JP4492298B2 - Spark detection circuit for electric dust collector - Google Patents

Spark detection circuit for electric dust collector Download PDF

Info

Publication number
JP4492298B2
JP4492298B2 JP2004317876A JP2004317876A JP4492298B2 JP 4492298 B2 JP4492298 B2 JP 4492298B2 JP 2004317876 A JP2004317876 A JP 2004317876A JP 2004317876 A JP2004317876 A JP 2004317876A JP 4492298 B2 JP4492298 B2 JP 4492298B2
Authority
JP
Japan
Prior art keywords
voltage
spark
transistor
detection circuit
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004317876A
Other languages
Japanese (ja)
Other versions
JP2006126121A (en
Inventor
訓 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004317876A priority Critical patent/JP4492298B2/en
Publication of JP2006126121A publication Critical patent/JP2006126121A/en
Application granted granted Critical
Publication of JP4492298B2 publication Critical patent/JP4492298B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Electrostatic Separation (AREA)

Description

本発明は、空調及び産業分野で大気塵、室内の粉塵、ほこりなどを集塵する電気集塵機負荷に印加するための直流高電圧を作り出す直流高圧安定化電源のスパーク検出回路に関する。   The present invention relates to a spark detection circuit for a DC high-voltage stabilized power source that generates a DC high voltage to be applied to an electric dust collector load that collects atmospheric dust, indoor dust, dust and the like in air conditioning and industrial fields.

従来、電気集塵機負荷は平板の2枚組み金属極板が並列に配置されることにより構成されており、片方の極板に正の電圧または負の電圧を印加し、残りの極板を接地する。この状態で高電圧を印加することにより両極板間にコロナ電界が形成される。その電界内を粉塵が通過することにより粉塵が電荷を帯び、帯電した粉塵は極板間の電界の力を受けて極板に付着し粉塵は除去される。集塵機の継続的に使用より集塵された粉塵が極板に堆積してくると、堆積した粉塵により電極どうしが短絡を起こし、スパークが発生する。また極板への異物の付着や、極板洗浄時の極板間の絶縁低下によっても同様に絶縁破壊、短絡が起こり、スパークが発生する。   Conventionally, an electrostatic precipitator load is configured by arranging two flat metal electrode plates in parallel, applying a positive voltage or a negative voltage to one electrode plate, and grounding the remaining electrode plate. . By applying a high voltage in this state, a corona electric field is formed between the bipolar plates. As the dust passes through the electric field, the dust is charged, and the charged dust receives the force of the electric field between the plates and adheres to the plates and is removed. When dust collected from continuous use of the dust collector accumulates on the electrode plate, the accumulated dust causes a short circuit between the electrodes, and spark is generated. Similarly, a dielectric breakdown or short circuit occurs due to adhesion of foreign matter to the electrode plate or a decrease in insulation between the electrode plates during electrode plate cleaning, resulting in a spark.

このスパークをそのままの状態で電圧を印加したまま放置すると、負荷間に短絡電流が流れ続け、過電流となり高圧回路、低圧回路、さらには負荷の破損に至る。そのためにスパークを確実に検知し、スパーク検出時は集塵負荷への電圧印加を確実に遮断する必要がある。このスパーク時に高圧回路を流れる電流は負荷の規模、電源側の規模に応じて増減し、また極板間の絶縁破壊の程度によっても変化するため、集塵機固有のスパーク電流を定義することは容易ではない。   If this spark is left as it is with a voltage applied, a short-circuit current continues to flow between the loads, resulting in overcurrent, leading to breakage of the high-voltage circuit, low-voltage circuit, and load. Therefore, it is necessary to reliably detect the spark and to reliably cut off the voltage application to the dust collecting load when the spark is detected. The current flowing through the high-voltage circuit during sparking varies depending on the scale of the load and the power supply side, and also changes depending on the degree of dielectric breakdown between the plates, so it is not easy to define the spark current unique to the dust collector. Absent.

従来、このようなスパーク検出回路として、例えば、図12に示すように高圧出力の正極または負極と接地極の間に負荷101と電流検出抵抗102を直列に挿入し、負荷を通して電流検出抵抗を流れる電流により発生する電位差VLを負荷電流としていた。この検出電流をあらかじめ設定しておいた閾値と比較してスパーク発生の有無を判定していた(例えば、特許文献1参照)。   Conventionally, as such a spark detection circuit, for example, as shown in FIG. 12, a load 101 and a current detection resistor 102 are inserted in series between a positive electrode or negative electrode of high voltage output and a ground electrode, and the current detection resistor flows through the load. The potential difference VL generated by the current was used as the load current. The detected current is compared with a preset threshold value to determine whether or not a spark has occurred (see, for example, Patent Document 1).

特開平5−142267号公報JP-A-5-142267

このような従来のスパーク検出回路では、集塵機の規模に応じてスパーク発生時に高圧回路内を流れる電流値が変化するため、検出抵抗の選定から判定閾値の決定、比較判定するための回路設計、集塵機負荷実機による回路の評価まで一連の設計評価を集塵機負荷の規模が変わる都度実施しなければならないという課題があり、また同一の集塵機負荷でも極板間の絶縁破壊の程度により発生するスパークの電流値が異なり、これがあらかじめ設定しなければならない閾値の決定を困難にしているという課題がある。そこで集塵機規模を変更する都度発生する複雑な回路設計と評価を不要とする簡便なスパーク検出回路が要求されている。   In such a conventional spark detection circuit, the value of the current flowing in the high-voltage circuit changes depending on the size of the dust collector, so that the circuit design for determining the determination threshold and comparing and judging from the selection of the detection resistor, the dust collector There is a problem that a series of design evaluations must be performed every time the size of the dust collector load changes until the circuit is evaluated by the actual load machine, and the spark current value generated by the degree of dielectric breakdown between the plates even with the same dust collector load However, this makes it difficult to determine a threshold value that must be set in advance. Therefore, there is a demand for a simple spark detection circuit that does not require complicated circuit design and evaluation that occurs every time the dust collector scale is changed.

また、集塵機の集塵効率は負荷電流量が多ければ多いほど高くなる傾向があり、分圧抵抗を高圧回路に組み込む際、負荷電流を減らさないために分圧抵抗の抵抗値を大きくし分圧抵抗に流れる電流値を極力小さくする必要がある。具体的には分圧抵抗に供給する電流は負荷電流の5%以下が望ましく、集塵機の負荷電流が10mAの場合は0.5mA程度となる。電源容量を大きくすれば負荷電流を維持した上で分圧抵抗へ電流を流すことも可能であるが、集塵機負荷のインピーダンスと分圧抵抗とのバランスを取ることが難しく、電源自体のコストも上がるので実用的でない。よって分圧抵抗には高抵抗値抵抗を使う必要があり、スイッチ手段には集塵効率に影響を与えないため極力小さい電流で動作する=低駆動電流特性を持つことが要求されている。   In addition, the dust collection efficiency of a dust collector tends to increase as the amount of load current increases. When incorporating a voltage dividing resistor into a high voltage circuit, the resistance value of the voltage dividing resistor is increased in order to prevent the load current from being reduced. It is necessary to minimize the value of the current flowing through the resistor. Specifically, the current supplied to the voltage dividing resistor is desirably 5% or less of the load current, and is about 0.5 mA when the load current of the dust collector is 10 mA. If the power supply capacity is increased, the load current can be maintained and the current can flow to the voltage dividing resistor. However, it is difficult to balance the impedance of the dust collector load and the voltage dividing resistor, and the cost of the power supply itself increases. So it's not practical. Therefore, it is necessary to use a high-resistance resistor as the voltage dividing resistor, and the switch means is required to operate with as little current as possible so as not to affect the dust collection efficiency = low drive current characteristics.

また、スイッチ手段には検出回路のコストを下げるため安価な物が要求されている。   Also, an inexpensive switch means is required to reduce the cost of the detection circuit.

また、高電圧を分圧抵抗にて分圧しているため、分圧抵抗が破損した場合高電圧がそのままスイッチ手段に印加されるという課題がある。そこで高電圧より絶縁を確保した電圧生成手段が要求されている。   Further, since the high voltage is divided by the voltage dividing resistor, there is a problem that when the voltage dividing resistor is broken, the high voltage is applied to the switch means as it is. Therefore, there is a demand for a voltage generating means that ensures insulation from a high voltage.

また、通常の検出回路では検出までの動作時間に回路の特性上定数による遅れが発生するという課題がある。そこでスパークをより早く検出するスパーク検出回路が要求されている。   In addition, the normal detection circuit has a problem that a delay due to a constant occurs in the operation time until detection due to the characteristics of the circuit. Therefore, there is a demand for a spark detection circuit that detects a spark earlier.

また、スパーク発生時負荷間電圧(この時0V)によりスイッチ手段をOFFし、スイッチ手段自身にて印加電圧を停止しているため、そのままでは印加電圧を復帰することができないという課題がある。そこでスパーク検出から負荷印加電圧遮断後に印加電圧を復帰させる電圧復帰手段が要求されている。   Further, since the switch means is turned off by the voltage between the loads when spark is generated (0 V at this time) and the applied voltage is stopped by the switch means itself, the applied voltage cannot be recovered as it is. Therefore, there is a demand for voltage return means for returning the applied voltage after the load applied voltage is cut off from the spark detection.

また、スパーク発生時、負荷間電圧の急峻な変化によりスイッチ手段がハンチングするという課題がある。そこでハンチングを防止するハンチング防止手段が要求されている。   Further, there is a problem that when the spark occurs, the switch means hunts due to a sharp change in the voltage between the loads. Therefore, hunting prevention means for preventing hunting is required.

また、スパーク発生後印加電圧を復帰するまでの間の間隔が短すぎると、スパークを繰り返すという課題がある。そこで発生から復帰までの時間を調整できる復帰時間調整手段が要求されている。   Moreover, if the interval between the occurrence of a spark and the return of the applied voltage is too short, there is a problem that the spark is repeated. Therefore, there is a demand for a return time adjusting means that can adjust the time from occurrence to return.

またスパーク検出後電圧を復帰する際、瞬時に最大値まで復帰すると再度スパークが発生しやすいという課題がある。そこで復帰電圧と時間の関係を調整できる復帰電圧調整手段が要求されている。   Further, when the voltage is restored after the spark detection, there is a problem that if the voltage is instantly restored to the maximum value, the spark is likely to occur again. Therefore, there is a demand for a return voltage adjusting means that can adjust the relationship between the return voltage and time.

また、負荷への印加電圧が高電圧であるため、検出回路部品にも高耐圧が要求され、部品コストが上がるという課題がある。そこで高圧部に直接関与しない検出回路が要求されている。   Further, since the voltage applied to the load is a high voltage, the detection circuit component is required to have a high withstand voltage, and there is a problem that the component cost increases. Therefore, a detection circuit that is not directly involved in the high-voltage unit is required.

本発明は、このような従来の課題を解決するものであり、集塵機規模を変更する都度発生する複雑な回路設計と評価を不要とする簡便なスパーク検出回路を提供することを目的としている。   An object of the present invention is to solve such a conventional problem and to provide a simple spark detection circuit that does not require complicated circuit design and evaluation that occurs every time the size of a dust collector is changed.

また、高電圧部品を使用しない検出手段を備えたスパーク検出回路を提供することを目的としている。   It is another object of the present invention to provide a spark detection circuit having detection means that does not use high-voltage components.

本発明のスパーク検出回路は上記目的を達成するために、高圧回路内で発生する電圧変化を伝達する伝達手段として集塵機負荷への電圧印加配線と平行に這わせた絶縁性導電体と、伝達した電圧を監視する監視手段とを備え、スパーク発生時のサージ電圧により伝達される電圧変化を前記監視手段にて検知することによりスパークを検出する電気集塵機用スパーク検出回路を備えたものである。
また、絶縁性導電体は電線で、電圧監視手段はパルスカウンタで構成し、スパーク発生時に電圧印加配線から平行に這わせた電線に重畳されるパルス電圧を受信することを特徴とする電気集塵機用スパーク検出回路を備えたものである。
In order to achieve the above-mentioned object, the spark detection circuit of the present invention transmits an insulating conductor arranged in parallel with the voltage application wiring to the dust collector load as a transmission means for transmitting a voltage change generated in the high voltage circuit. and a monitoring means for monitoring the voltage, but with a spark detection circuit for an electrostatic precipitator for detecting a spark by detecting a voltage change which is transmitted by the surge voltage at the time of the spark generated by the monitoring means.
In addition, the insulating conductor is an electric wire, and the voltage monitoring means is a pulse counter, which receives a pulse voltage superimposed on the electric wire laid in parallel from the voltage application wiring when a spark occurs . A spark detection circuit is provided.

そして本発明によれば、高電圧部品を使用しないコストのかからないスパーク検出回路が得られる。また、集塵機負荷への電圧印加配線と平行に這わせた電線を供えパルスカウンタでスパーク発生時のサージ電圧により前記電線に重畳されるパルス電圧を受信することで簡単に敷設することのできる電気集塵機用スパーク検出回路が得られる。 According to the present invention, it is possible to obtain a spark detection circuit that does not require the use of high-voltage components and is inexpensive. Also, an electric dust collector that can be installed easily by providing a wire that runs parallel to the voltage application wiring to the dust collector load and receiving a pulse voltage superimposed on the wire due to a surge voltage when a spark occurs with a pulse counter. A spark detection circuit is obtained.

本発明によれば、集塵機規模を変更する都度発生する複雑な回路設計と評価を不要とする簡便な電気集塵機用スパーク検出回路を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the simple spark detection circuit for electric dust collectors which does not require the complicated circuit design and evaluation which are generated whenever a dust collector scale is changed can be provided.

本発明の参考例1によるスパーク検出回路の構成図Configuration diagram of a spark detection circuit according to Reference Example 1 of the present invention 本発明の参考例2によるスパーク検出回路の構成図Configuration of Spark Detection Circuit According to Reference Example 2 of the Present Invention 同状態変換電圧出力手段の構成図Configuration diagram of same-state conversion voltage output means 本発明の参考例3によるスパーク検出回路の構成図Configuration diagram of a spark detection circuit according to Reference Example 3 of the present invention 同電圧復帰手段の構成図Configuration diagram of the voltage recovery means 本発明の参考例4によるスパーク検出回路の構成図Configuration of Spark Detection Circuit According to Reference Example 4 of the Present Invention 本発明の参考例5によるスパーク検出回路の構成図Configuration diagram of a spark detection circuit according to Reference Example 5 of the present invention 同復帰時間調整手段の構成図Configuration diagram of the return time adjustment means 本発明の参考例6によるスパーク検出回路の構成図Configuration of Spark Detection Circuit According to Reference Example 6 of the Present Invention 同復帰電圧調整手段の構成図Configuration diagram of the reset voltage adjustment means 本発明の実施の形態によるスパーク検出回路の構成図 1 is a configuration diagram of a spark detection circuit according to a first embodiment of the present invention. 従来例のスパーク検出回路の構成図Configuration diagram of conventional spark detection circuit

本発明の請求項1記載の発明は、高圧回路内で発生する電圧変化を伝達する伝達手段として集塵機負荷への電圧印加配線と平行に這わせた絶縁性導電体と、伝達した電圧を監視する監視手段とを備え、スパーク発生時のサージ電圧により伝達される電圧変化を前記監視手段にて検知することによりスパークを検出するスパーク検出回路を備えたものであり、スパーク発生時伝達される電圧変化を監視手段にて検知するという作用を有し、高電圧部品を使用しないコストのかからないスパーク検出回路が得られる。また、伝達手段として集塵機負荷への電圧印加配線と平行に這わせた絶縁性導電体を備えたことを特徴としたものであり、簡単に敷設することのできる電気集塵機用スパーク検出回路が得られる。
また、請求項2の記載の発明は、絶縁性導体は電線で、電圧監視手段はパルスカウンタで構成し、スパーク発生時に電圧印加配線から平行に這わせた電線に重畳されるパルス電圧を受信することを特徴とするスパーク検出回路を備えたものであり、集塵機負荷への電圧印加配線と平行に這わせた電線を供えパルスカウンタでスパーク発生時のサージ電圧により前記電線に重畳されるパルス電圧を受信するという作用を有し、簡単に敷設することのできる電気集塵機用スパーク検出回路が得られる。また、高電圧部品を使用しないコストのかからないスパーク検出回路が得られる。
The invention according to claim 1 of the present invention monitors the transmitted voltage and the insulating conductor that is arranged in parallel with the voltage application wiring to the dust collector load as a transmission means for transmitting the voltage change generated in the high voltage circuit. and a monitoring unit, which comprises a spark detection circuit for detecting a spark by detecting a voltage change which is transmitted by the surge voltage at the time of the spark generated by the monitoring means, the voltage change which is transmitted during spark Thus, a spark detection circuit can be obtained which has the effect of detecting the above by the monitoring means and does not use high-voltage components and which is inexpensive. Further, the present invention is characterized in that an insulating conductor arranged in parallel with the voltage application wiring to the dust collector load is provided as a transmission means, and a spark detection circuit for an electric dust collector that can be easily installed is obtained. .
According to the second aspect of the present invention, the insulating conductor is an electric wire, and the voltage monitoring means is a pulse counter, and receives a pulse voltage superimposed on the electric wire laid in parallel from the voltage application wiring when a spark occurs. A spark detection circuit is provided, and a pulse voltage superimposed on the wire by a surge voltage at the time of occurrence of a spark by a pulse counter is provided by providing a wire laid in parallel with the voltage application wire to the dust collector load. A spark detection circuit for an electrostatic precipitator that has a function of receiving and can be easily installed is obtained. In addition, a spark detection circuit that does not use high-voltage components and is inexpensive can be obtained.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

参考例1)
図1は本発明の参考例1によるスパーク検出回路の構成を示している。図1に示すように、負荷荷電部に印加されている高電圧を分圧生成手段である分圧抵抗A1と分圧抵抗B2により高圧と低圧に分圧し、低圧側の分圧抵抗B2の両端電圧をスイッチ手段であるトランジスタA5のベースに印加する(以下ベース電圧と表現)。負荷荷電部とは、高圧電源の出力と極板との接続点を示す。低圧側の分圧抵抗B2とトランジスタA5のベースとの間にはトランジスタA5のベースに流れる電流値を定格以内に抑えるため、電流制限抵抗A3を挿入する。また、トランジスタのコレクタ−エミッタ間に導通がある状態をトランジスタのON状態と定義し、コレクタ−エミッタ間に導通がない場合をトランジスタのOFF状態と定義する。トランジスタA5のコレクタ側には、トランジスタA5がON状態である時コレクタ−エミッタ間に電流を流すための電源を供給する安定化電源を接続する。安定化電源とトランジスタA5のコレクタとの間にはコレクタ−エミッタ間に流れる電流(以下コレクタ電流と表現)を定格以内に抑えるために電流制限抵抗B4を挿入する。また、トランジスタA5がON状態である時、トランジスタA5のON状態を有電圧信号として出力するために、コレクタ−グランド間に抵抗A6を挿入し、コレクタ電流が抵抗A6を流れることによる電圧降下分を有電圧信号として出力するようにする。定常時負荷荷電部に正常に電圧が印加されている状態ではトランジスタA5のベース電圧はトランジスタA5の動作電圧以上の電圧である必要があり、定常時トランジスタA5はON状態であるものとする。スパークが発生すると負荷間が短絡するため、負荷荷電部に印加される電圧は瞬時に0Vとなり、それにより分圧抵抗A1、分圧抵抗B2の両端電圧も0Vとなる。それによりトランジスタA5のベース電圧も0Vとなり、トランジスタA5のベース電圧が動作電圧を下回り、トランジスタA5はOFF状態となる。この時トランジスタA5のエミッタより取り出している有電圧信号出力も0Vになる。有電圧信号が0Vになることによりスパークを検出することができる。
( Reference Example 1)
FIG. 1 shows the configuration of a spark detection circuit according to Reference Example 1 of the present invention. As shown in FIG. 1, a high voltage applied to a load charging unit is divided into a high voltage and a low voltage by a voltage dividing resistor A1 and a voltage dividing resistor B2, which are voltage dividing means, and both ends of a voltage dividing resistor B2 on the low voltage side. A voltage is applied to the base of the transistor A5 which is a switch means (hereinafter referred to as a base voltage). The load charging unit indicates a connection point between the output of the high voltage power source and the electrode plate. A current limiting resistor A3 is inserted between the voltage dividing resistor B2 on the low voltage side and the base of the transistor A5 in order to keep the value of the current flowing through the base of the transistor A5 within the rating. Further, a state in which conduction between the collector and the emitter of the transistor is defined as the ON state of the transistor, and a case in which conduction is not established between the collector and the emitter is defined as the OFF state of the transistor. Connected to the collector side of the transistor A5 is a stabilized power supply that supplies power for flowing a current between the collector and the emitter when the transistor A5 is in the ON state. A current limiting resistor B4 is inserted between the stabilized power supply and the collector of the transistor A5 in order to keep the current flowing between the collector and the emitter (hereinafter referred to as collector current) within the rating. Further, when the transistor A5 is in the ON state, the resistor A6 is inserted between the collector and the ground to output the ON state of the transistor A5 as a voltage signal, and the voltage drop due to the collector current flowing through the resistor A6 is reduced. Output as a voltage signal. In a state in which a voltage is normally applied to the constant load charging portion, the base voltage of the transistor A5 needs to be equal to or higher than the operating voltage of the transistor A5, and the transistor A5 is in an ON state at the steady state. When the spark is generated, the load is short-circuited, so that the voltage applied to the load charging unit instantaneously becomes 0V, and the voltage across the voltage dividing resistor A1 and the voltage dividing resistor B2 also becomes 0V. Accordingly, the base voltage of the transistor A5 is also 0V, the base voltage of the transistor A5 is lower than the operating voltage, and the transistor A5 is turned off. At this time, the voltage signal output extracted from the emitter of the transistor A5 is also 0V. A spark can be detected when the voltage signal becomes 0V.

すなわち分圧生成手段である分圧抵抗A1、分圧抵抗B2により、分圧抵抗A1および分圧抵抗B2に電圧が印加されている時はトランジスタA5がON状態であり、スパーク発生により分圧抵抗A1と分圧抵抗B2の両端電圧が0VとなるとトランジスタA5がOFF状態となるため、それによりスパークを検出できることとなる。トランジスタA5の状態にはON状態とOFF状態があり、ON状態であればスパークが無く、OFF状態であればスパークしていることとなり、トランジスタA5の状態を監視するだけでスパークを検出できることになる。   That is, when a voltage is applied to the voltage dividing resistor A1 and the voltage dividing resistor B2 by the voltage dividing resistor A1 and the voltage dividing resistor B2 which are voltage dividing generating means, the transistor A5 is in an ON state, and the voltage dividing resistor is generated by the occurrence of spark When the voltage across A1 and the voltage dividing resistor B2 becomes 0V, the transistor A5 is turned off, so that a spark can be detected. The transistor A5 has an ON state and an OFF state. If the transistor A5 is ON, there is no spark. If the transistor A5 is OFF, the spark is detected. By detecting the state of the transistor A5, the spark can be detected. .

なお、参考例1ではスイッチ手段には集塵効率に影響を与えないため極力小さい電流で動作する=低駆動電流特性を持つトランジスタを用いたが、同様の特性を持つ半導体素子を用いても同様の効果が得られるのはいうまでもない。 In Reference Example 1, the switch means operates with a current as small as possible because it does not affect the dust collection efficiency = a transistor having a low driving current characteristic. However, the same applies to a semiconductor element having the same characteristic. Needless to say, this effect can be obtained.

参考例2)
図2および図3は本発明の参考例2によるスパーク検出回路の構成と状態変換電圧出力手段の構成を示している。
( Reference Example 2)
2 and 3 show the configuration of the spark detection circuit and the configuration of the state conversion voltage output means according to Reference Example 2 of the present invention.

なお、参考例同一部分については同一の符号を記し、詳細な説明は省略する。 In addition, the same code | symbol is described about the same part as the reference example 1, and detailed description is abbreviate | omitted.

図2において状態変換手段は定常時にトランジスタA5がONとなるように電圧を出力し、スパーク発生時はスパークによる光を検知してトランジスタA5がOFFとなるように電圧出力を停止するようにするものとする。   In FIG. 2, the state converting means outputs a voltage so that the transistor A5 is turned on in a steady state, and detects the light caused by the spark and stops the voltage output so that the transistor A5 is turned off when a spark occurs. And

図3において状態変換電圧出力手段は光センサと信号反転回路とそれらを駆動するための安定化電源を備え、定常時はスパークによる光が発生していないため光センサからの出力は無い状態であり、その出力の無い状態は信号反転回路にて反転され、信号反転回路より有電圧信号が出力されている。この有電圧信号により、定常時トランジスタA5がON状態となる。スパークが発生するとその光を光センサが検知し、光センサより光検出信号が出力される。出力された検出信号は信号反転回路内にて反転され有電圧信号は0Vとなる。トランジスタA5への有電圧信号が0VになることによりトランジスタA5がOFF状態となり、スパークが発生したことを検知することができる。   In FIG. 3, the state conversion voltage output means includes an optical sensor, a signal inversion circuit, and a stabilized power source for driving them, and no light is generated due to sparks in a steady state, so there is no output from the optical sensor. The state without the output is inverted by the signal inversion circuit, and a voltage signal is output from the signal inversion circuit. Due to this voltage signal, the transistor A5 in the steady state is turned on. When a spark occurs, the light sensor detects the light, and a light detection signal is output from the light sensor. The output detection signal is inverted in the signal inverting circuit and the voltage signal becomes 0V. When the voltage signal to the transistor A5 becomes 0V, the transistor A5 is turned off, and it can be detected that a spark has occurred.

なお、参考例2ではスイッチ手段には集塵効率に影響を与えないため極力小さい電流で動作する=低駆動電流特性を持つトランジスタを用いたが、同様の特性を持つ半導体素子を用いても同様の効果が得られるのはいうまでもない。 In Reference Example 2, the switch means does not affect the dust collection efficiency, so that it operates with a current as small as possible = a transistor having a low drive current characteristic. However, even if a semiconductor element having similar characteristics is used, Needless to say, this effect can be obtained.

また、参考例2ではスパーク時に発生する光を状態変換電圧出力手段に用いたが、スパーク時に発生する音を用いても同様の効果が得られるのはいうまでもない。 In Reference Example 2, the light generated at the time of sparking is used for the state conversion voltage output means, but it goes without saying that the same effect can be obtained even if the sound generated at the time of sparking is used.

参考例3)
図4は本発明の参考例3によるスパーク検出回路の構成を示している。
( Reference Example 3)
FIG. 4 shows the configuration of a spark detection circuit according to Reference Example 3 of the present invention.

なお、参考例1、あるいは2と同一部分については同一の符号を付し、詳細な説明は省略する。 The same parts as those in Reference Example 1 or 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

図4においてトランジスタA5のエミッタより出力されている有電圧信号は電圧復帰手段及び継電器A7に並列に接続され、継電器A7は高圧電源の1次側を開閉することにより高圧電源への電力供給を停止し、負荷荷電部への印加電圧をON/OFFするものとする。スパーク発生時、トランジスタA5がOFF状態となることによりトランジスタA5のエミッタからの有電圧信号が0Vとなり、継電器A7のコイル電圧は0Vとなり継電器A7がOFFし、高圧電源の1次側は開状態となり、負荷荷電部への印加電圧は0Vとなる。この時トランジスタA5のエミッタからの有電圧信号が0Vであることを受信した電圧復帰手段は継電器A7をONするためにパルス電圧を継電器A7のコイルに出力し、それにより継電器A7がONとなり、高圧電源の1次側は閉状態となり、負荷への印加電圧が復帰する。負荷荷電部への印加電圧が復帰するとトランジスタA5へのベース電圧が動作電圧以上となり、トランジスタA5がON状態となり、スパークが発生する前の状態
(定常状態)に復帰する。
In FIG. 4, the voltage signal output from the emitter of the transistor A5 is connected in parallel to the voltage recovery means and the relay A7, and the relay A7 stops supplying power to the high-voltage power supply by opening and closing the primary side of the high-voltage power supply. The applied voltage to the load charging unit is turned ON / OFF. When a spark occurs, the voltage signal from the emitter of the transistor A5 becomes 0V by turning off the transistor A5, the coil voltage of the relay A7 becomes 0V, the relay A7 is turned off, and the primary side of the high-voltage power supply is opened. The applied voltage to the load charging unit is 0V. At this time, the voltage recovery means that has received that the voltage signal from the emitter of the transistor A5 is 0V outputs a pulse voltage to the coil of the relay A7 in order to turn on the relay A7. The primary side of the power supply is closed, and the voltage applied to the load is restored. When the voltage applied to the load charging unit is restored, the base voltage to the transistor A5 becomes equal to or higher than the operating voltage, the transistor A5 is turned on, and the spark is not generated.
Return to (steady state).

図5において電圧復帰手段はパルス電圧出力回路を駆動するための電源を供給する安定化電源と、パルス電圧出力回路を備え、パルス電圧出力回路はトランジスタA5からのスパーク検出信号(有電圧信号が0Vに変化)を受けると、継電器A7のコイルに継電器A7をONするためのパルス電圧を出力する。これにより継電器A7がON状態となり負荷荷電部への印可電圧を復帰することができる。   In FIG. 5, the voltage recovery means includes a stabilized power supply for supplying power for driving the pulse voltage output circuit, and a pulse voltage output circuit. When the change is received, a pulse voltage for turning ON the relay A7 is output to the coil of the relay A7. Thereby, relay A7 will be in ON state and the applied voltage to a load charge part can be reset.

なお、参考例3ではスイッチ手段には集塵効率に影響を与えないため極力小さい電流で動作する=低駆動電流特性を持つトランジスタを用いたが、同様の特性を持つ半導体素子を用いても同様の効果が得られるのはいうまでもない。 In Reference Example 3, the switch means does not affect the dust collection efficiency, so that it operates with a current as small as possible = a transistor having a low drive current characteristic. Needless to say, this effect can be obtained.

参考例4)
図6は本発明の参考例4によるスパーク検出回路の構成を示している。
( Reference Example 4)
FIG. 6 shows the configuration of a spark detection circuit according to Reference Example 4 of the present invention.

なお、参考例1乃至3のいずれかと同一部分については同一の符号を記し、詳細な説明は省略する。 In addition, the same code | symbol is described about the same part as any of the reference examples 1 thru | or 3, and detailed description is abbreviate | omitted.

図6においてトランジスタB12、C14及び抵抗B8、制限抵抗C9、D10、E11、F13を用いて、従来より知られているシュミット・トリガ回路を構成する。定常時トランジスタA5がON状態である時、制限抵抗B4にトランジスタA5のコレクタ電流が流れることにより制限抵抗B4の両端に電位差が発生し、トランジスタC14がON状態となる。制限抵抗B4にはトランジスタA5のコレクタ電流による電圧降下分がトランジスタC14の動作電圧以上となるような抵抗値を選定する。トランジスタC14がON状態となるとトランジスタC14のコレクタ電流がトランジスタB12のベースに流れ、制限抵抗F13により電位差が発生し、トランジスタB12がON状態となる。制限抵抗F13にはトランジスタC14のコレクタ電流による電圧降下分がトランジスタB12の動作電圧以上となるような抵抗値を選定する。トランジスタB12がONするとトランジスタA5のコレクタ電流は抵抗B8を流れずにトランジスタB12を流れるため、抵抗B8の両端は短絡された状態と同じになる。よってトランジスタA5がON状態からOFF状態へ変化するための電圧は、抵抗A6の両端電圧と動作電圧を和した電圧となる。スパーク発生時トランジスタA5がOFF状態となると、トランジスタA5のコレクタ電流が0Aとなり、トランジスタC14のベース電圧も0Vとなるため、トランジスタC14はOFF状態となる。トランジスタC14がOFF状態となるとトランジスタC14のコレクタ電流も0Aとなり、トランジスタB12のベース電圧も0Vとなり、トランジスタB12はOFF状態となる。トランジスタB12がOFF状態となることにより抵抗B8の両端の短絡状態は解除される。よってトランジスタA5がOFF状態からON状態に変化するための電圧は、抵抗A6と抵抗B8の両端電圧と動作電圧を和した電圧以上が必要となる。トランジスタA5がON状態からOFF状態へ変化する電圧と、OFF状態からON状態へ変化するための電圧値が異なることにより、トランジスタA5のハンチング動作を防ぐことができる。ハンチングを防ぐための電圧差は抵抗A6と抵抗B8の選定により任意に選択することができる。   In FIG. 6, a conventionally known Schmitt trigger circuit is configured using the transistors B12 and C14, the resistor B8, and the limiting resistors C9, D10, E11, and F13. When the constant transistor A5 is in the ON state, a collector current of the transistor A5 flows through the limiting resistor B4, thereby generating a potential difference between both ends of the limiting resistor B4, and the transistor C14 is turned on. For the limiting resistor B4, a resistance value is selected such that the voltage drop due to the collector current of the transistor A5 is equal to or higher than the operating voltage of the transistor C14. When the transistor C14 is turned on, the collector current of the transistor C14 flows to the base of the transistor B12, a potential difference is generated by the limiting resistor F13, and the transistor B12 is turned on. A resistance value is selected for the limiting resistor F13 such that the voltage drop due to the collector current of the transistor C14 is equal to or higher than the operating voltage of the transistor B12. When the transistor B12 is turned on, the collector current of the transistor A5 does not flow through the resistor B8 but flows through the transistor B12, so that both ends of the resistor B8 are the same as in a short-circuited state. Therefore, the voltage for changing the transistor A5 from the ON state to the OFF state is a voltage obtained by adding the voltage across the resistor A6 and the operating voltage. When the spark is generated, when the transistor A5 is turned off, the collector current of the transistor A5 becomes 0A, and the base voltage of the transistor C14 becomes 0V, so that the transistor C14 is turned off. When the transistor C14 is turned off, the collector current of the transistor C14 is also 0A, the base voltage of the transistor B12 is also 0V, and the transistor B12 is turned off. The short circuit state at both ends of the resistor B8 is released by turning off the transistor B12. Therefore, the voltage for changing the transistor A5 from the OFF state to the ON state needs to be equal to or higher than the sum of the voltage across the resistors A6 and B8 and the operating voltage. Since the voltage at which the transistor A5 changes from the ON state to the OFF state is different from the voltage value for changing from the OFF state to the ON state, the hunting operation of the transistor A5 can be prevented. The voltage difference for preventing hunting can be arbitrarily selected by selecting the resistor A6 and the resistor B8.

なお、参考例4ではスイッチ手段には集塵効率に影響を与えないため極力小さい電流で動作する=低駆動電流特性を持つトランジスタを用いたが、同様の特性を持つ半導体素子を用いても同様の効果が得られるのはいうまでもない。 In Reference Example 4, the switch means does not affect the dust collection efficiency, so that it operates with a current as small as possible = a transistor having a low driving current characteristic. Needless to say, this effect can be obtained.

参考例5)
図7は本発明の参考例5によるスパーク検出回路の構成を示している。
( Reference Example 5)
FIG. 7 shows the configuration of a spark detection circuit according to Reference Example 5 of the present invention.

なお、参考例同一部分については同一の符号を記し、詳細な説明は省略する。 In addition, about the same part as the reference example 2 , the same code | symbol is described and detailed description is abbreviate | omitted.

図7において復帰時間調整手段はスパーク発生時、トランジスタA5のエミッタからの有電圧信号が0Vに変化したことを受信すると、受信直後より予め定められた一定時間までの間は電圧復帰手段への出力信号を維持し、一定時間経過後に電圧復帰手段への出力を停止するものとする。復帰時間調整手段からの出力信号が0Vであることを受信した電圧復帰手段は継電器A7をONするためにパルス電圧を継電器A7のコイルに出力し、それにより継電器A7がONとなり、負荷荷電部への印加電圧が復帰する。負荷荷電部への印加電圧が復帰するとトランジスタA5へのベース電圧が動作電圧以上となりトランジスタA5がON状態となり、スパークが発生する前の状態(定常状態)に復帰する。これによりスパーク検出後一定時間は出力を停止し、一定時間後に再度出力を復帰させることができる。この一定時間の選定については1〜3秒程度が望ましい。1秒以下だと電圧復帰時にスパークが発生する場合はスパークとスパークの間隔が短くなり、高圧回路、高圧トランス、高圧部品へのストレスが大きくなる。3秒以上すると停止時間が長くなることにより集塵機の稼働時間が低下し、総合的な集塵効率の低下に繋がる。よって復帰時間を1〜3秒に設定することで、高圧トランス、高圧部品へのストレスを低減し、総合的な集塵効率も維持することができる。   In FIG. 7, when a spark is generated, the return time adjusting means receives that the voltage signal from the emitter of the transistor A5 has changed to 0V, and outputs to the voltage return means immediately after reception until a predetermined time. The signal is maintained, and the output to the voltage recovery means is stopped after a certain time has elapsed. Upon receiving that the output signal from the return time adjusting means is 0V, the voltage return means outputs a pulse voltage to the coil of the relay A7 in order to turn on the relay A7, whereby the relay A7 is turned on and to the load charging unit. The applied voltage is restored. When the voltage applied to the load charging unit is restored, the base voltage to the transistor A5 becomes equal to or higher than the operating voltage, the transistor A5 is turned on, and the state before the occurrence of spark (steady state) is restored. Thereby, the output can be stopped for a certain time after the spark detection, and the output can be restored again after the certain time. About selection of this fixed time, about 1-3 seconds are desirable. If the spark is generated when the voltage is restored when the voltage is less than 1 second, the interval between the sparks is shortened, and the stress on the high-voltage circuit, the high-voltage transformer, and the high-voltage components is increased. If it is 3 seconds or more, the stop time becomes longer, so that the operation time of the dust collector is reduced, leading to a reduction in the overall dust collection efficiency. Therefore, by setting the return time to 1 to 3 seconds, it is possible to reduce the stress on the high-pressure transformer and the high-voltage parts and maintain the overall dust collection efficiency.

図8において復帰時間調整手段はタイマICと復帰時間調整回路とタイマICを駆動するための電源を供給する安定化電源を備え、スパーク検出信号を受けたタイマICはその直後より復帰時間調整回路により定められた時間内は電圧復帰手段への出力を停止し、時間経過後に電圧復帰手段への信号を出力する。復帰時間調整回路は主に抵抗とコンデンサより構成され、その時定数で復帰時間を任意に決定することができる。   In FIG. 8, the return time adjustment means includes a timer IC, a return time adjustment circuit, and a stabilized power supply that supplies power for driving the timer IC. The output to the voltage recovery means is stopped within a predetermined time, and a signal to the voltage recovery means is output after the lapse of time. The return time adjustment circuit is mainly composed of a resistor and a capacitor, and the return time can be arbitrarily determined by its time constant.

参考例6)
図9は本発明の参考例6によるスパーク検出回路の構成を示している。
( Reference Example 6)
FIG. 9 shows the configuration of a spark detection circuit according to Reference Example 6 of the present invention.

なお、参考例5と同一部分については同一の符号を記し、詳細な説明は省略する。 In addition, about the same part as the reference example 5, the same code | symbol is described and detailed description is abbreviate | omitted.

図9においてトランジスタA5のエミッタより出力されている有電圧信号は復帰電圧調整手段に接続され、復帰電圧調整手段とトライアックA15を接続し、トライアックA15の制御は復帰電圧調整手段より行うものとする。トライアックA15は高圧電源の1次側を位相制御することにより高圧電源への電力を増減させ、負荷荷電部への電力を増減させることができる。スパーク発生時、トランジスタA5がOFF状態となることによりトランジスタA5のエミッタからの有電圧信号が0Vとなると、0Vを受信した復帰電圧調整手段は一旦トライアックA15への出力を停止し、一定時間経過後にトライアックA15への出力を段階的に増加させていく。これにより、高圧電源1次側の電力は段階的に増加し、負荷荷電部への印可電力も段階的に増加させることができる。   In FIG. 9, the voltage signal output from the emitter of the transistor A5 is connected to the return voltage adjusting means, the return voltage adjusting means and the triac A15 are connected, and the control of the triac A15 is performed by the return voltage adjusting means. The triac A15 can increase or decrease the power to the high-voltage power supply by phase-controlling the primary side of the high-voltage power supply, and can increase or decrease the power to the load charging unit. When the spark is generated, when the voltage signal from the emitter of the transistor A5 becomes 0V by turning off the transistor A5, the return voltage adjusting means that has received 0V once stops the output to the triac A15, and after a certain time has elapsed. The output to the triac A15 is increased step by step. As a result, the power on the primary side of the high-voltage power supply increases stepwise, and the applied power to the load charging unit can also be increased stepwise.

図10において復帰電圧調整手段はトライアックA15の位相制御を実施する位相制御ICと、位相制御ICへの出力を段階的に制御するCPUと、周波数同期を取るための相検出回路と、トライアックA15への信号を出力する信号出力回路と、それぞれの回路を駆動するための電源を供給する安定化電源を備え、トライアックA15へのゲート信号を調整することにより、負荷に印加する電力を調整することができる。スパーク発生時、スパーク検出信号を受信したCPUがその直後より一定時間位相制御ICへの出力を停止し、一定時間経過後に0から段階的に位相制御ICへの出力を増加させる。位相制御ICではCPUからの指示に従い、ゲート出力信号を調整し、その調整された信号が出力信号回路をとおりトライアックA15のゲートに出力される。それにより負荷荷電部への印加電力を段階的に増加させることができる。具体的な段階的調整に関しては、集塵機の規模等により異なるため一概には言えないが、一定時間(参考例5に記載の1〜3秒)経過後より、定常時印加電圧の70%〜80%までを瞬時に復帰し、復帰する瞬間に発生するスパークを抑えつつ、10〜20秒程度かけて100%までリニアに変化させる方法が有効であることが確認できている。 In FIG. 10, the return voltage adjusting means includes a phase control IC that performs phase control of the triac A15, a CPU that controls the output to the phase control IC in stages, a phase detection circuit for frequency synchronization, and a triac A15. A signal output circuit that outputs the above signals and a stabilized power supply that supplies power for driving the respective circuits, and adjusting the gate signal to the triac A15 to adjust the power applied to the load. it can. When a spark occurs, the CPU that has received the spark detection signal stops the output to the phase control IC for a certain time immediately after that, and increases the output to the phase control IC from 0 in a stepwise manner after a certain time has elapsed. The phase control IC adjusts the gate output signal in accordance with an instruction from the CPU, and the adjusted signal is output to the gate of the triac A15 through the output signal circuit. Thereby, the applied power to the load charging unit can be increased stepwise. The specific stepwise adjustment varies depending on the size of the dust collector and the like, and thus cannot be generally stated. However, after a certain time (1 to 3 seconds described in Reference Example 5) has elapsed, 70% to 80% of the steady-state applied voltage It has been confirmed that a method of linearly changing to 100% over about 10 to 20 seconds while suppressing sparks generated at the time of returning instantaneously to 100% and suppressing sparks generated at the time of return is confirmed.

なお、参考例6では1次側の電力を調整するためにトライアックを用いたがサイリスタを用いても同様の効果が得られるのはいうまでもない。 In Reference Example 6, the triac is used to adjust the power on the primary side, but it goes without saying that the same effect can be obtained even if a thyristor is used.

(実施の形態
図11は本発明の実施の形態によるスパーク検出回路の構成を示している。
(Embodiment 1 )
FIG. 11 shows the configuration of the spark detection circuit according to the first embodiment of the present invention.

図11において負荷への電圧印加配線と平行に伝達手段である電線を這わせ、その平行に這わせた電線に電圧監視手段(例えばパルスカウンター)を接続する。スパーク時に発生するサージ電圧により、電圧印加配線から平行に這わせた電線にパルス電圧が重畳される。そのパルス電圧を電圧監視手段で受信することによりスパークを検出することができる。   In FIG. 11, an electric wire as a transmission means is arranged in parallel with the voltage application wiring to the load, and a voltage monitoring means (for example, a pulse counter) is connected to the electric wire arranged in parallel. Due to the surge voltage generated at the time of sparking, a pulse voltage is superimposed on the electric wires running in parallel from the voltage application wiring. A spark can be detected by receiving the pulse voltage by the voltage monitoring means.

なお、参考例1の検出回路に実施の形態のスパーク検出回路を備えることは差し支えない。 Note that the detection circuit of Reference Example 1 may be provided with the spark detection circuit of Embodiment 1 .

本発明は、電気集塵機以外に点火プラグ等スパークが発生する装置にも応用できる。 The present invention can be applied to devices that generate sparks, such as spark plugs, in addition to electrostatic precipitators.

1 分圧抵抗A
2 分圧抵抗B
3 制限抵抗A
4 制限抵抗B
5 トランジスタA
6 抵抗A
1 Voltage divider resistance A
2 Voltage dividing resistor B
3 Limiting resistance A
4 Limiting resistor B
5 Transistor A
6 Resistance A

Claims (2)

高圧回路内で発生する電圧変化を伝達する伝達手段として集塵機負荷への電圧印加配線と平行に這わせた絶縁性導電体と、伝達した電圧を監視する監視手段とを備え、スパーク発生時のサージ電圧により伝達される電圧変化を前記監視手段にて検知することによりスパークを検出する電気集塵機用スパーク検出回路。 Comprising a voltage application wiring and was parallel to crawl insulating conductors to dust collector load as transmission means for transmitting a voltage change generated in the high voltage circuit, and a monitoring means for monitoring the transmission with voltage, surge during sparking spark detector circuit for an electrostatic precipitator for detecting a spark by detecting a voltage change that is transmitted by the voltage at the monitoring unit. 絶縁性導体は電線で、電圧監視手段はパルスカウンタで構成し、スパーク発生時に電圧印加配線から平行に這わせた電線に重畳されるパルス電圧を受信することを特徴とする請求項1記載の電気集塵機用スパーク検出回路。 Insulated conductor is an electric wire, the voltage monitoring means constituted by a pulse counter, electrical of claim 1, wherein the receiving the pulse voltage is superimposed on the wire was laid in parallel from the voltage supply wiring during sparking Spark detection circuit for dust collectors .
JP2004317876A 2004-11-01 2004-11-01 Spark detection circuit for electric dust collector Expired - Fee Related JP4492298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004317876A JP4492298B2 (en) 2004-11-01 2004-11-01 Spark detection circuit for electric dust collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004317876A JP4492298B2 (en) 2004-11-01 2004-11-01 Spark detection circuit for electric dust collector

Publications (2)

Publication Number Publication Date
JP2006126121A JP2006126121A (en) 2006-05-18
JP4492298B2 true JP4492298B2 (en) 2010-06-30

Family

ID=36720993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004317876A Expired - Fee Related JP4492298B2 (en) 2004-11-01 2004-11-01 Spark detection circuit for electric dust collector

Country Status (1)

Country Link
JP (1) JP4492298B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068809A (en) * 1998-06-10 2000-03-03 Nippon Signal Co Ltd:The Threshold computation circuit and gate circuit, self holding circuit and activation signal generation circuit using the same
JP2001259475A (en) * 2000-03-15 2001-09-25 Sumitomo Heavy Ind Ltd Electric dust collector
JP2002166197A (en) * 2000-12-01 2002-06-11 Origin Electric Co Ltd Electric precipitation method and electric precipitator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104372B2 (en) * 1986-09-18 1995-11-13 キヤノン株式会社 Voltage comparison circuit
JP2613435B2 (en) * 1988-05-25 1997-05-28 三菱電線工業株式会社 Partial discharge measurement method
JPH03258356A (en) * 1990-03-07 1991-11-18 Matsushita Electric Ind Co Ltd Electric type air cleaner
JPH05109362A (en) * 1991-10-16 1993-04-30 Mitsubishi Electric Corp Spark test device
JPH05146716A (en) * 1991-11-26 1993-06-15 Daikin Ind Ltd Abnormality detector of electrostatic precipitator
JP3460221B2 (en) * 1998-05-25 2003-10-27 日立プラント建設株式会社 Method for preventing glow discharge in electric dust collector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068809A (en) * 1998-06-10 2000-03-03 Nippon Signal Co Ltd:The Threshold computation circuit and gate circuit, self holding circuit and activation signal generation circuit using the same
JP2001259475A (en) * 2000-03-15 2001-09-25 Sumitomo Heavy Ind Ltd Electric dust collector
JP2002166197A (en) * 2000-12-01 2002-06-11 Origin Electric Co Ltd Electric precipitation method and electric precipitator

Also Published As

Publication number Publication date
JP2006126121A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
US9197201B2 (en) Impulse voltage generation device
JP4338118B2 (en) Method and apparatus for protecting electrical loads from parallel arc faults
EP1659670A2 (en) Arc detection circuit
US20100254055A1 (en) Overcurrent protection in a dimmer circuit
CN102804538B (en) Power supply protection circuit and motor drive device provided with same
US4335414A (en) Automatic reset current cut-off for an electrostatic precipitator power supply
CN104078929B (en) Breaker, under-voltage trip gear and overvoltage under-voltage trip gear
JPH0767328A (en) Power supply device for switching regulator
CN112152478A (en) Characteristic current generating circuit
JP2009039593A (en) Electric dust collector
KR101527366B1 (en) Arc detection circuit by contact failure
JP4492298B2 (en) Spark detection circuit for electric dust collector
EP0061838B1 (en) Surge voltage protection arrangements
JP2009131823A (en) Electrostatic precipitator
JP7160104B2 (en) Switching drive circuits and electrical devices
JPH0956058A (en) Circuit device having rush current preventing function
CN213484505U (en) Short-circuit protection circuit
CN210923818U (en) Fault current detection device applied to intelligent switch
KR200293402Y1 (en) Arc and over current protective circuit for electric precipitator
KR102011740B1 (en) Cut-off apparatus for poor insulation
JP3460221B2 (en) Method for preventing glow discharge in electric dust collector
CN110554233A (en) fault current detection device and method applied to intelligent switch
JPH10136697A (en) Control equipment of generator for vehicle
JP2008062149A (en) High voltage control circuit and dust collector
JP4379309B2 (en) Ignition system for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070809

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091117

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100329

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees