JP4475880B2 - Epoxy resin composition - Google Patents

Epoxy resin composition Download PDF

Info

Publication number
JP4475880B2
JP4475880B2 JP2003067850A JP2003067850A JP4475880B2 JP 4475880 B2 JP4475880 B2 JP 4475880B2 JP 2003067850 A JP2003067850 A JP 2003067850A JP 2003067850 A JP2003067850 A JP 2003067850A JP 4475880 B2 JP4475880 B2 JP 4475880B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
mass
parts
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003067850A
Other languages
Japanese (ja)
Other versions
JP2004277481A (en
Inventor
秀明 富永
善博 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Rayon Co Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP2003067850A priority Critical patent/JP4475880B2/en
Publication of JP2004277481A publication Critical patent/JP2004277481A/en
Application granted granted Critical
Publication of JP4475880B2 publication Critical patent/JP4475880B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、エポキシ樹脂組成物、それを用いるプリプレグ及び繊維強化複合成形体に関し、更に詳しくは、繊維強化複合成形材料のマトリックス樹脂として用いた際に剛性及び靭性に優れた繊維強化複合成形体を得ることができるエポキシ樹脂組成物、それを用いるプリプレグ及び繊維強化複合成形体に関する。
【0002】
【従来の技術】
エポキシ樹脂組成物は、従来より繊維強化複合成形材料用のマトリックス樹脂として使用されている。特に、炭素繊維を強化材繊維とする複合成形材料のマトリックス樹脂としてエポキシ樹脂組成物は広く使用されている。このような複合成形材料から得られる繊維強化複合成形体は、例えばゴルフシャフトや釣竿のようなスポーツ・レジャー用途から、航空機の二次構造材、更には一次構造材に至るまで使用範囲が拡大している。
【0003】
航空機のような分野に使用されるエポキシ樹脂組成物およびプリプレグとして、樹脂組成物の揮発成分を少なくし、しかも耐熱性を高く、良好なる接着性を有する自己接着ハニカムサンドイッチパネルの表面材用のエポキシ樹脂組成物及び該エポキシ樹脂組成物を用いたプリプレグが提案されている(特許文献1)。
【0004】
特許文献(1)で提案されている技術は、揮発分の含有率及び硬化時最低粘度が特定範囲のエポキシ樹脂組成物であり、その骨子は(a)グリシジルアミノ基を有する多官能エポキシ樹脂、(b)(a)以外のエポキシ樹脂、(c)ポリイソシアネート、(d)熱可塑性樹脂及び(e)芳香族アミン硬化剤を必須成分として含むものである。
【0005】
しかしながら、従来の繊維強化複合材料成形体は剛性又は靱性のいずれか一方に優れていても、両者を兼ね備えたものはなかった。近年、剛性に加えて更に優れた靭性を兼ね備えた繊維強化複合成形体の要求が高まり、上記など従来技術の改良が望まれている。
【0006】
【特許文献1】
特開2001−031838
【0007】
【発明が解決しようとする課題】
本発明は、繊維強化複合成形材料のマトリックス樹脂として用いた際に剛性(例えば、圧縮強度)及び靭性(例えば、衝撃後圧縮強度)に優れた繊維強化複合成形体を得ることができるエポキシ樹脂組成物、それを用いたプリプレグ及び繊維強化複合成形体を提供することを課題とする。
【0008】
【課題を解決するための手段】
上記目的を達成する本発明は、以下に記載のものである。
【0009】
[1] 一分子中に少なくとも3個のエポキシ基を有するエポキシ樹脂を80質量%以上含むエポキシ樹脂(A)100質量部に対し、熱可塑性樹脂(B)30〜50質量部及び芳香族アミン系硬化剤(C)20〜50質量部を含むことを特徴とするエポキシ樹脂組成物。
【0010】
[2] エポキシ樹脂(A)が、テトラグリシジルジアミノジフェニルメタン、N,N,O−トリグリシジル−p−アミノフェノール、N,N,O−トリグリシジル−m−アミノフェノール及びフェノールノボラック型エポキシ樹脂よりなる群から選ばれる少なくとも1種である[1]記載のエポキシ樹脂組成物。
【0011】
[3] 熱可塑性樹脂(B)として、ポリエーテルイミド及びポリエーテルスルホンを含む[1]記載のエポキシ樹脂組成物。
【0012】
[4] 芳香族アミン系硬化剤(C)が、3,3’−ジアミノジフェニルスルホン及び/又は4,4’−ジアミノジフェニルスルホンである[1]記載のエポキシ樹脂組成物。
【0013】
[5] ポリエーテルイミドが完全に溶解せず微分散の状態で、且つポリエーテルスルホンが溶解された状態でエポキシ樹脂組成物中に配合されている[2]記載のエポキシ樹脂組成物。
【0014】
[6] [1]記載のエポキシ樹脂組成物を用いたプリプレグ。
【0015】
[7] [6]記載のプリプレグを用いて得られる炭素繊維強化樹脂成形体。
【0016】
【発明の実施の形態】
本発明のエポキシ樹脂組成物は、一分子中に少なくとも3個のエポキシ基を有するエポキシ樹脂を80質量%以上含むエポキシ樹脂(A)100質量部に対し、熱可塑性樹脂(B)30〜50質量部及び芳香族アミン系硬化剤(C)20〜50質量部を含むことを特徴とする。
【0017】
本発明におけるエポキシ樹脂(A)は、一分子中に少なくとも3個のエポキシ基を有するエポキシ樹脂を80質量%以上含むものである。
【0018】
この一分子中に少なくとも3個のエポキシ基を有するエポキシ樹脂としては、例えば、テトラグリシジルジアミノジフェニルメタン(4官能エポキシ樹脂:Epikote 604:ジャパンエポキシレジン株式会社製(登録商標))、フェノールノボラック型エポキシ樹脂(3官能以上のエポキシ樹脂を主成分とする:EPPN−201:日本化薬株式会社製(登録商標))、m−アミノフェノール系エポキシ樹脂(3官能エポキシ樹脂ELM−120:住友化学株式会社製(登録商標))等を挙げることができる。
【0019】
これらの一分子中に少なくとも3個のエポキシ基を有するエポキシ樹脂(以下、『多官能エポキシ樹脂』ということがある)は、エポキシ樹脂(A)中に80質量%以上存在することが必要である。この多官能エポキシ樹脂の割合がエポキシ樹脂(A)中80質量%未満であると、優れた圧縮強度の繊維強化複合成形体を得ることができない。
【0020】
尚、本発明におけるエポキシ樹脂(A)中には、官能基が1〜2のエポキシ樹脂が20質量%未満の割合で含まれていてもよい。このようなエポキシ樹脂としては、例えば、ビスフェノールF型エポキシ樹脂(2官能エポキシ樹脂:Epikote 807:ジャパンエポキシレジン株式会社製(登録商標))や、ビスフェノールA型エポキシ樹脂(2官能エポキシ樹脂:Epikote 828:ジャパンエポキシレジン株式会社製(登録商標))等の2官能エポキシ樹脂を好ましい例として挙げることができる。
【0021】
本発明における熱可塑性樹脂(B)は、エンジニアリングプラスチックとして用いられる熱可塑性樹脂であることが好ましく、エポキシ樹脂(A)と相溶するか、或は親和性を有する熱可塑性樹脂が特に好ましい。このような熱可塑性樹脂としては、例えば、ポリアクリレート、ポリイミド、ポリアミド、ポリエーテルイミド(PEI)、ポリアミドイミド、ポリアリールエーテル、フェノキシ樹脂、ポリアリールスルホン、ポリエーテルスルホン(PES)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンエーテル及びポリカーボネートを挙げることができる。これらのうち、ポリエーテルスルホン(PES)とポリエーテルイミド(PEI)が好ましく、この2種を併用することが特に好ましい。
【0022】
本発明において、エポキシ樹脂組成物中に占める熱可塑性樹脂(B)の割合は、エポキシ樹脂(A)100質量部に対し30〜50質量部であることが必要である。熱可塑性樹脂(B)の上記割合が50質量部を超えると、エポキシ樹脂組成物を用いて得られる硬化物の剛性が低下するだけでなく、樹脂組成物の粘度が高くなるため、本発明のエポキシ樹脂組成物を用いて作製したプリプレグの取り扱い性が低下する。また、熱可塑性樹脂(B)の上記割合が30質量部未満であると、エポキシ樹脂組成物を用いて得られる硬化物の靭性が低下する。上記の理由から、エポキシ樹脂(A)100質量部に対する熱可塑性樹脂(B)の割合は、35〜45質量部であることが好ましい。
【0023】
尚、熱可塑性樹脂(B)として、ポリエーテルスルホン(PES)とポリエーテルイミド(PEI)を併用する場合、ポリエーテルイミドが完全に溶解せず微分散の状態で、且つポリエーテルスルホンが溶解された状態でエポキシ樹脂組成物中に配合されていることが、圧縮強度に代表される剛性の発現と、衝撃後圧縮強度に代表される耐衝撃性を発現を両立させるという理由で好ましい。
【0024】
本発明のエポキシ樹脂組成物に用いられる芳香族アミン硬化剤(C)は、ジアミノジフェニルスルホン(DDS)、ジアミノジフェニルメタン(DDM)等、エポキシ樹脂の硬化剤として用いられる芳香族アミン化合物である。これらは単独で、或は2種以上の混合物として使用できる。エポキシ樹脂組成物を用いて得られる硬化物の耐熱性をより良好なものとするには、DDS或はその誘導体を単独で用いることが好ましい。
【0025】
本発明において、エポキシ樹脂組成物中に占める芳香族アミン硬化剤(C)の割合は、エポキシ樹脂(A)100質量部に対し20〜50質量部であることが必要である。芳香族アミン硬化剤(C)の上記割合が50質量部を超えると、架橋点数は増加するが架橋密度が低下し、また芳香族アミン硬化剤(C)の余剰量が多くなるため、このようなエポキシ樹脂組成物を用いて得られる硬化物は剛性及び耐湿熱性が低下する。また、芳香族アミン硬化剤(C)の上記割合が20質量部未満であると、架橋点数及び架橋密度ともに低下するため、このようなエポキシ樹脂組成物を用いて得られる硬化物は耐熱性及び耐衝撃性がともに低下する。上記の理由から、エポキシ樹脂(A)100質量部に対する芳香族アミン硬化剤(C)の割合は、25〜45質量部であることが好ましい。
【0026】
本発明のエポキシ樹脂組成物は、ポリイソシアネートを成分として含まないことが好ましい。一般に、ポリイソシアネートはエポキシ樹脂に含まれる水酸基と反応することで、増粘或は硬化剤としての効果を示すが、本発明における樹脂組成物の主成分である多官能エポキシ樹脂には水酸基がほとんど含まれないため、ポリイソシアネートを配合することによる効果もほとんどない。従って、本発明のエポキシ樹脂組成物中には、ポリイソシアネートを必要としないが、例えばエポキシ樹脂中の不純物として存在する程度の1000ppm以下の量であれば含まれていてもよい。
【0027】
本発明のエポキシ樹脂組成物は、上述した(A)、(B)及び(C)成分を必須とするものであるが、本発明の効果を損なわない範囲で、必要に応じて上述の(A)、(B)及び(C)以外の公知の硬化剤、熱硬化性樹脂、充填剤、安定剤、難燃剤、顔料等の各種添加剤を含有させてもよい。
【0028】
本発明のプリプレグは、繊維集合体に本発明のエポキシ樹脂組成物を含浸させることによって得られる。プリプレグ中のエポキシ樹脂組成物の割合は、30〜50質量%であることが好ましい。エポキシ樹脂組成物の割合がこの範囲であれば、プリプレグを熱硬化させて得られる繊維強化複合成形体の剛性及び靭性が優れたものになる。
【0029】
本発明のプリプレグを製造する方法としては、本発明のエポキシ樹脂組成物を離型紙の上に薄いフィルム状に塗布したいわゆる樹脂フィルムを、繊維集合体の上下に配置し、加熱及び加圧することでエポキシ樹脂組成物を繊維集合体に含浸させるホットメルト法や、エポキシ樹脂組成物を適当な溶媒を用いてワニス状にし、このワニスを強化繊維に含浸させる溶剤法を挙げることができる。
【0030】
本発明のプリプレグに使用できる強化繊維としては、炭素繊維、黒鉛繊維、アラミド繊維、ガラス繊維等を挙げることができる。これらの強化繊維のうち、炭素繊維が特に好ましい。炭素繊維を用いる場合、ストランドの引張強度は4000MPa以上のものが好ましく、4500MPa以上のものが特に好ましい。これらの強化繊維は、一方向に引き揃えられた繊維束状、或は織物状の形態で使用することができる。
【0031】
また、本発明の繊維強化複合成形体は、上記本発明のプリプレグを通常の熱硬化成形、例えば、オートクレーブ成形、または、ホットプレス成形等、により得ることができる。
【0032】
【実施例】
以下、実施例により本発明を更に具体的に説明する。本実施例及び比較例において各種試験方法は下記に従って行った。
【0033】
(1)圧縮強度
プリプレグを一方向に6枚積層してバッグ内に入れ、これをオートクレーブ内で180℃にて2時間加熱し、硬化させて成形板を作製した。この間オートクレーブ内を圧空で0.5MPaに加圧し、バッグ内を真空(13kPa以下)に保った。得られた成形板について、超音波探傷装置にて該成形板の内部にボイド等の欠陥が発生していないことを確認後、SACMA SRM1R−94に準拠して圧縮試験を行い、成形板の圧縮強度[MPa]を測定した。
【0034】
尚、本試験では試験片のVf(繊維体積含有率)の影響を大きく受けるため、測定値はVf=60%に統一して換算した。
【0035】
(2)衝撃後圧縮強度
プリプレグを[+45°/0°/−45°/90°]の方向に4枚積層したものを3セット重ね合わせた12枚の積層物と、[90°/−45°/0°/+45°]の方向に4枚積層したもの3セット重ね合わせた12枚の積層物を、それぞれ90°方向が合わさるように合計24枚の積層物としてバッグ内に入れ、これをオートクレーブ内で180℃にて2時間加熱し、硬化させて成形板を作製した。この間オートクレーブ内を圧空で0.5MPaに加圧し、バッグ内を真空(13kPa以下)に保った。得られた成形板について、超音波探傷装置にて該成形板の内部にボイド等の欠陥が発生していないことを確認後、SACMA SRM2R−94に準拠して圧縮試験を行い、成形板の衝撃後圧縮強度[MPa]を測定した。
【0036】
尚、本試験では試験片のVf(繊維体積含有率)の影響が小さいため、測定値はVf換算しない実測値として計算した。
【0037】
[実施例1〜4]
下記表1に示す組成の(A)成分と(B)成分の一部((B)成分のうちエポキシ樹脂に溶解して配合させる部分)をニーダー中にて加熱・混合させた。次いで、得られた(A)成分の混合物をロールミルに移し、表1に示す(B)成分の残り((B)成分のうちエポキシ樹脂に微粉末として配合させる部分)及び(C)成分を添加し、良く混練して実施例1〜4のエポキシ樹脂組成物を得た。
【0038】
次いで、得られたエポキシ樹脂組成物を、炭素繊維束(東邦テナックス株式会社製・ベスファイトIM600−24K(登録商標)・フィラメント数:24000本、引張強度:5790MPa、引張弾性率:285MPa)に含浸させて、炭素繊維目付が190g/m2、樹脂含有率が35質量%の一方向プリプレグを得た。これらのプリプレグから成形した成形板の圧縮強度及び衝撃後圧縮強度の測定結果を表1に示す。
【0039】
【表1】

Figure 0004475880
【0040】
*1:実施例1〜4において、PEIはいずれもエポキシ樹脂組成物に微分散された状態であった。
【0041】
*2:繊維体積比率Vf=60%換算値
表1に示した結果から明らかなように、実施例1〜4の本発明のエポキシ樹脂組成物を用いたプリプレグから得られた繊維強化複合成形体は剛性(圧縮強度)及び靭性(衝撃後圧縮強度)のいずれも優れたものであった。
【0042】
[比較例1〜4]
[A]成分、[B]成分及び[C]成分の種類及び量を下記表2に示すものに変えた以外は実施例1と同様にエポキシ樹脂組成物を得た。
【0043】
次いで、得られたエポキシ樹脂組成物を、実施例1と同様に炭素繊維束に含浸させてプリプレグを得た。これらのプリプレグから成形した成形板の圧縮強度及び衝撃後圧縮強度の測定結果を表2に示す。
【0044】
【表2】
Figure 0004475880
【0045】
*3:比較例4において、PEIはエポキシ樹脂組成物に微分散された状態であった。
【0046】
*4:繊維体積比率Vf=60%換算値
表2に示した結果から明らかなように、比較例1〜4のエポキシ樹脂組成物を用いたプリプレグから得られた繊維強化複合成形体は剛性(圧縮強度)及び靭性(衝撃後圧縮強度)のいずれか、或は両方とも本発明のエポキシ樹脂組成物から得られたものに比べて劣るものであった。
【0047】
尚、表1及び表2中の各成分は以下に示すものである。
・Epikote 604:テトラグリシジルアミノジフェニルメタン(4官能エポキシ樹脂:ジャパンエポキシレジン株式会社製(登録商標))、
・EPPN−201:フェノールノボラック型エポキシ樹脂(3官能以上のエポキシ樹脂を主成分とする:日本化薬株式会社製(登録商標))
・ELM−120:m−アミノフェノール系エポキシ樹脂(3官能エポキシ樹脂:住友化学株式会社製(登録商標))
・Epikote 807:ビスフェノールF型エポキシ樹脂(2官能エポキシ樹脂: ジャパンエポキシレジン株式会社製(登録商標))
・Epikote 828:ビスフェノールA型エポキシ樹脂(2官能エポキシ樹脂: ジャパンエポキシレジン株式会社製(登録商標))
・PES:ポリエーテルスルホン(住友化学株式会社製・熱可塑性樹脂)
・PEI:ポリエーテルイミド(ジー・イー・プラスチック株式会社製・熱可塑性樹脂)
・3,3’−DDS:3,3’−ジアミノジフェニルスルフォン(芳香族アミン系硬化剤)
・4,4’−DDS:4,4’−ジアミノジフェニルスルフォン(芳香族アミン系硬化剤)
【0048】
【発明の効果】
本発明のエポキシ樹脂組成物によれば、繊維強化複合成形材料のマトリックス樹脂として用いた際に剛性及び靭性に優れた繊維強化複合成形体を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition, a prepreg using the epoxy resin composition, and a fiber-reinforced composite molded body, and more particularly, a fiber-reinforced composite molded body having excellent rigidity and toughness when used as a matrix resin for a fiber-reinforced composite molding material. The present invention relates to an epoxy resin composition that can be obtained, a prepreg using the same, and a fiber-reinforced composite molded body.
[0002]
[Prior art]
Epoxy resin compositions are conventionally used as matrix resins for fiber reinforced composite molding materials. In particular, epoxy resin compositions are widely used as matrix resins for composite molding materials using carbon fibers as reinforcement fibers. Fiber reinforced composite molded products obtained from such composite molding materials have expanded the range of use from sports and leisure applications such as golf shafts and fishing rods to secondary structural materials for aircraft and even primary structural materials. ing.
[0003]
An epoxy resin composition and prepreg used in fields such as aircraft, an epoxy for a surface material of a self-adhesive honeycomb sandwich panel having a low volatile component of the resin composition, high heat resistance, and good adhesion A resin composition and a prepreg using the epoxy resin composition have been proposed (Patent Document 1).
[0004]
The technique proposed in Patent Document (1) is an epoxy resin composition in which the volatile content and the minimum viscosity upon curing are in a specific range, the gist of which is (a) a polyfunctional epoxy resin having a glycidylamino group, (B) An epoxy resin other than (a), (c) a polyisocyanate, (d) a thermoplastic resin and (e) an aromatic amine curing agent are contained as essential components.
[0005]
However, even if the conventional fiber-reinforced composite material molded body is excellent in either one of rigidity or toughness, there is no one that combines both. In recent years, there has been an increasing demand for a fiber-reinforced composite molded body having excellent toughness in addition to rigidity, and improvement of the above-described conventional techniques is desired.
[0006]
[Patent Document 1]
JP 2001-031838 A
[0007]
[Problems to be solved by the invention]
The present invention provides an epoxy resin composition capable of obtaining a fiber-reinforced composite molded article having excellent rigidity (for example, compressive strength) and toughness (for example, post-impact compressive strength) when used as a matrix resin for a fiber-reinforced composite molding material. An object is to provide a product, a prepreg using the product, and a fiber-reinforced composite molded body.
[0008]
[Means for Solving the Problems]
The present invention for achieving the above object is as follows.
[0009]
[1] 30 to 50 parts by mass of thermoplastic resin (B) and aromatic amine based on 100 parts by mass of epoxy resin (A) containing 80% by mass or more of an epoxy resin having at least three epoxy groups in one molecule The epoxy resin composition characterized by including 20-50 mass parts of hardening | curing agents (C).
[0010]
[2] The epoxy resin (A) is composed of tetraglycidyldiaminodiphenylmethane, N, N, O-triglycidyl-p-aminophenol, N, N, O-triglycidyl-m-aminophenol and a phenol novolac type epoxy resin. The epoxy resin composition according to [1], which is at least one selected from the group.
[0011]
[3] The epoxy resin composition according to [1], which contains polyetherimide and polyethersulfone as the thermoplastic resin (B).
[0012]
[4] The epoxy resin composition according to [1], wherein the aromatic amine curing agent (C) is 3,3′-diaminodiphenylsulfone and / or 4,4′-diaminodiphenylsulfone.
[0013]
[5] The epoxy resin composition according to [2], wherein the polyetherimide is not completely dissolved but is finely dispersed and the polyethersulfone is dissolved in the epoxy resin composition.
[0014]
[6] A prepreg using the epoxy resin composition according to [1].
[0015]
[7] A carbon fiber reinforced resin molded article obtained using the prepreg according to [6].
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The epoxy resin composition of the present invention has a thermoplastic resin (B) of 30 to 50 masses per 100 mass parts of an epoxy resin (A) containing 80 mass% or more of an epoxy resin having at least three epoxy groups in one molecule. Part and an aromatic amine type hardening | curing agent (C) 20-50 mass parts is characterized by the above-mentioned.
[0017]
The epoxy resin (A) in the present invention contains 80% by mass or more of an epoxy resin having at least three epoxy groups in one molecule.
[0018]
Examples of the epoxy resin having at least three epoxy groups in one molecule include tetraglycidyldiaminodiphenylmethane (tetrafunctional epoxy resin: Epikote 604: manufactured by Japan Epoxy Resin Co., Ltd. (registered trademark)), phenol novolac type epoxy resin. (Mainly composed of tri- or higher functional epoxy resin: EPPN-201: Nippon Kayaku Co., Ltd. (registered trademark)), m-aminophenol epoxy resin (trifunctional epoxy resin ELM-120: manufactured by Sumitomo Chemical Co., Ltd.) (Registered trademark)).
[0019]
The epoxy resin having at least three epoxy groups in one molecule (hereinafter sometimes referred to as “polyfunctional epoxy resin”) needs to be present in the epoxy resin (A) at 80% by mass or more. . When the ratio of the polyfunctional epoxy resin is less than 80% by mass in the epoxy resin (A), a fiber-reinforced composite molded article having excellent compressive strength cannot be obtained.
[0020]
In addition, in the epoxy resin (A) in this invention, the epoxy resin of 1-2 functional groups may be contained in the ratio of less than 20 mass%. As such an epoxy resin, for example, bisphenol F type epoxy resin (bifunctional epoxy resin: Epikote 807: manufactured by Japan Epoxy Resin Co., Ltd. (registered trademark)) or bisphenol A type epoxy resin (bifunctional epoxy resin: Epikote 828). : A bifunctional epoxy resin such as Japan Epoxy Resin Co., Ltd. (registered trademark)) can be cited as a preferred example.
[0021]
The thermoplastic resin (B) in the present invention is preferably a thermoplastic resin used as an engineering plastic, and a thermoplastic resin that is compatible with the epoxy resin (A) or has an affinity is particularly preferable. Examples of such thermoplastic resins include polyacrylate, polyimide, polyamide, polyetherimide (PEI), polyamideimide, polyarylether, phenoxy resin, polyarylsulfone, polyethersulfone (PES), and polyetheretherketone. (PEEK), polyphenylene ether and polycarbonate. Of these, polyethersulfone (PES) and polyetherimide (PEI) are preferable, and it is particularly preferable to use these two in combination.
[0022]
In the present invention, the proportion of the thermoplastic resin (B) in the epoxy resin composition needs to be 30 to 50 parts by mass with respect to 100 parts by mass of the epoxy resin (A). When the ratio of the thermoplastic resin (B) exceeds 50 parts by mass, not only the rigidity of the cured product obtained using the epoxy resin composition is lowered, but also the viscosity of the resin composition is increased. The handleability of the prepreg produced using the epoxy resin composition is lowered. Moreover, the toughness of the hardened | cured material obtained using an epoxy resin composition falls that the said ratio of a thermoplastic resin (B) is less than 30 mass parts. For the above reason, the ratio of the thermoplastic resin (B) to 100 parts by mass of the epoxy resin (A) is preferably 35 to 45 parts by mass.
[0023]
When polyethersulfone (PES) and polyetherimide (PEI) are used in combination as the thermoplastic resin (B), the polyetherimide is not completely dissolved but is finely dispersed, and the polyethersulfone is dissolved. It is preferable that it is blended in the epoxy resin composition in a state where it is compatible with the expression of rigidity represented by compressive strength and the impact resistance represented by compressive strength after impact.
[0024]
The aromatic amine curing agent (C) used in the epoxy resin composition of the present invention is an aromatic amine compound used as a curing agent for epoxy resin, such as diaminodiphenyl sulfone (DDS) and diaminodiphenylmethane (DDM). These may be used alone or as a mixture of two or more. In order to further improve the heat resistance of the cured product obtained using the epoxy resin composition, it is preferable to use DDS or a derivative thereof alone.
[0025]
In this invention, the ratio of the aromatic amine hardening | curing agent (C) which occupies in an epoxy resin composition needs to be 20-50 mass parts with respect to 100 mass parts of epoxy resins (A). When the ratio of the aromatic amine curing agent (C) exceeds 50 parts by mass, the number of crosslinking points increases, but the crosslinking density decreases, and the excess amount of the aromatic amine curing agent (C) increases. The cured product obtained using such an epoxy resin composition has reduced rigidity and heat-and-moisture resistance. Moreover, since the number of crosslinking points and a crosslinking density will fall that the said ratio of an aromatic amine hardening | curing agent (C) is less than 20 mass parts, the hardened | cured material obtained using such an epoxy resin composition has heat resistance and Both impact resistance decreases. For the above reason, the ratio of the aromatic amine curing agent (C) to 100 parts by mass of the epoxy resin (A) is preferably 25 to 45 parts by mass.
[0026]
The epoxy resin composition of the present invention preferably contains no polyisocyanate as a component. Generally, polyisocyanate reacts with a hydroxyl group contained in an epoxy resin to show an effect as a thickener or a curing agent. However, the polyfunctional epoxy resin which is the main component of the resin composition in the present invention has almost no hydroxyl group. Since it is not contained, there is almost no effect by mix | blending polyisocyanate. Therefore, the polyisocyanate is not required in the epoxy resin composition of the present invention, but may be contained in an amount of 1000 ppm or less, for example, to the extent that it exists as an impurity in the epoxy resin.
[0027]
The epoxy resin composition of the present invention essentially comprises the components (A), (B), and (C) described above, but the above-described (A) is necessary as long as the effects of the present invention are not impaired. ), (B) and (C) other than known curing agents, thermosetting resins, fillers, stabilizers, flame retardants, pigments and other various additives.
[0028]
The prepreg of the present invention is obtained by impregnating the fiber assembly with the epoxy resin composition of the present invention. The proportion of the epoxy resin composition in the prepreg is preferably 30 to 50% by mass. If the ratio of an epoxy resin composition is this range, the rigidity and toughness of the fiber reinforced composite molded body obtained by thermosetting a prepreg will be excellent.
[0029]
As a method for producing the prepreg of the present invention, a so-called resin film in which the epoxy resin composition of the present invention is applied in a thin film form on a release paper is placed above and below the fiber assembly, and heated and pressed. Examples thereof include a hot melt method in which the fiber aggregate is impregnated with the epoxy resin composition and a solvent method in which the epoxy resin composition is made into a varnish using an appropriate solvent and the varnish is impregnated into the reinforced fiber.
[0030]
Examples of reinforcing fibers that can be used in the prepreg of the present invention include carbon fibers, graphite fibers, aramid fibers, and glass fibers. Of these reinforcing fibers, carbon fibers are particularly preferred. When carbon fiber is used, the strand has a tensile strength of preferably 4000 MPa or more, particularly preferably 4500 MPa or more. These reinforcing fibers can be used in the form of a bundle of fibers aligned in one direction or a woven form.
[0031]
The fiber-reinforced composite molded article of the present invention can be obtained by subjecting the prepreg of the present invention to conventional thermosetting molding such as autoclave molding or hot press molding.
[0032]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. In the examples and comparative examples, various test methods were performed as follows.
[0033]
(1) Six compression strength prepregs were laminated in one direction and placed in a bag, which was heated in an autoclave at 180 ° C. for 2 hours and cured to produce a molded plate. During this time, the inside of the autoclave was pressurized to 0.5 MPa with pressurized air, and the inside of the bag was kept under vacuum (13 kPa or less). The obtained molded plate was subjected to a compression test in accordance with SACMA SRM1R-94 after confirming that no defects such as voids were generated inside the molded plate with an ultrasonic flaw detector. The strength [MPa] was measured.
[0034]
In this test, since it is greatly affected by Vf (fiber volume content) of the test piece, the measured value was converted to Vf = 60%.
[0035]
(2) 12 post-impact compressive strength prepregs in the direction of [+ 45 ° / 0 ° / −45 ° / 90 °], 12 laminates obtained by superposing 3 sets, and [90 ° / −45 4 layers stacked in the direction of [° / 0 ° / + 45 °]. 12 stacks of 3 sets stacked together are placed in a bag as a total of 24 stacks so that the 90 ° directions are aligned, A molded plate was produced by heating at 180 ° C. for 2 hours in an autoclave and curing. During this time, the inside of the autoclave was pressurized to 0.5 MPa with pressurized air, and the inside of the bag was kept under vacuum (13 kPa or less). The obtained molded plate was subjected to a compression test in accordance with SACMA SRM2R-94 after confirming that no defects such as voids were generated inside the molded plate with an ultrasonic flaw detector. The post-compression strength [MPa] was measured.
[0036]
In this test, since the influence of Vf (fiber volume content) of the test piece is small, the measured value was calculated as an actually measured value not converted to Vf.
[0037]
[Examples 1 to 4]
The components (A) and parts (B) of the composition shown in Table 1 below were heated and mixed in a kneader (part of the component (B) dissolved and mixed in the epoxy resin). Subsequently, the obtained mixture of the component (A) was transferred to a roll mill, and the remainder of the component (B) shown in Table 1 (part of the component (B) to be blended into the epoxy resin as a fine powder) and the component (C) were added. And kneaded well to obtain the epoxy resin compositions of Examples 1 to 4.
[0038]
Subsequently, the obtained epoxy resin composition was impregnated into a carbon fiber bundle (manufactured by Toho Tenax Co., Ltd., Besphite IM600-24K (registered trademark), number of filaments: 24,000, tensile strength: 5790 MPa, tensile elastic modulus: 285 MPa). Thus, a unidirectional prepreg having a carbon fiber basis weight of 190 g / m 2 and a resin content of 35% by mass was obtained. Table 1 shows the measurement results of the compressive strength and post-impact compressive strength of molded plates formed from these prepregs.
[0039]
[Table 1]
Figure 0004475880
[0040]
* 1: In Examples 1 to 4, all PEI was finely dispersed in the epoxy resin composition.
[0041]
* 2: Fiber volume ratio Vf = 60% conversion value As is clear from the results shown in Table 1, the fiber-reinforced composite molded body obtained from the prepreg using the epoxy resin composition of the present invention of Examples 1 to 4 Both were excellent in rigidity (compression strength) and toughness (compression strength after impact).
[0042]
[Comparative Examples 1-4]
An epoxy resin composition was obtained in the same manner as in Example 1 except that the types and amounts of the [A] component, [B] component, and [C] component were changed to those shown in Table 2 below.
[0043]
Subsequently, the obtained epoxy resin composition was impregnated into a carbon fiber bundle in the same manner as in Example 1 to obtain a prepreg. Table 2 shows the measurement results of the compressive strength and post-impact compressive strength of molded plates formed from these prepregs.
[0044]
[Table 2]
Figure 0004475880
[0045]
* 3: In Comparative Example 4, PEI was finely dispersed in the epoxy resin composition.
[0046]
* 4: Fiber volume ratio Vf = 60% conversion value As is clear from the results shown in Table 2, the fiber-reinforced composite molded bodies obtained from the prepregs using the epoxy resin compositions of Comparative Examples 1 to 4 are rigid ( Either or both of compression strength) and toughness (compression strength after impact) were inferior to those obtained from the epoxy resin composition of the present invention.
[0047]
In addition, each component in Table 1 and Table 2 is shown below.
Epikote 604: Tetraglycidylaminodiphenylmethane (tetrafunctional epoxy resin: Japan Epoxy Resin Co., Ltd. (registered trademark)),
EPPN-201: phenol novolac type epoxy resin (mainly trifunctional or higher functional epoxy resin: manufactured by Nippon Kayaku Co., Ltd. (registered trademark))
ELM-120: m-aminophenol epoxy resin (trifunctional epoxy resin: manufactured by Sumitomo Chemical Co., Ltd. (registered trademark))
Epikote 807: Bisphenol F type epoxy resin (bifunctional epoxy resin: manufactured by Japan Epoxy Resin Co., Ltd. (registered trademark))
Epikote 828: Bisphenol A type epoxy resin (bifunctional epoxy resin: manufactured by Japan Epoxy Resin Co., Ltd. (registered trademark))
・ PES: Polyethersulfone (Sumitomo Chemical Co., Ltd., thermoplastic resin)
・ PEI: Polyetherimide (manufactured by GE Plastics, thermoplastic resin)
3,3′-DDS: 3,3′-diaminodiphenyl sulfone (aromatic amine-based curing agent)
・ 4,4′-DDS: 4,4′-diaminodiphenyl sulfone (aromatic amine-based curing agent)
[0048]
【The invention's effect】
According to the epoxy resin composition of the present invention, a fiber-reinforced composite molded article having excellent rigidity and toughness can be obtained when used as a matrix resin of a fiber-reinforced composite molding material.

Claims (5)

一分子中に少なくとも3個のエポキシ基を有するエポキシ樹脂を80質量%以上含むエポキシ樹脂(A)100質量部に対し、熱可塑性樹脂(B)30〜45質量部及び芳香族アミン系硬化剤(C)20〜50質量部を含むエポキシ樹脂組成物であって、熱可塑性樹脂(B)として、ポリエーテルイミド10〜15質量部とポリエーテルスルホン20〜30質量部とを含むと共に、ポリエーテルイミドが完全に溶解せず分散の状態で、且つポリエーテルスルホンが溶解された状態でエポキシ樹脂組成物中に配合されていることを特徴とするエポキシ樹脂組成物。  30 to 45 parts by mass of thermoplastic resin (B) and aromatic amine curing agent (100 parts by mass of epoxy resin (A) containing 80% by mass or more of epoxy resin having at least 3 epoxy groups in one molecule) C) An epoxy resin composition containing 20 to 50 parts by mass, comprising 10 to 15 parts by mass of polyetherimide and 20 to 30 parts by mass of polyethersulfone as the thermoplastic resin (B), and polyetherimide The epoxy resin composition is characterized in that it is blended in the epoxy resin composition in a dispersed state without completely dissolving the polyethersulfone. エポキシ樹脂(A)が、テトラグリシジルジアミノジフェニルメタン、N,N,O−トリグリシジル−p−アミノフェノール、N,N,O−トリグリシジル−m−アミノフェノール及びフェノールノボラック型エポキシ樹脂よりなる群から選ばれる少なくとも1種である請求項1記載のエポキシ樹脂組成物。  The epoxy resin (A) is selected from the group consisting of tetraglycidyldiaminodiphenylmethane, N, N, O-triglycidyl-p-aminophenol, N, N, O-triglycidyl-m-aminophenol and a phenol novolac type epoxy resin. The epoxy resin composition according to claim 1, wherein the epoxy resin composition is at least one kind. 芳香族アミン系硬化剤(C)が、3,3’−ジアミノジフェニルスルホン及び/又は4,4’−ジアミノジフェニルスルホンである請求項1記載のエポキシ樹脂組成物。  The epoxy resin composition according to claim 1, wherein the aromatic amine curing agent (C) is 3,3'-diaminodiphenylsulfone and / or 4,4'-diaminodiphenylsulfone. 請求項1記載のエポキシ樹脂組成物を用いたプリプレグ。  A prepreg using the epoxy resin composition according to claim 1. 請求項記載のプリプレグを用いて得られる繊維強化複合成形体。A fiber-reinforced composite molded article obtained using the prepreg according to claim 4 .
JP2003067850A 2003-03-13 2003-03-13 Epoxy resin composition Expired - Lifetime JP4475880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003067850A JP4475880B2 (en) 2003-03-13 2003-03-13 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003067850A JP4475880B2 (en) 2003-03-13 2003-03-13 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JP2004277481A JP2004277481A (en) 2004-10-07
JP4475880B2 true JP4475880B2 (en) 2010-06-09

Family

ID=33285338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003067850A Expired - Lifetime JP4475880B2 (en) 2003-03-13 2003-03-13 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JP4475880B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249171A (en) * 2005-03-09 2006-09-21 Yokohama Rubber Co Ltd:The Curable resin composition and prepreg, and composite material obtained using the same
JP4821163B2 (en) * 2005-04-13 2011-11-24 横浜ゴム株式会社 Epoxy resin composition for fiber reinforced composite materials
EP1947130B1 (en) * 2005-09-22 2011-12-07 Toho Tenax Co., Ltd. Resin composition for radiation curing and prepreg
JP4141478B2 (en) 2006-04-25 2008-08-27 横浜ゴム株式会社 Epoxy resin composition for fiber reinforced composite materials
JP4141487B2 (en) * 2006-04-25 2008-08-27 横浜ゴム株式会社 Epoxy resin composition for fiber reinforced composite materials
JP2008088277A (en) * 2006-09-30 2008-04-17 Toho Tenax Co Ltd Resin composition for heat or radiation curing and prepreg
WO2008130484A1 (en) * 2007-04-17 2008-10-30 Hexcel Corporation Composite material with blend of thermoplastic particles
GB0619401D0 (en) * 2006-10-02 2006-11-08 Hexcel Composites Ltd Composite materials with improved performance
JP4829766B2 (en) * 2006-12-13 2011-12-07 横浜ゴム株式会社 Epoxy resin composition for fiber reinforced composite materials
JP5468853B2 (en) * 2009-09-07 2014-04-09 東邦テナックス株式会社 Composite material
KR20120110143A (en) * 2009-12-28 2012-10-09 미쯔비시 레이온 가부시끼가이샤 Method for producing resin dispersion for antifouling coating
US9676961B2 (en) * 2011-12-09 2017-06-13 Cytec Technology Corp. Surfacing film for composite structures and method of making the same
EP3724260A1 (en) * 2017-12-12 2020-10-21 Hexcel Corporation Semipreg with thermoplastic toughened novolac-based epoxy resin matrix
JPWO2021241734A1 (en) * 2020-05-29 2021-12-02
WO2022039104A1 (en) * 2020-08-20 2022-02-24 日鉄ケミカル&マテリアル株式会社 Epoxy resin composition and cured product
CN116162225B (en) * 2023-01-09 2024-04-02 华东理工大学 Epoxy resin material and preparation method and application thereof

Also Published As

Publication number Publication date
JP2004277481A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
JP3985224B2 (en) Matrix resin composition
KR102081662B1 (en) Epoxy resin composition, prepreg, and carbon-fiber-reinforced composite material
JP4475880B2 (en) Epoxy resin composition
US7208228B2 (en) Epoxy resin for fiber reinforced composite materials
WO2011118106A1 (en) Epoxy resin composition for use in a carbon-fiber-reinforced composite material, prepreg, and carbon-fiber-reinforced composite material
JP4821163B2 (en) Epoxy resin composition for fiber reinforced composite materials
WO2014030638A1 (en) Epoxy resin composition and film, prepreg, and fiber-reinforced plastic using same
WO2014030636A1 (en) Epoxy resin composition and film, prepreg, and fiber-reinforced plastic using same
JP4687167B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP6771885B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP4428978B2 (en) Epoxy resin composition
JPWO2019167579A1 (en) Thermosetting resin compositions, prepregs and fiber reinforced composites
JP2003026768A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP6573029B2 (en) Manufacturing method of fiber reinforced composite material
JP5017794B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP2006291094A (en) Epoxy resin composition for reinforced composite material
JPH02113031A (en) Epoxy resin mixture for fibrous composite material
JP4857587B2 (en) Epoxy resin composition for fiber reinforced composite materials
JPS6236421A (en) Epoxy resin composition for prepreg
EP3628701B1 (en) Prepreg and molding product thereof
KR102108053B1 (en) Method for manufacturing prepreg having high toughness, high strength and heat resistance characteristic, prepreg manufactured by the same
JP2011231187A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
WO2021095627A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP4821362B2 (en) Prepreg and fiber reinforced composites
JP2018012798A (en) Epoxy resin composition, prepreg, resin cured product and fiber-reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100309

R150 Certificate of patent or registration of utility model

Ref document number: 4475880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term