JP2006126121A - Spark sensing circuit - Google Patents

Spark sensing circuit Download PDF

Info

Publication number
JP2006126121A
JP2006126121A JP2004317876A JP2004317876A JP2006126121A JP 2006126121 A JP2006126121 A JP 2006126121A JP 2004317876 A JP2004317876 A JP 2004317876A JP 2004317876 A JP2004317876 A JP 2004317876A JP 2006126121 A JP2006126121 A JP 2006126121A
Authority
JP
Japan
Prior art keywords
voltage
spark
detection circuit
spark detection
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004317876A
Other languages
Japanese (ja)
Other versions
JP4492298B2 (en
Inventor
Satoshi Fujimoto
訓 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004317876A priority Critical patent/JP4492298B2/en
Publication of JP2006126121A publication Critical patent/JP2006126121A/en
Application granted granted Critical
Publication of JP4492298B2 publication Critical patent/JP4492298B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic Separation (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, when a spark generated between load pole plates of a dust collector is sensed conventionally, a current flowing a sensing resistor during spark occurrence is converted into a voltage, and a user judges the presence of the spark occurrence by comparing it with a threshold previously setting the detected current, and since a spark current value increases in response to the scale of the dust collector, the user designs a complicated judging circuit and evaluate it at each time. <P>SOLUTION: A spark sensing circuit comprises a partial voltage generating means for dividing an application voltage to a dust collector electric charge part by a partial voltage resistor A1 and a partial voltage resistor B2, and a transistor A5 operating in response to the presence of the divided voltage. Since in the spark occurrence time the occurrence voltage is 0 V in an OFF state in the transistor A5 which is in an ON state by the divided generation voltage in a normal time, the spark sensing circuit corresponding to the dust collector of any scale for simply sensing a spark is obtained by monitoring the ON/OFF state of the transistor A5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、空調及び産業分野で大気塵、室内の粉塵、ほこりなどを集塵する電気集塵機負荷に印加するための直流高電圧を作り出す直流高圧安定化電源のスパーク検出回路に関する。   The present invention relates to a spark detection circuit for a DC high-voltage stabilized power source that generates a DC high voltage to be applied to an electric dust collector load that collects atmospheric dust, indoor dust, dust and the like in air conditioning and industrial fields.

従来、電気集塵機負荷は平板の2枚組み金属極板が並列に配置されることにより構成されており、片方の極板に正の電圧または負の電圧を印加し、残りの極板を接地する。この状態で高電圧を印加することにより両極板間にコロナ電界が形成される。その電界内を粉塵が通過することにより粉塵が電荷を帯び、帯電した粉塵は極板間の電界の力を受けて極板に付着し粉塵は除去される。集塵機の継続的に使用より集塵された粉塵が極板に堆積してくると、堆積した粉塵により電極どうしが短絡を起こし、スパークが発生する。また極板への異物の付着や、極板洗浄時の極板間の絶縁低下によっても同様に絶縁破壊、短絡が起こり、スパークが発生する。   Conventionally, an electrostatic precipitator load is configured by arranging two flat metal electrode plates in parallel, applying a positive voltage or a negative voltage to one electrode plate, and grounding the remaining electrode plate. . By applying a high voltage in this state, a corona electric field is formed between the bipolar plates. As the dust passes through the electric field, the dust is charged, and the charged dust receives the force of the electric field between the plates and adheres to the plates and is removed. When dust collected from continuous use of the dust collector accumulates on the electrode plate, the accumulated dust causes a short circuit between the electrodes, and spark is generated. Similarly, a dielectric breakdown or short circuit occurs due to adhesion of foreign matter to the electrode plate or a decrease in insulation between the electrode plates during electrode plate cleaning, resulting in a spark.

このスパークをそのままの状態で電圧を印加したまま放置すると、負荷間に短絡電流が流れ続け、過電流となり高圧回路、低圧回路、さらには負荷の破損に至る。そのためにスパークを確実に検知し、スパーク検出時は集塵負荷への電圧印加を確実に遮断する必要がある。このスパーク時に高圧回路を流れる電流は負荷の規模、電源側の規模に応じて増減し、また極板間の絶縁破壊の程度によっても変化するため、集塵機固有のスパーク電流を定義することは容易ではない。   If this spark is left as it is with a voltage applied, a short-circuit current continues to flow between the loads, resulting in overcurrent, leading to breakage of the high-voltage circuit, low-voltage circuit, and load. Therefore, it is necessary to reliably detect the spark and to reliably cut off the voltage application to the dust collecting load when the spark is detected. The current flowing through the high-voltage circuit during sparking varies depending on the scale of the load and the power supply side, and also changes depending on the degree of dielectric breakdown between the plates, so it is not easy to define the spark current unique to the dust collector. Absent.

従来、このようなスパーク検出回路として、例えば、図12に示すように高圧出力の正極または負極と接地極の間に負荷101と電流検出抵抗102を直列に挿入し、負荷を通して電流検出抵抗を流れる電流により発生する電位差VLを負荷電流としていた。この検出電流をあらかじめ設定しておいた閾値と比較してスパーク発生の有無を判定していた(例えば、特許文献1参照)。
特開平5−142267号公報
Conventionally, as such a spark detection circuit, for example, as shown in FIG. 12, a load 101 and a current detection resistor 102 are inserted in series between a positive electrode or negative electrode of high voltage output and a ground electrode, and the current detection resistor flows through the load. The potential difference VL generated by the current was used as the load current. The detected current is compared with a preset threshold value to determine whether or not a spark has occurred (for example, see Patent Document 1).
JP-A-5-142267

このような従来のスパーク検出回路では、集塵機の規模に応じてスパーク発生時に高圧回路内を流れる電流値が変化するため、検出抵抗の選定から判定閾値の決定、比較判定するための回路設計、集塵機負荷実機による回路の評価まで一連の設計評価を集塵機負荷の規模が変わる都度実施しなければならないという課題があり、また同一の集塵機負荷でも極板間の絶縁破壊の程度により発生するスパークの電流値が異なり、これがあらかじめ設定しなければならない閾値の決定を困難にしているという課題がある。そこで集塵機規模を変更する都度発生する複雑な回路設計と評価を不要とする簡便なスパーク検出回路が要求されている。   In such a conventional spark detection circuit, the value of the current flowing in the high-voltage circuit changes depending on the size of the dust collector, so that the circuit design for determining the determination threshold and comparing and judging from the selection of the detection resistor, the dust collector There is a problem that a series of design evaluations must be performed every time the size of the dust collector load changes until the circuit is evaluated by the actual load machine, and the spark current value generated by the degree of dielectric breakdown between the plates even with the same dust collector load However, this makes it difficult to determine a threshold value that must be set in advance. Therefore, there is a demand for a simple spark detection circuit that does not require complicated circuit design and evaluation that occurs every time the dust collector scale is changed.

また、集塵機の集塵効率は負荷電流量が多ければ多いほど高くなる傾向があり、分圧抵抗を高圧回路に組み込む際、負荷電流を減らさないために分圧抵抗の抵抗値を大きくし分圧抵抗に流れる電流値を極力小さくする必要がある。具体的には分圧抵抗に供給する電流は負荷電流の5%以下が望ましく、集塵機の負荷電流が10mAの場合は0.5mA程度となる。電源容量を大きくすれば負荷電流を維持した上で分圧抵抗へ電流を流すことも可能であるが、集塵機負荷のインピーダンスと分圧抵抗とのバランスを取ることが難しく、電源自体のコストも上がるので実用的でない。よって分圧抵抗には高抵抗値抵抗を使う必要があり、スイッチ手段には集塵効率に影響を与えないため極力小さい電流で動作する=低駆動電流特性を持つことが要求されている。   In addition, the dust collection efficiency of a dust collector tends to increase as the amount of load current increases. When incorporating a voltage dividing resistor into a high voltage circuit, the resistance value of the voltage dividing resistor is increased in order to prevent the load current from being reduced. It is necessary to minimize the value of the current flowing through the resistor. Specifically, the current supplied to the voltage dividing resistor is desirably 5% or less of the load current, and is about 0.5 mA when the load current of the dust collector is 10 mA. If the power supply capacity is increased, the load current can be maintained and the current can flow to the voltage dividing resistor. However, it is difficult to balance the impedance of the dust collector load and the voltage dividing resistor, and the cost of the power supply itself increases. So it's not practical. Therefore, it is necessary to use a high-resistance resistor as the voltage dividing resistor, and the switch means is required to operate with as little current as possible so as not to affect the dust collection efficiency = low drive current characteristics.

また、スイッチ手段には検出回路のコストを下げるため安価な物が要求されている。   Also, an inexpensive switch means is required to reduce the cost of the detection circuit.

また、高電圧を分圧抵抗にて分圧しているため、分圧抵抗が破損した場合高電圧がそのままスイッチ手段に印加されるという課題がある。そこで高電圧より絶縁を確保した電圧生成手段が要求されている。   Further, since the high voltage is divided by the voltage dividing resistor, there is a problem that when the voltage dividing resistor is broken, the high voltage is applied to the switch means as it is. Therefore, there is a demand for a voltage generating means that ensures insulation from a high voltage.

また、通常の検出回路では検出までの動作時間に回路の特性上定数による遅れが発生するという課題がある。そこでスパークをより早く検出するスパーク検出回路が要求されている。   In addition, the normal detection circuit has a problem that a delay due to a constant occurs in the operation time until detection due to the characteristics of the circuit. Therefore, there is a demand for a spark detection circuit that detects a spark earlier.

また、スパーク発生時負荷間電圧(この時0V)によりスイッチ手段をOFFし、スイッチ手段自身にて印加電圧を停止しているため、そのままでは印加電圧を復帰することができないという課題がある。そこでスパーク検出から負荷印加電圧遮断後に印加電圧を復帰させる電圧復帰手段が要求されている。   Further, since the switch means is turned off by the voltage between the loads when spark is generated (0 V at this time) and the applied voltage is stopped by the switch means itself, the applied voltage cannot be recovered as it is. Therefore, there is a demand for voltage return means for returning the applied voltage after the load applied voltage is cut off from the spark detection.

また、スパーク発生時、負荷間電圧の急峻な変化によりスイッチ手段がハンチングするという課題がある。そこでハンチングを防止するハンチング防止手段が要求されている。   Further, there is a problem that when the spark occurs, the switch means hunts due to a sharp change in the voltage between the loads. Therefore, hunting prevention means for preventing hunting is required.

また、スパーク発生後印加電圧を復帰するまでの間の間隔が短すぎると、スパークを繰り返すという課題がある。そこで発生から復帰までの時間を調整できる復帰時間調整手段が要求されている。   Moreover, if the interval between the occurrence of a spark and the return of the applied voltage is too short, there is a problem that the spark is repeated. Therefore, there is a demand for a return time adjusting means that can adjust the time from occurrence to return.

またスパーク検出後電圧を復帰する際、瞬時に最大値まで復帰すると再度スパークが発生しやすいという課題がある。そこで復帰電圧と時間の関係を調整できる復帰電圧調整手段が要求されている。   Further, when the voltage is restored after the spark detection, there is a problem that if the voltage is instantly restored to the maximum value, the spark is likely to occur again. Therefore, there is a demand for a return voltage adjusting means that can adjust the relationship between the return voltage and time.

また、負荷への印加電圧が高電圧であるため、検出回路部品にも高耐圧が要求され、部品コストが上がるという課題がある。そこで高圧部に直接関与しない検出回路が要求されている。   Further, since the voltage applied to the load is a high voltage, the detection circuit component is required to have a high withstand voltage, and there is a problem that the component cost increases. Therefore, a detection circuit that is not directly involved in the high-voltage unit is required.

本発明は、このような従来の課題を解決するものであり、集塵機規模を変更する都度発生する複雑な回路設計と評価を不要とする簡便なスパーク検出回路を提供することを目的としている。   An object of the present invention is to solve such a conventional problem and to provide a simple spark detection circuit that does not require complicated circuit design and evaluation that occurs every time the size of a dust collector is changed.

また、スイッチ手段の低駆動電流特性により集塵効率に影響を与えないスパーク検出回路を提供することを目的としている。   It is another object of the present invention to provide a spark detection circuit that does not affect the dust collection efficiency due to the low drive current characteristics of the switch means.

また、安価なスイッチ手段による低コストのスパーク検出回路を提供することを目的としている。   It is another object of the present invention to provide a low-cost spark detection circuit using inexpensive switch means.

また、スパーク時発生する音を電圧に変換する状態変換電圧出力手段にて、負荷電圧より絶縁を確保した電圧生成手段を備えたスパーク検出回路を提供することを目的としている。   It is another object of the present invention to provide a spark detection circuit including a voltage generation unit that secures insulation from a load voltage by a state conversion voltage output unit that converts sound generated during sparking into voltage.

また、スパーク時発生する光を電圧に変換する状態変換電圧出力手段にて、光を直接検知することにより動作遅れのないスパーク検出回路を目的としている。   Another object of the present invention is to provide a spark detection circuit that does not delay operation by directly detecting light with a state conversion voltage output means for converting light generated during sparking into voltage.

また、スパーク検出から負荷印加電圧遮断後に印加電圧を復帰させる電圧復帰手段を備えたスパーク検出回路を提供することを目的としている。   It is another object of the present invention to provide a spark detection circuit including a voltage recovery means for recovering an applied voltage after a load applied voltage is cut off from the spark detection.

また、スイッチ手段のハンチングを防止するハンチング防止手段を備えたスパーク検出回路を提供することを目的としている。   It is another object of the present invention to provide a spark detection circuit having a hunting prevention means for preventing hunting of the switch means.

また、スパーク発生から復帰までの時間を調整できる復帰時間調整手段を備えたスパーク検出回路を提供することを目的としている。   It is another object of the present invention to provide a spark detection circuit having a return time adjusting means that can adjust the time from the occurrence of a spark to the return.

また、スパーク検出後瞬時に最大電圧を印加することにより発生するスパークを防止するために復帰電圧の電圧値と時間を調整できる復帰電圧調整手段を備えたスパーク検出回路を提供することを目的としている。   Another object of the present invention is to provide a spark detection circuit having a return voltage adjusting means capable of adjusting a voltage value and a time of the return voltage in order to prevent a spark generated by applying a maximum voltage instantaneously after the spark detection. .

また、高電圧部品を使用しない検出手段を備えたスパーク検出回路を提供することを目的としている。   It is another object of the present invention to provide a spark detection circuit having detection means that does not use high-voltage components.

本発明のスパーク検出回路は上記目的を達成するために、集塵機負荷荷電部への印加電圧を分圧する分圧生成手段と、分圧の有無に応じて動作するスイッチ手段を備え、スパーク発生時のスイッチ手段の状態によりスパークを検出できることを特徴とする。   In order to achieve the above object, the spark detection circuit of the present invention comprises a partial pressure generating means for dividing the voltage applied to the dust collector load charging section, and a switch means that operates in accordance with the presence or absence of the partial pressure. The spark can be detected according to the state of the switch means.

そして本発明によれば、集塵機規模を変更する都度発生する複雑な回路設計と評価を不要とする簡便なスパーク回路が得られる。   And according to this invention, the simple spark circuit which does not require the complicated circuit design and evaluation which generate | occur | produce whenever a dust collector scale is changed is obtained.

また、スイッチ手段には低駆動電流特性を持つことを特徴とする。   Further, the switch means has a low drive current characteristic.

そして本発明によれば、集塵効率に影響を与えないスパーク検出回路が得られる。   And according to this invention, the spark detection circuit which does not affect dust collection efficiency is obtained.

また、スイッチ手段にはトランジスタを備えたことを特徴とする。   The switch means includes a transistor.

そして本発明によれば、安価なスイッチ手段によるコストのかからないスパーク検出回路が得られる。   According to the present invention, it is possible to obtain a spark detection circuit that is inexpensive and uses inexpensive switch means.

また、電圧生成手段としてスパーク時に発生する音を電圧に変換する状態変換電圧出力手段を備えたことを特徴とする。   Further, the present invention is characterized in that there is provided a state conversion voltage output means for converting sound generated during sparking into voltage as voltage generation means.

