JP4463046B2 - Ceramic electronic components and capacitors - Google Patents

Ceramic electronic components and capacitors Download PDF

Info

Publication number
JP4463046B2
JP4463046B2 JP2004242976A JP2004242976A JP4463046B2 JP 4463046 B2 JP4463046 B2 JP 4463046B2 JP 2004242976 A JP2004242976 A JP 2004242976A JP 2004242976 A JP2004242976 A JP 2004242976A JP 4463046 B2 JP4463046 B2 JP 4463046B2
Authority
JP
Japan
Prior art keywords
external electrode
metal
metal particles
ceramic
dummy wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004242976A
Other languages
Japanese (ja)
Other versions
JP2006060148A (en
Inventor
恒 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004242976A priority Critical patent/JP4463046B2/en
Priority to US11/210,080 priority patent/US7206187B2/en
Publication of JP2006060148A publication Critical patent/JP2006060148A/en
Application granted granted Critical
Publication of JP4463046B2 publication Critical patent/JP4463046B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、セラミック電子部品及びコンデンサに関するものである。   The present invention relates to a ceramic electronic component and a capacitor.

代表的なセラミック電子部品として、セラミックコンデンサを用いて説明する。   A typical ceramic electronic component will be described using a ceramic capacitor.

図4は、従来のセラミックコンデンサを示す横断面図である。   FIG. 4 is a cross-sectional view showing a conventional ceramic capacitor.

図において、セラミックコンデンサ30は、複数個の誘電体層(セラミック層)32を積層した積層体31の内部で、隣接する誘電体層32間に内部電極(配線導体)33、34を介在させるとともに、積層体31の側面に内部電極33、34の端部に電気的に接続される外部電極35、36を形成し、外部電極35、36の一端を積層体31の4つの主面に延在させている。   In the figure, a ceramic capacitor 30 includes internal electrodes (wiring conductors) 33 and 34 interposed between adjacent dielectric layers 32 in a laminated body 31 in which a plurality of dielectric layers (ceramic layers) 32 are laminated. The external electrodes 35 and 36 electrically connected to the end portions of the internal electrodes 33 and 34 are formed on the side surfaces of the multilayer body 31, and one ends of the external electrodes 35 and 36 are extended to the four main surfaces of the multilayer body 31. I am letting.

上記セラミックコンデンサ10によれば、外部電極35、36は、金属成分とガラス成分を含有する。そして、焼付時に、ガラス成分が外部電極35、36の金属成分と、積層体31の側面及び4つの主面との界面に集まることにより、外部電極35、36と積層体31は接続される(例えば、特許文献1参照)。
特開2002−270457号公報
According to the ceramic capacitor 10, the external electrodes 35 and 36 contain a metal component and a glass component. At the time of baking, the glass components gather at the interfaces between the metal components of the external electrodes 35 and 36 and the side surfaces and the four main surfaces of the multilayer body 31, thereby connecting the external electrodes 35 and 36 and the multilayer body 31 ( For example, see Patent Document 1).
JP 2002-270457 A

しかしながら、上記セラミックコンデンサ30によれば、外部電極35、36の内、積層体31の側面に形成された部分は、内部電極33、34と金属−金属結合により強固に接続しているが、積層体31の4つの主面に形成された部分は、積層体31との接続強度が弱いため、図5に示すように、外部からの衝撃により、剥離37が生じやすいという問題点があった。   However, according to the ceramic capacitor 30, the portion formed on the side surface of the multilayer body 31 among the external electrodes 35 and 36 is firmly connected to the internal electrodes 33 and 34 by a metal-metal bond. The portions formed on the four main surfaces of the body 31 have a problem that peeling 37 is likely to occur due to an external impact as shown in FIG. 5 because the connection strength with the laminated body 31 is weak.

本発明は、上述の問題点に鑑みて案出されたものであり、その目的は、簡単且つ安価な方法で、外部電極の剥離を効果的に防止できるセラミック電子部品及びコンデンサを提供することにある。   The present invention has been devised in view of the above-mentioned problems, and an object of the present invention is to provide a ceramic electronic component and a capacitor that can effectively prevent peeling of external electrodes by a simple and inexpensive method. is there.

本発明は、複数個のセラミック層を積層した積層体の表面及び/又は内部に配線導体を配設するとともに、前記積層体の主面に前記配線導体と電気的に接続される外部電極を形成してなるセラミック電子部品において、前記積層体の内部に、前記外部電極に対して1層のセラミック層を隔ててダミー配線を配設するとともに、該ダミー配線及び前記外部電極間のセラミック層内に、前記ダミー配線中の金属成分と焼結によって接続され、且つ、一部が前記外部電極側に露出された複数個の金属粒子を埋設し、これら金属粒子の露出部を起点に析出させた金属材料を相互に連結した金属メッキ膜により前記外部電極を形成したことを特徴とするものである。   In the present invention, a wiring conductor is disposed on the surface and / or inside a laminated body in which a plurality of ceramic layers are laminated, and an external electrode electrically connected to the wiring conductor is formed on the main surface of the laminated body. In this ceramic electronic component, a dummy wiring is disposed inside the multilayer body with a ceramic layer separated from the external electrode, and in the ceramic layer between the dummy wiring and the external electrode. A metal which is connected to the metal component in the dummy wiring by sintering, and a plurality of metal particles partially exposed to the external electrode side are embedded, and deposited from the exposed portion of the metal particles The external electrode is formed of a metal plating film in which materials are connected to each other.

また、前記セラミック層内に存在する金属粒子の平均粒径Aが、前記ダミー配線と前記外部電極との間に位置するセラミック層の厚みBに対し100%〜200%に設定されていることを特徴とするものである。   The average particle size A of the metal particles present in the ceramic layer is set to 100% to 200% with respect to the thickness B of the ceramic layer located between the dummy wiring and the external electrode. It is a feature.

さらに、複数個の誘電体層を積層した積層体の内部で、隣接する誘電体層間に内部電極を介在させるとともに、前記積層体の側面に前記内部電極の端部に電気的に接続される外部電極を形成し、該外部電極の一端を前記積層体の主面に延在させてなるコンデンサにおいて、前記積層体の内部に、前記外部電極に対して1層の誘電体層を隔ててダミー配線を配設するとともに、該ダミー配線及び前記外部電極間の誘電体層内に、前記ダミー配線中の金属成分と焼結によって接続され、且つ、一部が前記外部電極側に露出された複数個の金属粒子を埋設し、これら金属粒子の露出部を起点に析出させた金属材料を相互に連結した金属メッキ膜により前記外部電極を形成したことを特徴とするものである。   Further, an internal electrode is interposed between adjacent dielectric layers in a multilayer body in which a plurality of dielectric layers are stacked, and an external part electrically connected to an end portion of the internal electrode on the side surface of the multilayer body In a capacitor in which an electrode is formed and one end of the external electrode extends to the main surface of the multilayer body, a dummy wiring is provided inside the multilayer body with a dielectric layer separated from the external electrode by one layer. In the dielectric layer between the dummy wiring and the external electrode, a plurality of metal components in the dummy wiring are connected by sintering and a part thereof is exposed to the external electrode side. The external electrode is formed by a metal plating film in which metal particles are embedded and metal materials deposited from the exposed portions of the metal particles are interconnected.

そして、前記誘電体層内に存在する金属粒子の平均粒径Aが、前記ダミー配線と前記外部電極の間に位置する誘電体層の厚みBに対し100%〜200%に設定されていることを特徴とするものである。   The average particle diameter A of the metal particles existing in the dielectric layer is set to 100% to 200% with respect to the thickness B of the dielectric layer located between the dummy wiring and the external electrode. It is characterized by.

本発明によれば、積層体の内部に、外部電極に対して1層のセラミック層を隔ててダミー配線を配設するとともに、ダミー配線及び外部電極間のセラミック層内に、ダミー配線中の金属成分と焼結によって接続され、且つ、一部が外部電極側に露出された複数個の金属粒子を埋設し、これら金属粒子の露出部を起点に析出させた金属材料を相互に連結した金属メッキ膜により外部電極を形成してなる。   According to the present invention, the dummy wiring is disposed inside the laminated body with the ceramic layer being separated from the external electrode, and the metal in the dummy wiring is disposed in the ceramic layer between the dummy wiring and the external electrode. Metal plating that embeds a plurality of metal particles that are connected to the components by sintering and that are partially exposed to the external electrode side, and that interconnects metal materials deposited from the exposed portions of these metal particles An external electrode is formed by a film.

すなわち、外部電極は、積層体主面において、一部が積層体内に埋設した金属粒子の露出部と強固な金属−金属結合により接合しているため、外部電極と積層体主面間の接続強度を増大させることができ、外部電極の剥離を防止できる。   That is, since the external electrode is joined to the exposed portion of the metal particles partially embedded in the laminate by a strong metal-metal bond on the main surface of the laminate, the connection strength between the external electrode and the laminate main surface is Can be increased, and peeling of the external electrode can be prevented.

また、金属粒子とダミー配線中の金属成分の接続は、焼結によってなされているため、通常の製造ラインを変更することなく、上記外部電極の剥離を防止できるとともに、金属粒子とダミー配線は一体化しており、これによっても、外部電極の剥離を効果的に防止できる。   In addition, since the metal particles and the metal components in the dummy wiring are connected by sintering, the external electrodes can be prevented from being peeled off without changing the normal production line, and the metal particles and the dummy wiring are integrated. This also effectively prevents the external electrode from peeling off.

また、金属粒子の一部がダミー配線と接合しているため、金属粒子自体が積層体内で確実に固定され、これによっても、外部電極の剥離を効果的に防止できる。さらに、外部電極とダミー配線間に配設された誘電体層と、ダミー配線間の剥離も防止できる。   Further, since some of the metal particles are bonded to the dummy wiring, the metal particles themselves are securely fixed in the laminated body, and this can also effectively prevent the external electrodes from peeling off. Furthermore, it is possible to prevent peeling between the dielectric layer disposed between the external electrode and the dummy wiring and the dummy wiring.

またさらに、外部電極が複数の金属粒子の露出部を起点に析出させた金属材料を相互に連結した金属メッキ膜により形成されているため、外部電極の厚み精度が向上するとともに、積層体を無電解メッキ用のメッキ液に所定時間浸漬しておくだけの簡単且つ安価な方法によって、外部電極を形成することができる。   Furthermore, since the external electrode is formed of a metal plating film in which metal materials deposited from the exposed portions of a plurality of metal particles are connected to each other, the thickness accuracy of the external electrode is improved and the laminate is not required. The external electrode can be formed by a simple and inexpensive method in which the electrode is immersed in a plating solution for electrolytic plating for a predetermined time.

さらにまた、セラミック層内に存在する金属粒子の平均粒径Aが、ダミー配線と外部電極との間に位置するセラミック層の厚みBに対し100%〜200%に設定されていることが望ましい。すなわち、上記金属粒子の平均粒径Aが、セラミック層の厚みBに対し100%以上であるため、金属粒子がセラミック層を貫通し、ダミー配線と外部電極を確実に接合することができる。一方、上記金属粒子の平均粒径Aが、セラミック層の厚みBに対し200%以下であるため、製造時に、スクリーン印刷等によりダミー配線を精度良く形成することができるとともに、積層体となるセラミック層及び配線導体を加圧加熱する際に、セラミック層間の密着性の低下が問題になることがない。   Furthermore, it is desirable that the average particle diameter A of the metal particles present in the ceramic layer is set to 100% to 200% with respect to the thickness B of the ceramic layer located between the dummy wiring and the external electrode. That is, since the average particle diameter A of the metal particles is 100% or more with respect to the thickness B of the ceramic layer, the metal particles penetrate the ceramic layer, and the dummy wiring and the external electrode can be reliably bonded. On the other hand, since the average particle diameter A of the metal particles is 200% or less with respect to the thickness B of the ceramic layer, the dummy wiring can be formed with high precision by screen printing or the like at the time of manufacture, and the ceramic that becomes the laminate When pressurizing and heating the layers and the wiring conductor, there is no problem that the adhesion between the ceramic layers is lowered.

そして、上記理由から、本発明は、複数個の誘電体層を積層した積層体の内部で、隣接する誘電体層間に内部電極を介在させるとともに、積層体の側面に内部電極の端部に電気的に接続される外部電極を形成し、外部電極の一端を前記積層体の主面に延在させてなるコンデンサに特に好適である。   For the reasons described above, the present invention interposes an internal electrode between adjacent dielectric layers in a laminated body in which a plurality of dielectric layers are laminated, and electrically connects the end of the internal electrode to the side surface of the laminated body. It is particularly suitable for a capacitor in which external electrodes to be connected are formed, and one end of the external electrode is extended to the main surface of the laminate.

以下、本発明を添付図面に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の一実施形態に係るセラミックコンデンサを示す図であり、(a)は外観斜視図、(b)は横断面図である。図2は、図1のセラミックコンデンサの製造方法を示す断面図である。   1A and 1B are diagrams showing a ceramic capacitor according to an embodiment of the present invention, in which FIG. 1A is an external perspective view, and FIG. 1B is a cross-sectional view. FIG. 2 is a cross-sectional view showing a method for manufacturing the ceramic capacitor of FIG.

図において、セラミックコンデンサ10は、複数個の誘電体層(セラミック層)2を積層した積層体1の内部で、隣接する誘電体層2間に内部電極(配線導体)3、4を介在させるとともに、積層体1の側面に内部電極3、4の端部に電気的に接続される外部電極5、6を形成し、外部電極5、6の一端を積層体1の4つの主面に延在させている。   In the figure, a ceramic capacitor 10 includes internal electrodes (wiring conductors) 3 and 4 interposed between adjacent dielectric layers 2 in a laminated body 1 in which a plurality of dielectric layers (ceramic layers) 2 are laminated. The external electrodes 5 and 6 electrically connected to the end portions of the internal electrodes 3 and 4 are formed on the side surfaces of the multilayer body 1, and one ends of the external electrodes 5 and 6 are extended to the four main surfaces of the multilayer body 1. I am letting.

誘電体層2は、例えば、BaTiO、CaTiO、SrTiO等を主成分とする誘電体材料によって1層あたり0.5μm〜2μmの厚みに形成されており、かかる誘電体層2を、セラミックコンデンサ10の実装面に垂直な方向に、例えば20層〜2000層だけ積層することによって積層体1が形成される。 The dielectric layer 2 is formed to a thickness of 0.5 μm to 2 μm per layer by a dielectric material mainly composed of, for example, BaTiO 3 , CaTiO 3 , SrTiO 3, and the like. The stacked body 1 is formed by stacking, for example, 20 to 2000 layers in a direction perpendicular to the mounting surface of the capacitor 10.

内部電極3a、4aは、Ni、Cu、Cu−Ni、Ag−Pd等の金属を主成分とする導体材料によって、例えば0.5μm〜2.0μmの厚みに形成されている。   The internal electrodes 3a and 4a are formed to a thickness of, for example, 0.5 μm to 2.0 μm by using a conductive material whose main component is a metal such as Ni, Cu, Cu—Ni, or Ag—Pd.

本発明において重要なことは、積層体1の内部に、外部電極5、6に対して1層の誘電体層2を隔ててダミー配線3b、4b(配線導体)を配設するとともに、ダミー配線3b、4b及び外部電極5、6間の誘電体層2内に、ダミー配線3b、4b中の金属成分と焼結によって接続され、且つ、一部が外部電極5、6側に露出された複数個の金属粒子Mを埋設する点である。図中、内部電極3a、4aとダミー電極3b、4bを合わせて配線導体3、4としている。ダミー電極3b、4bは、内部電極3a、4aと同じ導体材料であっても良く、異なる導体材料であっても良い。また、金属粒子Mは、ダミー電極3b、4b中の他の小さな金属粒子(金属微粒子)mと同じ金属でも良く、異なる金属でも良い。さらに図中、ダミー電極3b、4bは積層体1の一方の主面側に2層配設されているが、1層以上であれば何層でも良い。ダミー電極3b、4bの数が多い程、外部電極5、6と積層体1主面間の接続強度を増大させることができ、外部電極5、6の剥離を防止できる。また図中、隣接するダミー電極(3b−3b、4b−4b)間に跨るように複数個の金属粒子Mを埋設しているが、このような金属粒子Mは特に埋設しなくても良い。   What is important in the present invention is that the dummy wirings 3b and 4b (wiring conductors) are disposed inside the multilayer body 1 with the dielectric layer 2 being separated from the external electrodes 5 and 6, and the dummy wirings. In the dielectric layer 2 between 3b and 4b and the external electrodes 5 and 6, a plurality of metal components in the dummy wirings 3b and 4b are connected by sintering and a part is exposed to the external electrodes 5 and 6 side. This is a point in which individual metal particles M are embedded. In the figure, the internal electrodes 3a, 4a and the dummy electrodes 3b, 4b are combined to form the wiring conductors 3, 4. The dummy electrodes 3b and 4b may be the same conductive material as the internal electrodes 3a and 4a, or may be different conductive materials. The metal particles M may be the same metal as other small metal particles (metal fine particles) m in the dummy electrodes 3b and 4b, or may be different metals. Further, in the drawing, two layers of the dummy electrodes 3b and 4b are arranged on one main surface side of the laminate 1, but any number of layers may be used as long as it is one or more layers. As the number of dummy electrodes 3b and 4b increases, the connection strength between the external electrodes 5 and 6 and the main surface of the multilayer body 1 can be increased, and peeling of the external electrodes 5 and 6 can be prevented. Further, in the drawing, a plurality of metal particles M are embedded so as to straddle between adjacent dummy electrodes (3b-3b, 4b-4b). However, such metal particles M may not be embedded.

さらに、外部電極5、6は、これら金属粒子Mの露出部を起点に析出させた金属材料を相互に連結した金属メッキ膜により形成されている。   Further, the external electrodes 5 and 6 are formed of a metal plating film in which metal materials deposited from the exposed portions of the metal particles M are connected to each other.

そして、誘電体層2内に存在する金属粒子Mの粒径Aが、ダミー配線3b、4bと外部電極5、6の延在部の間に位置する誘電体層2の厚みBに対し100%〜200%に設定されている。ここで、金属粒子Mの粒径Aは、焼成後の積層体1の破断面をケミカルエッチングした後、金属顕微鏡により確認できる。   The particle size A of the metal particles M existing in the dielectric layer 2 is 100% of the thickness B of the dielectric layer 2 located between the dummy wirings 3b and 4b and the extended portions of the external electrodes 5 and 6. It is set to ~ 200%. Here, the particle size A of the metal particles M can be confirmed with a metal microscope after the fracture surface of the fired laminate 1 is chemically etched.

このとき、ダミー配線3b、4b及び外部電極5、6間の誘電体層2内、あるいはダミー配線3b、4b間の誘電体層2内に、1個または2個の金属粒子Mが存在することとなる。これにより、金属粒子全体として不定形状となり、外部衝撃などにより誘電体層2から抜け落ちることはない。   At this time, one or two metal particles M exist in the dielectric layer 2 between the dummy wirings 3b and 4b and the external electrodes 5 and 6 or in the dielectric layer 2 between the dummy wirings 3b and 4b. It becomes. As a result, the entire metal particle has an indefinite shape and does not fall off the dielectric layer 2 due to external impact or the like.

以下、上述したセラミックコンデンサ10の製造方法について説明する。なお、図中の各符号は焼成の前後で区別しないこととする。   Hereinafter, a method for manufacturing the above-described ceramic capacitor 10 will be described. In addition, each code | symbol in a figure shall not distinguish before and after baking.

まず、BaTiO、CaTiO、SrTiO等を主成分とする誘電体材料の粉末に適当な有機溶剤、ガラスフリット、有機バインダ等を添加・混合して泥漿状のセラミックスラリを作製するとともに、得られたセラミックスラリを従来周知のドクターブレード法等による、所定形状、所定厚みの誘電体層となるセラミックグリーンシート2を形成する。 First, an appropriate organic solvent, glass frit, organic binder, and the like are added to and mixed with a dielectric material powder mainly composed of BaTiO 3 , CaTiO 3 , SrTiO 3, etc. to produce a slurry ceramic slurry. A ceramic green sheet 2 to be a dielectric layer having a predetermined shape and a predetermined thickness is formed from the ceramic slurry thus obtained by a conventionally known doctor blade method or the like.

次に、セラミックグリーンシート2上に、Ni、Cu、Cu−Ni、Ag−Pd等の金属材料の粉末に適当な有機溶剤、有機バインダ等を添加・混合して得た導体ペーストを従来周知のスクリーン印刷等によって所定パターンに塗布し、配線導体となる導体パターン3、4を形成する。このとき、図2(a)に示すように、ダミー電極となる導体ペースト3b、4b中に、粒径の大きな金属粒子Mを混合しておく。具体的には、セラミックグリーンシート2の厚みが0.5μm〜1μmである場合、金属粒子Mの平均粒径は0.5μm〜2μm、その他の金属粒子mの平均粒径は0.1μm〜0.3μmの範囲にあることが望ましい。一方、セラミックグリーンシート2の厚みが1μm〜2μmである場合、金属粒子Mの平均粒径は1〜4μm、その他の金属微粒子mの平均粒径は0.3μm〜0.5μmの範囲にあることが望ましい。また、セラミックグリーンシート2の厚みが2μm〜3μmである場合、金属粒子Mの平均粒径は2〜6μm、金属微粒子mの平均粒径は0.4μm〜0.6μmの範囲にあることが望ましい。そして、セラミックグリーンシート2の厚みが3μm〜4μmである場合、金属粒子Mの平均粒径は3μm〜8μm、金属微粒子mの平均粒径は0.5μm〜0.1μmの範囲にあることが望ましい。   Next, a conductive paste obtained by adding and mixing an appropriate organic solvent, an organic binder, etc. to a powder of a metal material such as Ni, Cu, Cu—Ni, Ag—Pd, etc. on the ceramic green sheet 2 is conventionally known. A predetermined pattern is applied by screen printing or the like to form conductor patterns 3 and 4 to be wiring conductors. At this time, as shown in FIG. 2A, metal particles M having a large particle diameter are mixed in the conductor pastes 3b and 4b serving as dummy electrodes. Specifically, when the thickness of the ceramic green sheet 2 is 0.5 μm to 1 μm, the average particle size of the metal particles M is 0.5 μm to 2 μm, and the average particle size of the other metal particles m is 0.1 μm to 0 μm. Desirably, it is in the range of 3 μm. On the other hand, when the thickness of the ceramic green sheet 2 is 1 μm to 2 μm, the average particle size of the metal particles M is in the range of 1 to 4 μm, and the average particle size of the other metal fine particles m is in the range of 0.3 μm to 0.5 μm. Is desirable. Further, when the thickness of the ceramic green sheet 2 is 2 μm to 3 μm, it is desirable that the average particle diameter of the metal particles M is 2 to 6 μm and the average particle diameter of the metal fine particles m is in the range of 0.4 μm to 0.6 μm. . When the thickness of the ceramic green sheet 2 is 3 μm to 4 μm, the average particle size of the metal particles M is preferably 3 μm to 8 μm, and the average particle size of the metal fine particles m is preferably in the range of 0.5 μm to 0.1 μm. .

次に、図2(b)に示すように、導体パターン3、4が形成されたセラミックグリーンシート2を所定の枚数だけ積層する。   Next, as shown in FIG. 2B, a predetermined number of ceramic green sheets 2 on which conductor patterns 3 and 4 are formed are stacked.

次に、積層された導体パターン3、4及びセラミックグリーンシート2を加圧加熱することにより、大型積層体11が得られる。このとき、図2(c)に示すように、ダミー配線となる導体パターン3b、4b中に、金属粒子となる金属粒子Mが含有されるため、金属粒子Mがセラミックグリーンシート2を突き破って、大型積層体11表面に露出する。また、金属粒子Mにより突き破られるセラミックグリーンシート2は、その他のセラミックグリーンシート2に比べ、やわらかいことが望ましい。   Next, the large laminated body 11 is obtained by pressurizing and heating the laminated conductor patterns 3 and 4 and the ceramic green sheet 2. At this time, as shown in FIG. 2 (c), since the metal particles M serving as metal particles are contained in the conductor patterns 3b and 4b serving as dummy wirings, the metal particles M break through the ceramic green sheet 2, It is exposed on the surface of the large laminate 11. Moreover, it is desirable that the ceramic green sheet 2 pierced by the metal particles M is softer than the other ceramic green sheets 2.

次に、図2(b)に示すように、導体パターン3、4が形成されたセラミックグリーンシート2を所定の枚数だけ積層する。   Next, as shown in FIG. 2B, a predetermined number of ceramic green sheets 2 on which conductor patterns 3 and 4 are formed are stacked.

次に、積層された導体パターン3、4及びセラミックグリーンシート2を加圧加熱することにより、大型積層体11が得られる。このとき、図2(c)に示すように、ダミー電極となる導体パターン3b、4b中に、粒径の大きな金属粒子Mが含有されるため、金属粒子Mがセラミックグリーンシート2を突き破って、大型積層体11表面に露出したり、隣接するダミー電極となる導体パターン(3b−3b、4b−4b)に跨る。また、金属粒子Mにより突き破られるセラミックグリーンシート2は、その他のセラミックグリーンシート2に比べ、圧力変形が容易でやわらかいこと、あるいは熱可塑性のセラミックグリーンシート2であることが望ましい。   Next, the large laminated body 11 is obtained by pressurizing and heating the laminated conductor patterns 3 and 4 and the ceramic green sheet 2. At this time, as shown in FIG. 2 (c), since the metal particles M having a large particle diameter are contained in the conductor patterns 3b and 4b serving as dummy electrodes, the metal particles M break through the ceramic green sheet 2, It is exposed on the surface of the large laminate 11 or straddles a conductor pattern (3b-3b, 4b-4b) that becomes an adjacent dummy electrode. In addition, the ceramic green sheet 2 to be pierced by the metal particles M is desirably easier to be pressure-deformed and softer than the other ceramic green sheets 2 or is a thermoplastic ceramic green sheet 2.

次に、大型積層体11を所定の寸法で切断することにより、未焼成状態の積層体1が得られる。   Next, the large-sized laminated body 11 is cut | disconnected by a predetermined dimension, and the laminated body 1 of an unbaking state is obtained.

次に、得られた未焼成状態の積層体1を例えば1100℃〜1400℃の温度で焼成することにより、積層体1が得られる。このとき、焼成後の積層体1をバレル研磨することにより、積層体1内に埋設した複数の金属粒子Mの一部を積層体1の表面に露出させることができる。   Next, the laminated body 1 is obtained by firing the obtained unfired laminated body 1 at a temperature of 1100 ° C. to 1400 ° C., for example. At this time, a part of the plurality of metal particles M embedded in the laminate 1 can be exposed on the surface of the laminate 1 by barrel polishing the laminate 1 after firing.

次に、積層体1の一対の端面に、無電解メッキ法により、外部電極5、6を形成する。具体的には、積層体1の端面における内部電極3a、4aの露出部、及び図2(d)に示すように、積層体1の主面における金属粒子Mの露出部を起点として、Cu、Ni、Ag、Auなどの金属メッキ膜5、6を析出させるとともに、これらの析出物同士を相互に連結させることによって一体的に形成される。この場合、外部電極5、6の厚み精度が向上するとともに、積層体1を無電解メッキ用のメッキ液に所定時間浸漬しておくだけの簡単な加工によって外部電極5、6を所望するパターンに形成することができ、セラミックコンデンサ10の生産性向上に供することが可能である。このとき、上記無電解メッキ法による金属メッキ膜5、6を析出させた積層体1に熱処理(アニール)を施すことにより、金属粒子Mと金属メッキ膜5、6の境界に合金層を形成させ、金属粒子Mと金属メッキ膜5、6の接合強度をさらに向上させるようにしても良い。具体的には、金属粒子MがNi、金属メッキ膜5、6がCuである場合は、約600℃で熱処理することが望ましい。また、必要に応じて、Cu、Ni、Ag、Auなどの金属メッキ膜の表面に、Niメッキ膜、Snメッキ膜など(図示せず)を電解メッキ法により形成しても良い。このとき、上記熱処理は、これらのNiメッキ膜、Snメッキ膜などを形成する前に施す必要がある。   Next, external electrodes 5 and 6 are formed on the pair of end faces of the laminate 1 by electroless plating. Specifically, as shown in FIG. 2D, the exposed portions of the internal electrodes 3a, 4a on the end face of the multilayer body 1 and the exposed portions of the metal particles M on the main surface of the multilayer body 1, Cu, The metal plating films 5 and 6 such as Ni, Ag, and Au are deposited, and these precipitates are connected to each other to be integrally formed. In this case, the thickness accuracy of the external electrodes 5 and 6 is improved, and the external electrodes 5 and 6 are formed into a desired pattern by simple processing by simply immersing the laminate 1 in a plating solution for electroless plating for a predetermined time. Therefore, it is possible to improve the productivity of the ceramic capacitor 10. At this time, a heat treatment (annealing) is performed on the laminate 1 on which the metal plating films 5 and 6 are deposited by the electroless plating method, thereby forming an alloy layer at the boundary between the metal particles M and the metal plating films 5 and 6. The bonding strength between the metal particles M and the metal plating films 5 and 6 may be further improved. Specifically, when the metal particles M are Ni and the metal plating films 5 and 6 are Cu, it is desirable to perform heat treatment at about 600 ° C. If necessary, a Ni plating film, a Sn plating film, or the like (not shown) may be formed on the surface of a metal plating film such as Cu, Ni, Ag, or Au by an electrolytic plating method. At this time, it is necessary to perform the heat treatment before forming these Ni plating film, Sn plating film and the like.

このようにして、図1に示すようなセラミックコンデンサ10が得られる。   In this way, a ceramic capacitor 10 as shown in FIG. 1 is obtained.

かくして、本発明によれば、積層体1の内部に、外部電極5、6に対して1層の誘電体層2を隔ててダミー配線3b、4bを配設するとともに、ダミー配線3b、4b及び外部電極5、6間の誘電体層2内に、ダミー配線3a、4a中の金属成分と焼結によって接続され、且つ、一部が外部電極5、6側に露出された複数個の金属粒子Mを埋設し、これら金属粒子Mの露出部を起点に析出させた金属材料を相互に連結した金属メッキ膜により外部電極5、6を形成してなるため、外部電極5、6は、積層体1の主面において、一部が積層体1内に埋設された金属粒子Mの露出部と強固な金属−金属結合により接合していることから、外部電極5、6と積層体1主面間の接続強度を増大させることができ、外部電極5、6の剥離37を防止できる。   Thus, according to the present invention, the dummy wirings 3b and 4b are disposed inside the multilayer body 1 with the dielectric layer 2 being separated from the external electrodes 5 and 6, and the dummy wirings 3b and 4b. In the dielectric layer 2 between the external electrodes 5 and 6, a plurality of metal particles are connected to the metal components in the dummy wirings 3a and 4a by sintering, and a part thereof is exposed to the external electrodes 5 and 6 side. Since the external electrodes 5 and 6 are formed by metal plating films in which M is embedded and the metal materials deposited from the exposed portions of the metal particles M are connected to each other, the external electrodes 5 and 6 are laminated bodies. 1 is partially bonded to the exposed portion of the metal particles M embedded in the laminate 1 by a strong metal-metal bond, so that the space between the external electrodes 5 and 6 and the laminate 1 main surface is The connection strength of the external electrodes 5 and 6 can be increased and the peeling 37 of the external electrodes 5 and 6 can be prevented. .

また、金属粒子Mとダミー配線3b、4b中の金属成分の接続は、焼結によってなされているため、通常の製造ラインを変更することなく、上記外部電極5、6の剥離37を防止することができ、金属粒子Mとダミー配線3b、4bは一体化しており、これによっても、外部電極5、6の剥離37を有効に防止することができる。   Further, since the metal particles M and the metal components in the dummy wirings 3b and 4b are connected by sintering, the separation 37 of the external electrodes 5 and 6 can be prevented without changing the normal production line. The metal particles M and the dummy wirings 3b and 4b are integrated, and this also effectively prevents the separation 37 of the external electrodes 5 and 6.

また、金属粒子Mの一部がダミー配線3b、4bと接合しているため、金属粒子M自体が積層体1内で確実に固定され、これによっても、外部電極5、6の剥離37を効果的に防止できる。さらに、外部電極5、6とダミー配線3b、4b間に配設された誘電体層2と、ダミー配線3b、4b間の剥離も有効に防止することができる。   In addition, since a part of the metal particles M are bonded to the dummy wirings 3b and 4b, the metal particles M themselves are securely fixed in the laminated body 1, and this also effectively removes the external electrodes 5 and 6. Can be prevented. Further, the separation between the dielectric layers 2 disposed between the external electrodes 5 and 6 and the dummy wirings 3b and 4b and the dummy wirings 3b and 4b can be effectively prevented.

そして、誘電体層2内に存在する金属粒子Mの平均粒径Aが、ダミー配線3b、4bと外部電極5、6との間に位置する誘電体層2の厚みBに対し100%〜200%に設定されていることが望ましい。すなわち、上記金属粒子Mの平均粒径Aが、誘電体層2の厚みBに対し100%以上であるため、金属粒子Mが誘電体層2を貫通し、ダミー配線3b、4bと外部電極5、6を確実に接合することができる。一方、上記金属粒子Mの平均粒径Aが、誘電体層2の厚みBに対し200%以下であるため、製造時に、スクリーン印刷等によりダミー配線となる導体パターン3b、4bを精度良く形成することができるとともに、大型積層体11となるセラミックグリーンシート2及び導体パターン3、4を加圧・加熱する際に、セラミックグリーンシート2間の密着性が低下するのを有効に防止することができる。   The average particle size A of the metal particles M present in the dielectric layer 2 is 100% to 200% with respect to the thickness B of the dielectric layer 2 located between the dummy wirings 3b and 4b and the external electrodes 5 and 6. % Is desirable. That is, since the average particle diameter A of the metal particles M is 100% or more with respect to the thickness B of the dielectric layer 2, the metal particles M penetrate the dielectric layer 2, and the dummy wirings 3b and 4b and the external electrode 5 , 6 can be reliably joined. On the other hand, since the average particle diameter A of the metal particles M is 200% or less with respect to the thickness B of the dielectric layer 2, the conductor patterns 3b and 4b serving as dummy wirings are accurately formed by screen printing or the like at the time of manufacture. In addition, it is possible to effectively prevent the adhesion between the ceramic green sheets 2 from being lowered when the ceramic green sheet 2 and the conductor patterns 3 and 4 to be the large laminate 11 are pressed and heated. .

なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。   Note that the present invention is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the scope of the present invention.

例えば、上記実施の形態では、セラミック電子部品としてセラミックコンデンサを用いて説明したが、本発明は、積層圧電部品、回路基板、半導体部品等、あらゆるセラミック電子部品に用いることができる。   For example, in the above embodiment, the ceramic capacitor is used as the ceramic electronic component. However, the present invention can be used for any ceramic electronic component such as a laminated piezoelectric component, a circuit board, and a semiconductor component.

また図3は、本発明の他の実施形態に係るセラミック電子部品を示す横断面図である。同図に示すように、本発明のセラミック電子部品10は、回路基板10にも適用できる。また、外部電極5は、積層体1の側面から離間させても良い。さらに、外部電極5やダミー配線3bより寸法の大きいダミー配線4bを埋設するとともに、ダミー配線3bとダミー配線4bとを両者間のセラミック層2内に存在する金属粒子Mを介して接続するようにしても良い。これにより、外部電極5と積層体1の主面との間の接続強度をさらに増大させることができ、外部電極5の剥離をさらに効果的に防止できる。なおこのとき、ダミー配線4bとなる導体ペースト中に金属粒子Mを含有すると、ダミー配線3bの外側に金属粒子Mがはみ出てしまうため、ダミー配線3bとダミー配線4bは、ダミー配線3bとなる導体ペースト中に含有される金属粒子Mにより接続されるようにする。また図中、3aは内部配線導体、7はビアホール導体、8は他の電子部品である。   FIG. 3 is a cross-sectional view showing a ceramic electronic component according to another embodiment of the present invention. As shown in the figure, the ceramic electronic component 10 of the present invention can also be applied to a circuit board 10. Further, the external electrode 5 may be separated from the side surface of the multilayer body 1. Further, the dummy wiring 4b having a size larger than that of the external electrode 5 and the dummy wiring 3b is embedded, and the dummy wiring 3b and the dummy wiring 4b are connected via the metal particles M existing in the ceramic layer 2 therebetween. May be. Thereby, the connection intensity | strength between the external electrode 5 and the main surface of the laminated body 1 can further be increased, and peeling of the external electrode 5 can be prevented further effectively. At this time, if the metal paste M is contained in the conductor paste that becomes the dummy wiring 4b, the metal particles M protrude outside the dummy wiring 3b. Therefore, the dummy wiring 3b and the dummy wiring 4b are conductors that become the dummy wiring 3b. The metal particles M contained in the paste are connected. In the figure, 3a is an internal wiring conductor, 7 is a via-hole conductor, and 8 is another electronic component.

さらに、ダミー配線3b、4b中に、誘電体層2と略同一のセラミック粒子が含有されるようにしても良い。すなわち、セラミック粒子が、ダミー配線3b、4bを挟んでいる誘電体層2間の架橋となるため、これによっても、誘電体層2とダミー配線3b、4b間の剥離を防止できる。   Furthermore, the dummy wirings 3b and 4b may contain ceramic particles substantially the same as those of the dielectric layer 2. That is, since the ceramic particles serve as a bridge between the dielectric layers 2 sandwiching the dummy wirings 3b and 4b, it is possible to prevent peeling between the dielectric layer 2 and the dummy wirings 3b and 4b.

本発明の一実施形態に係るセラミックコンデンサを示す図であり、(a)は外観斜視図、(b)は横断面図である。It is a figure which shows the ceramic capacitor which concerns on one Embodiment of this invention, (a) is an external appearance perspective view, (b) is a cross-sectional view. 図1のセラミックコンデンサの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the ceramic capacitor of FIG. 本発明の他の実施形態に係るセラミック電子部品を示す横断面図である。It is a cross-sectional view showing a ceramic electronic component according to another embodiment of the present invention. 従来のセラミックコンデンサを示す横断面図である。It is a cross-sectional view showing a conventional ceramic capacitor.

符号の説明Explanation of symbols

10・・・セラミック電子部品(コンデンサ)
1・・・積層体
2・・・誘電体層(セラミック層)
3、4・・・配線導体
3a、4a・・・内部電極
3b、4b・・・ダミー配線(ダミー電極)
5、6・・・外部電極(外部端子電極)
M・・・金属粒子
10 ... Ceramic electronic components (capacitors)
DESCRIPTION OF SYMBOLS 1 ... Laminated body 2 ... Dielectric layer (ceramic layer)
3, 4 ... wiring conductor 3a, 4a ... internal electrode 3b, 4b ... dummy wiring (dummy electrode)
5, 6 ... External electrode (external terminal electrode)
M ... Metal particles

Claims (4)

複数個のセラミック層を積層した積層体の表面及び/又は内部に配線導体を配設するとともに、前記積層体の主面に前記配線導体と電気的に接続される外部電極を形成してなるセラミック電子部品において、
前記積層体の内部に、前記外部電極に対して1層のセラミック層を隔ててダミー配線を配設するとともに、該ダミー配線及び前記外部電極間のセラミック層内に、前記ダミー配線中の金属成分と焼結によって接続され、且つ、一部が前記外部電極側に露出された複数個の金属粒子を埋設し、これら金属粒子の露出部を起点に析出させた金属材料を相互に連結した金属メッキ膜により前記外部電極を形成したことを特徴とするセラミック電子部品。
A ceramic in which a wiring conductor is disposed on the surface and / or inside of a laminate in which a plurality of ceramic layers are laminated, and an external electrode electrically connected to the wiring conductor is formed on the main surface of the laminate. In electronic components,
Inside the laminate, a dummy wiring is disposed with a ceramic layer separated from the external electrode, and a metal component in the dummy wiring is formed in the ceramic layer between the dummy wiring and the external electrode. A metal plating in which a plurality of metal particles, which are connected by sintering and are partially exposed to the external electrode side, are embedded, and metal materials deposited from the exposed portions of the metal particles are interconnected. A ceramic electronic component, wherein the external electrode is formed of a film.
前記セラミック層内に存在する金属粒子の平均粒径Aが、前記ダミー配線と前記外部電極との間に位置するセラミック層の厚みBに対し100%〜200%に設定されていることを特徴とする請求項1に記載のセラミック電子部品。 The average particle diameter A of the metal particles existing in the ceramic layer is set to 100% to 200% with respect to the thickness B of the ceramic layer located between the dummy wiring and the external electrode. The ceramic electronic component according to claim 1. 複数個の誘電体層を積層した積層体の内部で、隣接する誘電体層間に内部電極を介在させるとともに、前記積層体の側面に前記内部電極の端部に電気的に接続される外部電極を形成し、該外部電極の一端を前記積層体の主面に延在させてなるコンデンサにおいて、
前記積層体の内部に、前記外部電極に対して1層の誘電体層を隔ててダミー配線を配設するとともに、該ダミー配線及び前記外部電極間の誘電体層内に、前記ダミー配線中の金属成分と焼結によって接続され、且つ、一部が前記外部電極側に露出された複数個の金属粒子を埋設し、これら金属粒子の露出部を起点に析出させた金属材料を相互に連結した金属メッキ膜により前記外部電極を形成したことを特徴とするコンデンサ。
An internal electrode is interposed between adjacent dielectric layers in a multilayer body in which a plurality of dielectric layers are stacked, and an external electrode electrically connected to an end portion of the internal electrode is provided on a side surface of the multilayer body. In a capacitor formed and extending one end of the external electrode to the main surface of the laminate,
A dummy wiring is disposed inside the stacked body with a dielectric layer separated from the external electrode by a single dielectric layer, and in the dielectric layer between the dummy wiring and the external electrode, A plurality of metal particles that are connected to the metal component by sintering and that are partly exposed to the external electrode side are embedded, and the metal materials deposited from the exposed portions of the metal particles are interconnected. A capacitor characterized in that the external electrode is formed of a metal plating film.
前記誘電体層内に存在する金属粒子の平均粒径Aが、前記ダミー配線と前記外部電極の間に位置する誘電体層の厚みBに対し100%〜200%に設定されていることを特徴とする請求項3に記載のコンデンサ。 The average particle diameter A of the metal particles existing in the dielectric layer is set to 100% to 200% with respect to the thickness B of the dielectric layer located between the dummy wiring and the external electrode. The capacitor according to claim 3.
JP2004242976A 2004-08-23 2004-08-23 Ceramic electronic components and capacitors Expired - Fee Related JP4463046B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004242976A JP4463046B2 (en) 2004-08-23 2004-08-23 Ceramic electronic components and capacitors
US11/210,080 US7206187B2 (en) 2004-08-23 2005-08-23 Ceramic electronic component and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004242976A JP4463046B2 (en) 2004-08-23 2004-08-23 Ceramic electronic components and capacitors

Publications (2)

Publication Number Publication Date
JP2006060148A JP2006060148A (en) 2006-03-02
JP4463046B2 true JP4463046B2 (en) 2010-05-12

Family

ID=36107339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004242976A Expired - Fee Related JP4463046B2 (en) 2004-08-23 2004-08-23 Ceramic electronic components and capacitors

Country Status (1)

Country Link
JP (1) JP4463046B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5672162B2 (en) 2010-07-21 2015-02-18 株式会社村田製作所 Electronic components
JP5420060B2 (en) 2010-09-29 2014-02-19 京セラ株式会社 Capacitor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129476A (en) * 1995-10-30 1997-05-16 Murata Mfg Co Ltd Ceramic electronic part
JP3477089B2 (en) * 1998-10-30 2003-12-10 京セラ株式会社 Multilayer ceramic capacitor and method of manufacturing the same
JP4097900B2 (en) * 2001-01-11 2008-06-11 Tdk株式会社 Manufacturing method of electronic parts
JP2003282356A (en) * 2002-03-27 2003-10-03 Kyocera Corp Capacitor array

Also Published As

Publication number Publication date
JP2006060148A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
US7206187B2 (en) Ceramic electronic component and its manufacturing method
JP5301524B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
KR101107236B1 (en) Ceramic electronic component
CN100511507C (en) Ceramic electronic component and manufacturing method thereof
US9230740B2 (en) Multilayer ceramic electronic part to be embedded in board and printed circuit board having multilayer ceramic electronic part embedded therein
KR102112107B1 (en) Electronic component and method of producing electronic component
JP3928665B2 (en) Chip-type electronic component built-in multilayer substrate and method for manufacturing the same
JP6376604B2 (en) Multilayer ceramic electronic component for built-in substrate and printed circuit board with built-in multilayer ceramic electronic component
JP2015037183A (en) Multilayer ceramic electronic component for incorporating board and printed circuit board incorporating multilayer ceramic electronic component
JP2014216643A (en) Multilayer ceramic electronic component and board for mounting the same
JP2012099786A (en) Multilayer ceramic capacitor and manufacturing method therefor
JP2011135082A (en) Laminated ceramic capacitor and method of manufacturing the same
JP2009170706A (en) Multilayer electronic component
JP4329762B2 (en) Chip type electronic component built-in multilayer board
JP5725678B2 (en) Multilayer ceramic electronic component, its manufacturing method and its mounting substrate
JP4463046B2 (en) Ceramic electronic components and capacitors
JP4544896B2 (en) Electronic components
JP4429130B2 (en) Manufacturing method of ceramic electronic component
JP2007053294A (en) Process for manufacturing multilayer ceramic electronic component
JP2007067364A (en) Ceramic substrate with chip-type electronic part mounted thereon and method for manufacturing the same
KR100956212B1 (en) Manufacturing method of multi-layer substrate
JP2006041319A (en) Surface-mounted multiple capacitor and mounting structure thereof
JP2006269829A (en) Ceramic electronic component
KR102436222B1 (en) Embedded multilayer ceramic electronic component, manufacturing method thereof and print circuit board having embedded multilayer ceramic electronic component
JP4814750B2 (en) Multilayer wiring board, electronic device, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4463046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees