーダンスとの中間の大きさであるとともに、特性インピーダンスを滑らかに変化させることができるため、金属製端子3の特性インピーダンスと配線導体4の特性インピーダンスとの急激な変化を抑えることができ、反射損失を極めて小さくすることができ、その結果、10GHz以上の高周波信号の挿入損失や反射損失を良好に抑制でき、10GHz以上の高周波信号を伝送損失を小さくして伝送することが可能となる。
【0046】
なお、金属製の屋根状部材Tは、金属製端子3の金属基板1の下面側に突出した部位の側面を隙間を介在させて覆う構造として形成されており、その長さが1〜20mm程度であり、特性インピーダンスの整合性の観点からは、絶縁基板5の主面から配線導体4側で、金属製端子3の金属基板1の下面側に突出した部位全体を同軸状に覆うことが重要である。
【0047】
屋根状部材Tは、厚みが0.5〜2mm程度で、その断面が、円環形状を半分に切った半円環形状、外周および内周が矩形状や三角形状,多角形状のもの、さらには外周または内周のいずれか一方が半円形状,矩形状,三角形状,多角形状で他方がその他の形状のもの等が用いられる。
【0048】
また、屋根状部材Tの内周面は、図5に示すように、金属基板1から遠ざかるに従って漸次金属製端子3から離れるように形成されているのがよい。これにより、屋根状部材Tで覆われている金属製端子3の特性インピーダンスをより滑らかに変化させることができ、金属製端子3を伝送する高周波信号の損失を著しく減少させることができる。
【0049】
このような内周面が金属基板1から遠ざかるに従って漸次金属製端子3から離れるように形成された屋根状部材Tは、例えば、内周面が階段状や直線状、曲面状に傾斜しており、より特性インピーダンスの変化を滑らかにするという観点からは、曲面状に傾斜しているのがよい。
【0050】
また、屋根状部材Tは、図5に示すように、金属製端子3側の一端部の内周面が金属基板1の貫通孔1bの開口よりも内側、即ち金属製端子3により接近しているのがよい。これにより、金属基板1と絶縁基板5との境界における金属製端子3のインピーダンスの変化をより滑らかにして高周波信号の損失を減少させることができる。つまり、金属製端子3は、金属基板1の内部に位置する部位では誘電体から成る封止材2に覆われているのに対し、絶縁基板5に位置する部位では封止材2よりも誘電率が低い空気層によって覆われているため、この封止材2と空気層との誘電率の急激な変化に対応させるため、屋根状部材Tをより金属製端子3に近づけることでインピーダンスの変化をより小さくすることができる。
【0051】
このような金属製の屋根状部材Tは、Fe−Ni−Co合金等の金属から成り、例えばFe−Ni−Co合金のインゴットを切削加工やMIM(メタル・インジェクション・モールド)等の従来周知の金属加工方法を施すことによって所定形状に製作される。
【0052】
そして、金属製の屋根状部材Tは、金属基板1および絶縁基板5の主面にあらかじめ被着したメタライズ層等の金属層に700〜900℃の融点を有する銀(Ag)−銅(Cu)等のろう材により接合される。なお、その表面には耐食性に優れかつろう材との濡れ性に優れた厚さ0.5〜9μmのNi層と厚さ0.5〜5μmの金Au層をめっき法により順次被着させておくことが好ましく、金属製の屋根状部材Tが酸化腐食するのを有効に防止するとともに、良好にろう付けすることができる。
【0053】
なお、金属製の屋根状部材Tは、上述の金属基板1と一体成形してもよく、金属基板1と金属製の屋根状部材Tとを一体成形する場合は、前述した切削加工やMIM等の従来周知の金属加工方法等により製作される。
【0054】
また、本発明の光半導体素子収納用パッケージにおいては、金属製端子3の上面側の端部が、光半導体素子Sの電極に長さが0.1〜2mmのボンディングワイヤ6を介して電気的に接続されることが好ましい。
【0055】
これにより、ボンディングワイヤ6はそのL成分(誘電性成分)および特性インピーダンスが非常に小さなものとなり、その結果、光半導体素子Sへの高周波信号の入出力時における反射損失を−15dB以下と小さくすることができ、10GHz以上の高周波信号を低損失で伝送することが可能となる。
【0056】
なお、ボンディングワイヤ6の長さが2mmを超えるとボンディングワイヤ6のL成分が大きくなり過ぎ、良好な特性インピーダンスが得られなくなり、光半導体素子Sを正常に作動させることが困難となる傾向がある。また、ボンディングワイヤ6の長さが0.1mm未満の場合、光半導体素子Sおよび金属製端子3間のボンディング引回し作業が困難となり、ボンディング接合が不十分となる可能性がある。従って、ボンディングワイヤ6の長さを0.1〜2mmの長さとすることが好ましい。
【0057】
また、ボンディングワイヤ6の長さを0.1〜2mmとするには、金属製端子3の上面側の端面の高さ位置と半導体素子Sの表面の高さ位置とが同じになるように金属製端子3を金属基体1に固定し、さらに半導体素子Sの電極と金属製端子3とを接触しない程度の距離を空けて近接して配置すればよい。また、例えば、金属製端子3と半導体素子Sの電極との距離を0.7mmとし、ボンディングワイヤ6のループ高さを0.15mmにすることにより、ボンディングワイヤ6の長さを0.8mm程度とすることができる。
【0058】
さらに、本発明の光半導体素子収納用パッケージにおいては、図2に断面図で示すように、貫通孔1bが下面側に大径部Aを、上面側に大径部Aと同軸で連なる小径部Bを有し、金属製端子3が大径部Aに封止材2を介して固定されていることが好ましい。
【0059】
これにより、金属製端子3は大径部Aで十分な量の封止材2により貫通孔1bの内面に固定されるので気密封止が良好なものとなり、また、金属製端子3を小径部Bの開口を基準として位置決めすることにより位置精度よく金属基板1に封止材2を介して固定でき、貫通孔1bの内面や屋根状部材Tと良好な同軸構造とすることができる。なお、大径部Aの直径は、封止材2を十分に充填させて気密封止を良好にするという観点からは、金属製端子3の直径より0.5〜1mm程度大きいことが好ましく、小径部Bの直径は、光半導体素子Sを金属製端子3により近づけるという観点からは、金属製端子3直径より0.1〜0.2mm程度大きくすることが好ましい。
【0060】
また、封止材2は少なくとも大径部Aに充填されていればよいが、小径部Bにも充填されていてもよい。
【0061】
さらに貫通孔1bの大径部Aの長さは、金属基板1の厚みの30%以上が好ましい。大径部Aの長さが金属基板1の厚みの30%未満となると、封止材2の量が不十分となって良好な気密封止が困難となる傾向がある。
【0062】
なお、下面側に大径部Aを、上面側に大径部Aと同軸で連なる小径部Bを有する貫通孔1bは、金属基板1に小径部Bと同径の貫通孔を打抜き法を用いて形成した後、大径部Aとなる部分を切削加工法を用いて切削することにより形成される。また、金属製端子3を貫通孔1bの大径部Aに封止材2を用いて固定するには、例えば厚みが大径部Aの厚みと同等で、外径が大径部Aの直径より若干小さく、内径が金属製端子3の外径より若干大きいガラス製のリングを貫通孔1bの大径部Aに挿入するとともにリングに金属製端子3を挿入し、しかる後、ガラスを所定の温度で加熱,溶融することにより、金属製端子3の外周面が貫通孔1bの大径部Aの内面に気密に固定される。
【0063】
そして、本発明の光半導体装置は、上述の光半導体素子収納用パッケージの搭載部1aに光半導体素子SをAu−Snの低融点ろう材を介して実装し、しかる後、その電極を金属製端子3の上面側の端部とボンディングワイヤ6等の電気的接続部材を介して接続することにより製作される。
【0064】
本発明の光半導体装置によれば、上記の半導体素子収納用パッケージと、搭載部1aに搭載されてその電極が金属製端子3の上面側の端部と電気的に接続された光半導体素子Sとを具備していることから、10GHz以上の高周波信号の挿入損失や反射損失を良好に抑制でき、10GHz以上の高周波信号を伝送損失を小さくして伝送することが可能な半導体装置とすることができる。
【0065】
なお通常は、金属基板1の上面には、外周端から幅1mm以内の外周部に、光半導体素子Sの保護を目的として、Fe−Ni−Co合金等から成る第1の蓋体7aがYAGレーザ溶接、シーム溶接またはろう付け等により固定され、そして、金属基板1の上面に第1の蓋体7aを、例えばYAGレーザで溶接,接合し、さらに第1の蓋体7の外周部(鍔状部)に、光ファイバ8と戻り光防止用の光アイソレータ(図示せず)とが樹脂接着剤で接着された第2の蓋体7bをYAGレーザ溶接等で接合することによって、製品としての光半導体装置となる。
【0066】
かくして、本発明の光半導体素子収納用パッケージおよび光半導体装置によれば、絶縁基板5の主面に、金属製端子3の下面側に突出した部位を絶縁基板5の主面から配線導体4側で同軸状に囲む、金属基板1と電気的に接続された金属製の屋根状部材Tが設けられていることから、10GHz以上の高周波信号の挿入損失や反射損失を良好に抑制でき、10GHz以上の高周波信号を伝送損失を小さくして伝送することが可能な光半導体素子収納用パッケージおよび光半導体装置となる。
【0067】
なお、本発明は、上述の実施の形態の一例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。
【0068】
【実施例】
本発明の光半導体装置を、次に述べる評価用の試料と比較用の試料を作して評価した。
【0069】
本発明の光半導体装置を以下のように構成した。まず、主面に配線導体4および接地導体となるパターンをCuめっきした、厚み1.6mm×縦30mm×横15mmのポリイミド樹脂からなる絶縁基板5を作製した。絶縁基板5は、比誘電率が4.1、配線導体4の幅は0.7mm、長さが18.8mm、厚みが0.03mmであった。
【0070】
次に、金属の母材を切削加工して、長さが5mmで、金属基板に接する側の内周の直径が1.4mm、他方の側を3.12mmの半円錐状の屋根状部材Tが一体化して成る、厚みが1mmで、直径が5.6mmの円板状の金属基板1を製作した。金属基板1の中央部には、打ち抜き加工により金属製端子3を気密封止するための直径が1mmの貫通孔1bを形成した。さらに金属基板1の表面には、厚み2μmのNi層と厚さ2μmのAu層をめっき法により順次被着した。
【0071】
そして、金属基板1の貫通孔1bに金属製端子3を挿入し、封止材2であるガラスで接合することにより、気密封止した。その後、金属基板1の搭載部1aに光半導体素子SであるVCSELをAu−Snにてろう付けして搭載し、光半導体素子Sと金属製端子3とをボンディングワイヤ6にて電気的に接続した。一方、金属製端子3と配線導体4とを半田で電気的に接続した。なお、ボンディングワイヤ6の長さは、1mmとした。
【0072】
そして、Fe−Ni−Co合金から成る第1の蓋体7aを金属基板1の上面の外周部にシーム溶接により接合し気密封止し、しかる後、この第1の蓋体7aの外周端部に、光ファイバ8と光アイソレータとを樹脂接着剤で接着した第2の蓋体7bをYAGレーザ溶接により接合し、評価用の光半導体装置を作製した。
【0073】
次に、比較用の試料は、上述の評価用の試料から金属製の屋根状部材Tを長さが5mmで、内周の直径が2.3mmの半円筒状のものに変更したものを用いた。
【0074】
評価用および比較用の試料について、周波数を変化させて反射損失S11を測定した結果を図3(a)および(b)に示す。ここで図3(a)は本発明の光半導体装置、図3(b)は比較例である両端面の開口の大きさが等しい半円筒状の屋根部材Tを用いた光半導体装置の反射損失S11の測定結果である。なお、図3(a)および(b)において、横軸は周波数であり、縦軸は反射損失S11である。
【0075】
図3(a)より、本発明の光半導体装置は、5〜20GHzでの特性インピーダンスのばらつきによる反射損失S11を−15dB以下に抑制できることが判った。一方、図3(b)より、比較例である両端面の開口の大きさが等しい半円筒状の屋根部材Tを用いた光半導体装置は、5〜20GHzにおいて特性インピーダンスのばらつきにより反射損失S11が−15dBを超えることがわかった。
【0076】
【発明の効果】
本発明の半導体素子収納用パッケージによれば、上面に光半導体素子が搭載される金属基板と、金属基板の下面に接合され、表面に配線導体が形成された絶縁基板と、金属基板が有する貫通孔に封止材を介して固定されて、金属基板の下面側に突出した部位が配線導体上に配置されており、金属基板の下面側の端部が光半導体素子と電気的に接続される、金属基板の貫通孔から配線導体上にかけての径が同じである金属端子と、金属基板の下面に接合され、金属端子を覆う金属製部材とを備え、金属製部材と配線導体および金属製端子との間の距離は、金属製部材が金属基板と接合されている側が反対側と比べて短いことにより、高周波信号の伝送時に、金属製端子の下面側に突出した部位の特性インピーダンスが、金属製端子の金属基板の貫通孔内に位置し、同軸構造となっている部位の特性インピーダンスと絶縁基板の配線導体の特性インピーダンスとの間の大きさであるとともに、特性インピーダンスを滑らかに変化させることができるため、金属製端子の特性インピーダンスと配線導体の特性インピーダンスとの急激な変化を抑えることができ、反射損失を極めて小さくすることができ、その結果、10GHz以上の高周波信号の挿入損失や反射損失を良好に抑制でき、10GHz以上の高周波信号の損失を非常に小さくして伝送することが可能となる。
【0077】
また、本発明の光半導体素子収納用パッケージによれば、金属製端子光半導体素子とが、長さが0.1〜2mmのボンディングワイヤを介して電気的に接続される場合には、ボンディングワイヤはそのL成分(誘電性成分)および特性インピーダンスが非常に小さなものとなり、その結果、光半導体素子への高周波信号の入出力時における反射損失を−15dB以下と小さくすることができ、10GHz以上の高周波信号を低損失で伝送することが可能となる。
【0078】
さらに、本発明の光半導体素子収納用パッケージによれば、金属基板に形成された貫通孔は、金属基板の上面側が下面側と比べてさく形成されている場合には、金属製端子は大径部で十分な量の封止材により貫通孔の内面に固定されるので気密封止が良好なものとなり、また、金属製端子を小径部の開口を基準として位置決めすることにより位置精度よく金属基板に封止材を介して固定でき、貫通孔の内面や屋根状部材と良好な同軸構造とすることができる。さらに、ボンディングワイヤの長さを、封止材の気密封止を劣化させることなく、容易に0.1〜2mmとすることができる。
【0079】
また、本発明の光半導体装置によれば、上記の光半導体素子収納用パッケージと、搭載部に搭載されてその電極が金属製端子の上面側の端部と電気的に接続された光半導体素子とを具備していることから、10GHz以上の高周波信号の挿入損失や反射損失を良好に抑制でき、10GHz以上の高周波信号の伝送損失を小さくして伝送することが可能な半導体装置とすることができる。
【図面の簡単な説明】
【図1】 (a)は、本発明の光半導体素子収納用パッケージに光半導体素子を実装して成る光半導体装置の実施の形態の一例の断面図であり、(b)および(c)は、それぞれ(a)の蓋体を外した状態での上面図および下面図である。
【図2】 本発明の光半導体素子収納用パッケージに光半導体素子を実装して成る光半導体装置の実施の形態の他の例を示す断面図である。
【図3】 本発明の半導体装置および従来の半導体装置における周波数と反射損失S11との関係を示した図である。
【図4】 (a)は、従来の光半導体装置の断面図であり、(b)および(c)は、それぞれ(a)の蓋体を外した状態での上面図および下面図である。
【図5】 本発明の光半導体素子収納用パッケージに光半導体素子を実装して成る光半導体装置の実施の形態の他の例を示す断面図である。
【符号の説明】
1・・・・・・・金属基板
1a・・・・・・搭載部
1b・・・・・・貫通孔
A・・・・・・・大径部
B・・・・・・・小径部
2・・・・・・・封止材
3・・・・・・・金属製端子
4・・・・・・・配線導体
5・・・・・・・絶縁基板
6・・・・・・・ボンディングワイヤ
S・・・・・・・光半導体素子
T・・・・・・・金属製の屋根状部材
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to an optical semiconductor element housing package and an optical semiconductor device used for an optical semiconductor device.
[0002]
[Prior art]
  Conventionally, LD (laser diode) and PD (photodiode) used in the optical communication field.-4 (a), 4 (b), and 4 (c) show an optical semiconductor device for housing an optical semiconductor element such as (d). Here, FIG.Is lightCross-sectional view of semiconductor deviceAndFIG. 4B is a top view with the lid removed.AndFIG. 4 (c)Is belowFIG.
[0003]
  The conventional optical semiconductor device has a mounting portion 101a for the optical semiconductor element S ′ at the center of the upper surface and a through hole 101b having a diameter of 0.5 to 2 mm formed from the upper surface to the lower surface in the vicinity of the mounting portion 101a. The disc-shaped metal substrate 101 made of a metal such as iron (Fe) -nickel (Ni) -cobalt (Co) alloy or Fe-Ni alloy and the through hole 101b are inserted, and at least the end on the lower surface side penetrates. An Fe-Ni-Co alloy or Fe-Ni alloy whose end on the upper surface side, which is fixed via the sealing material 102 so as to protrude from the hole 101b, is electrically connected to the electrode of the optical semiconductor element S '. A metal terminal 103 made of a metal such as an optical semiconductor element S ′ mounted on the mounting portion 101a and having an electrode electrically connected to an end portion on the upper surface side of the metal terminal 103; Opposite It has a linear wiring conductor 104 formed on the other side, and is attached to the metal substrate 101 so that the wiring conductor 104 and the portion protruding to the lower surface side of the metal terminal 103 are joined in parallel and facing each other. And an insulating substrate 105.
[0004]
  The sealing material 102 is made of insulating glass, and the metal substrate 101 and the metal terminal 103 are electrically insulated by the sealing material 102. In addition, the inner diameter of the through hole 101 b formed in the metal substrate 101 is the same from the upper surface to the lower surface of the metal substrate 101. The optical semiconductor element S ′ is brazed to the metal substrate 101 with a low melting point brazing material such as gold (Au) -tin (Sn) having a melting point of 200 to 400 ° C., and the electrode of the optical semiconductor element S ′ is fixed. It is electrically connected to the metal terminal 103 via the bonding wire 106.
[0005]
  Further, on the upper surface of the metal substrate 101, a first lid 107a made of Fe—Ni—Co alloy or the like is provided on the outer peripheral portion within a width of 1 mm from the outer peripheral end for the purpose of protecting the optical semiconductor element S ′. The first lid 107a is fixed to the upper surface of the metal substrate 101 by welding, seam welding, brazing, or the like, and is welded and joined with, for example, a YAG laser, and further, an optical fiber is attached to a portion facing the optical semiconductor element S ′. By joining the second lid 107b to which 108 is fixed, an optical semiconductor device as a product is obtained.
[0006]
  In this optical semiconductor device, an optical semiconductor element S ′ is optically excited by a drive signal supplied from an external electric circuit (not shown), and the excited light is transmitted through an optical isolator (not shown) for returning light. The optical fiber 108 is used for high-capacity optical communication and the like by being transferred to and from the optical fiber 108. The adaptation range is a transmission distance of 40 km or less, and 2.5 Gbps (Giga bit per second) Widely used in the following transmission capacity range.
[0007]
  In recent years, the demand for high-speed communication at a transmission distance of 40 km or less has increased rapidly, and research and development relating to high-speed and large-capacity transmission has been promoted. In particular, an optical transmission device such as an optical semiconductor device that transmits an optical signal in an optical communication device is attracting attention, and higher output and higher speed of the optical signal are issues for improving the transmission capacity.
[0008]
  The optical output of the conventional optical semiconductor device is about 0.2 to 0.5 mW, and the optical semiconductor element has a driving power of about 5 mW. However, in the optical semiconductor device with higher output, the optical output has been improved to a level of 1 mW, and the optical semiconductor element is required to have a driving power of 10 mW or more. Furthermore, the high-frequency signal used in the conventional optical semiconductor device was about 2.4 Gbps, but has been improved to about 10 Gbps, resulting in higher output.andHigh speed has been demanded.
[0009]
[Patent Document 1]
  JP-A-8-130266
[0010]
[Problems to be solved by the invention]
  However, when an optical semiconductor device having an optical output of about 1 mW, in which an optical semiconductor element driven with a driving power of 10 mW or more and a high frequency signal of about 10 GHz is mounted on a conventional package for storing an optical semiconductor element, an optical semiconductor is formed. Due to the large variation in characteristic impedance between the element and the metal terminal, the optical semiconductor element is difficult to operate normally, and it is particularly difficult to smoothly transmit a high-frequency signal of 10 Gbps or more with reduced loss. there were.
[0011]
  This is because the portion of the metal terminal that protrudes from the through hole of the metal substrate does not have a coaxial structure. Therefore, when the frequency of the transmitted high-frequency signal increases, the characteristic impedance of the portion that is not the coaxial structure increases. And the signal propagation mode is shifted, and the gap between the characteristic impedance and the signal propagation mode between the wiring conductor of the insulating substrate and the metal terminal becomes very large. This is because the reflection loss at the time of input / output becomes larger and the operability of the optical semiconductor element deteriorates.
[0012]
  That is, in the conventional configuration, the propagation mode of the high-frequency signal in the metal substrate, the portion located inside the through hole of the metal terminal, and the wiring conductor having the microstrip line structure is TEM (Transverse Electro Magnetic) Mode, on the other hand, the propagation mode of the portion protruding from the through hole of the metal substrate of the metal terminal and other than the junction with the wiring conductor is TE (Transverse Electric) Mode, and therefore, the high-frequency signal changes in TEM mode, TE mode, TEM mode and propagation mode, the characteristic impedance changes stepwise at the propagation mode changing portion, and the reflection loss of the high-frequency signal increases. Had the problem.
[0013]
  Further, in the conventional package for storing an optical semiconductor element, since the L component (inductive component) of the bonding wire that electrically connects the optical semiconductor element and the metal terminal is very large, the characteristic impedance of the bonding wire is low. It becomes very large and causes high-frequency signal loss. As a result, the loss of high-frequency signal and the difference in signal propagation mode become very large through the bonding wire, resulting in reflection loss during input and output of high-frequency signals. More specifically, the reflection loss in a high frequency signal of about 10 GHz becomes as large as −15 dB or more.
[0014]
  Accordingly, the present invention has been completed in view of the above-described conventional problems, and an object of the present invention is to provide an optical semiconductor element housing package and an optical semiconductor device capable of reducing reflection loss of high-frequency signals. is there.
[0015]
[Means for Solving the Problems]
  An optical semiconductor element storage package of the present invention includes a metal substrate on which an optical semiconductor element is mounted on an upper surface, an insulating substrate bonded to the lower surface of the metal substrate, and a wiring conductor formed on the surface,The portion that is fixed to the through hole of the metal substrate via a sealing material and protrudes to the lower surface side of the metal substrate isArranged on the wiring conductor,An end on the upper surface side of the metal substrate isElectrically connected to the optical semiconductor elementThe diameter of the metal substrate from the through hole to the wiring conductor is the same.metalMadeA terminal, and the metal bonded to the lower surface of the metal substrate;MadeA metal member covering the terminal, the metal member and the wiring conductorAnd the metal terminalThe distance between the metal member and the metal substrate is bonded.HaveOne side is shorter than the other side.
[0016]
  According to the package for housing a semiconductor element of the present invention, when transmitting a high frequency signal, the characteristic impedance of the portion protruding to the lower surface side of the metal terminal is located in the through hole of the metal substrate of the metal terminal, and the coaxial structure and The characteristic impedance of the metal terminal and the characteristic impedance of the wiring conductor because the characteristic impedance can be changed smoothly as well as between the characteristic impedance of the part that is As a result, the insertion loss and reflection loss of high-frequency signals of 10 GHz or higher can be suppressed well, and the loss of high-frequency signals of 10 GHz or higher can be greatly reduced. The transmission can be made smaller.
[0017]
  Moreover, the optical semiconductor element storage package of the present invention is the above-described configuration, wherein the metal terminalWhenThe optical semiconductor elementIsIt is electrically connected via a bonding wire having a length of 0.1 to 2 mm.
[0018]
  According to the optical semiconductor element storage package of the present invention, the end portion on the upper surface side of the metal terminal serves as the electrode of the optical semiconductor element.,When electrically connected via a bonding wire having a length of 0.1 to 2 mm, the bonding wire has a very small L component (dielectric component) and characteristic impedance. As a result, the optical semiconductor The reflection loss at the time of inputting / outputting a high frequency signal to the element can be reduced to −15 dB or less, and a high frequency signal of 10 GHz or more can be transmitted with low loss.
[0019]
  Furthermore, the optical semiconductor element storage package of the present invention has the above configuration.,The through hole formed in the metal substrate is characterized in that the upper surface side of the metal substrate is formed with a smaller diameter than the lower surface side.
[0020]
  According to the optical semiconductor element storage package of the present invention, the through hole has a large diameter portion on the lower surface side of the metal substrate, a small diameter portion coaxially connected to the large diameter portion on the upper surface side, and the metal terminal has a large diameter. When the metal terminal is fixed to the part through the sealing material, the metal terminal is fixed to the inner surface of the through hole with a sufficient amount of sealing material at the large diameter part, so that the hermetic sealing is good. In addition, by positioning the metal terminal with reference to the opening of the small diameter portion, the metal terminal can be fixed to the metal substrate with a positional accuracy with a sealing material, and the inner surface of the through hole or the roof-like memberMetal partsAnd a good coaxial structure. Furthermore, the length of the bonding wire can be easily set to 0.1 to 2 mm without deteriorating the hermetic sealing of the sealing material.
[0021]
  An optical semiconductor device according to the present invention includes the above-described optical semiconductor element storage package, and an optical semiconductor mounted on the mounting portion and having an electrode electrically connected to the upper end of the metal terminal. And an element.
[0022]
  According to the optical semiconductor device of the present invention, the optical semiconductor element storage package described above and the optical semiconductor element mounted on the mounting portion and having the electrode electrically connected to the end portion on the upper surface side of the metal terminal. Thus, a semiconductor device capable of satisfactorily suppressing insertion loss and reflection loss of a high-frequency signal of 10 GHz or higher and reducing transmission loss of a high-frequency signal of 10 GHz or higher can be obtained.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
  Next, an optical semiconductor element storage package and an optical semiconductor device according to the present invention will be described with reference to the accompanying drawings.While referring toThis will be described in detail.
[0024]
  FIG. 1A is a cross-sectional view showing an example of an embodiment of an optical semiconductor device in which an optical semiconductor element is mounted on an optical semiconductor element storage package of the present invention.And(C) is the top view and bottom view in the state which respectively removed the cover of the optical semiconductor device shown to Fig.1 (a).
[0025]
  In these drawings, an optical semiconductor element housing package is composed of a metal substrate 1, an insulating substrate 5 bonded to the lower surface of the metal substrate 1 and having a wiring conductor 4 formed on the surface,A portion that is fixed to the through-hole 1b of the metal substrate 1 via the sealing material 2 and protrudes to the lower surface side of the metal substrate 1 isMetal disposed on the wiring conductor 4MadeThe metal is bonded to the terminal 3 and the lower surface of the metal substrate 1MadeA metal member (roof-like member) T covering the terminal 3 is provided. Also, the optical semiconductor device is a metal of an optical semiconductor element storage package.MadeAn optical semiconductor element S electrically connected to the terminal 3 is provided on the upper surface of the metal substrate 1.
[0026]
  The metal substrate 1 has a function of mounting the optical semiconductor element S and dissipating heat generated by the mounted optical semiconductor element S, and has a circular shape, a semicircular shape, a rectangular shape, etc., and a thickness of 0. It has a flat plate shape of 5 to 2 mm, and has a mounting portion 1a for mounting the optical semiconductor element S on its upper surface, and a through hole 1b having a diameter of 0.5 to 2 mm formed from the upper surface to the lower surface in the vicinity of the mounting portion 1a. Have
[0027]
  When the size of the through hole 1b is less than 0.5 mmIsThe sealing material 2 for sealing the metal terminal 3 has a small thickness between the inner surface of the through hole 1b and the metal terminal 3, or the sealing material 2 enters between the inner surface of the through hole 1b and the metal terminal 3. Difficult to cause airtight defectsThere is a tendency to.The other,If it exceeds 2.0mm,The degree of freedom in designing the arrangement of the optical semiconductor element S mounted on the metal substrate 1 is reduced, and therefore the size of the package for housing the semiconductor element and the semiconductor device is unnecessarily large and it is difficult to reduce the size. is there. Therefore, the size of the through hole 1b is preferably 0.5 to 2.0 mm.
[0028]
  Such a metal substrate 1 is made of a metal such as an Fe—Ni—Co alloy or an Fe—Ni alloy. For example, when the metal substrate 1 is made of an Fe—Ni—Co alloy, the ingot (lumps) It is manufactured in a predetermined shape by applying a conventionally known metal processing method such as punching.
[0029]
  Further, a Ni layer having a thickness of 0.5 to 9 μm and an Au layer having a thickness of 0.5 to 5 μm excellent in corrosion resistance and excellent in wettability with a brazing material are formed on the surface of the metal substrate 1.WhenAre successively deposited by a plating method, it is possible to effectively prevent the metal substrate 1 from being oxidatively corroded and to braze each component to the metal substrate 1 satisfactorily.
[0030]
  The thickness of the metal substrate 1 is preferably 0.5 mm or more. When the thickness is less than 0.5 mm, welding is performed when the first lid body 7a and the second lid body 7b described later are welded to the metal base body 1. The metal substrate 1 tends to bend and deform easily depending on the conditions (temperature, etc.), and if it exceeds 2 mm, the thickness of the semiconductor element storage package or the semiconductor device becomes unnecessarily thick and difficult to downsize. Tend to be. Therefore, the thickness of the metal substrate 1 is preferably 0.5 to 2 mm.
[0031]
  FIGS. 1A to 1C show an example in which one semiconductor element S is mounted and one through hole 1b is formed. However, a plurality of semiconductor elements S are mounted and a plurality of through holes are formed. The hole 1b may be formed. In addition, the optical semiconductor element S here refers to an optical semiconductor element such as an LD, PD, or VCSEL, and these are mounted on the metal substrate 1 via a metal brazing material such as Au—Sn.
[0032]
  A pin-shaped metal terminal 3 having a length of 1.5 to 22 mm and a diameter of 0.1 to 1 mm is fixed to the through hole 1 b formed in the metal substrate 1 via the sealing material 2. . The metal terminal 3 has a function of transmitting an electric signal transmitted and received by the optical semiconductor element S to an external electric circuit (not shown). The metal terminal 3 has at least an end portion on the lower surface side of the metal substrate 1 protruding from the through hole 1b by about 1 to 20 mm.In the through hole 1bIt is fixed via the sealing material 2,The part which protruded to the lower surface side of the metal substrate 1 isIt is electrically connected to a wiring conductor 4 formed on an insulating substrate 5 described later.
[0033]
  The end of the metal terminal 3 on the upper surface side of the metal substrate 1 is a nail head having a larger diameter than the center portion, and the end surface is flat and parallel to the upper surface of the metal substrate 1 or higher than the upper surface. And is connected to the optical semiconductor element S through electrical connection means such as a bonding wire 6.
[0034]
  Such a metal terminal 3 is made of a metal such as Fe-Ni-Co alloy or Fe-Ni alloy. For example, when the metal terminal 3 is made of Fe-Ni-Co alloy, the ingot is rolled or punched. By applying a conventionally known metal processing method such as processing, a pin having a length of 1.5 to 22 mm and a diameter of 0.1 to 1 mm is manufactured.
[0035]
  If the length of the portion of the metal terminal 3 protruding from the lower surface of the metal substrate 1 is less than 1 mm, it is difficult to firmly join the wiring conductor 4 and a brazing material to be described later.NaWhen it exceeds 20mm,The length of the insulating substrate 5 becomes unnecessarily long, and it tends to be difficult to downsize the optical semiconductor element housing package and the optical semiconductor device. Therefore, it is preferable to fix the metal terminal 3 to the metal substrate 1 so that at least the end portion on the lower surface side of the metal substrate 1 protrudes from the through hole 1b by about 1 to 20 mm.Further, as shown in FIG. 1, the pin-shaped metal terminal 3 has the same diameter from the through hole 1 b of the metal substrate 1 to the wiring conductor 4.
[0036]
  The sealing material 2 has a function of securing an insulating interval between the metal substrate 1 and the metal terminal 3 and fixing the metal terminal 3 to the through hole 1b of the metal substrate 1, and is usually made of glass or ceramics. Inorganic materials such as are used.
[0037]
  For example, the metal terminal 3 is formed of a glass ring having a thickness equal to the thickness of the metal substrate 1, an outer diameter smaller than the diameter of the through hole 1 b, and an inner diameter larger than the outer diameter of the metal terminal 3. Then, the metal terminal 3 is inserted into the ring, and then the glass is heated and melted at a predetermined temperature, whereby the outer peripheral surface of the metal terminal 3 is hermetically fixed to the inner surface of the through hole 1b.
[0038]
  In addition, on the lower surface of the metal substrate 1,,A rectangular flat plate-like insulating substrate 5 having a linear wiring conductor 4 deposited on the main surface from one side to the opposite side is parallel to a portion where the wiring conductor 4 projects to the lower surface side of the metal terminal 3. It is bonded and attached.
[0039]
  The insulating substrate 5 has a function of supporting the wiring conductor 4, and is made of a thermosetting resin such as polyimide resin or epoxy resin, an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a carbonized body. Made of inorganic material such as silicon-based sintered body, silicon nitride-based sintered body, glass-ceramics, etc.TheFor example,In the case of an aluminum oxide sintered body, an appropriate organic binder, solvent, plasticizer, and dispersant are added to and mixed with ceramic raw material powder such as aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, etc. With eggplant,A plurality of ceramic green sheets are obtained by forming this into a sheet shape by employing a conventionally known doctor blade method.TheAfter that, by subjecting these ceramic green sheets to appropriate punching, laminating, and cutting, a green ceramic molded body for the insulating substrate 5 is obtained.,This green ceramic molded body is produced by firing at a temperature of about 1600 ° C.
[0040]
  The wiring conductor 4 has a function of transmitting an electric signal between the optical semiconductor element S and the external electric circuit, and is formed on the main surface of the insulating substrate 5.,It is formed in a straight line from one side to the opposite side.
[0041]
  Such a wiring conductor 4 is used when the insulating substrate 5 is made of a thermosetting resin such as polyimide resin or epoxy resin.,In general, when the insulating substrate 5 is formed by copper plating and the insulating substrate 5 is made of an inorganic material such as an aluminum oxide sintered body, it is made of tungsten, molybdenum, manganese, or the like.TheFor example, if the insulating substrate 5 is made of an aluminum oxide sintered body, a metal paste obtained by adding and mixing an organic solvent and a solvent to tungsten powder is preliminarily screen-printed on a ceramic green sheet as a main surface. Is formed on the main surface of the insulating substrate 5 by printing and coating in a predetermined pattern and firing the ceramic green sheet.
[0042]
  The wiring conductor 4 has a Ni layer having a thickness of 0.5 to 9 μm, an Au layer having a thickness of 0.5 to 5 μm, etc. to prevent oxidation and to firmly connect the metal terminal 3 and the like to the surface of the wiring conductor 4. It is preferable to sequentially deposit the metal layers by plating.
[0043]
  The insulating substrate 5 is printed on the surface of the wiring conductor 4 with solder or a low melting point brazing material such as Au—Sn having a melting point of 200 to 400 ° C. using a conventionally known screen printing method. The metal substrate 1 to which the metal terminal 3 is fixed is placed so that the wiring conductor 4 and the portion of the metal terminal 3 protruding to the lower surface side of the metal substrate 1 are parallel and facing each other. The metal substrate 1 is fixed by heating at a temperature.
[0044]
  As shown in FIG. 1, the main surface of the insulating substrate 5 is electrically connected to the metal substrate 1 that coaxially surrounds the portion protruding from the lower surface side of the metal terminal 3 with the main surface of the insulating substrate 5. A metal roof-like member T is provided, and the roof-like member T and the wiring conductor 4 are provided.And metal terminal 3The roof member T is joined to the metal substrate 1 with respect to the distance betweenHaveOne side is shorter than the other side.
[0045]
  Thereby, the characteristic impedance of the site | part which protruded to the lower surface side of the metal terminal 3 is located in the through-hole 1b of the metal board | substrate 1 of the metal terminal 3 at the time of transmission of a high frequency signal, and the site | part which has a coaxial structure Since the characteristic impedance is intermediate between the characteristic impedance and the characteristic impedance of the wiring conductor 4 of the insulating substrate 5 and the characteristic impedance can be changed smoothly, the characteristic impedance of the metal terminal 3 and the characteristic impedance of the wiring conductor 4 As a result, the insertion loss and reflection loss of high-frequency signals of 10 GHz or higher can be satisfactorily suppressed, and the transmission loss of high-frequency signals of 10 GHz or higher can be reduced. Can be transmitted.
[0046]
  In addition, the metal roof-like member T is formed as a structure that covers the side surface of the portion of the metal terminal 3 protruding to the lower surface side of the metal substrate 1 with a gap interposed therebetween, and the length is about 1 to 20 mm. From the standpoint of characteristic impedance matching, it is important to cover the entire portion protruding from the main surface of the insulating substrate 5 on the wiring conductor 4 side to the lower surface side of the metal substrate 1 of the metal terminal 3 in a coaxial manner. It is.
[0047]
  The roof-like member T has a thickness of about 0.5 to 2 mm and a cross-section of a semi-annular shape obtained by cutting the annular shape in half, and the outer and inner circumferences are rectangular, triangular, polygonal, For the outer circumference or the inner circumference, one having a semicircular shape, a rectangular shape, a triangular shape, or a polygonal shape and the other having another shape is used.
[0048]
  Moreover, as shown in FIG. 5, the inner peripheral surface of the roof-shaped member T is preferably formed so as to gradually move away from the metal terminal 3 as the distance from the metal substrate 1 increases. Thereby, the characteristic impedance of the metal terminal 3 covered with the roof-like member T can be changed more smoothly, and the loss of the high-frequency signal transmitted through the metal terminal 3 can be significantly reduced.
[0049]
  The roof-like member T formed such that the inner peripheral surface gradually moves away from the metal terminal 3 as the distance from the metal substrate 1 is, for example, that the inner peripheral surface is inclined in a step shape, a linear shape, or a curved shape. From the viewpoint of smoothing the change in characteristic impedance, it is preferable to be inclined in a curved surface.
[0050]
  Further, as shown in FIG. 5, the roof-like member T has an inner peripheral surface at one end on the metal terminal 3 side closer to the inside of the through hole 1 b of the metal substrate 1, that is, closer to the metal terminal 3. It is good to be. Thereby, the change of the impedance of the metal terminal 3 at the boundary between the metal substrate 1 and the insulating substrate 5 can be made smoother and the loss of the high frequency signal can be reduced. That is, the metal terminal 3 is covered with the sealing material 2 made of a dielectric material at a portion located inside the metal substrate 1, whereas it is more dielectric than the sealing material 2 at a portion located on the insulating substrate 5. Since the cover is covered with an air layer having a low rate, the roof-like member T is brought closer to the metal terminal 3 in order to cope with a sudden change in the dielectric constant between the sealing material 2 and the air layer.,The change in impedance can be further reduced.
[0051]
  Such a metal roof-like member T is made of a metal such as an Fe—Ni—Co alloy. For example, an ingot of an Fe—Ni—Co alloy is conventionally known, such as cutting or MIM (metal injection mold). It is manufactured in a predetermined shape by applying a metal processing method.
[0052]
  And the metal roof-like member T is a metal substrate.1And a metal layer such as a metallized layer previously deposited on the main surface of the insulating substrate 5,Joined by a brazing material such as silver (Ag) -copper (Cu) having a melting point of 700 to 900 ° C. The surface has excellent corrosion resistance.,Ni layer having a thickness of 0.5 to 9 μm and gold having a thickness of 0.5 to 5 μm, which has excellent wettability with a wax brazing material(Au)The layers are preferably sequentially deposited by a plating method, which can effectively prevent the metal roof-like member T from being oxidatively corroded and can be brazed well.
[0053]
  The metal roof-like member T may be integrally formed with the metal substrate 1 described above. When the metal substrate 1 and the metal roof-like member T are integrally formed, the above-described cutting, MIM, or the like is performed. It is manufactured by a conventionally known metal processing method.
[0054]
  In the optical semiconductor element storage package of the present invention, the end portion on the upper surface side of the metal terminal 3 is electrically connected to the electrode of the optical semiconductor element S via the bonding wire 6 having a length of 0.1 to 2 mm. It is preferable to be connected to.
[0055]
  As a result, the bonding wire 6 has a very small L component (dielectric component) and characteristic impedance, and as a result, the reflection loss at the time of inputting / outputting a high-frequency signal to the optical semiconductor element S is reduced to −15 dB or less. It is possible to transmit a high-frequency signal of 10 GHz or more with low loss.
[0056]
  When the length of the bonding wire 6 exceeds 2 mm,There is a tendency that the L component of the bonding wire 6 becomes too large, a good characteristic impedance cannot be obtained, and it is difficult to operate the optical semiconductor element S normally. When the length of the bonding wire 6 is less than 0.1 mmIsFurther, it is difficult to carry out bonding between the optical semiconductor element S and the metal terminal 3, and bonding bonding may be insufficient. Therefore, the length of the bonding wire 6 is preferably 0.1 to 2 mm.
[0057]
  Further, in order to set the length of the bonding wire 6 to 0.1 to 2 mm, the height position of the end face on the upper surface side of the metal terminal 3 and the height position of the surface of the semiconductor element S are the same. The manufactured terminal 3 may be fixed to the metal substrate 1 and further arranged close to each other with a distance that does not contact the electrode of the semiconductor element S and the metal terminal 3. Further, for example, by setting the distance between the metal terminal 3 and the electrode of the semiconductor element S to 0.7 mm and the loop height of the bonding wire 6 to 0.15 mm, the length of the bonding wire 6 is about 0.8 mm. It can be.
[0058]
  Further, in the optical semiconductor element housing package of the present invention, as shown in a sectional view in FIG. 2, the through-hole 1b has a large diameter portion A on the lower surface side and a small diameter portion coaxially connected to the large diameter portion A on the upper surface side. It is preferable that the metal terminal 3 is fixed to the large-diameter portion A via the sealing material 2.
[0059]
  Thereby, since the metal terminal 3 is fixed to the inner surface of the through-hole 1b with a sufficient amount of the sealing material 2 at the large-diameter portion A, the hermetic sealing is good, and the metal terminal 3 is fixed to the small-diameter portion. By positioning with reference to the opening of B, it can be fixed to the metal substrate 1 through the sealing material 2 with high positional accuracy, and a good coaxial structure with the inner surface of the through hole 1b and the roof-like member T can be obtained. The diameter of the large diameter portion A is preferably about 0.5 to 1 mm larger than the diameter of the metal terminal 3 from the viewpoint of sufficiently filling the sealing material 2 to improve the hermetic sealing, From the viewpoint of bringing the optical semiconductor element S closer to the metal terminal 3, the diameter of the small diameter portion B is the metal terminal 3.ofIt is preferable to make it about 0.1 to 0.2 mm larger than the diameter.
[0060]
  Moreover, the sealing material 2 is,It is sufficient that at least the large diameter portion A is filled, but the small diameter portion B may also be filled.
[0061]
  further,The length of the large-diameter portion A of the through hole 1b is preferably 30% or more of the thickness of the metal substrate 1. When the length of the large diameter portion A is less than 30% of the thickness of the metal substrate 1, the amount of the sealing material 2 tends to be insufficient, and good hermetic sealing tends to be difficult.
[0062]
  The through-hole 1b having the large-diameter portion A on the lower surface side and the small-diameter portion B coaxially connected to the large-diameter portion A on the upper surface side is formed by punching a through-hole having the same diameter as the small-diameter portion B in the metal substrate 1. Then, the portion to be the large diameter portion A is formed by cutting using a cutting method. In order to fix the metal terminal 3 to the large diameter portion A of the through hole 1b using the sealing material 2, for example, the thickness is equal to the thickness of the large diameter portion A, and the outer diameter is the diameter of the large diameter portion A. A glass ring having a slightly smaller inner diameter and a slightly larger inner diameter than the outer diameter of the metal terminal 3 is inserted into the large diameter portion A of the through hole 1b and the metal terminal 3 is inserted into the ring. By heating and melting at a temperature, the outer peripheral surface of the metal terminal 3 is airtightly fixed to the inner surface of the large diameter portion A of the through hole 1b.
[0063]
  In the optical semiconductor device of the present invention, the optical semiconductor element S is mounted on the mounting portion 1a of the above-described optical semiconductor element storage package via an Au—Sn low melting point brazing material, and then the electrode is made of metal. It is manufactured by connecting the end portion on the upper surface side of the terminal 3 via an electrical connection member such as a bonding wire 6.
[0064]
  According to the optical semiconductor device of the present invention, the above-described semiconductor element storage package, and the optical semiconductor element S mounted on the mounting portion 1 a and electrically connected to the end portion on the upper surface side of the metal terminal 3. Therefore, a semiconductor device capable of satisfactorily suppressing insertion loss and reflection loss of a high-frequency signal of 10 GHz or higher and transmitting a high-frequency signal of 10 GHz or higher with reduced transmission loss is provided. it can.
[0065]
  Usually, on the upper surface of the metal substrate 1, a first lid 7 a made of Fe—Ni—Co alloy or the like is provided on the outer peripheral portion within a width of 1 mm from the outer peripheral end for the purpose of protecting the optical semiconductor element S. It is fixed by laser welding, seam welding, brazing, or the like, and the first lid 7a is welded and joined to the upper surface of the metal substrate 1 with, for example, a YAG laser, and the outer peripheral portion of the first lid 7 (鍔The second lid body 7b in which the optical fiber 8 and the optical isolator (not shown) for preventing the return light are bonded to each other with a resin adhesive is joined to the shape portion) by YAG laser welding or the like. An optical semiconductor device is obtained.
[0066]
  Thus, according to the optical semiconductor element housing package and the optical semiconductor device of the present invention, the portion protruding from the main surface of the insulating substrate 5 to the main surface of the insulating substrate 5 is provided on the main surface of the insulating substrate 5 side. Since the metal roof-like member T that is electrically connected to the metal substrate 1 and is coaxially enclosed is provided, insertion loss and reflection loss of a high-frequency signal of 10 GHz or more can be suppressed satisfactorily. An optical semiconductor element housing package and an optical semiconductor device capable of transmitting a high-frequency signal with reduced transmission loss are provided.
[0067]
  Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
[0068]
【Example】
  The optical semiconductor device of the present invention is divided into the following sample for evaluation and sample for comparisonWhenMakeMadeAnd evaluated.
[0069]
  The optical semiconductor device of the present invention was configured as follows. First, an insulating substrate 5 made of polyimide resin having a thickness of 1.6 mm × length of 30 mm × width of 15 mm, in which a pattern to be the wiring conductor 4 and the ground conductor was plated on the main surface, was prepared. The insulating substrate 5 had a relative dielectric constant of 4.1, the width of the wiring conductor 4 was 0.7 mm, the length was 18.8 mm, and the thickness was 0.03 mm.
[0070]
  Next, a metal base material is cut and processed to be a semi-conical roof-shaped member T having a length of 5 mm, an inner circumference diameter of 1.4 mm on the side in contact with the metal substrate, and the other side of 3.12 mm. A disk-shaped metal substrate 1 having a thickness of 1 mm and a diameter of 5.6 mm was manufactured. The central part of the metal substrate 1 is punched,A through hole 1b having a diameter of 1 mm for hermetically sealing the metal terminal 3 was formed. Further, a Ni layer having a thickness of 2 μm and an Au layer having a thickness of 2 μm were sequentially deposited on the surface of the metal substrate 1 by a plating method.
[0071]
  And the metal terminal 3 was inserted in the through-hole 1b of the metal substrate 1, and it sealed by sealing with the glass which is the sealing material 2. FIG. Thereafter, the VCSEL which is the optical semiconductor element S is mounted on the mounting portion 1 a of the metal substrate 1 by brazing with Au—Sn, and the optical semiconductor element S and the metal terminal 3 are electrically connected by the bonding wire 6. did. On the other hand, the metal terminal 3 and the wiring conductor 4 were electrically connected with solder. The length of the bonding wire 6 was 1 mm.
[0072]
  And the 1st cover body 7a which consists of a Fe-Ni-Co alloy is joined to the outer peripheral part of the upper surface of the metal substrate 1 by seam welding.TheAfter airtight sealing, the second lid 7b in which the optical fiber 8 and the optical isolator are bonded to each other with a resin adhesive is joined to the outer peripheral end of the first lid 7a by YAG laser welding and evaluated. An optical semiconductor device was produced.
[0073]
  Next, a sample for comparison is obtained by changing the metal roof-like member T from the above-described sample for evaluation to a semi-cylindrical member having a length of 5 mm and an inner diameter of 2.3 mm. It was.
[0074]
  FIG. 3A shows the result of measuring the reflection loss S11 by changing the frequency for the samples for evaluation and comparison.andShown in (b). Here, FIG.Is a bookInvention optical semiconductor deviceofFIG. 3B shows the measurement result of the reflection loss S11 of the optical semiconductor device using the semi-cylindrical roof member T having the same opening size at both end faces as a comparative example. FIG. 3 (a)andIn (b), the horizontal axis represents frequency.AndThe vertical axis represents the reflection loss S11.
[0075]
  FIG. 3A shows that the optical semiconductor device of the present invention can suppress the reflection loss S11 due to the variation in characteristic impedance at 5 to 20 GHz to −15 dB or less. On the other hand, as shown in FIG. 3B, the optical semiconductor device using the semi-cylindrical roof member T having the same opening size at both end faces is a reflection loss S11 due to variations in characteristic impedance at 5 to 20 GHz. It was found to exceed -15 dB.
[0076]
【The invention's effect】
  According to the package for housing a semiconductor element of the present invention, a metal substrate on which an optical semiconductor element is mounted on an upper surface, an insulating substrate bonded to the lower surface of the metal substrate, and a wiring conductor formed on the surface;The part that is fixed to the through hole of the metal substrate through the sealing material and protrudes to the lower surface side of the metal substrate isPlaced on the wiring conductor,The bottom edge of the metal substrate isElectrically connected to the optical semiconductor elementThe diameter from the through hole of the metal substrate to the wiring conductor is the samemetalMadeThe metal is bonded to the terminal and the lower surface of the metal substrate.MadeA metal member covering the terminal, and the metal member and the wiring conductorAnd metal terminalsThe distance between the metal member and the metal substrateHaveWhen the high-frequency signal is transmitted, the characteristic impedance of the portion protruding to the lower surface side of the metal terminal is located in the through-hole of the metal substrate of the metal terminal, and the coaxial structure is formed. The characteristic impedance of the metal terminal and the characteristic impedance of the wiring conductor and the characteristic impedance of the wiring conductor can be changed smoothly. The reflection loss can be made extremely small, and as a result, the insertion loss and reflection loss of a high frequency signal of 10 GHz or more can be well suppressed, and the loss of a high frequency signal of 10 GHz or more is extremely reduced. It becomes possible to reduce the transmission.
[0077]
  According to the optical semiconductor element storage package of the present invention, the metal terminalWhenOptical semiconductor deviceAndWhen electrically connected via a bonding wire having a length of 0.1 to 2 mm, the bonding wire has a very small L component (dielectric component) and characteristic impedance. As a result, the optical semiconductor The reflection loss at the time of inputting / outputting a high frequency signal to the element can be reduced to −15 dB or less, and a high frequency signal of 10 GHz or more can be transmitted with low loss.
[0078]
  Furthermore, according to the optical semiconductor element storage package of the present invention,Formed on metal substrateThe through hole is a metal substrateThe top side isBottom sideCompared toDiameterButsmallFormationIn this case, the metal terminal is fixed to the inner surface of the through hole with a sufficient amount of sealing material at the large diameter portion, so that the hermetic sealing is good, and the metal terminal is attached to the small diameter portion. By positioning with the opening as a reference, it can be fixed to the metal substrate with a positional accuracy with a sealing material, and the inner surface of the through hole and the roof-like member can have a good coaxial structure. Furthermore, the length of the bonding wire can be easily set to 0.1 to 2 mm without deteriorating the hermetic sealing of the sealing material.
[0079]
  In addition, according to the optical semiconductor device of the present invention, the optical semiconductor element storage package described above, and the optical semiconductor element mounted on the mounting portion and electrically connected to the end portion on the upper surface side of the metal terminal Therefore, a semiconductor device capable of satisfactorily suppressing insertion loss and reflection loss of a high-frequency signal of 10 GHz or higher and reducing transmission loss of a high-frequency signal of 10 GHz or higher can be obtained. it can.
[Brief description of the drawings]
FIG. 1 (a) is a cross-sectional view of an example of an embodiment of an optical semiconductor device in which an optical semiconductor element is mounted on an optical semiconductor element storage package of the present invention, and FIGS. They are the top view and the bottom view in the state where the lid of (a) was removed, respectively.
FIG. 2 is a sectional view showing another example of the embodiment of the optical semiconductor device in which the optical semiconductor element is mounted on the optical semiconductor element storage package of the present invention.
FIG. 3 is a diagram showing the relationship between the frequency and the reflection loss S11 in the semiconductor device of the present invention and the conventional semiconductor device.
4A is a cross-sectional view of a conventional optical semiconductor device, and FIGS. 4B and 4C are a top view and a bottom view, respectively, with the lid of FIG.
FIG. 5 is a cross-sectional view showing another example of the embodiment of the optical semiconductor device in which the optical semiconductor element is mounted on the optical semiconductor element housing package of the present invention.
[Explanation of symbols]
1. Metal substrate
1a ・ ・ ・ ・ ・ ・ Mounting part
1b ・ ・ ・ ・ ・ ・ Through hole
A ・ ・ ・ ・ ・ ・ ・ ・ ・ Large diameter part
B ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Small diameter part
2 .... Encapsulant
3. Metal terminal
4 .... Wiring conductor
5 .... Insulating substrate
6 ... Bonding wire
S ... Optical semiconductor device
T ... Metal roofing member

Claims (4)

上面に光半導体素子が搭載される金属基板と、
該金属基板の下面に接合され、表面に配線導体が形成された絶縁基板と、
前記金属基板が有する貫通孔に封止材を介して固定されて、前記金属基板の下面側に突出した部位が前記配線導体上に配置されており、前記金属基板の上面側の端部が前記光半導体素子と電気的に接続される、前記金属基板の前記貫通孔から前記配線導体上にかけての径が同じである金属端子と、前記金属基板の前記下面に接合され、前記金属端子を覆う金属製部材とを備え、
前記金属製部材と前記配線導体および前記金属製端子との間の距離は、前記金属製部材が前記金属基板と接合されている側が反対側と比べて短いことを特徴とする光半導体素子収納用パッケージ。
A metal substrate on which an optical semiconductor element is mounted;
An insulating substrate bonded to the lower surface of the metal substrate and having a wiring conductor formed on the surface;
The part fixed to the through hole of the metal substrate via a sealing material and projecting to the lower surface side of the metal substrate is disposed on the wiring conductor, and the end portion on the upper surface side of the metal substrate is optical semiconductor element and being electrically connected to a metallic terminal diameter toward on the wiring conductor from the through hole of the metal substrate is the same, is joined to the lower surface of the metal substrate, the metal terminals A metal member for covering,
The distance between the metallic member and the wiring conductor and said metal terminal, for optical semiconductor element housing which side said metallic member is Ru Tei is bonded to the metal substrate and wherein the shorter than the opposite side package.
前記金属端子と前記光半導体素子とは、長さが0.1〜2mmのボンディングワイヤを介して電気的に接続されることを特徴とする請求項1に記載の光半導体素子収納用パッケージ。Wherein A metallic terminal and the optical semiconductor element, an optical semiconductor element storage package according to claim 1, characterized in that the length is electrically connected via a bonding wire 0.1 to 2 mm. 前記金属基板に形成された前記貫通孔は、前記金属基板の前記上面側が前記下面側と比べて径が小さく形成されていることを特徴とする請求項またはに記載の光半導体素子収納用パッケージ。The through holes formed in the metal substrate, for an optical semiconductor element housing according to claim 1 or 2, characterized in that the upper surface of the metal substrate diameter as compared with the lower surface side is formed smaller package. 請求項1〜のいずれかに記載の光半導体素子収納用パッケージと、
前記金属基板に搭載され、前記金属端子と電気的に接続された光半導体素子とを備えたことを特徴とする光半導体装置。
The optical semiconductor element storage package according to any one of claims 1 to 3 ,
An optical semiconductor device comprising: an optical semiconductor element mounted on the metal substrate and electrically connected to the metal terminal.
JP2003151448A 2003-05-28 2003-05-28 Optical semiconductor element storage package and optical semiconductor device Expired - Fee Related JP4493285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003151448A JP4493285B2 (en) 2003-05-28 2003-05-28 Optical semiconductor element storage package and optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003151448A JP4493285B2 (en) 2003-05-28 2003-05-28 Optical semiconductor element storage package and optical semiconductor device

Publications (3)

Publication Number Publication Date
JP2004356334A JP2004356334A (en) 2004-12-16
JP2004356334A5 JP2004356334A5 (en) 2006-07-27
JP4493285B2 true JP4493285B2 (en) 2010-06-30

Family

ID=34046968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003151448A Expired - Fee Related JP4493285B2 (en) 2003-05-28 2003-05-28 Optical semiconductor element storage package and optical semiconductor device

Country Status (1)

Country Link
JP (1) JP4493285B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130834A (en) * 2006-11-21 2008-06-05 Mitsubishi Electric Corp Optical module
DE102018120895A1 (en) 2018-08-27 2020-02-27 Schott Ag TO housing with an earth connection
DE102018127977A1 (en) 2018-11-08 2020-05-14 Osram Opto Semiconductors Gmbh DIODE LASER AND METHOD FOR OPERATING A DIODE LASER

Also Published As

Publication number Publication date
JP2004356334A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
JP5241609B2 (en) Structure, connection terminal, package, and electronic device
JP5610892B2 (en) Element storage package and semiconductor device including the same
JP4493285B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP5312358B2 (en) Electronic component mounting package and electronic device using the same
JP4789636B2 (en) Semiconductor element storage package and semiconductor device
JP2009283898A (en) Electronic part container, package for storing electronic part using the same and electronic device
JP2004207259A (en) Optical semiconductor device and package for housing the same
JP7145311B2 (en) Wiring substrates, packages for electronic components, and electronic devices
JP4377768B2 (en) Semiconductor element storage package and semiconductor device
JP2004259962A (en) Package for optical semiconductor element and optical semiconductor device
JP4605957B2 (en) Package for storing semiconductor elements
JP5709427B2 (en) Device storage package and semiconductor device including the same
KR20210027447A (en) Package for storing wiring body and electronic parts, and electronic devices
JP2012009172A (en) Coaxial connector, element housing package, and semiconductor device
JP3690656B2 (en) Semiconductor element storage package and semiconductor device
US11889618B2 (en) Wiring board, electronic component package, and electronic apparatus
JP4210207B2 (en) High frequency wiring board
JP2005101370A (en) High frequency wiring board
JP3840160B2 (en) High frequency device storage package
JP2006128323A (en) Semiconductor device and storing package thereof
JP4045110B2 (en) Package for storing semiconductor elements
JP2003100922A (en) I/o terminal and package for accommodating semiconductor element
JP4206321B2 (en) Semiconductor element storage package and semiconductor device
JP4041327B2 (en) Semiconductor element storage package and semiconductor device
JP2004193428A (en) Package for housing semiconductor element and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees