JP2006291094A - Epoxy resin composition for reinforced composite material - Google Patents

Epoxy resin composition for reinforced composite material Download PDF

Info

Publication number
JP2006291094A
JP2006291094A JP2005115803A JP2005115803A JP2006291094A JP 2006291094 A JP2006291094 A JP 2006291094A JP 2005115803 A JP2005115803 A JP 2005115803A JP 2005115803 A JP2005115803 A JP 2005115803A JP 2006291094 A JP2006291094 A JP 2006291094A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
weight
bisphenol
reinforced composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005115803A
Other languages
Japanese (ja)
Inventor
Takashi Kosaka
崇 高坂
Tomohiro Ito
友裕 伊藤
Mitsuhiro Iwata
充宏 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2005115803A priority Critical patent/JP2006291094A/en
Publication of JP2006291094A publication Critical patent/JP2006291094A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition for a reinforced composite material as a matrix resin of a reinforced composite material, wherein both of heat resistance and flexibility can be attained and can improve pre-preg handling properties. <P>SOLUTION: The epoxy resin composition for a reinforced composite material comprises 100 pts.wt. of an epoxy resin composed of (A) 20-40 wt.% of an epoxy resin containing a biphenyl skeleton, (B) 20-40 wt.% of an epoxy resin containing at least 3-epoxy groups per molecule which is liquid at 25°C and (C) 30-50 wt.% of a bisphenol A type epoxy resin, (D) 20-40 pts.wt. of a thermoplastic resin and (E) a curing agent. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、繊維強化複合材料用エポキシ樹脂組成物に関し、さらに詳しくは、耐熱性および靭性に優れた炭素繊維強化複合材料用エポキシ樹脂組成物に関する。   The present invention relates to an epoxy resin composition for fiber reinforced composite materials, and more particularly to an epoxy resin composition for carbon fiber reinforced composite materials having excellent heat resistance and toughness.

エポキシ樹脂組成物は、繊維強化複合材料用のマトリックス樹脂として広く使用されている。特に、炭素繊維を強化基材とする炭素繊維強化プラスチック(CFRP)は、比強度、比弾性率が高いことから、その特徴を生かして民間航空機において機体を軽量化するための構造材料として使用されている。このCFRPのマトリックス樹脂には、N,N,N’,N’−テトラグリシジルジアミノジフェニルメタンに代表される多官能性グリシジルアミンを主成分とするエポキシ樹脂と、ジアミノジフェニルスルホンを硬化剤とするエポキシ樹脂組成物を用いる例が多い。   Epoxy resin compositions are widely used as matrix resins for fiber reinforced composite materials. In particular, carbon fiber reinforced plastic (CFRP), which uses carbon fiber as a reinforced base material, has high specific strength and specific elastic modulus. Therefore, it is used as a structural material to reduce the weight of aircraft in commercial aircraft by taking advantage of its characteristics. ing. The CFRP matrix resin includes an epoxy resin mainly composed of polyfunctional glycidylamine represented by N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane, and an epoxy resin containing diaminodiphenylsulfone as a curing agent. There are many examples using the composition.

しかし多官能性グリシジルアミン型エポキシ樹脂を主成分とするエポキシ樹脂組成物を硬化した樹脂硬化物は、弾性率および耐熱性は高いという特徴を有するが、伸びが低くて硬く、脆いという問題があった。一般にエポキシ樹脂組成物は、耐熱性が優れたものは靭性が低く、逆に靭性の高いものは耐熱性が劣るという傾向にあるため、両方の特性を備えたエポキシ樹脂組成を見出すことは難しい状況にある。   However, a cured resin obtained by curing an epoxy resin composition containing a polyfunctional glycidylamine type epoxy resin as a main component is characterized by high modulus of elasticity and heat resistance, but has a problem of low elongation, hardness and brittleness. It was. In general, epoxy resin compositions tend to have low toughness for those with excellent heat resistance, and inferior heat resistance to those with high toughness, so it is difficult to find an epoxy resin composition with both characteristics It is in.

このため、特許文献1は、テトラグリシジルアミノジフェニルメタン等の多官能のエポキシ樹脂に、1〜2官能のエポキシ樹脂や熱可塑性樹脂を加え、靭性と剛性とのバランス改善を提案している。しかし、低官能性エポキシ樹脂および熱可塑性樹脂の配合により、伸びや靭性の改良は見られるが、未だ十分なレベルではなく、さらにタック性およびドレープ性等のプリプレグ作業性が著しく低下する問題が発生する。
特開2004−277481号公報
For this reason, Patent Document 1 proposes improving the balance between toughness and rigidity by adding a 1-2 functional epoxy resin or a thermoplastic resin to a polyfunctional epoxy resin such as tetraglycidylaminodiphenylmethane. However, although the improvement of elongation and toughness can be seen by the combination of low-functional epoxy resin and thermoplastic resin, it is still not a sufficient level, and there is a problem that prepreg workability such as tackiness and drapeability is significantly reduced. To do.
Japanese Patent Laid-Open No. 2004-277481

本発明の目的は、繊維強化複合材料のマトリックス樹脂として、耐熱性および靭性を両立し、かつプリプレグ作業性を改良する繊維強化複合材料用エポキシ樹脂組成物を提供することにある。   An object of the present invention is to provide an epoxy resin composition for a fiber-reinforced composite material that has both heat resistance and toughness and improves prepreg workability as a matrix resin of a fiber-reinforced composite material.

上記目的を達成する本発明の繊維強化複合材料用エポキシ樹脂組成物は、ビフェニル骨格を有するエポキシ樹脂(A)を20〜40重量%、一分子中に少なくとも3個のエポキシ基を有する25℃で液状のエポキシ樹脂(B)を20〜40重量%、ビスフェノールA型エポキシ樹脂(C)を30〜50重量%とから構成されるエポキシ樹脂成分100重量部に対して熱可塑性樹脂(D)を20〜40重量部、および硬化剤(E)を配合してなる繊維強化用エポキシ樹脂組成物である。   The epoxy resin composition for fiber-reinforced composite material of the present invention that achieves the above object is an epoxy resin (A) having a biphenyl skeleton of 20 to 40% by weight, at 25 ° C. having at least 3 epoxy groups in one molecule. The thermoplastic resin (D) is 20 parts per 100 parts by weight of the epoxy resin component composed of 20-40% by weight of the liquid epoxy resin (B) and 30-50% by weight of the bisphenol A type epoxy resin (C). It is an epoxy resin composition for fiber reinforcement formed by blending ˜40 parts by weight and a curing agent (E).

本発明の繊維強化複合材料用エポキシ樹脂組成物は、靭性およびプリプレグ作業性を改善するビフェニル骨格を有するエポキシ樹脂(A)、高い耐熱性を有する多官能性エポキシ樹脂(B)およびビスフェノールA型エポキシ樹脂(C)を特定の組成で組み合わせ、さらに熱可塑樹脂(D)を特定量配合することによって、樹脂硬化物の耐熱性および靭性を両立することができる。さらに、ビフェニル骨格を有するエポキシ樹脂(A)の配合により、プリプレグ作業性を改良することができる。   The epoxy resin composition for fiber-reinforced composite material of the present invention includes an epoxy resin (A) having a biphenyl skeleton that improves toughness and prepreg workability, a polyfunctional epoxy resin (B) having high heat resistance, and a bisphenol A type epoxy. By combining the resin (C) with a specific composition and further blending a specific amount of the thermoplastic resin (D), both the heat resistance and toughness of the cured resin can be achieved. Furthermore, prepreg workability can be improved by blending the epoxy resin (A) having a biphenyl skeleton.

本発明の繊維強化複合材料用エポキシ樹脂組成物に使用するビフェニル骨格を有するエポキシ樹脂(A)は、ビフェニル型2官能エポキシ樹脂であり、主に半導体用パッケージ製品用途に用いられ、高接着性を有するとともに、硬化後には剛直な特性を与えるエポキシ樹脂である。ビフェニル型2官能エポキシ樹脂は、好ましくは、下記式(1)で表されるテトラメチルビフェニル型2官能エポキシ樹脂エポキシ樹脂である。   The epoxy resin (A) having a biphenyl skeleton used in the epoxy resin composition for fiber-reinforced composite material of the present invention is a biphenyl type bifunctional epoxy resin, and is mainly used for semiconductor package products and has high adhesiveness. It is an epoxy resin that has a rigid characteristic after curing. The biphenyl type bifunctional epoxy resin is preferably a tetramethylbiphenyl type bifunctional epoxy resin epoxy resin represented by the following formula (1).

Figure 2006291094
Figure 2006291094

本発明のエポキシ樹脂組成物において、ビフェニル型2官能エポキシ樹脂(A)の配合量は、20〜40重量%、好ましくは25〜35重量%、より好ましくは27〜33重量%である。(A)成分の配合量が、上記範囲未満であるとプリプレグにおけるタック性が低くなり、上記範囲を超えるとエポキシ樹脂組成物の粘度が低くなりすぎる傾向があり、好ましくない。   In the epoxy resin composition of the present invention, the amount of the biphenyl type bifunctional epoxy resin (A) is 20 to 40% by weight, preferably 25 to 35% by weight, and more preferably 27 to 33% by weight. When the blending amount of the component (A) is less than the above range, tackiness in the prepreg becomes low, and when it exceeds the above range, the viscosity of the epoxy resin composition tends to be too low, which is not preferable.

本発明において、一分子中に少なくとも3個のエポキシ基を有する温度25℃で液状のエポキシ樹脂(B)としては、グリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂を挙げることができるが、特にグリシジルアミン型エポキシ樹脂が好ましく、例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、テトラグリシジルm−キシリレンジアミン、N,N−ジグリシジルアニリン等を好ましく挙げることができる。   In the present invention, the liquid epoxy resin (B) having at least 3 epoxy groups in one molecule at a temperature of 25 ° C. includes glycidylamine type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, glycidyl ether. Glycidylamine-type epoxy resins are preferred, for example, tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, triglycidylaminocresol, tetraglycidyl m-xylylenediamine, N, N-diglycidyl Preferable examples include aniline.

本発明において、エポキシ樹脂(B)は、一分子中に少なくとも3個のエポキシ基を有するものであり、一分子中に3〜4のエポキシ基を持つことがより好ましい。一分子中のエポキシ基が3個未満であると、樹脂硬化物の耐熱性および剛性を高くすることができず、好ましくない。   In the present invention, the epoxy resin (B) has at least three epoxy groups in one molecule, and more preferably has 3 to 4 epoxy groups in one molecule. When the number of epoxy groups in one molecule is less than 3, it is not preferable because the heat resistance and rigidity of the resin cured product cannot be increased.

本発明において、エポキシ樹脂(B)は、温度25℃で液状であり、流動性を確保して、プリプレグの十分なタック性、ドレープ性を保持するために必要である。   In the present invention, the epoxy resin (B) is liquid at a temperature of 25 ° C., and is necessary for ensuring fluidity and maintaining sufficient tackiness and draping properties of the prepreg.

本発明の樹脂組成物に使用するエポキシ樹脂(B)の配合量は、20〜40重量%、好ましくは25〜35重量%、より好ましくは27〜33重量%である。エポキシ樹脂(B)の配合量が、上記未満であると樹脂硬化物の耐熱性および剛性を高くすることができず、上記範囲を超えると樹脂硬化物の強度、伸びおよび靭性が低下してしまうため、好ましくない。   The compounding quantity of the epoxy resin (B) used for the resin composition of this invention is 20 to 40 weight%, Preferably it is 25 to 35 weight%, More preferably, it is 27 to 33 weight%. If the blending amount of the epoxy resin (B) is less than the above, the heat resistance and rigidity of the cured resin product cannot be increased, and if it exceeds the above range, the strength, elongation and toughness of the cured resin product will decrease. Therefore, it is not preferable.

本発明の繊維強化複合材料用エポキシ樹脂組成物に使用するビスフェノールA型エポキシ樹脂(C)は、ビスフェノールAジグリシジルエーテルを93重量%以上の含有するものである。このビスフェノールA型エポキシ樹脂(C)は、分子蒸留されたビスフェノールAジグリシジルエーテルであり、ビスフェノールAジグリシジルエーテルの含有量が、93重量%以上、好ましくは95重量%以上、より好ましくは98重量%以上のビスフェノールA型エポキシ樹脂である。ビスフェノールA型エポキシ樹脂(C)におけるビスフェノールAジグリシジルエーテルの含有量が、上記未満であると、樹脂硬化物の耐熱性およびガラス転移温度が低下してしまうため、好ましくない。   The bisphenol A type epoxy resin (C) used for the epoxy resin composition for fiber-reinforced composite materials of the present invention contains 93% by weight or more of bisphenol A diglycidyl ether. This bisphenol A type epoxy resin (C) is molecularly distilled bisphenol A diglycidyl ether, and the content of bisphenol A diglycidyl ether is 93% by weight or more, preferably 95% by weight or more, more preferably 98% by weight. % Or more of bisphenol A type epoxy resin. When the content of bisphenol A diglycidyl ether in the bisphenol A type epoxy resin (C) is less than the above, the heat resistance and glass transition temperature of the cured resin product are lowered, which is not preferable.

本発明の樹脂組成物に使用するビスフェノールA型エポキシ樹脂(C)は、常温で液状であるが、温度変化等の外部環境変化を受けることにより結晶が発生する結晶性を示すものである。通常、分子量が高いビスフェノールA型エポキシ樹脂は、常温で非晶質の固体となるが、溶融粘度が高く、耐湿性も低いため繊維強化複合材料用エポキシ樹脂組成物に使用することはできない。本発明のビスフェノールA型エポキシ樹脂(C)は、これとは異なり、繰返し度nが0であるビスフェノールAジグリシジルエーテル分子が、好ましくは93重量%以上、より好ましくは95重量%以上、さらに好ましくは98重量%以上のビスフェノールAジグリシジルエーテルからなるものであり、高純度であるために常温で結晶性を示すものである。さらに、本発明のビスフェノールA型エポキシ樹脂(C)は、エポキシ当量が、好ましくは170〜180g/eq、より好ましくは170〜175g/eqである。   The bisphenol A type epoxy resin (C) used in the resin composition of the present invention is liquid at room temperature, but exhibits crystallinity in which crystals are generated by undergoing external environmental changes such as temperature changes. Normally, a bisphenol A type epoxy resin having a high molecular weight becomes an amorphous solid at room temperature, but cannot be used in an epoxy resin composition for fiber-reinforced composite materials because of its high melt viscosity and low moisture resistance. The bisphenol A type epoxy resin (C) of the present invention is different from this in that the bisphenol A diglycidyl ether molecule having a repetition rate n of 0 is preferably 93% by weight or more, more preferably 95% by weight or more, and still more preferably Is composed of 98% by weight or more of bisphenol A diglycidyl ether, and exhibits high crystallinity at room temperature because of its high purity. Furthermore, the bisphenol A type epoxy resin (C) of the present invention has an epoxy equivalent of preferably 170 to 180 g / eq, more preferably 170 to 175 g / eq.

本発明において、ビスフェノールA型エポキシ樹脂(C)は、未硬化時の温度25℃における液状態の粘度が、好ましくは4000〜7000mPa・s、より好ましくは4000〜5000mPa・sである。ビスフェノールA型エポキシ樹脂(C)の粘度が、上記範囲外であると、樹脂硬化物の耐熱性およびガラス転移温度が低下してしまうこと、及びプリプレグにおけるタック性、ドレープ性等の作業性低下する傾向があり、好ましくない。なお、温度25℃における粘度は、BH型回転粘度計を用いた粘度測定値であり、具体的には、エポキシ樹脂の入った缶を温度25℃の恒温槽に入れ、BH型回転粘度計の負荷が安定した目盛りをもって、測定値とした値である。   In the present invention, the bisphenol A type epoxy resin (C) has a liquid state viscosity at a temperature of 25 ° C. when uncured, preferably 4000 to 7000 mPa · s, more preferably 4000 to 5000 mPa · s. If the viscosity of the bisphenol A type epoxy resin (C) is out of the above range, the heat resistance and glass transition temperature of the cured resin will decrease, and workability such as tackiness and draping properties in the prepreg will decrease. There is a tendency and is not preferred. The viscosity at a temperature of 25 ° C. is a viscosity measurement value using a BH type rotational viscometer. Specifically, a can containing an epoxy resin is placed in a thermostatic bath at a temperature of 25 ° C. It is a value measured with a scale with a stable load.

本発明の樹脂組成物において、ビスフェノールA型エポキシ樹脂(C)の配合量は、30〜50重量%、好ましくは35〜45重量%、より好ましくは37〜43重量%である。ビスフェノールA型エポキシ樹脂(C)の配合量が、上記範囲未満であると樹脂硬化物の伸びおよび靭性低下する虞があり、上記範囲を超えると樹脂硬化物の耐熱性および剛性が低下する虞があり、好ましくない。   In the resin composition of the present invention, the blending amount of the bisphenol A type epoxy resin (C) is 30 to 50% by weight, preferably 35 to 45% by weight, and more preferably 37 to 43% by weight. If the blended amount of the bisphenol A type epoxy resin (C) is less than the above range, the elongation and toughness of the cured resin may be reduced, and if it exceeds the above range, the heat resistance and rigidity of the cured resin may be reduced. Yes, not preferred.

本発明に使用するビスフェノールA型エポキシ樹脂(C)としては、YD−8125(東都化成社製)、エピコート825(ジャパンエポキシレジン社製)、MY790−1(ハンツマン・アドバンスト・マテリアルズ社製)等を挙げることができる。   Examples of the bisphenol A type epoxy resin (C) used in the present invention include YD-8125 (manufactured by Toto Kasei), Epicoat 825 (manufactured by Japan Epoxy Resin), MY790-1 (manufactured by Huntsman Advanced Materials), and the like. Can be mentioned.

本発明の樹脂組成物において、上記(A)〜(C)のエポキシ樹脂から構成されるエポキシ樹脂成分の合計は、100重量%であり、熱可塑性樹脂(D)および硬化剤(E)は、(A)〜(C)のエポキシ樹脂成分100重量部に対して、それぞれの配合量を重量規定するものである。   In the resin composition of the present invention, the total of the epoxy resin components composed of the epoxy resins (A) to (C) is 100% by weight, and the thermoplastic resin (D) and the curing agent (E) are: Each compounding quantity is prescribed | regulated with respect to 100 weight part of epoxy resin components of (A)-(C).

本発明の樹脂組成物は、熱可塑性樹脂(D)を配合するものであり、エポキシ樹脂との相溶性があるか、親和性がある熱可塑性樹脂を配合することが好ましく、具体的には、ポリエーテルスルホン樹脂(PES)、ポリエーテルイミド(PEI)、ポリイミド、ポリアミド、ポリアミドイミド、ポリアクリレート、ポリアリールエーテル、ポリアリールスルホン、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンエーテル等が、好ましく挙げられ、とりわけポリエーテルスルホン樹脂(PES)が、樹脂硬化物の耐熱性を高いレベルで維持しながら、靭性および伸び等の物性を向上させることができるため、好ましい。   The resin composition of the present invention contains the thermoplastic resin (D), and is preferably compatible with an epoxy resin or an affinity thermoplastic resin, specifically, Preferred examples include polyethersulfone resin (PES), polyetherimide (PEI), polyimide, polyamide, polyamideimide, polyacrylate, polyarylether, polyarylsulfone, polyetheretherketone (PEEK), and polyphenylene ether. In particular, polyethersulfone resin (PES) is preferable because it can improve physical properties such as toughness and elongation while maintaining the heat resistance of the cured resin at a high level.

本発明の樹脂組成物において、熱可塑性樹脂(D)の配合量は、上記(A)〜(C)のエポキシ樹脂成分100重量部に対して、15〜40重量部、好ましくは18〜35重量部、より好ましくは21重量部以上30重量部未満である。熱可塑性樹脂(D)の配合量が、上記範囲未満であると樹脂硬化物の靭性を改良する十分な効果が得られない傾向があり、40重量部を超えると樹脂硬化物の剛性が低下する傾向があり、さらにエポキシ樹脂組成物の粘度が高くなるため、そのエポキシ樹脂組成物を用いて作製したプリプレグにおけるタック性やドレープ性等の作業性が低下する傾向があり、好ましくない。   In the resin composition of the present invention, the thermoplastic resin (D) is blended in an amount of 15 to 40 parts by weight, preferably 18 to 35 parts by weight, based on 100 parts by weight of the epoxy resin components (A) to (C). Part, more preferably 21 parts by weight or more and less than 30 parts by weight. When the blending amount of the thermoplastic resin (D) is less than the above range, there is a tendency that a sufficient effect for improving the toughness of the cured resin is not obtained, and when it exceeds 40 parts by weight, the rigidity of the cured resin decreases. Since there is a tendency and the viscosity of an epoxy resin composition becomes high, workability, such as tackiness and draping property, in a prepreg produced using the epoxy resin composition tends to decrease, which is not preferable.

本発明において、硬化剤(E)は、エポキシ基と反応し得る活性基を有する化合物であれば、特に限定されるものではないが、ジアミノジフェニルメタン、ジアミノジフェニルスルホンのような芳香族アミン、脂肪族アミン、イミダゾール誘導体、ジシアンジアミド、テトラメチルグアニジン、チオ尿素付加アミン、メチルヘキサヒドロフタル酸無水物のようなカルボン酸無水物、カルボン酸ヒドラジド、カルボン酸アミド、ポリフェノール化合物、ノボラック樹脂、ポリメルカプタン等が好ましく挙げられる。とりわけ樹脂硬化物の耐熱性向上の観点からジアミノジフェニルスルホンを使用することが好ましい。具体的には、3,3’ジアミノジフェニルスルホン(3,3’−DDS)および/または4,4’ジアミノジフェニルスルホン(4,4’−DDS)が好ましい。硬化剤(E)は、3,3’−DDSおよび4,4’−DDSのいずれか一方を使用してもよいし、両者をともに使用してもよい。   In the present invention, the curing agent (E) is not particularly limited as long as it is a compound having an active group capable of reacting with an epoxy group, but is not limited to aromatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone, and aliphatic groups. Preferred are amines, imidazole derivatives, dicyandiamide, tetramethylguanidine, thiourea-added amines, carboxylic acid anhydrides such as methylhexahydrophthalic anhydride, carboxylic acid hydrazides, carboxylic acid amides, polyphenol compounds, novolak resins, polymercaptans, etc. Can be mentioned. In particular, diaminodiphenyl sulfone is preferably used from the viewpoint of improving the heat resistance of the cured resin. Specifically, 3,3′diaminodiphenylsulfone (3,3′-DDS) and / or 4,4′diaminodiphenylsulfone (4,4′-DDS) are preferable. As the curing agent (E), either one of 3,3′-DDS and 4,4′-DDS may be used, or both may be used together.

本発明の樹脂組成物において、硬化剤(E)の配合量は、上記(A)〜(C)エポキシ樹脂成分のエポキシ当量に対する硬化剤が有する活性水素当量の比が、好ましくは0.7〜0.9当量、好ましくは0.75〜0.85当量である。硬化剤(E)の配合量が、上記範囲未満であると樹脂硬化物の十分な耐熱性を得ることができない虞があり、上記範囲を超えるとエポキシ樹脂の架橋点数は増加するが、架橋密度が低下して、樹脂硬化物の剛性および耐熱性が低下する傾向があり、好ましくない。   In the resin composition of the present invention, the compounding amount of the curing agent (E) is preferably a ratio of the active hydrogen equivalent of the curing agent to the epoxy equivalent of the epoxy resin component (A) to (C), preferably 0.7 to 0.9 equivalent, preferably 0.75 to 0.85 equivalent. If the blending amount of the curing agent (E) is less than the above range, sufficient heat resistance of the resin cured product may not be obtained, and if it exceeds the above range, the number of crosslinking points of the epoxy resin increases, but the crosslinking density Decreases, and the rigidity and heat resistance of the resin cured product tend to decrease, which is not preferable.

本発明のエポキシ樹脂組成物は、ビフェニル骨格を有するエポキシ樹脂(A)を配合することにより、樹脂硬化物の伸び・靭性を改良して耐熱性との両立を達成しつつ、特にプリプレグ作業性を大幅に改善することができるものである。   In the epoxy resin composition of the present invention, the epoxy resin (A) having a biphenyl skeleton is blended to improve the elongation and toughness of the cured resin and achieve both heat resistance and, in particular, the prepreg workability. It can be greatly improved.

本発明の繊維強化複合材料用エポキシ樹脂組成物は、上記(A)〜(E)成分を必須とするものであるが、本発明の効果を損なわない範囲で、必要に応じて上記(A)〜(E)成分以外の公知の硬化剤、熱硬化性樹脂、充填剤、安定剤、難燃剤、顔料等の各種添加剤を含有させてもよい。   The epoxy resin composition for fiber-reinforced composite material of the present invention essentially comprises the above components (A) to (E), but the above-mentioned (A) as long as it does not impair the effects of the present invention. Various additives such as known curing agents, thermosetting resins, fillers, stabilizers, flame retardants and pigments other than the component (E) may be contained.

本発明のプリプレグは、強化繊維基材に本発明のエポキシ樹脂組成物を含浸させることによって得られる。強化繊維基材は、炭素繊維、黒鉛繊維、アラミド繊維、ガラス繊維等を好ましく挙げることができる。これらの強化繊維のうち、炭素繊維をプリプレグに使用することが、特に好ましい。   The prepreg of the present invention can be obtained by impregnating the reinforcing fiber base material with the epoxy resin composition of the present invention. Preferred examples of the reinforcing fiber base include carbon fiber, graphite fiber, aramid fiber, and glass fiber. Of these reinforcing fibers, it is particularly preferable to use carbon fibers for the prepreg.

プリプレグ中のエポキシ樹脂組成物の割合は、好ましくは30〜50質量%、より好ましくは32〜42質量%である。エポキシ樹脂組成物の割合がこの範囲であれば、プリプレグを熱硬化させて得られる炭素繊維強化複合材料の耐熱性、機械的強度及び靭性を高いレベルで両立することができる。   The ratio of the epoxy resin composition in the prepreg is preferably 30 to 50% by mass, more preferably 32 to 42% by mass. When the ratio of the epoxy resin composition is within this range, the heat resistance, mechanical strength and toughness of the carbon fiber reinforced composite material obtained by thermosetting the prepreg can be compatible at a high level.

本発明のプリプレグを製造する方法は、本発明のエポキシ樹脂組成物を離型紙の上に薄いフィルム状に塗布したいわゆる樹脂フィルムを、強化繊維基材の上下に配置し、加熱及び加圧することでエポキシ樹脂組成物を強化繊維基材に含浸させるホットメルト法や、エポキシ樹脂組成物を適当な溶媒を用いてワニス状にし、このワニスを強化繊維に含浸させる溶剤法を、好ましく挙げることができる。本発明のプリプレグは、特定のエポキシ樹脂組成物を使用することから、タック性およびドレープ性に優れており、プリプレグ作業性が良好であることから、プリプレグの生産効率を向上させることができる。   The method for producing the prepreg of the present invention is by placing so-called resin films in which the epoxy resin composition of the present invention is applied on a release paper in a thin film form above and below the reinforcing fiber base, and heating and pressing. Preferable examples include a hot melt method in which the reinforcing fiber base material is impregnated with the epoxy resin composition and a solvent method in which the epoxy resin composition is made into a varnish using an appropriate solvent and the varnish is impregnated into the reinforcing fiber. Since the prepreg of the present invention uses a specific epoxy resin composition, it is excellent in tackiness and drapeability, and has good prepreg workability, so that the production efficiency of the prepreg can be improved.

本発明のプリプレグを通常のオートクレーブ成形またはホットプレス成形等の熱硬化成形することにより、繊維強化複合材料を製造することができる。このようにして得られた繊維強化複合材料は、耐熱性および機械的強度と、靭性とを高いレベルで両立する優れた特性を有するものである。   A fiber-reinforced composite material can be produced by subjecting the prepreg of the present invention to thermosetting molding such as ordinary autoclave molding or hot press molding. The fiber reinforced composite material thus obtained has excellent characteristics that achieve both high heat resistance, mechanical strength, and toughness.

以下、実施例によって本発明をさらに説明するが、本発明の範囲をこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, the scope of the present invention is not limited to these Examples.

実施例および比較例中に示される一方向プリプレグの作製方法およびプリプレグ作業性の評価、炭素繊維強化複合材料のガラス転移温度の測定、面内せん断強度、衝撃後圧縮強度の測定は、次のとおり実施した。   The production method of the unidirectional prepreg shown in the examples and comparative examples and the evaluation of the prepreg workability, the measurement of the glass transition temperature of the carbon fiber reinforced composite material, the in-plane shear strength, and the measurement of the compressive strength after impact are as follows. Carried out.

〔一方向プリプレグの作製方法〕
エポキシ樹脂組成物を用いて離型紙上に樹脂フィルムを形成し、このフィルムを一方向配列炭素繊維(東邦テナックス社製IM−600)に、樹脂含有量が35重量%となるように加熱加圧して転写し、樹脂目付190g/mの一方向プリプレグを得た。
[Production method of unidirectional prepreg]
A resin film is formed on a release paper using an epoxy resin composition, and this film is heated and pressurized to unidirectionally arranged carbon fibers (IM-600 manufactured by Toho Tenax Co., Ltd.) so that the resin content is 35% by weight. And unidirectional prepreg having a resin basis weight of 190 g / m 2 was obtained.

〔炭素繊維強化複合材料(CFRP)のガラス転移温度〕
得られた一方向プリプレグを[0°]の方向に10枚積層し、この積層物に真空パックを適用してオートクレーブ内で、温度180℃で2時間加熱し、硬化させて成形板を作製した。この間、オートクレーブ内を圧空で0.32MPaに加圧した。得られた成形板を3mm×3mmの寸法に加工し、熱機械分析装置(TMA装置)により、試験片加工直後のガラス転移温度を、昇温速度10℃/分の条件で測定した。
[Glass transition temperature of carbon fiber reinforced composite material (CFRP)]
Ten sheets of the obtained unidirectional prepreg were laminated in the direction of [0 °], a vacuum pack was applied to the laminate, and the autoclave was heated at a temperature of 180 ° C. for 2 hours and cured to produce a molded plate. . During this time, the inside of the autoclave was pressurized to 0.32 MPa with compressed air. The obtained molded plate was processed into a size of 3 mm × 3 mm, and the glass transition temperature immediately after the test piece was processed was measured with a thermomechanical analyzer (TMA apparatus) at a temperature increase rate of 10 ° C./min.

〔プリプレグの作業性−タック性・ドレープ性の評価〕
各プリプレグを触手により、タック性およびドレープ性を10段階評価した。評点方法は、標準的なタック性・ドレープ性を有するプリプレグを別途準備し、これの評点を5とした相対評価により決定した。粘着性の強いもののタック性に高い得点、および柔軟性の高いもののドレープ性に高い得点を与えた。
[Evaluation of workability of prepreg-tack and drape]
Each of the prepregs was evaluated with ten levels of tackiness and drapeability by using tentacles. The scoring method was determined by a relative evaluation in which a prepreg having standard tackiness and draping properties was separately prepared and the score was 5. A high score was given to the tackiness of the strongly sticky one, and a high score was given to the drape of the highly flexible one.

〔CFRPの面内せん断強度〕
プリプレグを[+45°/−45°]の方向に鏡面対称に16枚積層し、この積層物に真空パックを適用してオートクレーブ内で、温度180℃で2時間加熱し、硬化させて成形板を作製した。この間、オートクレーブ内を圧空で0.32MPaに加圧した。得られた成形板を、所定の寸法に加工して、ASTM D−3518に準拠して、面内せん断強度を測定した。
[In-plane shear strength of CFRP]
Sixteen prepregs are laminated mirror-symmetrically in the direction of [+ 45 ° / −45 °], a vacuum pack is applied to this laminate, and it is heated in an autoclave at a temperature of 180 ° C. for 2 hours and cured to form a molded plate Was made. During this time, the inside of the autoclave was pressurized to 0.32 MPa with compressed air. The obtained molded plate was processed into a predetermined size, and the in-plane shear strength was measured according to ASTM D-3518.

〔CFRPの衝撃後圧縮強度〕
プリプレグを[+45°/0°/−45°/90°]の方向に鏡面対称に24枚積層し、この積層物に真空パックを適用してオートクレーブ内で、温度180℃で2時間加熱し、硬化させて成形板を作製した。この間、オートクレーブ内を圧空で0.32MPaに加圧した。得られた成形板を、所定の寸法に加工して、SACMA−SRM2に準拠して、衝撃後圧縮強度を衝撃荷重25Jで測定した。
[Compressive strength after impact of CFRP]
Twenty-four prepregs were laminated mirror-symmetrically in the direction of [+ 45 ° / 0 ° / −45 ° / 90 °], and a vacuum pack was applied to this laminate and heated in an autoclave at a temperature of 180 ° C. for 2 hours. And cured to produce a molded plate. During this time, the inside of the autoclave was pressurized to 0.32 MPa with compressed air. The obtained molded plate was processed into a predetermined dimension, and the post-impact compressive strength was measured at an impact load of 25 J in accordance with SACMA-SRM2.

実施例1および比較例1、2において、以下に示す原材料を使用した。
・ビフェニル骨格を有するエポキシ樹脂(A)
樹脂A−1:テトラメチルビフェニル型2官能エポキシ樹脂(ジャパンエポキシレジン社製YX−4000)
・一分子中に少なくとも3個のエポキシ基を有する温度25℃で液状のエポキシ樹脂(B)
樹脂B−1:N,N,O−トリグリシジル−p−アミノフェノール樹脂(ハンツマン・アドバンスト・マテリアルズ社製MY−0510)
樹脂B−2:フェノールノボラック型エポキシ樹脂(東都化成社製YDPN−638)
樹脂B−3:N,N,N’,N’−テトラグリシジルジアミノジフェニルメタン樹脂(ハンツマン・アドバンスト・マテリアルズ社製MY−721)
・ビスフェノール型エポキシ樹脂(C)
樹脂C−1:ビスフェノールA型エポキシ樹脂(常温結晶型、東都化成社製YD−8125)、ビスフェノールAジグリシジルエーテルの含有量98重量%以上、温度25℃における液化した粘度が4000〜5000mPa・s、エポキシ当量が170〜175g/eqである。
・熱可塑性樹脂(D)
樹脂D−1:ポリエーテルスルホン樹脂(住友化学社製スミカエクセルPES5003P)
・硬化剤(E)
硬化剤E−1:3,3’−ジアミノジフェニルスルホン(小西化学工業社製3,3’−DAS)
In Example 1 and Comparative Examples 1 and 2, the raw materials shown below were used.
・ Epoxy resin having biphenyl skeleton (A)
Resin A-1: Tetramethylbiphenyl type bifunctional epoxy resin (YX-4000 manufactured by Japan Epoxy Resin Co., Ltd.)
-Epoxy resin that is liquid at a temperature of 25 ° C. having at least three epoxy groups in one molecule (B)
Resin B-1: N, N, O-triglycidyl-p-aminophenol resin (MY-0510 manufactured by Huntsman Advanced Materials)
Resin B-2: Phenol novolac epoxy resin (YDPN-638 manufactured by Tohto Kasei Co., Ltd.)
Resin B-3: N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane resin (MY-721 manufactured by Huntsman Advanced Materials)
・ Bisphenol type epoxy resin (C)
Resin C-1: Bisphenol A type epoxy resin (normal temperature crystal type, YD-8125 manufactured by Tohto Kasei Co., Ltd.), bisphenol A diglycidyl ether content of 98% by weight or more, and liquefied viscosity at 25 ° C. is 4000 to 5000 mPa · s. The epoxy equivalent is 170 to 175 g / eq.
・ Thermoplastic resin (D)
Resin D-1: Polyethersulfone resin (Sumika Excel PES5003P manufactured by Sumitomo Chemical Co., Ltd.)
・ Curing agent (E)
Curing agent E-1: 3,3′-diaminodiphenyl sulfone (3,3′-DAS manufactured by Konishi Chemical Industry Co., Ltd.)

実施例1
表1に示す配合のエポキシ樹脂(A)〜(C)の全量を、温度125℃に設定したプラネタリミキサを用いて、均一な溶液になるまで撹拌・混合した。次に熱可塑性樹脂(D)25重量部を、この溶液中に加え、樹脂(D)の粉体が均一に溶解するまで撹拌・混合した。その後、このプラネタリミキサの温度を95℃に設定し、樹脂温度が均一になったところで、硬化剤(E)を投入して、撹拌・混合してエポキシ樹脂組成物を調整した。
Example 1
The total amount of the epoxy resins (A) to (C) having the composition shown in Table 1 was stirred and mixed using a planetary mixer set at a temperature of 125 ° C. until a uniform solution was obtained. Next, 25 parts by weight of the thermoplastic resin (D) was added to this solution, and stirred and mixed until the powder of the resin (D) was uniformly dissolved. Thereafter, the temperature of the planetary mixer was set to 95 ° C. When the resin temperature became uniform, the curing agent (E) was added, and the epoxy resin composition was prepared by stirring and mixing.

なお(A)〜(C)のエポキシ樹脂成分の単位は、重量%であり、これらの合計は、100重量%である。(D)成分の配合は、(A)〜(C)のエポキシ樹脂成分100重量部に対する重量部により表した。また(E)成分の配合は、エポキシ樹脂成分のエポキシ基当量に対する硬化剤の当量により表した。   In addition, the unit of the epoxy resin component of (A)-(C) is weight%, and these sum total is 100 weight%. The blending of the component (D) was represented by parts by weight with respect to 100 parts by weight of the epoxy resin components (A) to (C). The blending of the component (E) was represented by the equivalent of the curing agent with respect to the epoxy group equivalent of the epoxy resin component.

得られたエポキシ樹脂組成物を用いてプリプレグおよび繊維強化成形板を作成した。さらに、前記の方法でガラス転移温度、炭素繊維強化複合材料の面内せん断強度、衝撃後圧縮強度、プリプレグのタック性およびドレープ性を前記の方法で測定した。その測定結果を表1に示す。   Using the obtained epoxy resin composition, a prepreg and a fiber reinforced molded plate were prepared. Further, the glass transition temperature, the in-plane shear strength of the carbon fiber reinforced composite material, the compressive strength after impact, the tackiness and draping property of the prepreg were measured by the above methods. The measurement results are shown in Table 1.

Figure 2006291094
Figure 2006291094

比較例1、2
エポキシ樹脂組成物を表1のように変更したことを除き、実施例と同様に調製して、各種評価を行った。その測定結果を表1に示す。
Comparative Examples 1 and 2
Except having changed the epoxy resin composition as shown in Table 1, it was prepared in the same manner as in the Examples, and various evaluations were performed. The measurement results are shown in Table 1.

本発明のエポキシ樹脂組成物(実施例1)は、ビフェニル骨格を有するエポキシ樹脂を配合しない樹脂組成物(比較例1、2)と比べ、ガラス転移温度(耐熱性)が若干、低下するものの、面内せん断強度(伸び)および衝撃後圧縮強度(靭性)が大幅に改善されることが認められた。さらに、本発明のプリプレグは、タック性およびドレープ性のプリプレグ作業性にも優れ、その実用的価値が高いことが確認された。   Although the epoxy resin composition of the present invention (Example 1) is slightly lower in glass transition temperature (heat resistance) than the resin composition not containing an epoxy resin having a biphenyl skeleton (Comparative Examples 1 and 2), It was observed that in-plane shear strength (elongation) and post-impact compressive strength (toughness) were greatly improved. Furthermore, it was confirmed that the prepreg of the present invention is excellent in tackability and draping prepreg workability and has high practical value.

したがって、本発明のエポキシ樹脂組成物を用いることで、伸び・靭性を改善し、また作業性も良好なプリプレグが得られることが分かった。
Therefore, it was found that by using the epoxy resin composition of the present invention, a prepreg having improved elongation and toughness and good workability can be obtained.

Claims (6)

ビフェニル骨格を有するエポキシ樹脂(A)を20〜40重量%、一分子中に少なくとも3個のエポキシ基を有する25℃で液状のエポキシ樹脂(B)を20〜40重量%、ビスフェノールA型エポキシ樹脂(C)を30〜50重量%とから構成されるエポキシ樹脂成分100重量部に対して熱可塑性樹脂(D)を20〜40重量部、および硬化剤(E)を配合してなる繊維強化用エポキシ樹脂組成物。   20-40 wt% of epoxy resin (A) having biphenyl skeleton, 20-40 wt% of epoxy resin (B) liquid at 25 ° C. having at least 3 epoxy groups in one molecule, bisphenol A type epoxy resin (C) for fiber reinforcement formed by blending 20 to 40 parts by weight of a thermoplastic resin (D) and 100 parts by weight of an epoxy resin component composed of 30 to 50% by weight and a curing agent (E) Epoxy resin composition. 前記ビフェニル骨格を有するエポキシ樹脂(A)が、下式(1)で表されるテトラメチルビフェニル骨格を有する請求項1記載の繊維強化用エポキシ樹脂組成物。
Figure 2006291094
The epoxy resin composition for fiber reinforcement according to claim 1, wherein the epoxy resin (A) having a biphenyl skeleton has a tetramethylbiphenyl skeleton represented by the following formula (1).
Figure 2006291094
前記ビスフェノールA型エポキシ樹脂(C)が、ビスフェノールAジグリシジルエーテルを93重量%以上含有して、未硬化時の温度25℃における液化した粘度が4000〜7000mPa・sである請求項1または2に記載の繊維強化用エポキシ樹脂組成物。   The bisphenol A type epoxy resin (C) contains 93% by weight or more of bisphenol A diglycidyl ether, and the liquefied viscosity at a temperature of 25 ° C. when uncured is 4000 to 7000 mPa · s. The epoxy resin composition for fiber reinforcement as described. 前記熱可塑性樹脂(D)がポリエーテルスルホン樹脂である請求項1〜3のいずれかに記載の繊維強化用エポキシ樹脂組成物。   The epoxy resin composition for fiber reinforcement according to any one of claims 1 to 3, wherein the thermoplastic resin (D) is a polyethersulfone resin. 前記硬化剤(E)が、3,3’ジアミノジフェニルスルホンおよび/または4,4’ジアミノジフェニルスルホンである請求項1〜4のいずれかに記載の繊維強化用エポキシ樹脂組成物。   The epoxy resin composition for fiber reinforcement according to any one of claims 1 to 4, wherein the curing agent (E) is 3,3 'diaminodiphenyl sulfone and / or 4,4' diaminodiphenyl sulfone. 請求項1〜5のいずれかに記載のエポキシ樹脂組成物を使用する炭素繊維プリプレグ。   The carbon fiber prepreg which uses the epoxy resin composition in any one of Claims 1-5.
JP2005115803A 2005-04-13 2005-04-13 Epoxy resin composition for reinforced composite material Pending JP2006291094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005115803A JP2006291094A (en) 2005-04-13 2005-04-13 Epoxy resin composition for reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005115803A JP2006291094A (en) 2005-04-13 2005-04-13 Epoxy resin composition for reinforced composite material

Publications (1)

Publication Number Publication Date
JP2006291094A true JP2006291094A (en) 2006-10-26

Family

ID=37412009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005115803A Pending JP2006291094A (en) 2005-04-13 2005-04-13 Epoxy resin composition for reinforced composite material

Country Status (1)

Country Link
JP (1) JP2006291094A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144110A (en) * 2006-12-13 2008-06-26 Yokohama Rubber Co Ltd:The Epoxy resin composition for fiber-reinforced composite material
JP2010126702A (en) * 2008-12-01 2010-06-10 Toray Ind Inc Epoxy resin composition, fiber-reinforced composite material, and methods for producing them
JP2012171973A (en) * 2011-02-17 2012-09-10 Denso Corp Epoxy resin composition and cured product of the same
WO2018225411A1 (en) * 2017-06-07 2018-12-13 Dic株式会社 Epoxy resin, production method, epoxy resin composition, and cured product thereof
WO2019244879A1 (en) 2018-06-20 2019-12-26 住友化学株式会社 Epoxy resin composition, prepreg and molded body
US11319406B2 (en) * 2017-11-14 2022-05-03 Eneos Corporation Prepreg, fiber-reinforced composite material, and molded article

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326750A (en) * 1989-06-23 1991-02-05 Sumitomo Chem Co Ltd Fiber-reinforced composite material
JPH05239183A (en) * 1992-02-28 1993-09-17 Nippon Chibagaigii Kk Thermosetting resin
JPH0625384A (en) * 1992-07-06 1994-02-01 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JPH08301982A (en) * 1995-05-09 1996-11-19 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite, prepreg, and composite
JPH09235397A (en) * 1996-03-01 1997-09-09 Toray Ind Inc Prepreg and fiber-reinforced plastic
JPH10282659A (en) * 1997-04-08 1998-10-23 Ibiden Co Ltd Photosensitive resin composition for wiring board, adhesive for electroless plating and printed circuit board
JPH111546A (en) * 1997-04-18 1999-01-06 Nippon Steel Chem Co Ltd Epoxy resin composition and electronic component
JPH11171972A (en) * 1997-12-08 1999-06-29 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP2000191746A (en) * 1998-12-25 2000-07-11 Mitsubishi Rayon Co Ltd Epoxy resin composition
JP2000344870A (en) * 1999-06-02 2000-12-12 Toray Ind Inc Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2001114915A (en) * 1999-10-13 2001-04-24 Toray Ind Inc Prepreg and fiber-reinforced composite material
WO2001092368A1 (en) * 2000-05-30 2001-12-06 Toray Industries, Inc. Epoxy resin composition for fiber-reinforced composite material
JP2002003702A (en) * 2000-06-21 2002-01-09 Matsushita Electric Works Ltd Epoxy resin composition, insulation film, metal foil with resin, and multilayer printed circuit board
JP2004244584A (en) * 2003-02-17 2004-09-02 Hitachi Chem Co Ltd Insulating resin composition and use thereof

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326750A (en) * 1989-06-23 1991-02-05 Sumitomo Chem Co Ltd Fiber-reinforced composite material
JPH05239183A (en) * 1992-02-28 1993-09-17 Nippon Chibagaigii Kk Thermosetting resin
JPH0625384A (en) * 1992-07-06 1994-02-01 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JPH08301982A (en) * 1995-05-09 1996-11-19 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite, prepreg, and composite
JPH09235397A (en) * 1996-03-01 1997-09-09 Toray Ind Inc Prepreg and fiber-reinforced plastic
JPH10282659A (en) * 1997-04-08 1998-10-23 Ibiden Co Ltd Photosensitive resin composition for wiring board, adhesive for electroless plating and printed circuit board
JPH111546A (en) * 1997-04-18 1999-01-06 Nippon Steel Chem Co Ltd Epoxy resin composition and electronic component
JPH11171972A (en) * 1997-12-08 1999-06-29 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP2000191746A (en) * 1998-12-25 2000-07-11 Mitsubishi Rayon Co Ltd Epoxy resin composition
JP2000344870A (en) * 1999-06-02 2000-12-12 Toray Ind Inc Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2001114915A (en) * 1999-10-13 2001-04-24 Toray Ind Inc Prepreg and fiber-reinforced composite material
WO2001092368A1 (en) * 2000-05-30 2001-12-06 Toray Industries, Inc. Epoxy resin composition for fiber-reinforced composite material
JP2002003702A (en) * 2000-06-21 2002-01-09 Matsushita Electric Works Ltd Epoxy resin composition, insulation film, metal foil with resin, and multilayer printed circuit board
JP2004244584A (en) * 2003-02-17 2004-09-02 Hitachi Chem Co Ltd Insulating resin composition and use thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144110A (en) * 2006-12-13 2008-06-26 Yokohama Rubber Co Ltd:The Epoxy resin composition for fiber-reinforced composite material
JP2010126702A (en) * 2008-12-01 2010-06-10 Toray Ind Inc Epoxy resin composition, fiber-reinforced composite material, and methods for producing them
JP2012171973A (en) * 2011-02-17 2012-09-10 Denso Corp Epoxy resin composition and cured product of the same
WO2018225411A1 (en) * 2017-06-07 2018-12-13 Dic株式会社 Epoxy resin, production method, epoxy resin composition, and cured product thereof
CN110719926A (en) * 2017-06-07 2020-01-21 Dic株式会社 Epoxy resin, method for producing same, epoxy resin composition, and cured product thereof
KR20200016216A (en) * 2017-06-07 2020-02-14 디아이씨 가부시끼가이샤 Epoxy Resin, Manufacturing Method, Epoxy Resin Composition and Cured Product thereof
JPWO2018225411A1 (en) * 2017-06-07 2020-04-09 Dic株式会社 Epoxy resin, manufacturing method, epoxy resin composition and cured product thereof
KR102409661B1 (en) 2017-06-07 2022-06-17 디아이씨 가부시끼가이샤 Epoxy resin, manufacturing method, epoxy resin composition and cured product thereof
JP7140115B2 (en) 2017-06-07 2022-09-21 Dic株式会社 EPOXY RESIN, PRODUCTION METHOD, EPOXY RESIN COMPOSITION AND ITS CURED MATERIAL
US11319406B2 (en) * 2017-11-14 2022-05-03 Eneos Corporation Prepreg, fiber-reinforced composite material, and molded article
WO2019244879A1 (en) 2018-06-20 2019-12-26 住友化学株式会社 Epoxy resin composition, prepreg and molded body
US11530323B2 (en) 2018-06-20 2022-12-20 Sumitomo Chemical Company, Limited Epoxy resin composition, prepreg and molded body

Similar Documents

Publication Publication Date Title
JP4821163B2 (en) Epoxy resin composition for fiber reinforced composite materials
EP2134764B1 (en) Composite material with blend of thermoplastic particles
JP5319673B2 (en) Epoxy resin composition and prepreg using the same
JP5469086B2 (en) Thermosetting resin composition and prepreg using the same
JP6623757B2 (en) Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
JPWO2011118106A1 (en) Epoxy resin composition for carbon fiber reinforced composite material, prepreg and carbon fiber reinforced composite material
JP6237951B1 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
WO2014030636A1 (en) Epoxy resin composition and film, prepreg, and fiber-reinforced plastic using same
JP2011528399A (en) Structural composites with improved toughness
JP6771885B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP7200928B2 (en) Thermosetting resin compositions, prepregs and fiber-reinforced composites
JP4475880B2 (en) Epoxy resin composition
JP2006291094A (en) Epoxy resin composition for reinforced composite material
JP6710972B2 (en) Epoxy resin composition, prepreg, cured resin and fiber reinforced composite material
JP5017794B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP4894339B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP4857587B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP2016044246A (en) Epoxy resin composition, prepreg, fiber- reinforced composite material and structure
JP6961912B2 (en) Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels
JP2007217463A (en) Epoxy resin composition and composite material intermediate
JP2012136568A (en) Epoxy resin composition, and fiber-reinforced composite material using the same
JP2011231187A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2003055534A (en) Resin composition for composite material, intermediate material for composite material, and composite material
JP4344662B2 (en) Epoxy resin composition, prepreg and molded body, and method for producing epoxy resin composition
JP5385011B2 (en) Prepreg

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Effective date: 20101221

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110104

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20110216

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705