そして本発明によれば、高電圧回路から絶縁を確保したスパーク検出回路が得られる。   And according to this invention, the spark detection circuit which ensured the insulation from the high voltage circuit is obtained.

また、電圧生成手段としてスパーク時に発生する光を電圧に変換する状態変換電圧出力手段を備えたことを特徴とする。   Further, the present invention is characterized in that there is provided a state conversion voltage output means for converting light generated during sparking into a voltage as the voltage generation means.

そして本発明によれば、光を直接検知することにより動作遅れのないスパーク検出回路が得られる。   According to the present invention, a spark detection circuit with no operation delay can be obtained by directly detecting light.

また、スパーク検出時電圧遮断後に負荷に印加する電圧を再度復帰させるための電圧復帰手段を設けたことを特徴とする。   Further, the present invention is characterized in that a voltage recovery means is provided for recovering again the voltage applied to the load after the voltage interruption at the time of spark detection.

そして本発明によれば、電圧遮断後も負荷への印加電圧を自動的に復帰できるスパーク検出回路が得られる。   According to the present invention, it is possible to obtain a spark detection circuit that can automatically restore the voltage applied to the load even after the voltage is cut off.

また、スパーク検出時スイッチ手段のハンチング動作を避けるためのヒステリシス設定手段を設けたことを特徴とする。   Further, the present invention is characterized in that a hysteresis setting means for avoiding a hunting operation of the switch means at the time of spark detection is provided.

そして本発明によれば、スイッチ手段のハンチング動作を防止したスパーク検出回路が得られる。   And according to this invention, the spark detection circuit which prevented the hunting operation | movement of the switch means is obtained.

また、スパーク検出後一定時間印加電圧を復帰しないための時間を管理する復帰時間調整手段を設けたことを特徴とする。   Further, the present invention is characterized in that a return time adjusting means for managing a time for not returning the applied voltage for a predetermined time after the detection of the spark is provided.

そして本発明によれば、連続的なスパークを抑制できるスパーク検出回路が得られる。   And according to this invention, the spark detection circuit which can suppress a continuous spark is obtained.

また、電圧復帰手段には電圧復帰時の電圧と時間の関係を調整できる復帰電圧調整手段を備えたことを特徴とする。   Further, the voltage recovery means is provided with a recovery voltage adjustment means capable of adjusting the relationship between the voltage and the time at the time of voltage recovery.

そして本発明によれば、復帰電圧を調整することにより復帰時のスパークを防ぐスパーク検出回路が得られる。   And according to this invention, the spark detection circuit which prevents the spark at the time of a return by adjusting a return voltage is obtained.

また、高圧回路内で発生する電圧変化を伝達する伝達手段と、伝達した電圧を監視する監視手段を備え、スパーク発生時伝達される電圧変化を監視手段にて検知することによりスパークを検出することを特徴とする。   In addition, a transmission means for transmitting a voltage change generated in the high voltage circuit and a monitoring means for monitoring the transmitted voltage are detected, and the spark is detected by detecting the voltage change transmitted when the spark is generated by the monitoring means. It is characterized by.

そして本発明によれば、高電圧部品を使用しないコストのかからないスパーク検出回路が得られる。   According to the present invention, it is possible to obtain a spark detection circuit that does not require the use of high-voltage components and is inexpensive.

また、伝達手段として集塵機負荷への電圧印加配線と平行に這わせた絶縁性導電体を備えたことを特徴とする。   Further, the present invention is characterized in that an insulating conductor is provided as a transmission means in parallel with the voltage application wiring to the dust collector load.

そして本発明によれば、簡単に敷設することのできるスパーク検出回路が得られる。   And according to this invention, the spark detection circuit which can be laid easily is obtained.

本発明によれば、集塵機規模を変更する都度発生する複雑な回路設計と評価を不要とする簡便なスパーク検出回路を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the simple spark detection circuit which does not require the complicated circuit design and evaluation which generate | occur | produce whenever a dust collector scale is changed can be provided.

本発明の請求項1記載の発明は、上記目的を達成するために、集塵機負荷荷電部への印加電圧を分圧する分圧生成手段と、分圧の有無に応じて動作するスイッチ手段を備え、スパーク発生時のスイッチ手段のON/OFF状態によりスパークを検出できるという特徴としたものであり、集塵機規模が変更される場合その都度スパークの電流値が変わるため検出回路をスパーク電流値に応じて変更する必要があり、その度に発生する複雑な回路設計と評価が必要となるが、それらを不要とできる簡便なスパーク回路が得られるという作用を有する。   In order to achieve the above object, the invention according to claim 1 of the present invention includes a partial pressure generating means for dividing the voltage applied to the dust collector load charging section, and a switch means that operates in accordance with the presence or absence of the partial pressure, The feature is that the spark can be detected by the ON / OFF state of the switch means at the time of spark occurrence, and the current value of the spark changes whenever the size of the dust collector is changed, so the detection circuit is changed according to the spark current value Although it is necessary to perform complicated circuit design and evaluation that occur each time, it is possible to obtain a simple spark circuit that can eliminate them.

本発明の請求項2記載の発明は、請求項1記載のスパーク検出回路において、スイッチ手段には低駆動電流特性を持つことを特徴としたものであり、集塵効率に影響を与えないスパーク検出回路が得られるという作用を有する。   The spark detection circuit according to claim 2 of the present invention is characterized in that, in the spark detection circuit according to claim 1, the switch means has a low drive current characteristic, and the spark detection does not affect the dust collection efficiency. The circuit is obtained.

本発明の請求項3記載の発明は、請求項1〜2記載のスパーク検出回路において、スイッチ手段にはトランジスタを備えたことを特徴としたものであり、スイッチ手段が安価であるためにコストのかからないスパーク検出回路が得られるという作用を有する。   According to a third aspect of the present invention, in the spark detection circuit according to the first or second aspect, the switch means includes a transistor. Since the switch means is inexpensive, the cost is low. This has the effect of providing a spark detection circuit that does not apply.

本発明の請求項4記載の発明は、請求項1〜3記載のスパーク検出回路において電圧生成手段としてスパーク時に発生する音を電圧に変換する状態変換電圧出力手段を備えたことを特徴としたものであり、高電圧回路から絶縁を確保したスパーク検出回路が得られるという作用を有する。   According to a fourth aspect of the present invention, the spark detection circuit according to any one of the first to third aspects further comprises a state conversion voltage output means for converting a sound generated during a spark to a voltage as a voltage generation means. Thus, the spark detection circuit having insulation from the high voltage circuit can be obtained.

本発明の請求項5記載の発明は、請求項1〜3記載のスパーク検出回路において分圧生成手段としてスパーク時に発生する光を電圧に変換する状態変換電圧出力手段を備えたことを特徴としたものであり、光を直接検知することにより動作遅れのないスパーク検出回路が得られるという作用を有する。   According to a fifth aspect of the present invention, the spark detection circuit according to any one of the first to third aspects further comprises a state conversion voltage output means for converting light generated at the time of sparking into a voltage as a partial pressure generating means. Therefore, it has an effect that a spark detection circuit without operation delay can be obtained by directly detecting light.

本発明の請求項6記載の発明は、請求項1〜5記載のスパーク検出回路において、スパーク検出時電圧遮断後に負荷に印加する電圧を再度復帰させるための電圧復帰手段を設けたことを特徴としたものであり、電圧遮断後も負荷への印加電圧を自動的に復帰できるスパーク検出回路が得られるという作用を有する。   The invention according to claim 6 of the present invention is the spark detection circuit according to any one of claims 1 to 5, characterized in that voltage return means is provided for returning again the voltage applied to the load after the voltage interruption at the time of spark detection. Thus, there is an effect that a spark detection circuit capable of automatically returning the applied voltage to the load even after the voltage is cut off is obtained.

本発明の請求項7記載の発明は、請求項1〜6記載のスパーク検出回路において、スパーク検出時スイッチ手段のハンチング動作を避けるためのヒステリシス設定手段を設けたことを特徴としたものであり、スイッチ手段のハンチング動作を防止したスパーク検出回路が得られるという作用を有する。   The invention according to claim 7 of the present invention is characterized in that, in the spark detection circuit according to claims 1 to 6, a hysteresis setting means for avoiding a hunting operation of the switch means at the time of spark detection is provided, This has the effect of obtaining a spark detection circuit that prevents the hunting operation of the switch means.

本発明の請求項8記載の発明は、請求項1〜7記載のスパーク検出回路において、スパーク検出後一定時間印加電圧を復帰しないための時間を管理する復帰時間調整手段を設けたことを特徴としたものであり、連続的なスパークを抑制できるスパーク検出回路が得られるという作用を有する。   The invention according to claim 8 of the present invention is characterized in that, in the spark detection circuit according to any one of claims 1 to 7, provided is a return time adjusting means for managing a time for not returning the applied voltage for a predetermined time after the spark detection. Thus, it has an effect that a spark detection circuit capable of suppressing a continuous spark can be obtained.

本発明の請求項9記載の発明は、請求項1〜8記載のスパーク検出回路において、電圧復帰手段には電圧復帰時の電圧と時間の関係を調整できる復帰電圧調整手段を備えたことを特徴としたものであり、復帰電圧を調整することにより復帰時のスパークを防ぐスパーク検出回路が得られるという作用を有する。   According to a ninth aspect of the present invention, in the spark detection circuit according to the first to eighth aspects, the voltage return means includes a return voltage adjusting means capable of adjusting a relationship between a voltage and a time at the time of voltage return. Thus, the spark detection circuit for preventing the spark at the time of return can be obtained by adjusting the return voltage.

本発明の請求項10記載の発明は、高圧回路内で発生する電圧変化を伝達する伝達手段と、伝達した電圧を監視する監視手段を備え、スパーク発生時伝達される電圧変化を監視手段にて検知することによりスパークを検出することを特徴としたものであり、高電圧部品を使用しないコストのかからないスパーク検出回路が得られるという作用を有する。   The invention according to claim 10 of the present invention comprises a transmission means for transmitting a voltage change generated in the high voltage circuit and a monitoring means for monitoring the transmitted voltage, and the voltage change transmitted when the spark is generated is monitored by the monitoring means. This is characterized in that a spark is detected by detection, and has the effect that a cost-effective spark detection circuit that does not use high-voltage components is obtained.

本発明の請求項11記載の発明は、伝達手段として集塵機負荷への電圧印加配線と平行に這わせた絶縁性導電体を備えたことを特徴としたものであり、簡単に敷設することのできるスパーク検出回路が得られるという作用を有する。   The invention according to claim 11 of the present invention is characterized in that an insulating conductor is provided in parallel with the voltage application wiring to the dust collector load as the transmission means, and can be easily laid. The spark detection circuit can be obtained.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は本発明の実施の形態1によるスパーク検出回路の構成を示している。図1に示すように、負荷荷電部に印加されている高電圧を分圧生成手段である分圧抵抗A1と分圧抵抗B2により高圧と低圧に分圧し、低圧側の分圧抵抗B2の両端電圧をスイッチ手段であるトランジスタA5のベースに印加する(以下ベース電圧と表現)。負荷荷電部とは、高圧電源の出力と極板との接続点を示す。低圧側の分圧抵抗B2とトランジスタA5のベースとの間にはトランジスタA5のベースに流れる電流値を定格以内に抑えるため、電流制限抵抗A3を挿入する。また、トランジスタのコレクタ−エミッタ間に導通がある状態をトランジスタのON状態と定義し、コレクタ−エミッタ間に導通がない場合をトランジスタのOFF状態と定義する。トランジスタA5のコレクタ側には、トランジスタA5がON状態である時コレクタ−エミッタ間に電流を流すための電源を供給する安定化電源を接続する。安定化電源とトランジスタA5のコレクタとの間にはコレクタ−エミッタ間に流れる電流(以下コレクタ電流と表現)を定格以内に抑えるために電流制限抵抗B4を挿入する。また、トランジスタA5がON状態である時、トランジスタA5のON状態を有電圧信号として出力するために、コレクタ−グランド間に抵抗A6を挿入し、コレクタ電流が抵抗A6を流れることによる電圧降下分を有電圧信号として出力するようにする。定常時負荷荷電部に正常に電圧が印加されている状態ではトランジスタA5のベース電圧はトランジスタA5の動作電圧以上の電圧である必要があり、定常時トランジスタA5はON状態であるものとする。スパークが発生すると負荷間が短絡するため、負荷荷電部に印加される電圧は瞬時に0Vとなり、それにより分圧抵抗A1、分圧抵抗B2の両端電圧も0Vとなる。それによりトランジスタA5のベース電圧も0Vとなり、トランジスタA5のベース電圧が動作電圧を下回り、トランジスタA5はOFF状態となる。この時トランジスタA5のエミッタより取り出している有電圧信号出力も0Vになる。有電圧信号が0Vになることによりスパークを検出することができる。
(Embodiment 1)
FIG. 1 shows the configuration of a spark detection circuit according to Embodiment 1 of the present invention. As shown in FIG. 1, a high voltage applied to a load charging unit is divided into a high voltage and a low voltage by a voltage dividing resistor A1 and a voltage dividing resistor B2, which are voltage dividing means, and both ends of the voltage dividing resistor B2 on the low voltage side. A voltage is applied to the base of the transistor A5 which is a switch means (hereinafter referred to as a base voltage). The load charging unit indicates a connection point between the output of the high voltage power source and the electrode plate. A current limiting resistor A3 is inserted between the voltage dividing resistor B2 on the low voltage side and the base of the transistor A5 in order to keep the value of the current flowing through the base of the transistor A5 within the rating. In addition, a state in which conduction between the collector and the emitter of the transistor is defined as the ON state of the transistor, and a case in which conduction is not established between the collector and the emitter is defined as the OFF state of the transistor. Connected to the collector side of the transistor A5 is a stabilized power supply that supplies power for flowing a current between the collector and the emitter when the transistor A5 is in the ON state. A current limiting resistor B4 is inserted between the stabilized power supply and the collector of the transistor A5 in order to suppress the current flowing between the collector and the emitter (hereinafter referred to as collector current) within the rating. Further, when the transistor A5 is in the ON state, the resistor A6 is inserted between the collector and the ground to output the ON state of the transistor A5 as a voltage signal, and the voltage drop due to the collector current flowing through the resistor A6 is reduced. Output as a voltage signal. In a state in which a voltage is normally applied to the constant load charging portion, the base voltage of the transistor A5 needs to be equal to or higher than the operating voltage of the transistor A5, and the transistor A5 is in an ON state at the steady state. When the spark is generated, the load is short-circuited, so that the voltage applied to the load charging unit instantaneously becomes 0V, and the voltage across the voltage dividing resistor A1 and the voltage dividing resistor B2 also becomes 0V. Accordingly, the base voltage of the transistor A5 is also 0V, the base voltage of the transistor A5 is lower than the operating voltage, and the transistor A5 is turned off. At this time, the voltage signal output extracted from the emitter of the transistor A5 is also 0V. A spark can be detected when the voltage signal becomes 0V.

すなわち分圧生成手段である分圧抵抗A1、分圧抵抗B2により、分圧抵抗A1および分圧抵抗B2に電圧が印加されている時はトランジスタA5がON状態であり、スパーク発生により分圧抵抗A1と分圧抵抗B2の両端電圧が0VとなるとトランジスタA5がOFF状態となるため、それによりスパークを検出できることとなる。トランジスタA5の状態にはON状態とOFF状態があり、ON状態であればスパークが無く、OFF状態であればスパークしていることとなり、トランジスタA5の状態を監視するだけでスパークを検出できることになる。   That is, when a voltage is applied to the voltage dividing resistor A1 and the voltage dividing resistor B2 by the voltage dividing resistor A1 and the voltage dividing resistor B2 which are voltage dividing generating means, the transistor A5 is in an ON state, and the voltage dividing resistor is generated by the occurrence of a spark. When the voltage across A1 and the voltage dividing resistor B2 becomes 0V, the transistor A5 is turned off, so that a spark can be detected. The transistor A5 has an ON state and an OFF state. If the transistor A5 is ON, there is no spark. If the transistor A5 is OFF, the spark is detected. By detecting the state of the transistor A5, the spark can be detected. .

なお、実施の形態1ではスイッチ手段には集塵効率に影響を与えないため極力小さい電流で動作する=低駆動電流特性を持つトランジスタを用いたが、同様の特性を持つ半導体素子を用いても同様の効果が得られるのはいうまでもない。   In the first embodiment, the switch means operates with a current as small as possible because it does not affect the dust collection efficiency, but a transistor having a low driving current characteristic is used. However, a semiconductor element having a similar characteristic may be used. Needless to say, the same effect can be obtained.

(実施の形態2)
図2および図3は本発明の実施の形態2によるスパーク検出回路の構成と状態変換電圧出力手段の構成を示している。
(Embodiment 2)
2 and 3 show the configuration of the spark detection circuit and the configuration of the state conversion voltage output means according to the second embodiment of the present invention.

なお、実施の形態1同一部分については同一の符号を記し、詳細な説明は省略する。   In addition, the same code | symbol is described about the same part of Embodiment 1, and detailed description is abbreviate | omitted.

図2において状態変換手段は定常時にトランジスタA5がONとなるように電圧を出力し、スパーク発生時はスパークによる光を検知してトランジスタA5がOFFとなるように電圧出力を停止するようにするものとする。   In FIG. 2, the state converting means outputs a voltage so that the transistor A5 is turned on in a steady state, and detects the light caused by the spark and stops the voltage output so that the transistor A5 is turned off when a spark occurs. And

図3において状態変換電圧出力手段は光センサと信号反転回路とそれらを駆動するための安定化電源を備え、定常時はスパークによる光が発生していないため光センサからの出力は無い状態であり、その出力の無い状態は信号反転回路にて反転され、信号反転回路より有電圧信号が出力されている。この有電圧信号により、定常時トランジスタA5がON状態となる。スパークが発生するとその光を光センサが検知し、光センサより光検出信号が出力される。出力された検出信号は信号反転回路内にて反転され有電圧信号は0Vとなる。トランジスタA5への有電圧信号が0VになることによりトランジスタA5がOFF状態となり、スパークが発生したことを検知することができる。   In FIG. 3, the state conversion voltage output means includes an optical sensor, a signal inversion circuit, and a stabilized power source for driving them, and no light is generated due to sparks in a steady state, so there is no output from the optical sensor. The state without the output is inverted by the signal inversion circuit, and a voltage signal is output from the signal inversion circuit. Due to this voltage signal, the transistor A5 in the steady state is turned on. When a spark occurs, the light sensor detects the light, and a light detection signal is output from the light sensor. The output detection signal is inverted in the signal inverting circuit and the voltage signal becomes 0V. When the voltage signal to the transistor A5 becomes 0V, the transistor A5 is turned off, and it can be detected that a spark has occurred.

なお、実施の形態2ではスイッチ手段には集塵効率に影響を与えないため極力小さい電流で動作する=低駆動電流特性を持つトランジスタを用いたが、同様の特性を持つ半導体素子を用いても同様の効果が得られるのはいうまでもない。   In the second embodiment, the switch means operates with a current as small as possible because it does not affect the dust collection efficiency, but a transistor having a low driving current characteristic is used. However, a semiconductor element having a similar characteristic may be used. Needless to say, the same effect can be obtained.

また、実施の形態2ではスパーク時に発生する光を状態変換電圧出力手段に用いたが、スパーク時に発生する音を用いても同様の効果が得られるのはいうまでもない。   In the second embodiment, the light generated at the time of sparking is used for the state conversion voltage output means, but it goes without saying that the same effect can be obtained by using the sound generated at the time of sparking.

(実施の形態3)
図4は本発明の実施の形態3によるスパーク検出回路の構成を示している。
(Embodiment 3)
FIG. 4 shows the configuration of a spark detection circuit according to Embodiment 3 of the present invention.

なお、実施の形態1、あるいは2と同一部分については同一の符号を付し、詳細な説明は省略する。   The same parts as those in the first or second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図4においてトランジスタA5のエミッタより出力されている有電圧信号は電圧復帰手段及び継電器A7に並列に接続され、継電器A7は高圧電源の1次側を開閉することにより高圧電源への電力供給を停止し、負荷荷電部への印加電圧をON/OFFするものとする。スパーク発生時、トランジスタA5がOFF状態となることによりトランジスタA5のエミッタからの有電圧信号が0Vとなり、継電器A7のコイル電圧は0Vとなり継電器A7がOFFし、高圧電源の1次側は開状態となり、負荷荷電部への印加電圧は0Vとなる。この時トランジスタA5のエミッタからの有電圧信号が0Vであることを受信した電圧復帰手段は継電器A7をONするためにパルス電圧を継電器A7のコイルに出力し、それにより継電器A7がONとなり、高圧電源の1次側は閉状態となり、負荷への印加電圧が復帰する。負荷荷電部への印加電圧が復帰するとトランジスタA5へのベース電圧が動作電圧以上となり、トランジスタA5がON状態となり、スパークが発生する前の状態 (定常状態)に復帰する。   In FIG. 4, the voltage signal output from the emitter of the transistor A5 is connected in parallel to the voltage recovery means and the relay A7, and the relay A7 stops supplying power to the high-voltage power supply by opening and closing the primary side of the high-voltage power supply. The applied voltage to the load charging unit is turned ON / OFF. When a spark occurs, the voltage signal from the emitter of the transistor A5 becomes 0V by turning off the transistor A5, the coil voltage of the relay A7 becomes 0V, the relay A7 is turned off, and the primary side of the high-voltage power supply is opened. The applied voltage to the load charging unit is 0V. At this time, the voltage recovery means that has received that the voltage signal from the emitter of the transistor A5 is 0V outputs a pulse voltage to the coil of the relay A7 in order to turn on the relay A7. The primary side of the power supply is closed, and the voltage applied to the load is restored. When the voltage applied to the load charging unit is restored, the base voltage to the transistor A5 becomes equal to or higher than the operating voltage, the transistor A5 is turned on, and the state before the occurrence of spark is restored (steady state).

図5において電圧復帰手段はパルス電圧出力回路を駆動するための電源を供給する安定化電源と、パルス電圧出力回路を備え、パルス電圧出力回路はトランジスタA5からのスパーク検出信号(有電圧信号が0Vに変化)を受けると、継電器A7のコイルに継電器A7をONするためのパルス電圧を出力する。これにより継電器A7がON状態となり負荷荷電部への印可電圧を復帰することができる。   In FIG. 5, the voltage recovery means includes a stabilized power supply for supplying power for driving the pulse voltage output circuit, and a pulse voltage output circuit. The pulse voltage output circuit has a spark detection signal (with a voltage signal of 0V from the transistor A5). When the change is received, a pulse voltage for turning ON the relay A7 is output to the coil of the relay A7. Thereby, relay A7 will be in ON state and the applied voltage to a load charge part can be reset.

なお、実施の形態3ではスイッチ手段には集塵効率に影響を与えないため極力小さい電流で動作する=低駆動電流特性を持つトランジスタを用いたが、同様の特性を持つ半導体素子を用いても同様の効果が得られるのはいうまでもない。   In the third embodiment, the switch means operates with a current as small as possible because it does not affect the dust collection efficiency, but a transistor having a low driving current characteristic is used. However, a semiconductor element having the same characteristic may be used. Needless to say, the same effect can be obtained.

(実施の形態4)
図6は本発明の実施の形態4によるスパーク検出回路の構成を示している。
(Embodiment 4)
FIG. 6 shows a configuration of a spark detection circuit according to Embodiment 4 of the present invention.

なお、実施の形態1乃至3のいずれかと同一部分については同一の符号を記し、詳細な説明は省略する。   In addition, the same code | symbol is described about the same part as any one of Embodiment 1-3, and detailed description is abbreviate | omitted.

図6においてトランジスタB12、C14及び抵抗B8、制限抵抗C9、D10、E11、F13を用いて、従来より知られているシュミット・トリガ回路を構成する。定常時トランジスタA5がON状態である時、制限抵抗B4にトランジスタA5のコレクタ電流が流れることにより制限抵抗B4の両端に電位差が発生し、トランジスタC14がON状態となる。制限抵抗B4にはトランジスタA5のコレクタ電流による電圧降下分がトランジスタC14の動作電圧以上となるような抵抗値を選定する。トランジスタC14がON状態となるとトランジスタC14のコレクタ電流がトランジスタB12のベースに流れ、制限抵抗F13により電位差が発生し、トランジスタB12がON状態となる。制限抵抗F13にはトランジスタC14のコレクタ電流による電圧降下分がトランジスタB12の動作電圧以上となるような抵抗値を選定する。トランジスタB12がONするとトランジスタA5のコレクタ電流は抵抗B8を流れずにトランジスタB12を流れるため、抵抗B8の両端は短絡された状態と同じになる。よってトランジスタA5がON状態からOFF状態へ変化するための電圧は、抵抗A6の両端電圧と動作電圧を和した電圧となる。スパーク発生時トランジスタA5がOFF状態となると、トランジスタA5のコレクタ電流が0Aとなり、トランジスタC14のベース電圧も0Vとなるため、トランジスタC14はOFF状態となる。トランジスタC14がOFF状態となるとトランジスタC14のコレクタ電流も0Aとなり、トランジスタB12のベース電圧も0Vとなり、トランジスタB12はOFF状態となる。トランジスタB12がOFF状態となることにより抵抗B8の両端の短絡状態は解除される。よってトランジスタA5がOFF状態からON状態に変化するための電圧は、抵抗A6と抵抗B8の両端電圧と動作電圧を和した電圧以上が必要となる。トランジスタA5がON状態からOFF状態へ変化する電圧と、OFF状態からON状態へ変化するための電圧値が異なることにより、トランジスタA5のハンチング動作を防ぐことができる。ハンチングを防ぐための電圧差は抵抗A6と抵抗B8の選定により任意に選択することができる。   In FIG. 6, a conventionally known Schmitt trigger circuit is configured using the transistors B12 and C14, the resistor B8, and the limiting resistors C9, D10, E11, and F13. When the constant transistor A5 is in the ON state, a collector current of the transistor A5 flows through the limiting resistor B4, thereby generating a potential difference between both ends of the limiting resistor B4, and the transistor C14 is turned on. For the limiting resistor B4, a resistance value is selected such that the voltage drop due to the collector current of the transistor A5 is equal to or higher than the operating voltage of the transistor C14. When the transistor C14 is turned on, the collector current of the transistor C14 flows to the base of the transistor B12, a potential difference is generated by the limiting resistor F13, and the transistor B12 is turned on. A resistance value is selected for the limiting resistor F13 such that the voltage drop due to the collector current of the transistor C14 is equal to or higher than the operating voltage of the transistor B12. When the transistor B12 is turned on, the collector current of the transistor A5 does not flow through the resistor B8 but flows through the transistor B12, so that both ends of the resistor B8 are the same as in a short-circuited state. Therefore, the voltage for changing the transistor A5 from the ON state to the OFF state is a voltage obtained by adding the voltage across the resistor A6 and the operating voltage. When the spark is generated, when the transistor A5 is turned off, the collector current of the transistor A5 becomes 0A, and the base voltage of the transistor C14 becomes 0V, so that the transistor C14 is turned off. When the transistor C14 is turned off, the collector current of the transistor C14 is also 0A, the base voltage of the transistor B12 is also 0V, and the transistor B12 is turned off. The short circuit state at both ends of the resistor B8 is released by turning off the transistor B12. Therefore, the voltage for changing the transistor A5 from the OFF state to the ON state needs to be equal to or higher than the sum of the voltage across the resistors A6 and B8 and the operating voltage. Since the voltage at which the transistor A5 changes from the ON state to the OFF state is different from the voltage value for changing from the OFF state to the ON state, the hunting operation of the transistor A5 can be prevented. The voltage difference for preventing hunting can be arbitrarily selected by selecting the resistor A6 and the resistor B8.

なお、実施の形態4ではスイッチ手段には集塵効率に影響を与えないため極力小さい電流で動作する=低駆動電流特性を持つトランジスタを用いたが、同様の特性を持つ半導体素子を用いても同様の効果が得られるのはいうまでもない。   In the fourth embodiment, the switch means does not affect the dust collection efficiency and operates with a current as small as possible = a transistor having a low driving current characteristic. However, a semiconductor element having a similar characteristic may be used. Needless to say, the same effect can be obtained.

(実施の形態5)
図7は本発明の実施の形態5によるスパーク検出回路の構成を示している。
(Embodiment 5)
FIG. 7 shows a configuration of a spark detection circuit according to the fifth embodiment of the present invention.

なお、実施の形態2同一部分については同一の符号を記し、詳細な説明は省略する。   In addition, the same code | symbol is described about the same part of Embodiment 2, and detailed description is abbreviate | omitted.

図7において復帰時間調整手段はスパーク発生時、トランジスタA5のエミッタからの有電圧信号が0Vに変化したことを受信すると、受信直後より予め定められた一定時間までの間は電圧復帰手段への出力信号を維持し、一定時間経過後に電圧復帰手段への出力を停止するものとする。復帰時間調整手段からの出力信号が0Vであることを受信した電圧復帰手段は継電器A7をONするためにパルス電圧を継電器A7のコイルに出力し、それにより継電器A7がONとなり、負荷荷電部への印加電圧が復帰する。負荷荷電部への印加電圧が復帰するとトランジスタA5へのベース電圧が動作電圧以上となりトランジスタA5がON状態となり、スパークが発生する前の状態(定常状態)に復帰する。これによりスパーク検出後一定時間は出力を停止し、一定時間後に再度出力を復帰させることができる。この一定時間の選定については1〜3秒程度が望ましい。1秒以下だと電圧復帰時にスパークが発生する場合はスパークとスパークの間隔が短くなり、高圧回路、高圧トランス、高圧部品へのストレスが大きくなる。3秒以上すると停止時間が長くなることにより集塵機の稼働時間が低下し、総合的な集塵効率の低下に繋がる。よって復帰時間を1〜3秒に設定することで、高圧トランス、高圧部品へのストレスを低減し、総合的な集塵効率も維持することができる。   In FIG. 7, when a spark is generated, the return time adjusting means receives that the voltage signal from the emitter of the transistor A5 has changed to 0V, and outputs to the voltage return means immediately after reception until a predetermined time. The signal is maintained, and the output to the voltage recovery means is stopped after a certain time has elapsed. Upon receiving that the output signal from the return time adjusting means is 0V, the voltage return means outputs a pulse voltage to the coil of the relay A7 in order to turn on the relay A7, whereby the relay A7 is turned on and to the load charging unit. The applied voltage is restored. When the voltage applied to the load charging unit is restored, the base voltage to the transistor A5 becomes equal to or higher than the operating voltage, the transistor A5 is turned on, and the state before the occurrence of spark (steady state) is restored. Thereby, the output can be stopped for a certain time after the spark detection, and the output can be restored again after the certain time. About selection of this fixed time, about 1-3 seconds are desirable. If the spark is generated when the voltage is restored when the voltage is less than 1 second, the interval between the sparks is shortened, and the stress on the high-voltage circuit, the high-voltage transformer, and the high-voltage components is increased. If it is 3 seconds or more, the stop time becomes longer, so that the operation time of the dust collector is reduced, leading to a reduction in the overall dust collection efficiency. Therefore, by setting the return time to 1 to 3 seconds, it is possible to reduce the stress on the high-pressure transformer and the high-voltage parts and maintain the overall dust collection efficiency.

図8において復帰時間調整手段はタイマICと復帰時間調整回路とタイマICを駆動するための電源を供給する安定化電源を備え、スパーク検出信号を受けたタイマICはその直後より復帰時間調整回路により定められた時間内は電圧復帰手段への出力を停止し、時間経過後に電圧復帰手段への信号を出力する。復帰時間調整回路は主に抵抗とコンデンサより構成され、その時定数で復帰時間を任意に決定することができる。   In FIG. 8, the return time adjustment means includes a timer IC, a return time adjustment circuit, and a stabilized power supply that supplies power for driving the timer IC. The output to the voltage recovery means is stopped within a predetermined time, and a signal to the voltage recovery means is output after the lapse of time. The return time adjustment circuit is mainly composed of a resistor and a capacitor, and the return time can be arbitrarily determined by its time constant.

(実施の形態6)
図9は本発明の実施の形態6によるスパーク検出回路の構成を示している。
(Embodiment 6)
FIG. 9 shows a configuration of a spark detection circuit according to the sixth embodiment of the present invention.

なお、実施の形態5と同一部分については同一の符号を記し、詳細な説明は省略する。   The same parts as those in the fifth embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図9においてトランジスタA5のエミッタより出力されている有電圧信号は復帰電圧調整手段に接続され、復帰電圧調整手段とトライアックA15を接続し、トライアックA15の制御は復帰電圧調整手段より行うものとする。トライアックA15は高圧電源の1次側を位相制御することにより高圧電源への電力を増減させ、負荷荷電部への電力を増減させることができる。スパーク発生時、トランジスタA5がOFF状態となることによりトランジスタA5のエミッタからの有電圧信号が0Vとなると、0Vを受信した復帰電圧調整手段は一旦トライアックA15への出力を停止し、一定時間経過後にトライアックA15への出力を段階的に増加させていく。これにより、高圧電源1次側の電力は段階的に増加し、負荷荷電部への印可電力も段階的に増加させることができる。   In FIG. 9, the voltage signal output from the emitter of the transistor A5 is connected to the return voltage adjusting means, the return voltage adjusting means and the triac A15 are connected, and the control of the triac A15 is performed by the return voltage adjusting means. The triac A15 can increase or decrease the power to the high-voltage power supply by phase-controlling the primary side of the high-voltage power supply, and can increase or decrease the power to the load charging unit. When the spark is generated, when the voltage signal from the emitter of the transistor A5 becomes 0V by turning off the transistor A5, the return voltage adjusting means that has received 0V once stops the output to the triac A15, and after a certain time has elapsed. The output to the triac A15 is increased step by step. As a result, the power on the primary side of the high-voltage power supply increases stepwise, and the applied power to the load charging unit can also be increased stepwise.

図10において復帰電圧調整手段はトライアックA15の位相制御を実施する位相制御ICと、位相制御ICへの出力を段階的に制御するCPUと、周波数同期を取るための相検出回路と、トライアックA15への信号を出力する信号出力回路と、それぞれの回路を駆動するための電源を供給する安定化電源を備え、トライアックA15へのゲート信号を調整することにより、負荷に印加する電力を調整することができる。スパーク発生時、スパーク検出信号を受信したCPUがその直後より一定時間位相制御ICへの出力を停止し、一定時間経過後に0から段階的に位相制御ICへの出力を増加させる。位相制御ICではCPUからの指示に従い、ゲート出力信号を調整し、その調整された信号が出力信号回路をとおりトライアックA15のゲートに出力される。それにより負荷荷電部への印加電力を段階的に増加させることができる。具体的な段階的調整に関しては、集塵機の規模等により異なるため一概には言えないが、一定時間(実施の形態5に記載の1〜3秒)経過後より、定常時印加電圧の70%〜80%までを瞬時に復帰し、復帰する瞬間に発生するスパークを抑えつつ、10〜20秒程度かけて100%までリニアに変化させる方法が有効であることが確認できている。   In FIG. 10, the return voltage adjusting means includes a phase control IC that performs phase control of the triac A15, a CPU that controls the output to the phase control IC in stages, a phase detection circuit for frequency synchronization, and a triac A15. A signal output circuit that outputs the above signals and a stabilized power supply that supplies power for driving the respective circuits, and adjusting the gate signal to the triac A15 to adjust the power applied to the load. it can. When a spark occurs, the CPU that has received the spark detection signal stops the output to the phase control IC for a certain time immediately after that, and increases the output to the phase control IC from 0 in a stepwise manner after a certain time has elapsed. The phase control IC adjusts the gate output signal in accordance with an instruction from the CPU, and the adjusted signal is output to the gate of the triac A15 through the output signal circuit. Thereby, the applied power to the load charging unit can be increased stepwise. The specific stepwise adjustment varies depending on the size of the dust collector and the like, and thus cannot be generally stated. However, after a certain period of time (1 to 3 seconds as described in the fifth embodiment), 70% of the steady-state applied voltage is increased. It has been confirmed that a method of linearly changing to 100% over about 10 to 20 seconds while suppressing up to 80% instantaneously and suppressing sparks generated at the time of return is confirmed.

なお、実施の形態6では1次側の電力を調整するためにトライアックを用いたがサイリスタを用いても同様の効果が得られるのはいうまでもない。   In the sixth embodiment, the triac is used to adjust the power on the primary side, but it goes without saying that the same effect can be obtained even if a thyristor is used.

(実施の形態7)
図11は本発明の実施の形態7によるスパーク検出回路の構成を示している。
(Embodiment 7)
FIG. 11 shows a configuration of a spark detection circuit according to the seventh embodiment of the present invention.

図11において負荷への電圧印加配線と平行に伝達手段である電線を這わせ、その平行に這わせた電線に電圧監視手段(例えばパルスカウンター)を接続する。スパーク時に発生するサージ電圧により、電圧印加配線から平行に這わせた電線にパルス電圧が重畳される。そのパルス電圧を電圧監視手段で受信することによりスパークを検出することができる。   In FIG. 11, an electric wire serving as a transmission means is arranged in parallel with the voltage application wiring to the load, and a voltage monitoring means (for example, a pulse counter) is connected to the electric wire arranged in parallel. Due to the surge voltage generated at the time of sparking, a pulse voltage is superimposed on the electric wires running in parallel from the voltage application wiring. A spark can be detected by receiving the pulse voltage by the voltage monitoring means.

なお、実施の形態1の検出回路に実施の形態7のスパーク検出回路を備えることは差し支えない。   Note that the detection circuit of the first embodiment may be provided with the spark detection circuit of the seventh embodiment.

本発明は、電気集塵機以外に点火プラグ等スパークが発生する装置にも適用できる。   The present invention can also be applied to devices that generate sparks, such as spark plugs, in addition to electrostatic precipitators.

本発明の実施の形態1によるスパーク検出回路の構成図1 is a configuration diagram of a spark detection circuit according to a first embodiment of the present invention. 本発明の実施の形態2によるスパーク検出回路の構成図Configuration diagram of a spark detection circuit according to a second embodiment of the present invention 同状態変換電圧出力手段の構成図Configuration diagram of same-state conversion voltage output means 本発明の実施の形態3によるスパーク検出回路の構成図Configuration diagram of a spark detection circuit according to a third embodiment of the present invention 同電圧復帰手段の構成図Configuration diagram of the voltage recovery means 本発明の実施の形態4によるスパーク検出回路の構成図Configuration diagram of a spark detection circuit according to a fourth embodiment of the present invention 本発明の実施の形態5によるスパーク検出回路の構成図Configuration diagram of a spark detection circuit according to a fifth embodiment of the present invention 同復帰時間調整手段の構成図Configuration diagram of the return time adjustment means 本発明の実施の形態6によるスパーク検出回路の構成図Configuration diagram of a spark detection circuit according to a sixth embodiment of the present invention 同復帰電圧調整手段の構成図Configuration diagram of the reset voltage adjustment means 本発明の実施の形態7によるスパーク検出回路の構成図Configuration diagram of a spark detection circuit according to a seventh embodiment of the present invention 従来例のスパーク検出回路の構成図Configuration diagram of conventional spark detection circuit

符号の説明Explanation of symbols

1 分圧抵抗A
2 分圧抵抗B
3 制限抵抗A
4 制限抵抗B
5 トランジスタA
6 抵抗A
1 Voltage divider resistance A
2 Voltage dividing resistor B
3 Limiting resistance A
4 Limiting resistor B
5 Transistor A
6 Resistance A

Claims (11)

集塵機負荷荷電部の印加電圧を分圧する分圧生成手段と、前記分圧生成手段により生成した分圧の有無に応じて動作するスイッチ手段を備え、スパーク発生時の前記スイッチ手段の状態によりスパークを検出するスパーク検出回路。 A partial pressure generating unit that divides the applied voltage of the dust collector load charging unit, and a switch unit that operates according to the presence or absence of the partial pressure generated by the partial pressure generating unit, and the spark is generated according to the state of the switch unit when the spark is generated. Spark detection circuit to detect. スイッチ手段には低駆動電流特性を持つことを特徴とする請求項1記載のスパーク検出回路。 2. The spark detection circuit according to claim 1, wherein the switch means has a low drive current characteristic. スイッチ手段としてトランジスタを備えたことを特徴とする請求項1〜2のいずれかに記載のスパーク検出回路。 3. The spark detection circuit according to claim 1, further comprising a transistor as the switch means. 分圧生成手段としてスパーク時に発生する音を電圧に変換する状態変換電圧出力手段を備えたことを特徴とする請求項1記載のスパーク検出回路。 2. The spark detection circuit according to claim 1, further comprising state conversion voltage output means for converting a sound generated during sparking into a voltage as the partial pressure generation means. 分圧生成手段としてスパーク時に発生する光を電圧に変換する状態変換電圧出力手段を備えたことを特徴とする請求項1記載のスパーク検出回路。 2. The spark detection circuit according to claim 1, further comprising state conversion voltage output means for converting light generated at the time of sparking into voltage as the partial pressure generation means. スパーク検出時電圧遮断後に負荷に印加する電圧を再度復帰させるための電圧復帰手段を設けた請求項1〜5のいずれかに記載のスパーク検出回路。 The spark detection circuit according to any one of claims 1 to 5, further comprising a voltage recovery means for recovering a voltage applied to the load after the voltage is shut off at the time of spark detection. スパーク検出時スイッチ手段のハンチング動作を避けるためのヒステリシス設定手段を設けた請求項1〜6のいずれかに記載のスパーク検出回路。 The spark detection circuit according to any one of claims 1 to 6, further comprising hysteresis setting means for avoiding a hunting operation of the switch means at the time of spark detection. スパーク検出後一定時間印加電圧を復帰しないための時間を管理する復帰時間調整手段を設けた請求項1〜7いずれかに記載のスパーク検出回路。 The spark detection circuit according to any one of claims 1 to 7, further comprising a return time adjusting means for managing a time for not returning the applied voltage for a predetermined time after the spark detection. 電圧復帰手段には電圧復帰時の電圧と時間の関係を調整できる復帰電圧調整手段を備えたことを特徴とする請求項1〜8のいずれかに記載のスパーク検出回路。 9. The spark detection circuit according to claim 1, wherein the voltage return means includes a return voltage adjustment means capable of adjusting a relationship between voltage and time at the time of voltage return. 高圧回路内で発生する電圧変化を伝達する伝達手段と、伝達した電圧を監視する監視手段を備え、スパーク発生時伝達される電圧変化を監視手段にて検知することによりスパークを検出するスパーク検出回路。 A spark detection circuit having a transmission means for transmitting a voltage change generated in a high-voltage circuit and a monitoring means for monitoring the transmitted voltage, and detecting a spark by detecting the voltage change transmitted when the spark is generated by the monitoring means. . 伝達手段として集塵機負荷への電圧印加配線と平行に這わせた絶縁性導電体を備えたことを特徴とする請求項10記載のスパーク検出回路。 11. The spark detection circuit according to claim 10, further comprising an insulating conductor arranged in parallel with the voltage application wiring to the dust collector load as the transmission means.
JP2004317876A 2004-11-01 2004-11-01 Spark detection circuit for electric dust collector Expired - Fee Related JP4492298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004317876A JP4492298B2 (en) 2004-11-01 2004-11-01 Spark detection circuit for electric dust collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004317876A JP4492298B2 (en) 2004-11-01 2004-11-01 Spark detection circuit for electric dust collector

Publications (2)

Publication Number Publication Date
JP2006126121A true JP2006126121A (en) 2006-05-18
JP4492298B2 JP4492298B2 (en) 2010-06-30

Family

ID=36720993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004317876A Expired - Fee Related JP4492298B2 (en) 2004-11-01 2004-11-01 Spark detection circuit for electric dust collector

Country Status (1)

Country Link
JP (1) JP4492298B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375572A (en) * 1986-09-18 1988-04-05 Canon Inc Voltage comparing circuit
JPH01297568A (en) * 1988-05-25 1989-11-30 Mitsubishi Cable Ind Ltd Measuring method for partial electric discharge
JPH03258356A (en) * 1990-03-07 1991-11-18 Matsushita Electric Ind Co Ltd Electric type air cleaner
JPH05109362A (en) * 1991-10-16 1993-04-30 Mitsubishi Electric Corp Spark test device
JPH05146716A (en) * 1991-11-26 1993-06-15 Daikin Ind Ltd Abnormality detector of electrostatic precipitator
JPH11333323A (en) * 1998-05-25 1999-12-07 Hitachi Plant Eng & Constr Co Ltd Method of preventing glow discharge for electric dust collector
JP2000068809A (en) * 1998-06-10 2000-03-03 Nippon Signal Co Ltd:The Threshold computation circuit and gate circuit, self holding circuit and activation signal generation circuit using the same
JP2001259475A (en) * 2000-03-15 2001-09-25 Sumitomo Heavy Ind Ltd Electric dust collector
JP2002166197A (en) * 2000-12-01 2002-06-11 Origin Electric Co Ltd Electric precipitation method and electric precipitator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375572A (en) * 1986-09-18 1988-04-05 Canon Inc Voltage comparing circuit
JPH01297568A (en) * 1988-05-25 1989-11-30 Mitsubishi Cable Ind Ltd Measuring method for partial electric discharge
JPH03258356A (en) * 1990-03-07 1991-11-18 Matsushita Electric Ind Co Ltd Electric type air cleaner
JPH05109362A (en) * 1991-10-16 1993-04-30 Mitsubishi Electric Corp Spark test device
JPH05146716A (en) * 1991-11-26 1993-06-15 Daikin Ind Ltd Abnormality detector of electrostatic precipitator
JPH11333323A (en) * 1998-05-25 1999-12-07 Hitachi Plant Eng & Constr Co Ltd Method of preventing glow discharge for electric dust collector
JP2000068809A (en) * 1998-06-10 2000-03-03 Nippon Signal Co Ltd:The Threshold computation circuit and gate circuit, self holding circuit and activation signal generation circuit using the same
JP2001259475A (en) * 2000-03-15 2001-09-25 Sumitomo Heavy Ind Ltd Electric dust collector
JP2002166197A (en) * 2000-12-01 2002-06-11 Origin Electric Co Ltd Electric precipitation method and electric precipitator

Also Published As

Publication number Publication date
JP4492298B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
US10348079B2 (en) Overcurrent protective device, electronic apparatus, integrated circuit, and signal transmission circuit
JP4338118B2 (en) Method and apparatus for protecting electrical loads from parallel arc faults
US7492559B2 (en) Intelligent life testing methods and apparatus for leakage current protection
US20100254055A1 (en) Overcurrent protection in a dimmer circuit
GB2508394A (en) Over-voltage protection for a soft start module with smoothing capacitance
US10176950B2 (en) Latching relay drive circuit
CN110707925A (en) Zero-crossing detection circuit, zero-crossing detection method and switching power supply circuit
CN104078929B (en) Breaker, under-voltage trip gear and overvoltage under-voltage trip gear
JPH0767328A (en) Power supply device for switching regulator
US7091739B2 (en) System and method for detecting an operational fault condition in a power supply
CN214380690U (en) Correction wave inverter short-circuit protection circuit and inverter
JP4931192B2 (en) Static eliminator
JP5126241B2 (en) Overvoltage protection circuit and overvoltage protection method
KR101527366B1 (en) Arc detection circuit by contact failure
WO2018163413A1 (en) Electronic circuit breaker
JP4492298B2 (en) Spark detection circuit for electric dust collector
JPH0956058A (en) Circuit device having rush current preventing function
JP2004286238A (en) Control circuit of cooling device, and control method of cooling device
JP2012244716A (en) Protection circuit and electronic apparatus
CN213484505U (en) Short-circuit protection circuit
CN210923818U (en) Fault current detection device applied to intelligent switch
CN110447170A (en) Power switching devices and the method for operating the Power switching devices
CN113098470A (en) Load switch circuit
CN110554233A (en) fault current detection device and method applied to intelligent switch
KR200293402Y1 (en) Arc and over current protective circuit for electric precipitator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070809

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091117

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100329

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees