JP2002166197A - Electric precipitation method and electric precipitator - Google Patents

Electric precipitation method and electric precipitator

Info

Publication number
JP2002166197A
JP2002166197A JP2000367207A JP2000367207A JP2002166197A JP 2002166197 A JP2002166197 A JP 2002166197A JP 2000367207 A JP2000367207 A JP 2000367207A JP 2000367207 A JP2000367207 A JP 2000367207A JP 2002166197 A JP2002166197 A JP 2002166197A
Authority
JP
Japan
Prior art keywords
voltage
control element
spark discharge
power control
spark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000367207A
Other languages
Japanese (ja)
Other versions
JP3636655B2 (en
Inventor
Kimio Kitajima
喜巳雄 北島
Tadashi Oura
忠 大浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Origin Electric Co Ltd
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd, Hitachi Plant Technologies Ltd filed Critical Origin Electric Co Ltd
Priority to JP2000367207A priority Critical patent/JP3636655B2/en
Publication of JP2002166197A publication Critical patent/JP2002166197A/en
Application granted granted Critical
Publication of JP3636655B2 publication Critical patent/JP3636655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the lowering of dust collection efficiency by preventing the lowering of charge voltage even if spark discharge occurs frequently. SOLUTION: Charging is interrupted for a predetermined period in the same way as a conventional method only when spark discharge having possibility transferring to arc discharge is generated but continued as it is when spark discharge having no possibility transferring to arc discharge is generated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】 本発明は、排ガスなど気流中の
ダストを補集する電気集塵機の制御装置及び制御方法に
係り、特に火花放電の頻発による荷電電圧の低下を抑制
し得る電気集塵装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device and a control method of an electric precipitator for collecting dust in an airflow such as exhaust gas, and more particularly to an electric precipitator capable of suppressing a decrease in charging voltage due to frequent occurrence of spark discharge. About.

【0002】[0002]

【従来の技術】 電気集塵においては、一般的に集塵電
極と放電電極とからなる集塵部に印加される荷電電圧が
高いとき集塵効率が高くなると言われており、このため
集塵部の荷電電圧を火花放電が発生する寸前の高い電圧
に維持できれば良いわけであるが、実際にはある程度の
頻度にて火花放電が発生することを一つのパラメータと
して、できるだけ火花放電が発生する電圧付近にて集塵
部を荷電する時間が長くなるように、荷電電圧の制御が
行われる。そして、火花放電が発生したときには集塵装
置の荷電電圧が急速に低下する現象や、あるいは荷電電
流が著しく増大する現象を捉えて集塵装置内部で発生す
る火花放電を検出し、火花放電が検出されたときには次
のサイクルでの荷電を一旦停止して荷電電圧を低下さ
せ、火花放電を消弧させることが行われている。
2. Description of the Related Art In electric dust collection, it is generally said that when a charging voltage applied to a dust collecting portion including a dust collecting electrode and a discharge electrode is high, the dust collecting efficiency is increased. It is sufficient if the charging voltage of the part can be maintained at a high voltage just before spark discharge occurs.However, in practice, spark discharge occurs at a certain frequency as one parameter, and a voltage at which spark discharge occurs as much as possible The charging voltage is controlled so that the time required to charge the dust collecting part in the vicinity becomes longer. Then, when a spark discharge occurs, the phenomenon that the charging voltage of the dust collector rapidly drops or the phenomenon that the charging current increases significantly is detected to detect the spark discharge generated inside the dust collector, and the spark discharge is detected. In such a case, the charging in the next cycle is temporarily stopped to lower the charging voltage, and the spark discharge is extinguished.

【0003】 図6により具体的に従来例を説明する
と、電気集塵装置は、商用交流電源30と、その交流電
圧を位相制御するための逆並列接続されたサイリスタな
どからなる電力制御素子31と、昇圧変圧器32と、そ
の2次側の交流電圧を整流する高電圧整流器33と、集
塵極と放電極とからなる集塵部34と、荷電電圧検出手
段35と、その検出電圧信号と基準信号とを演算して誤
差信号を出力する回路であって、検出電圧信号が基準値
より低くなったとき出力が極性反転して火花放電の発生
の可能性を示す信号を発生する荷電電圧判定回路36
と、集塵部34を流れる電流を検出する電流検出手段3
7と、その電流検出信号と基準信号とを演算して誤差信
号を出力する回路であって、前記電流検出信号が基準値
より低くなったとき出力が極性反転して、火花放電の発
生の可能性を示す信号を発生する電流判定回路38と、
電力制御素子31の位相制御を行う駆動信号を発生する
位相制御回路39とからなる。
[0003] Explaining the conventional example more specifically with reference to FIG. 6, an electric precipitator includes a commercial AC power supply 30 and a power control element 31 such as a thyristor connected in anti-parallel for controlling the phase of the AC voltage. , A step-up transformer 32, a high-voltage rectifier 33 for rectifying an AC voltage on the secondary side thereof, a dust collecting section 34 including a dust collecting electrode and a discharge electrode, a charged voltage detecting means 35, and a detected voltage signal. A circuit for calculating an error signal by calculating a reference signal, wherein when the detected voltage signal becomes lower than the reference value, the polarity of the output is inverted to generate a signal indicating the possibility of the occurrence of a spark discharge. Circuit 36
Current detecting means 3 for detecting a current flowing through the dust collecting portion 34
7 and a circuit for calculating the current detection signal and the reference signal to output an error signal, wherein when the current detection signal becomes lower than the reference value, the polarity of the output is inverted to allow generation of a spark discharge. A current determination circuit 38 for generating a signal indicating the characteristic;
And a phase control circuit 39 for generating a drive signal for controlling the phase of the power control element 31.

【0004】 次にこのような構成の電気集塵装置の動
作を説明しながら、代表的な火花放電が発生したときの
制御方法の一例について説明する。先ず、荷電電圧検出
信号がその基準値よりも高いとき、また電流検出信号が
その基準値よりも低いときには、それら信号により位相
制御回路39は電力制御素子31に対して通常の位相制
御を行う。荷電電圧検出信号がその基準値よりも低くな
るとき、荷電電圧判定回路36の出力信号は極性反転
し、その出力信号は火花放電の発生の可能性を示す信号
となる。また、電流検出信号がその基準値よりも高くな
るときには、電流判定回路38の出力信号は極性反転
し、その出力信号は火花放電の発生の可能性を示す信号
となる。そして、荷電電圧判定回路36と電流判定回路
38の双方の出力信号の極性が反転すると、位相制御回
路39は火花放電が発生したものと判定して、所定の期
間、典型的には半サイクルだけ駆動信号を出力するのを
止め、これにより半サイクルだけ一旦荷電中断となる。
これに伴い荷電電圧は低下し、火花放電を消弧して、ア
ーク放電に移行するのを防いでいた。そして、半サイク
ルだけ荷電停止をした後、50〜100ms程度の時間
ソフトスタートにて電圧上昇速度θにて荷電電圧を上昇
させる再荷電を行い、火花放電発生時の荷電電圧よりも
ΔV低い電圧に復帰させ、その後、電圧上昇速度θにて
荷電電圧を徐々に上昇させていた。
Next, an example of a control method when a typical spark discharge occurs will be described while explaining the operation of the electric precipitator having such a configuration. First, when the charged voltage detection signal is higher than the reference value and when the current detection signal is lower than the reference value, the phase control circuit 39 performs a normal phase control on the power control element 31 based on the signals. When the charged voltage detection signal becomes lower than the reference value, the output signal of the charged voltage determination circuit 36 is inverted, and the output signal becomes a signal indicating the possibility of spark discharge. When the current detection signal is higher than the reference value, the output signal of the current determination circuit 38 is inverted, and the output signal is a signal indicating the possibility of spark discharge. When the polarity of the output signal of both the charging voltage determination circuit 36 and the current determination circuit 38 is reversed, the phase control circuit 39 determines that a spark discharge has occurred, and only for a predetermined period, typically only a half cycle. The output of the drive signal is stopped, so that the charging is temporarily interrupted for a half cycle.
As a result, the charging voltage was reduced, and the spark discharge was extinguished to prevent transition to arc discharge. Then, after the charging is stopped for a half cycle, recharging is performed to increase the charging voltage at a voltage rising speed θ by a soft start for about 50 to 100 ms, and a voltage ΔV lower than the charging voltage at the time of spark discharge occurs. After that, the charging voltage was gradually increased at the voltage increasing speed θ.

【0005】[0005]

【発明が解決しようとする課題】 しかし、これまでの
火花放電発生時の荷電制御は、火花放電からアーク放電
への移行の可能性とは関係なく、火花放電の発生を検出
したときには一様に荷電中断させて、荷電電圧を一旦Δ
V降下させる火花制御を行っていた。そして、火花放電
検出後の通常の荷電制御方法は、火花放電が発生した半
サイクルの次の半サイクルでサイリスタの点弧を休止さ
せて、その後は火花放電の再発および集塵部の静電容量
への突入電流を防止するためソフトスタートにて荷電電
圧を徐々に上昇させていた。
However, the charge control at the time of the occurrence of the spark discharge has been performed uniformly when the occurrence of the spark discharge is detected regardless of the possibility of the transition from the spark discharge to the arc discharge. The charging is interrupted and the charging voltage is temporarily set to Δ
Spark control for V drop was performed. Then, the normal charge control method after detecting the spark discharge is to suspend the firing of the thyristor in the next half cycle of the half cycle in which the spark discharge has occurred, and thereafter, the recurrence of the spark discharge and the capacitance of the dust collecting portion The charging voltage was gradually increased by soft start in order to prevent the inrush current to the battery.

【0006】 特に、高抵抗ダストを含む石炭ボイラの
排ガスなど火花放電の多発し易い電気集塵においては、
前述のように火花放電が発生する度に荷電中断による荷
電電圧の低下と再荷電時にソフトスタートが繰り返され
ると、集塵装置の荷電電圧の平均値が低下し、かなり集
塵効率が低下するという問題があった。本発明はこのよ
うな問題点を解決し、荷電電圧の低下を抑制して荷電効
率を従来に比べて向上させることを課題とする。
[0006] In particular, in electric dust collection in which spark discharge frequently occurs such as exhaust gas from a coal boiler containing high-resistance dust,
As mentioned above, every time a spark discharge occurs, if the charging voltage drops due to charging interruption and soft start is repeated at the time of recharging, the average value of the charging voltage of the dust collector decreases, and the dust collection efficiency decreases considerably. There was a problem. It is an object of the present invention to solve such a problem and to suppress a decrease in charging voltage to improve charging efficiency as compared with the related art.

【0007】[0007]

【課題を解決するための手段】 この発明の請求項1は
前記課題を解決するため、交流電源からその交流電圧に
対して遅れ位相の電流を供給して、集塵極と該集塵極に
対向して配置された放電極との間に高電圧を印加し、そ
れらの間を通過する気流に含まれるダストを捕集する電
気集塵方法において、前記集塵極と放電極との間で火花
放電が発生するとき、その火花放電の発生時点に従って
選択的に、そのまま前記交流電源からの交流電力を制御
する電力制御素子の駆動を一旦中断させずに通常の制御
を行って荷電を続行し、あるいは前記電力制御素子のオ
ンを所定期間中断させて一旦荷電電圧を低下させる制御
を行うことを特徴とする電気集塵方法を提供する。
Means for Solving the Problems According to a first aspect of the present invention, in order to solve the above-mentioned problems, a current having a phase delayed from an AC voltage is supplied from an AC power supply to the dust collecting electrode and the dust collecting electrode. A high voltage is applied between discharge electrodes arranged opposite to each other, and in an electric dust collection method for collecting dust contained in an airflow passing therebetween, the method includes the steps of: When a spark discharge occurs, the charging is continued by performing normal control without interrupting the drive of the power control element for controlling the AC power from the AC power supply as it is selectively in accordance with the time of occurrence of the spark discharge. Alternatively, there is provided an electric dust collection method characterized by performing a control for temporarily lowering the charging voltage by suspending the ON of the power control element for a predetermined period.

【0008】 この発明の請求項2は前記課題を解決す
るため、請求項1において、前記火花放電の発生時点
が、前記交流電源の交流電圧のゼロクロス時点から前記
電力制御素子のオンの直前までの間に発生した場合に
は、前記電力制御素子の駆動を一旦中断させずに通常の
制御を行って荷電を続行し、前記火花放電の発生時点が
前記電力制御素子のオン時点から前記交流電源の交流電
圧の次のゼロクロス時点までの間に発生した場合には、
前記電力制御素子のオンを所定期間停止させて一旦荷電
電圧を低下させることを特徴とする電気集塵方法を提供
する。
According to a second aspect of the present invention, in order to solve the above-mentioned problem, in the first aspect, the time point of occurrence of the spark discharge is from a time point of a zero crossing of the AC voltage of the AC power supply to immediately before the power control element is turned on. In the case where the power control element is intermittently driven, normal control is performed without interrupting the driving of the power control element to continue charging, and the point of occurrence of the spark discharge starts from the point of time when the power control element is turned on. If it occurs before the next zero-cross point of AC voltage,
An electric dust collection method is provided, wherein the power control element is turned off for a predetermined period to temporarily lower the charging voltage.

【0009】 この発明の請求項3は前記課題を解決す
るため、請求項1又は請求項2において、前記電力制御
素子の駆動信号がLレベルのときに火花放電が発生した
場合には前記電力制御素子の駆動を一旦中断させずに通
常の制御を行って荷電を続行し、前記電力制御素子の駆
動信号がHレベルのときに火花放電が発生した場合には
前記電力制御素子の駆動を所定期間中断させて一旦荷電
電圧を低下させることを特徴とする電気集塵方法を提供
する。
According to a third aspect of the present invention, in order to solve the above-mentioned problem, in the first or second aspect, the power control is performed when a spark discharge occurs when the drive signal of the power control element is at an L level. The normal control is performed without interrupting the driving of the element, the charging is continued, and if a spark discharge occurs when the driving signal of the power control element is at the H level, the driving of the power control element is stopped for a predetermined period. An electric dust collection method is provided, wherein the charging voltage is temporarily reduced by interruption.

【0010】 この発明の請求項4は前記課題を解決す
るため、交流電源と、該交流電源からの交流電力を制御
する電力制御素子と、限流リアクトルと、昇圧変圧器
と、該昇圧変圧器からの高電圧交流電圧を整流して直流
に変換する高電圧整流器とを備え、集塵部を通過する気
流に含まれるダストを捕集する電気集塵装置において、
前記交流電源の電圧のゼロクロス点を検出するゼロクロ
ス検出回路と、前記電力制御素子の導通を制御する駆動
信号を発生する位相制御回路と、前記集塵極と放電極と
の間に火花放電が発生するとき火花放電検出信号を与え
る火花検出回路と、前記位相制御回路からの駆動信号が
Lレベルのときに火花放電の発生が検出された場合に
は、前記電力制御素子のオンを一旦停止させずに通常の
制御を行って荷電を続行し、前記火花放電の発生が前記
駆動信号がLレベルのときに検出された場合には前記電
力制御素子の駆動を所定期間中断させて一旦荷電電圧を
低下させる荷電制御回路とを備えたことを特徴とする電
気集塵装置を提供する。
According to a fourth aspect of the present invention, there is provided an AC power supply, a power control element for controlling AC power from the AC power supply, a current limiting reactor, a step-up transformer, and the step-up transformer. A high-voltage rectifier that rectifies and converts high-voltage AC voltage from direct current to direct current, and an electric precipitator that collects dust contained in an airflow that passes through the precipitator.
A zero-crossing detection circuit for detecting a zero-crossing point of the voltage of the AC power supply, a phase control circuit for generating a drive signal for controlling conduction of the power control element, and a spark discharge between the dust collecting electrode and the discharge electrode A spark detection circuit that provides a spark discharge detection signal when the power control element does not temporarily stop turning on the power control element when spark drive is detected when the drive signal from the phase control circuit is at an L level. The normal control is performed to continue charging, and when the occurrence of the spark discharge is detected when the drive signal is at the L level, the drive of the power control element is interrupted for a predetermined period to temporarily reduce the charge voltage. And a charge control circuit.

【0011】[0011]

【発明の実施の形態】 先ずこの発明を説明するに当た
って、発明に至る考え方について説明する。(1)この
発明は、アーク放電に移行しない火花放電が存在すれば
そのような火花放電については荷電停止や、その後のソ
フトスタートなどの火花制御を行う必要は無いはずであ
るという考え方から出発している。(2)したがって、
先ず発生した火花放電がそのままの荷電状態を続けても
アーク放電に移行しないものがあるか否かを種々の実験
から確認した。(3)その結果、発生した火花放電がそ
のままの荷電状態を続けてもアーク放電に移行しないア
ーク放電が存在し、少なくとも交流電源の交流電圧のゼ
ロクロス時点近傍から電力制御素子のオンまでの間、つ
まり駆動信号が供給されていない期間に発生したものは
このようなアーク放電に移行しない火花放電であること
を確認した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, in describing the present invention, the concept leading to the invention will be described. (1) The present invention starts from the idea that if there is a spark discharge which does not shift to arc discharge, it is not necessary to stop charging or to perform spark control such as soft start for such spark discharge. ing. (2) Therefore,
First, it was confirmed from various experiments whether or not some of the generated spark discharge did not shift to arc discharge even if the charged state was kept as it was. (3) As a result, there is an arc discharge that does not shift to an arc discharge even if the generated spark discharge keeps the charged state as it is, and at least during a period from near the zero crossing point of the AC voltage of the AC power supply to when the power control element is turned on. That is, it was confirmed that the spark generated during the period in which the drive signal was not supplied was a spark discharge that did not shift to such an arc discharge.

【0012】 駆動信号が供給されておらず、交流電源
の電圧の瞬時値がゼロクロス点又はその近傍まで低下し
ているときは、負荷側の集塵部において火花放電が発生
しても電源電圧の瞬時値がゼロまで低下しているので、
電源側から継続したエネルギ−の供給はできない。この
ことから、ゼロクロス点又はその近傍から電力制御素子
の次のターンオンタイミングまでの間で発生した火花放
電はアーク放電に移行する可能性が無いと言える。
When the drive signal is not supplied and the instantaneous value of the voltage of the AC power supply is reduced to or near the zero-cross point, even if a spark discharge occurs in the dust collecting portion on the load side, the power supply voltage is not changed. Since the instantaneous value has dropped to zero,
Energy cannot be continuously supplied from the power supply side. From this, it can be said that there is no possibility that the spark discharge generated from the zero crossing point or its vicinity to the next turn-on timing of the power control element will shift to arc discharge.

【0013】 したがって、本発明は集塵極と放電極と
の間で火花放電が発生するとき、その火花放電の発生時
点に従って選択的に、そのまま前記電力制御素子の駆動
を継続させて荷電電圧を低下させる制御は行わず、ある
いは前記電力制御素子の駆動を所定期間中断させて一旦
荷電電圧を低下させる制御を行う電気集塵方法である。
Therefore, according to the present invention, when a spark discharge occurs between the dust collecting electrode and the discharge electrode, the driving of the power control element is continued as it is selectively according to the point of time of the spark discharge to reduce the charging voltage. This is an electric dust collection method in which the control for lowering the charging voltage is not performed or the driving of the power control element is interrupted for a predetermined period to temporarily lower the charging voltage.

【0014】 具体的には、本発明は集塵極と放電極を
備える集塵部において発生する火花放電を検出し、その
火花放電の発生が電力源となる交流電源の交流電圧の極
性が変わる点、つまりゼロクロス点の近傍から逆並列接
続したサイリスタのような電力制御素子のオン時点まで
の間に発生した場合、即ち電力制御素子の駆動信号が供
給されていない期間に火花放電が発生しても、前記電力
制御素子の駆動を一旦中断させずに通常の制御を行って
荷電を続行するものである。そして、前記火花放電の発
生が前記電力制御素子のオン時点から前記交流電源の交
流電圧の次のゼロクロス時点までの間、つまり前記駆動
信号が電力制御素子に供給されている期間に発生した場
合には、従来と同様に前記電力制御素子の駆動を所定期
間、例えば半サイクル中断させて一旦荷電電圧を低下さ
せ、しかる後に再び前記電力制御素子をオンさせて荷電
電圧を上昇させる。
[0014] Specifically, the present invention detects a spark discharge generated in a dust collecting portion provided with a dust collecting electrode and a discharge electrode, and the generation of the spark discharge changes the polarity of an AC voltage of an AC power supply serving as a power source. Point, that is, when the power control element such as a thyristor connected in anti-parallel is turned on from the vicinity of the zero-cross point to the ON point, that is, spark discharge occurs during a period in which the drive signal of the power control element is not supplied. Also, the normal control is performed without interrupting the driving of the power control element to continue charging. Then, when the occurrence of the spark discharge occurs from the time when the power control element is turned on to the time when the next zero crossing of the AC voltage of the AC power supply occurs, that is, when the drive signal is supplied to the power control element, As in the prior art, the driving of the power control element is suspended for a predetermined period, for example, a half cycle, to temporarily lower the charging voltage, and thereafter, the power control element is turned on again to increase the charging voltage.

【0015】 更に具体的には、前記電力制御素子の駆
動信号を利用し、その駆動信号が発生している期間で発
生した火花放電はアーク放電に移行する火花放電とし、
前記駆動信号が発生していない期間で発生した火花放電
はアーク放電に移行しない火花放電とする。そして、火
花検出信号(火花放電が検出されたときHレベル)がH
レベルであり、かつ前記駆動信号がHレベルのときだけ
通常の火花制御(火花検出後の荷電停止、ソフトスター
トによる再荷電)を行う。火花検出信号がHレベルであ
り、かつ前記駆動信号がLレベルのときは荷電中断を行
わず、そのまま通常の荷電制御を続行する。このような
新しい荷電制御を行う電気集塵方法により、集塵効率を
向上させることができる。
[0015] More specifically, a spark discharge generated during a period in which the drive signal is generated is used as a spark discharge that shifts to an arc discharge, using a drive signal of the power control element.
A spark discharge generated during a period in which the drive signal is not generated is a spark discharge that does not shift to an arc discharge. The spark detection signal (H level when spark discharge is detected) is H
Normal spark control (charge stop after spark detection, recharge by soft start) is performed only when the drive signal is at the H level. When the spark detection signal is at the H level and the drive signal is at the L level, the charging is not interrupted and normal charging control is continued. The dust collection efficiency can be improved by such a new dust collection method for performing charge control.

【0016】[0016]

【実施例】 図1及び図2により、本発明の実施例につ
いて説明する。先ず、図1において、1は商用の交流電
源、2は荷電制御盤、3は整流変圧回路、及び4は集塵
電極と放電電極を備える集塵部である。荷電制御盤2
は、交流電源1の電圧を検出する同期検出用変圧器5、
逆並列接続されたサイリスタ又はIGBTなどからなる
電力制御素子6、交流電源1の交流電圧のゼロクロス点
を検出する通常の構成のゼロクロス検出回路7、ゼロク
ロス検出回路7を含み、電力制御素子6のオン、オフを
制御する位相制御回路8、荷電制御回路9、火花検出回
路10、その外に定電流制御回路、定電圧制御回路など
を備えるがこれらについては図示するのを省略する。
Embodiment An embodiment of the present invention will be described with reference to FIGS. First, in FIG. 1, reference numeral 1 denotes a commercial AC power supply, 2 denotes a charge control panel, 3 denotes a rectifying transformer circuit, and 4 denotes a dust collecting unit having a dust collecting electrode and a discharge electrode. Charge control panel 2
Is a synchronous detection transformer 5 for detecting the voltage of the AC power supply 1,
The power control element 6 includes a thyristor or an IGBT connected in anti-parallel, a zero-cross detection circuit 7 having a normal configuration for detecting a zero-cross point of the AC voltage of the AC power supply 1, and a zero-cross detection circuit 7. , A charge control circuit 9, a spark detection circuit 10, a constant current control circuit, a constant voltage control circuit, and the like, but these are not shown.

【0017】 荷電制御回路9は、火花放電の発生が検
出されるとき所定の電圧値だけ荷電電圧を下げる信号を
出力する火花制御回路11、アーク放電に移行する可能
性がある火花放電が検出されたときのみ、予め決めた所
定の期間だけ、例えば半サイクルだけ荷電を中断して荷
電電圧を一旦低下させ、荷電中断後は電力制御素子6の
導通角を徐々に大きくして行くソフトスタート制御する
荷電中断・ソフトスタート回路12、後述するように位
相制御回路8における駆動信号と火花検出回路10から
の火花放電検出信号とをAND論理してアーク放電に移
行する可能性が高い火花放電検出信号だけを荷電中断・
ソフトスタート回路12に通過させるAND回路14な
どを備える。
The charging control circuit 9 outputs a signal for lowering the charging voltage by a predetermined voltage value when the occurrence of spark discharge is detected. The spark control circuit 9 detects a spark discharge that may shift to arc discharge. Only when the charging is stopped, the charging is interrupted only for a predetermined period, for example, a half cycle to temporarily lower the charging voltage, and after the charging is interrupted, the soft start control is performed in which the conduction angle of the power control element 6 is gradually increased. The charge interruption / soft start circuit 12, as will be described later, only a spark discharge detection signal having a high possibility of transitioning to arc discharge by ANDing the drive signal in the phase control circuit 8 and the spark discharge detection signal from the spark detection circuit 10 Charge interruption
An AND circuit 14 that allows the soft start circuit 12 to pass through is provided.

【0018】 火花検出回路10は、荷電電圧検出信号
と基準電圧源15の基準電圧とを比較する第1の比較器
16、集塵部4に流れる電流の検出信号と基準電流源1
7の基準値とを比較する第2の比較器18、比較器16
と18の出力信号をAND論理するAND論理回路19
からなり、荷電電圧検出信号がその基準電圧よりも小さ
く、かつ電流検出信号がその基準値よりも大きい場合に
火花放電検出信号を出力する。
The spark detection circuit 10 includes a first comparator 16 that compares the charged voltage detection signal with a reference voltage of the reference voltage source 15, a detection signal of a current flowing through the dust collection unit 4, and the reference current source 1.
A second comparator 18 and a comparator 16 for comparing with the reference value
AND logic circuit 19 for ANDing the output signals of AND 18
And outputs a spark discharge detection signal when the charged voltage detection signal is smaller than the reference voltage and the current detection signal is larger than the reference value.

【0019】 整流変圧回路3は、限流リアクトル2
0、限流リアクトル20に1次巻線が接続された昇圧変
圧器21、昇圧変圧器21の2次巻線に接続された高電
圧整流器22、放電電極と接地間の電圧を分圧する分圧
抵抗器23、24、及び集塵部4と高電圧整流器22と
の間に直列に接続されたシャント抵抗器25からなる。
この実施例の回路では、限流リアクトル20は荷電電圧
のリプル分の抑制と、短絡時の過電流を抑制するために
設けられており、通常は昇圧変圧器21の短絡インピー
ダンスと合わせて30〜50%程度の%インダクタンス
を持つように設定されている。このため、図2に示すよ
うに集塵部4の荷電電流波形は交流電源1の交流電圧波
形に対して遅れ位相となる。本発明は、荷電電流が交流
電源1の交流電圧に対して位相が遅れることを一つの条
件として利用する。
The rectifying transformer circuit 3 includes a current limiting reactor 2
0, a step-up transformer 21 having a primary winding connected to a current-limiting reactor 20, a high-voltage rectifier 22 connected to a secondary winding of the step-up transformer 21, a voltage divider for dividing a voltage between a discharge electrode and ground. The shunt resistor 25 is connected in series between the dust collector 4 and the high-voltage rectifier 22.
In the circuit of this embodiment, the current limiting reactor 20 is provided for suppressing the ripple of the charging voltage and for suppressing the overcurrent at the time of short circuit. It is set to have a% inductance of about 50%. For this reason, as shown in FIG. 2, the charging current waveform of the dust collector 4 has a lagging phase with respect to the AC voltage waveform of the AC power supply 1. The present invention utilizes the fact that the phase of the charging current is delayed with respect to the AC voltage of the AC power supply 1 as one condition.

【0020】 次に、このように構成された電気集塵装
置の動作について説明する。荷電制御盤2の同期検出用
変圧器5は交流電源1の交流電圧と同期した電圧を検出
してゼロクロス検出回路7を含む位相制御回路8に送
る。ゼロクロス検出回路7はこの電圧から交流電源1の
ゼロクロス点を検出してゼロクロス検出信号(D)を発
生すると共に、荷電制御回路8からの制御信号に従って
ゼロクロス時点を起点として電力制御素子6に点弧信号
(C)を送出する。電力制御素子6により位相制御され
た交流電圧が整流変圧回路3に入力される。整流変圧回
路3に加えられた交流電圧は昇圧変圧器21により昇圧
され、高電圧整流器22により全波整流されて集塵部4
に供給される。
Next, the operation of the electric precipitator configured as described above will be described. The synchronization detecting transformer 5 of the charge control panel 2 detects a voltage synchronized with the AC voltage of the AC power supply 1 and sends the voltage to the phase control circuit 8 including the zero cross detection circuit 7. The zero-crossing detection circuit 7 detects the zero-crossing point of the AC power supply 1 from this voltage to generate a zero-crossing detection signal (D), and fires the power control element 6 starting from the zero-crossing time according to the control signal from the charging control circuit 8. The signal (C) is transmitted. The AC voltage whose phase is controlled by the power control element 6 is input to the rectification transformer circuit 3. The AC voltage applied to the rectifying transformer circuit 3 is boosted by the step-up transformer 21 and full-wave rectified by the high-voltage rectifier 22 so that the dust collector 4
Supplied to

【0021】 ここで位相制御回路8は図3に示すよう
な回路構成になっており、次のように動作する。同期検
出用変圧器5からの交流電圧は全波整流回路Reで整流
され、その整流電圧は抵抗器R1とR2で分割される。
分割された整流電圧は第1の比較器CM1で0Vよりも
若干高い電圧に設定された基準電圧源Paの基準電圧と
比較され、比較器CM1は前記分割された電圧がゼロに
なる度に図3(D)に示すようなゼロクロス検出信号
(D)を発生する。一方、コンデンサC1は抵抗器R5
を通して直流電源Pbから流れる電流で充電され、その
両端の電圧はほぼ直線的に増大する。比較器CM1の出
力に前記ゼロクロス検出信号(D)が現出すると、その
度に抵抗器R3とR4を通してトランジスタTr1が順
バイアスされてオンし、コンデンサC1をほぼゼロまで
放電する。したがって、第2の比較器CM2の一方の入
力端子には図3(A)に示す鋸歯状波信号(A1)が入
力され、他方の入力端子には荷電制御回路9からの制御
信号(A2)が入力される。制御信号(A2)は、火花
制御回路11の出力信号、荷電中断・ソフトスタート回
路12の出力信号、図示していない定電流制御回路や定
電圧制御回路などの出力信号を合成したものからなり、
それら出力信号により変化する。
Here, the phase control circuit 8 has a circuit configuration as shown in FIG. 3, and operates as follows. The AC voltage from the synchronization detecting transformer 5 is rectified by a full-wave rectifier circuit Re, and the rectified voltage is divided by resistors R1 and R2.
The divided rectified voltage is compared with the reference voltage of the reference voltage source Pa set to a voltage slightly higher than 0 V in the first comparator CM1, and the comparator CM1 outputs a signal every time the divided voltage becomes zero. A zero cross detection signal (D) as shown in FIG. On the other hand, capacitor C1 is connected to resistor R5
Is charged with a current flowing from the DC power supply Pb, and the voltage between both ends increases substantially linearly. When the zero-cross detection signal (D) appears at the output of the comparator CM1, the transistor Tr1 is forward biased through the resistors R3 and R4 each time and turns on to discharge the capacitor C1 to almost zero. Therefore, the sawtooth signal (A1) shown in FIG. 3A is input to one input terminal of the second comparator CM2, and the control signal (A2) from the charge control circuit 9 is input to the other input terminal. Is entered. The control signal (A2) is formed by synthesizing an output signal of the spark control circuit 11, an output signal of the charge interruption / soft start circuit 12, and an output signal of a constant current control circuit or a constant voltage control circuit (not shown).
It changes with those output signals.

【0022】 第2の比較器CM2は、図3(A)に示
す鋸歯状波信号(A1)と制御信号(A2)とを比較
し、鋸歯状波信号(A1)が制御信号(A2)よりも大
きな期間でHレベルの駆動信号(B)を発生する。この
駆動信号(B)は図2及び図4で示すように、電源電圧
波形(a)のゼロクロス点から次の電力制御素子6のオ
ン時点までの間がLレベルであり、ほぼ電力制御素子6
のオン時点から次の電源電圧波形(a)のゼロクロス点
までの間がHレベルである。また、この実施例では電力
制御素子6がサイリスタであるので、駆動信号(B)は
コンデンサC2及び抵抗器R6、R7で微分され、トラ
ンジスタTr2と抵抗器R8を通して急峻な波形の点弧
信号Cに変換される。しかし、電力制御素子6がIGB
T、あるいはMOSFETなどの場合には駆動信号
(B)がそのままオン、オフ駆動に利用される。
The second comparator CM2 compares the sawtooth signal (A1) shown in FIG. 3A with the control signal (A2), and the sawtooth signal (A1) is compared with the control signal (A2). Generates the H-level drive signal (B) in a large period. As shown in FIGS. 2 and 4, the drive signal (B) is at the L level from the zero-cross point of the power supply voltage waveform (a) to the time when the next power control element 6 is turned on.
Is H level from the time when the power supply voltage is turned on to the zero cross point of the next power supply voltage waveform (a). Further, in this embodiment, since the power control element 6 is a thyristor, the drive signal (B) is differentiated by the capacitor C2 and the resistors R6 and R7, and becomes a steep waveform of the ignition signal C through the transistor Tr2 and the resistor R8. Is converted. However, the power control element 6 is
In the case of T, MOSFET or the like, the drive signal (B) is used as it is for ON / OFF drive.

【0023】 今、図2に示すように時刻t1で比較的
大きな火花放電が発生したとする。火花放電の発生に伴
い、荷電電圧の急激な低下や荷電電流の急激な増加をも
たらし、この変化により火花検出回路10はHレベルの
火花放電検出信号を出力する。しかし、この時刻t1で
は駆動信号(B)はLレベルとなっているのでAND論
理回路14の出力はLレベルのままとなり、荷電中断・
ソフトスタート回路12に荷電中断すための信号を送出
しない。したがって、この期間に発生した火花放電はア
ーク放電に移行しないものとして、電力制御素子6の駆
動を中断すること無くそのまま継続される。
Now, assume that a relatively large spark discharge occurs at time t1 as shown in FIG. With the occurrence of the spark discharge, the charging voltage sharply decreases and the charging current sharply increases, and the spark detection circuit 10 outputs an H level spark discharge detection signal due to this change. However, at this time t1, the drive signal (B) is at the L level, so that the output of the AND logic circuit 14 remains at the L level, and
A signal for suspending charging is not sent to the soft start circuit 12. Therefore, it is assumed that the spark discharge generated during this period does not shift to arc discharge, and the driving of the power control element 6 is continued without interruption.

【0024】 次に図2に示すように、駆動信号(B)
がHレベルである時刻t2にて火花放電が発生したとす
ると、AND論理回路14の一方の入力である駆動信号
(B)はHレベルで、他方の入力である火花放電検出信
号もHレベルであるので、AND論理回路14の出力信
号はHレベルである。この場合にはAND論理回路14
から荷電中断・ソフトスタート回路12に信号が送出さ
れ、荷電中断・ソフトスタート回路12は従来と同様に
所定の期間、例えば半サイクルだけ駆動信号(B)が供
給されるのを禁止し、その所定の期間の経過後はソフト
スタートモードで動作するよう指令を位相制御回路8へ
与える。これに伴い、位相制御回路8は火花放電が検出
された直後の半サイクルだけ駆動信号(B)を電力制御
素子6に与えるのを中断し、しかる後には従来と同様に
所定の小さなパルス幅から徐々にパルス幅の大きくなる
駆動信号(B)を電力制御素子6に供給し、再荷電が行
われる。
Next, as shown in FIG. 2, the drive signal (B)
Is high at time t2, the drive signal (B), which is one input of the AND logic circuit 14, is at the H level, and the spark discharge detection signal, which is the other input, is also at the H level. Therefore, the output signal of the AND logic circuit 14 is at the H level. In this case, the AND logic circuit 14
Sends a signal to the charge interruption / soft start circuit 12, and the charge interruption / soft start circuit 12 prohibits the supply of the drive signal (B) for a predetermined period, for example, a half cycle, as in the related art. After the elapse of the period, a command is given to the phase control circuit 8 to operate in the soft start mode. Accordingly, the phase control circuit 8 stops applying the drive signal (B) to the power control element 6 for a half cycle immediately after the spark discharge is detected, and thereafter, from the predetermined small pulse width as in the related art. The drive signal (B) whose pulse width gradually increases is supplied to the power control element 6, and recharging is performed.

【0025】 なお、この実施例では火花放電の発生の
際には駆動信号(B)のある無しには関係なく火花検出
回路10から火花制御回路11に火花検出信号が送ら
れ、火花制御回路11は荷電電圧を予め決めた設定電圧
値だけ降下させ、その後所定の傾斜で上昇させる所定の
荷電電圧制御を行う。
In this embodiment, when a spark discharge occurs, a spark detection signal is sent from the spark detection circuit 10 to the spark control circuit 11 irrespective of the presence or absence of the drive signal (B). Performs a predetermined charging voltage control in which the charging voltage is decreased by a predetermined set voltage value and then is increased at a predetermined slope.

【0026】 次に図5に示す実施例は、駆動信号
(B)がLレベルの期間に火花放電が発生した場合に
は、前述のようにその火花放電はアーク放電に移行しな
いものであるので、火花制御回路11の火花制御機能を
禁止するものであり、図1の回路においてAND論理回
路19の出力ではなく、AND論理回路14の出力を火
花制御回路11の入力とする構成である。この回路構成
では、駆動信号(B)がLレベルで、火花放電検出信号
がHレベルのときだけ、AND論理回路14の出力がL
レベルになり、この期間だけ火花制御回路11は動作せ
ず、火花制御を行わない。したがって、火花放電が発生
してもこの期間では、火花制御回路11は荷電電圧を予
め決めた設定電圧値だけ降下させたり、その後所定の傾
斜で上昇させる所定の荷電電圧制御を行わない。この実
施例ではアーク放電に移行する可能性の無い火花放電が
発生しても荷電電圧を予め決めた設定電圧値だけ降下さ
せることがないから、さらに集塵効率を向上させること
ができるが、火花放電発生時に荷電電圧を予め決めた設
定電圧値だけ降下させなくともアーク放電に移行する確
率が低い条件の場合に適用される。
Next, in the embodiment shown in FIG. 5, if a spark discharge occurs while the drive signal (B) is at the L level, the spark discharge does not shift to an arc discharge as described above. The spark control function of the spark control circuit 11 is prohibited, and the output of the AND logic circuit 14 is used as the input of the spark control circuit 11 instead of the output of the AND logic circuit 19 in the circuit of FIG. In this circuit configuration, the output of the AND logic circuit 14 is low only when the drive signal (B) is at the L level and the spark discharge detection signal is at the H level.
Level, the spark control circuit 11 does not operate during this period, and does not perform spark control. Therefore, even if a spark discharge occurs, during this period, the spark control circuit 11 does not perform the predetermined charging voltage control for lowering the charging voltage by a predetermined set voltage value or thereafter increasing the charging voltage at a predetermined slope. In this embodiment, the charging voltage does not drop by a predetermined set voltage value even if a spark discharge that is unlikely to shift to arc discharge occurs, so that the dust collection efficiency can be further improved. This is applied to the case where the probability of transition to arc discharge is low without lowering the charging voltage by a predetermined set voltage value when a discharge occurs.

【0027】 なお、以上の実施例では電力制御素子の
駆動信号をそのまま判別するための信号として用いた
が、駆動信号と逆位相の信号を火花判別信号として形成
し、その火花判別信号の発生している期間、つまり電源
交流電圧のゼロクロス点から次の駆動信号が発生するま
での期間では、火花放電が発生してもアーク放電に移行
する確率は十分に小さい安全期間とし、電力制御素子の
オン駆動をそのまま継続しても良い。
In the above embodiment, the drive signal of the power control element is used as a signal for directly discriminating. However, a signal having the opposite phase to the drive signal is formed as a spark discrimination signal, and the spark discrimination signal is generated. In the period during which power is applied, that is, the period from the zero-cross point of the power supply AC voltage to the generation of the next drive signal, the safety period in which the transition to arc discharge occurs even if a spark discharge occurs is set to a sufficiently small safety period. The driving may be continued as it is.

【0028】[0028]

【発明の効果】 以上述べたように、本発明ではアーク
放電に移行する可能性のある火花放電のみ従来と同様に
荷電中断し、アーク放電に移行する可能性のない火花放
電については荷電をそのまま続行するので、火花放電の
多発時にも荷電電圧の低下を防止できるので集塵効率の
低下を抑制できる。また、実現手段としては電源装置が
既に備えている手段の組み合わせにより容易に実現でき
るので、コストアップになることは無い。
As described above, according to the present invention, only the spark discharge which may shift to the arc discharge is interrupted in the same manner as in the prior art, and the spark discharge which has no possibility of shifting to the arc discharge is charged as it is. Since the continuation is performed, a reduction in the charging voltage can be prevented even when spark discharge occurs frequently, so that a reduction in dust collection efficiency can be suppressed. Further, since the realization means can be easily realized by a combination of the means already provided in the power supply device, there is no increase in cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る電気集塵装置の火花制御装置の
一実施例を示す。
FIG. 1 shows an embodiment of a spark control device for an electric precipitator according to the present invention.

【図2】 本発明に係る電気集塵装置の火花制御に係る
信号波形を示す。
FIG. 2 shows a signal waveform relating to spark control of the electric precipitator according to the present invention.

【図3】 本発明に係る電気集塵装置に用いられる位相
制御回路の一実施例を示す。
FIG. 3 shows an embodiment of a phase control circuit used in the electric precipitator according to the present invention.

【図4】 本発明に係る電気集塵装置の火花制御に係る
信号波形を示す。
FIG. 4 shows signal waveforms related to spark control of the electric precipitator according to the present invention.

【図5】 本発明に係る電気集塵装置の火花制御装置の
他の一実施例を示す。
FIG. 5 shows another embodiment of the spark control device of the electric precipitator according to the present invention.

【図6】 従来の電気集塵装置の火花検出装置の一例を
示す。
FIG. 6 shows an example of a conventional spark detection device of an electric dust collector.

【符号の説明】[Explanation of symbols]

1・・交流電源 2・・荷電制御
盤 3・・整流変圧回路 4・・集塵部 5・・同期検出用変圧器 6・・電力制御
素子 7・・ゼロクロス検出回路 8・・位相制御
回路 9・・荷電制御回路 10・・火花検出
回路 11・・火花制御回路 12・・荷電中
断・ソフトスタート回路
1. AC power supply 2. Charge control panel 3. Rectification transformer circuit 4. Dust collection unit 5. Synchronous detection transformer 6. Power control element 7. Zero cross detection circuit 8. Phase control circuit 9. ..Charge control circuit 10..Spark detection circuit 11..Spark control circuit 12..Charge interruption.Soft start circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 交流電源からその交流電圧に対して遅れ
位相の電流を供給して、集塵極と該集塵極に対向して配
置された放電極との間に高電圧を印加し、それらの間を
通過する気流に含まれるダストを捕集する電気集塵方法
において、 前記集塵極と放電極との間で火花放電が発生するとき、
その火花放電の発生時点に従って選択的に、前記交流電
源からの交流電力を制御する電力制御素子の駆動をその
まま継続させる制御を行い、あるいは前記電力制御素子
のオンを所定期間中断させて一旦荷電電圧を低下させる
制御を行うことを特徴とする電気集塵方法。
An AC power supply supplies a current having a phase delayed with respect to the AC voltage to apply a high voltage between a dust collection electrode and a discharge electrode arranged opposite to the dust collection electrode, In an electric dust collection method for collecting dust contained in an airflow passing between them, when a spark discharge occurs between the dust collection electrode and the discharge electrode,
Selectively according to the time of occurrence of the spark discharge, control is performed so that the drive of the power control element for controlling the AC power from the AC power supply is continued as it is, or the ON of the power control element is interrupted for a predetermined period, and the charging voltage is temporarily set. An electric dust collection method characterized by performing control for lowering dust.
【請求項2】 請求項1において、 前記火花放電の発生時点が、前記交流電源の交流電圧の
ゼロクロス時点から前記電力制御素子のオンの直前まで
の間に発生した場合には、前記電力制御素子の駆動を一
旦中断させずに通常の制御を行って荷電を続行し、前記
火花放電の発生時点が前記電力制御素子のオン時点から
前記交流電源の交流電圧の次のゼロクロス時点までの間
に発生した場合には、前記電力制御素子のオンを所定期
間停止させて一旦荷電電圧を低下させることを特徴とす
る電気集塵方法。
2. The power control element according to claim 1, wherein the time point of occurrence of the spark discharge is between a time point of a zero crossing of the AC voltage of the AC power supply and immediately before the power control element is turned on. The charging is continued by performing normal control without temporarily stopping the drive of the power supply, and the point of occurrence of the spark discharge is generated between the time when the power control element is turned on and the next zero crossing point of the AC voltage of the AC power supply. In this case, the power control element is stopped from being turned on for a predetermined period of time, and the charging voltage is temporarily reduced.
【請求項3】 請求項1又は請求項2において、 前記電力制御素子の駆動信号がLレベルのときに火花放
電が発生した場合には前記電力制御素子の駆動を一旦中
断させずに通常の制御を行って荷電を続行し、前記電力
制御素子の駆動信号がHレベルのときに火花放電が発生
した場合には前記電力制御素子の駆動を所定期間中断さ
せて一旦荷電電圧を低下させることを特徴とする電気集
塵方法。
3. The control system according to claim 1, wherein, when a spark discharge occurs when the drive signal of the power control element is at L level, the drive of the power control element is not interrupted and the normal control is not performed. And if the spark is generated when the drive signal of the power control element is at the H level, the drive of the power control element is interrupted for a predetermined period to temporarily reduce the charge voltage. And electric dust collection method.
【請求項4】 交流電源と、該交流電源からの交流電力
を制御する電力制御素子と、限流リアクトルと、昇圧変
圧器と、該昇圧変圧器からの高電圧交流電圧を整流して
直流に変換する高電圧整流器とを備え、集塵部を通過す
る気流に含まれるダストを捕集する電気集塵装置におい
て、 前記交流電源の電圧のゼロクロス点を検出するゼロクロ
ス検出回路と、 前記電力制御素子の導通を制御する駆動信号を発生する
位相制御回路と、 前記集塵極と放電極との間に火花放電が発生するとき火
花放電検出信号を与える火花検出回路と、 前記位相制御回路からの駆動信号がLレベルのときに火
花放電の発生が検出された場合には、前記電力制御素子
のオンを一旦停止させずに通常の制御を行って荷電を続
行し、前記火花放電の発生が前記駆動信号がLレベルの
ときに検出された場合には前記電力制御素子の駆動を所
定期間中断させて一旦荷電電圧を低下させる荷電制御回
路と、を備えたことを特徴とする電気集塵装置。
4. An AC power supply, a power control element for controlling AC power from the AC power supply, a current limiting reactor, a step-up transformer, and rectifying a high-voltage AC voltage from the step-up transformer to DC. An electric dust collector, comprising: a high-voltage rectifier for converting, and collecting dust contained in an airflow passing through a dust collector, a zero-cross detection circuit that detects a zero-cross point of a voltage of the AC power supply, and the power control element. A phase control circuit for generating a drive signal for controlling the conduction of a spark, a spark detection circuit for providing a spark discharge detection signal when a spark discharge occurs between the dust collection electrode and the discharge electrode, and a drive from the phase control circuit. If the generation of the spark discharge is detected when the signal is at the L level, the charging is continued by performing the normal control without temporarily stopping the turning on of the power control element, and the generation of the spark discharge is performed by the drive. Signal is L Electric dust collector, characterized in that it and a charge control circuit for reducing the once charged voltage by interrupting a predetermined period the driving of the power control element when it is detected when the bell.
JP2000367207A 2000-12-01 2000-12-01 Electric dust collecting method and electric dust collecting device Expired - Fee Related JP3636655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000367207A JP3636655B2 (en) 2000-12-01 2000-12-01 Electric dust collecting method and electric dust collecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000367207A JP3636655B2 (en) 2000-12-01 2000-12-01 Electric dust collecting method and electric dust collecting device

Publications (2)

Publication Number Publication Date
JP2002166197A true JP2002166197A (en) 2002-06-11
JP3636655B2 JP3636655B2 (en) 2005-04-06

Family

ID=18837671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000367207A Expired - Fee Related JP3636655B2 (en) 2000-12-01 2000-12-01 Electric dust collecting method and electric dust collecting device

Country Status (1)

Country Link
JP (1) JP3636655B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126121A (en) * 2004-11-01 2006-05-18 Matsushita Electric Ind Co Ltd Spark sensing circuit
CN108367299A (en) * 2015-12-10 2018-08-03 通用电器技术有限公司 The method and system of data capture for electrostatic precipitator control
JP2020157267A (en) * 2019-03-28 2020-10-01 住友重機械工業株式会社 Pulse electric charge device, control method for the same and electric dust collector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126121A (en) * 2004-11-01 2006-05-18 Matsushita Electric Ind Co Ltd Spark sensing circuit
JP4492298B2 (en) * 2004-11-01 2010-06-30 パナソニック株式会社 Spark detection circuit for electric dust collector
CN108367299A (en) * 2015-12-10 2018-08-03 通用电器技术有限公司 The method and system of data capture for electrostatic precipitator control
JP2020157267A (en) * 2019-03-28 2020-10-01 住友重機械工業株式会社 Pulse electric charge device, control method for the same and electric dust collector
JP7222784B2 (en) 2019-03-28 2023-02-15 住友重機械工業株式会社 Pulse charging device, control method thereof, and electrostatic precipitator

Also Published As

Publication number Publication date
JP3636655B2 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
US9099925B2 (en) Switching power supply with circuit to control turn on timing of switching element
JPS621464A (en) Power supply device for electric precipitator
KR20040041200A (en) power supply apparatus for motor and controlling method thereof
US6744222B2 (en) Discharge lamp lighting apparatus and lamp apparatus
JP2001028879A (en) Control apparatus for supply power
JP3623181B2 (en) High voltage semiconductor switch device and high voltage generator
EP3482863B1 (en) Welding power source apparatus
JP3708468B2 (en) Power supply
JP3636655B2 (en) Electric dust collecting method and electric dust collecting device
EP3613528B1 (en) Welding power supply device
JP3631158B2 (en) Electric dust collecting power supply device and control method thereof
JP2019217544A (en) Weld power supply
JPH11144860A (en) High frequency heating apparatus
JP2018187645A (en) Welding power supply device
JP3822842B2 (en) Power supply device for arc machining
JP2019025503A (en) Welding power supply device
EP0119584B1 (en) Lighting circuit for electric discharge lamp
JP3170833B2 (en) Power supply for arc machining
JPH09266673A (en) Dc power device
JPH07251096A (en) Power source controller for electric dust collector
JP2003088132A (en) Power supply for electrical dust collection
JPH0796367A (en) Arc welding machine
KR950004062Y1 (en) Range protecting circuit when electric power interrupition
JP2744059B2 (en) Charger charge control circuit
JP2019089093A (en) Power supply unit for welding

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3636655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees