JP4461553B2 - Water treatment device for fuel cell - Google Patents

Water treatment device for fuel cell Download PDF

Info

Publication number
JP4461553B2
JP4461553B2 JP2000049792A JP2000049792A JP4461553B2 JP 4461553 B2 JP4461553 B2 JP 4461553B2 JP 2000049792 A JP2000049792 A JP 2000049792A JP 2000049792 A JP2000049792 A JP 2000049792A JP 4461553 B2 JP4461553 B2 JP 4461553B2
Authority
JP
Japan
Prior art keywords
water
fuel cell
electrodeionization
condensed
condensed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000049792A
Other languages
Japanese (ja)
Other versions
JP2001232394A (en
Inventor
昌之 三輪
智章 出口
洋 堀ノ内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2000049792A priority Critical patent/JP4461553B2/en
Publication of JP2001232394A publication Critical patent/JP2001232394A/en
Application granted granted Critical
Publication of JP4461553B2 publication Critical patent/JP4461553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池の水処理装置に係り、特に固体高分子型燃料電池における改質器や一酸化炭素変成器及び一酸化炭素除去器で構成される燃料処理系、燃料ガスや空気の水分加湿、燃料電池本体の循環冷却水系に供給される水を処理するための装置に関する。
【0002】
【従来の技術】
図3は都市ガスなどから水素を製造する燃料処理系を有する固体高分子型燃料電池の一般的な構成を示す系統図であって、電解質(図示せず)を介して燃料極31及び空気極32が設けられた燃料電池本体33には、冷却のために、冷却水タンク34からポンプPにより冷却水が流通されている。
【0003】
都市ガス等の燃料は、燃料処理系35に導入され、改質器35Aで水素を主体とするガスに改質され、一酸化炭素変成器35Bで一酸化炭素成分が変成され、更に一酸化炭素除去器35Cで一酸化炭素が極めて低濃度に除去された後、燃料電池本体の加湿のために水分を含んだ状態で燃料極31に送給される。
【0004】
燃料極31の排ガスは、ポンプP、熱交換器37,38,37’及び貯湯槽39よりなる熱回収系で熱回収された後、更に放熱器40で冷却され、気液分離器42に導入される。この気液分離器42の分離水(凝縮水)は、水処理装置36に送給され、水素成分を含んだ分離ガスは改質器の料として利用され、燃焼後水蒸気として系外へ排出される。この燃料処理系35には、水処理装置36から燃料処理や燃料ガスの加湿のための水蒸気発生用の純水が導入される。
【0005】
一方、空気極32には空気が導入され、この空気中の酸素により燃料極31に導入された改質ガスが電気化学的反応により酸化され、発電が行われる。この空気極32に導入される空気も加湿するために水処理装置36から純水が導入されることがある。空気極32の排ガスは、ポンプP、熱交換器37,38、37’及び貯湯槽39よりなる熱回収系で熱回収された後、更に放熱器40で冷却され、気液分離器41に導入される。この気液分離器41の分離水(凝縮水)は、水処理装置36に送給され、分離ガスは排ガスとして系外に排出される。
【0006】
水処理装置36で処理されて得られた純水は、一部が燃料処理系35に送給され、残部は冷却水タンク34に送給される。この冷却水タンク34の冷却水は、ポンプPにより、燃料電池本体33の冷却部から、熱回収系、放熱器40を経て循環される。なお、水処理装置36には、補給水として水道水が導入され、循環冷却水と共に処理される。
【0007】
即ち、このような固体高分子型燃料電池では、電気化学的反応を固体のイオン交換膜を介して行うため、燃料となる水素の移動には、高純度な水が必要不可欠である。また、燃料ガスから水素を発生させる改質器にも高純度の水が必要である。更には、燃料電池本体の冷却水系にも高純度の水が必要とされる。
【0008】
燃料電池では、電気化学的反応によって電力を取り出した際に、熱と水蒸気が発生するため、使用水量の低減のために、この燃料電池内部で発生した水蒸気を凝縮させて回収し、これを再利用しているが、この凝縮水には炭酸ガス、Fe、Al、Cu等が溶存しているため、水処理によって取り除く必要がある。また、凝縮水の水量は、外気温によって変化するため、装置内部で必要とする高純度水の量に対して不足が生じることから、水道水等で連続的に水量を補給する必要がある。そして、この水道水についても溶存イオンや炭酸ガス等を除去する必要がある。
【0009】
このため、水処理装置36で凝縮水を処理して循環再利用すると共に、この水処理装置36で水道水を処理して不足水量分を補給している。
【0010】
しかして、従来においては、この水処理装置として、イオン交換樹脂によるイオン交換法により純水を製造する装置が用いられている。
【0011】
【発明が解決しようとする課題】
イオン交換法は、安価で小型な装置で容易に高純度の水を製造することができるが、イオン交換法に用いられるイオン交換樹脂は、水に溶解しているイオン物質を吸着し、代わりにHイオンやOHイオンを放出することで純水化する仕組みであるため、樹脂のイオン交換容量には限りがある。このため、一定量のイオンを吸着すると純水製造能力が無くなり、イオン交換樹脂を交換又は薬品により再生する必要が生じる。
【0012】
一方、燃料電池は、電力の供給源として稼働するものである。このため、燃料電池は高稼働率運転が望まれるが、イオン交換法による純水の製造技術を採用した場合において、1年間イオン交換樹脂を交換することなく運転するためには、大量のイオン交換樹脂を必要とし、現実的ではなかった。
【0013】
また、前述の如く、燃料電池からの排ガスには、電気化学的に発生した水蒸気と炭酸ガスが含まれており、従って、この排ガスを冷却し、気液分離して得られる凝縮水にも炭酸成分が含まれている。従来法では、補給水(水道水)量の低減のために、この凝縮水をそのまま回収して水処理装置に供給しているが、このように多量の炭酸ガスを含む凝縮水を処理すると、この炭酸ガスもイオン交換樹脂の負荷となり、イオン交換樹脂の交換頻度を増大する原因となっている。
【0014】
本発明は上記従来の問題点を解決し、頻繁に交換を行うことが必要なイオン交換樹脂を用いることなく、メンテナンス不要で長期連続処理が可能な電気脱イオン装置により固体高分子型燃料電池の凝縮水や補給水としての水道水を処理して高純度水を製造する燃料電池の水処理装置を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明の燃料電池の水処理装置は、燃料電池から回収された凝縮水を脱炭酸処理する脱炭酸手段と、
外部補給水を処理する逆浸透膜装置と、
前記脱炭酸手段の処理水及び/又は該逆浸透膜装置の透過水を脱塩処理する電気脱イオン装置と、
該電気脱イオン装置の濃縮水の少なくとも一部を、系外に排出する流路と前記脱炭酸手段に供給する流路とを切り替える切替手段と
を備えてなることを特徴とする。
【0016】
より具体的には、この燃料電池の水処理装置は、燃料電池から回収される凝縮水を脱炭酸処理する脱炭酸手段と、
外部補給水を受け入れる第1の貯水槽と、
該第1の貯水槽の流出水を処理する逆浸透膜装置と、
前記脱炭酸手段で脱炭酸処理された凝縮水及び/又は該逆浸透膜装置の透過水を受け入れる第2の貯水槽と、
該第2の貯水槽の流出水を脱塩処理する電気脱イオン装置と、
該電気脱イオン装置の濃縮水の少なくとも一部を、系外に排出する流路と前記脱炭酸手段に供給する流路とを切り替える切替手段と
を備えてなる。
【0017】
この燃料電池の水処理装置においては、外部補給水を逆浸透膜装置で処理するに先立ち、脱塩素処理することが好ましく、この場合には、第1の貯水槽の前段又は後段に脱塩素手段を設けることが好ましい。
【0018】
この燃料電池の水処理装置であれば、イオン負荷が低く炭酸濃度が高い凝縮水を脱炭酸処理した後電気脱イオン装置で脱塩処理することにより、また、逆にイオン負荷が高く炭酸濃度が低い外部補給水を逆浸透膜装置及び電気脱イオン装置で脱塩処理することにより、高純度水を製造することができる。しかして、凝縮水量の多少に基いて、凝縮水量が少ない場合には、電気脱イオン装置の濃縮水を処理して再利用することで外部補給水量を低減することができる。しかも、この場合において、脱炭酸手段で処理する凝縮水量が少ないため、この濃縮水を脱炭酸処理することによる脱炭酸手段の負荷の増大の問題はない。
【0019】
請求項3の燃料電池の水処理装置は、燃料電池から回収された凝縮水及び/又は外部補給水を処理する逆浸透膜装置と、
該逆浸透膜装置の透過水を脱塩処理する電気脱イオン装置と、
前記凝縮水の少なくとも一部を、系外に排出する流路と前記逆浸透膜装置に供給する流路とを切り替える切替手段と
を備えてなることを特徴とする。
【0020】
より具体的には、この燃料電池の水処理装置は、燃料電池から回収される凝縮水及び/又は外部補給水を受け入れる貯水槽と、
該貯水槽の流出水を処理する逆浸透膜装置と、
該逆浸透膜装置の透過水を脱塩処理する電気脱イオン装置と、
前記凝縮水の少なくとも一部を、系外に排出する流路選択と前記貯水槽に供給する流路選択とを切り替える切替手段と
を備えてなる。
【0021】
この燃料電池の水処理装置においても、外部補給水を逆浸透膜装置で処理するに先立ち脱塩素処理することが好ましく、この場合には、貯水槽の前段又は後段に脱塩素手段を設けることが好ましい。
【0022】
この燃料電池の水処理装置であれば、脱炭酸手段を用いることなく、補給水量及び装置負荷を低減して効率的に高純度水を製造することができる。
【0023】
即ち、この装置では、逆浸透膜装置は脱炭酸不可能であるが、電気脱イオン装置は水中の炭酸をイオン化した上で電気透析脱塩して除去できる点に着目し、電気脱イオン装置の負荷限度までは凝縮水を脱塩、脱炭酸処理して再利用し、凝縮水の炭酸濃度が電気脱イオン装置の負荷限度を超える場合は系外へ排出する。
【0024】
【発明の実施の形態】
以下に図面を参照して本発明の実施の形態を詳細に説明する。
【0025】
図1は本発明の第1の発明に係る燃料電池の水処理装置の実施の形態を示す系統図であり、図2は本発明の第2の発明に係る燃料電池の水処理装置の実施の形態を示す系統図である。
【0026】
図1の水処理装置は、イオン負荷が比較的低く、炭酸濃度の高い、燃料電池の凝縮水を脱炭酸した後電気脱イオン装置で脱塩処理する処理系統と、凝縮水に比べて炭酸濃度は低いがイオン負荷が高い外部補給水(通常は、水道水)を逆浸透(RO)膜装置及び電気脱イオン装置で脱塩処理する処理系統との2系統で処理することにより、凝縮水の再利用による補給水の低減を図った上で装置負荷を低減して高純度水を効率的に製造するものである。
【0027】
図1において、1は脱塩素手段、2は脱炭酸手段、3,4,5はそれぞれ第1水槽、第2水槽、第3水槽、6はRO膜装置、7は電気脱イオン装置、8は流量計、10は制御部、V〜Vはバルブ、P,Pはポンプである。
【0028】
固体高分子型燃料電池では、凝縮水量が増減し、例えば外気温が上昇すると凝縮水量が低減し、外部補給水量を増加させる必要がある。図1のこの水処理装置では、流量計8で計測された凝縮水量を制御部10で設定値と比較し、設定値よりも凝縮水量が少ない場合と多い場合とで、次のような処理を行う。
【0029】
〔凝縮水量が少ない場合〕
制御部10にて凝縮水量が少ないと判断した場合には、水道水の導入バルブVの開度を大きくした上で、電気脱イオン装置7の濃縮水を循環再利用して外部補給水量を低減するためにバルブVを閉じてバルブVを開き、イオン負荷が低く炭酸濃度の高い凝縮水は脱炭酸手段2で脱炭酸処理した後、第2水槽4に送給し、一方、イオン負荷が高く炭酸濃度の低い外部補給水は第1水槽3を経てRO膜装置6で脱塩処理し、更に第2水槽4を経て凝縮水の脱炭酸処理水と共に電気脱イオン装置7で脱塩処理する。これにより、RO膜装置6で補給水中の溶解イオン成分の約90%は除去されるが、このRO膜装置6の透過水及び凝縮水中の微量なイオン成分が電気脱イオン装置7で高度に除去される。この電気脱イオン装置7に送給される補給水は予めRO膜装置6で脱塩処理され、また、凝縮水は、予め脱炭酸手段2で脱炭酸処理されているため、電気脱イオン装置7の負荷が軽減される。この電気脱イオン装置7の処理水(脱イオン水)は第3水槽5を経て燃料電池へ送給される。
【0030】
また、RO膜装置6の濃縮水は系外へ排出し、電気脱イオン装置7の濃縮水は脱炭酸手段2の入口側へ循環し、凝縮水と共に脱炭酸処理した後、電気脱イオン装置7で脱イオン処理する。即ち、電気脱イオン装置7の濃縮水は、イオン負荷の低い凝縮水と、イオン負荷が高いがRO膜装置6で大部分のイオンが除去されイオン負荷が低減されたRO膜装置6の透過水を原水とする電気脱イオン装置7の濃縮水であり、イオン負荷は比較的低く、また、脱炭酸手段で除去し得なかった炭酸が電気脱イオン装置7で濃縮されることにより炭酸濃度が高められた水であるため、これを脱炭酸手段2で脱炭酸処理した後、電気脱イオン装置7で脱イオン処理することにより、高純度水とすることができる。
【0031】
このように凝縮水量の少ない場合において、電気脱イオン装置7の濃縮水を循環処理して再利用することにより外部補給水量を低減することができる。しかも、この場合において、凝縮水量が少ないため、脱炭酸手段2には十分な処理能力が残されているため、電気脱イオン装置7の濃縮水を処理することによる不都合を生じることはない。
【0032】
なお、脱炭酸手段としては、特に制限はなく、空気接触式、気体透過膜式のいずれの方式のものでも良いが、小型で炭酸ガス除去率の高い気体透過膜式のものが好適である。
【0033】
この場合において、電気脱イオン装置7の濃縮水の全部を循環再利用すると、電気脱イオン装置7で濃縮水側に濃縮されたイオンを系外に排出し得なくなるため、電気脱イオン装置7の濃縮水の一部は系外へ排出するのが好ましい。電気脱イオン装置7の濃縮水の一部を系外に排出する手段としては間欠的にバルブVを閉じると共にバルブVを開く、或いはバルブVを開いた状態でバルブVを少し開いた状態とする、又は後述する通り、脱炭酸手段2で脱炭酸された電気脱イオン装置7の濃縮水を第1水槽3に供給して外部補給水と混合してRO膜装置6で処理してRO膜装置6の濃縮水として排出することなどが挙げられる。
【0034】
〔凝縮水が多い場合〕
制御部10にて凝縮水量が多いと判断した場合には、水道水の導入バルブVの開度を小さくして補給水量を低減し、電気脱イオン装置7の濃縮水は系外へ排出するべく、バルブVを開、バルブVを閉とする。この場合においても、イオン負荷が低く炭酸濃度の高い凝縮水は、脱炭酸手段2で脱炭酸処理した後、第2水槽4に供給し、一方、イオン負荷が高く炭酸濃度の低い外部補給水は第1水槽3を経てRO膜装置6で脱塩処理し、更に第2水槽4を経て凝縮水の脱炭酸処理水と共に電気脱イオン装置7で脱塩処理する。この電気脱イオン装置7の処理水は第3水槽5を経て燃料電池へ送給される。また、電気脱イオン装置7の濃縮水はRO膜装置6の濃縮水と共に系外へ排出される。
【0035】
このように、凝縮水量が多い場合においては、電気脱イオン装置7の濃縮水を系外へ排出する。即ち、この電気脱イオン装置7の濃縮水中には、脱炭酸手段2で除去し得なかった炭酸が濃縮されているため、この濃縮水は系外へ排出する。このように電気脱イオン装置7の濃縮水を排出することにより、負荷の増大を防止することができる。
【0036】
なお、外部補給水としては通常水道水が用いられ、水道水中の塩素はRO膜を劣化させるため、図1の装置では、第1水槽3の前段に脱塩素手段1が設けられ、水道水中の塩素が除去される。この脱塩素手段1は、RO膜装置6の上流側であれば良く、第1水槽3とRO膜装置6との間に設けられていても良い。
【0037】
この脱塩素手段としては、活性炭及び/又は触媒担持体(触媒としてはコバルト等を用いることができ、担体としては樹脂や活性炭を用いることができる。)を充填した脱塩素塔や還元剤の注入装置等を用いることができるが、イオン負荷の増加を引き起こすことのない活性炭充填塔や活性炭及び触媒充填塔が好適である。
【0038】
図1の装置において、第3水槽5は必ずしも必要とされず、電気脱イオン装置7の処理水は直接燃料電池に送給しても良いが、燃料電池の純水の供給先は冷却水系と改質器の改質反応部及び変成部の3ヶ所があり、各々純水供給条件が異なるため、第3水槽5を設けるのが安定供給の面で好ましい。
【0039】
また、脱炭酸手段2から第1水槽3へ送水する流路を設けると共に、この流路と第2水槽4へ送水する流路とを切り替える手段を設け、凝縮水量が少なく、電気脱イオン装置7の濃縮水を再利用する場合には、脱炭酸手段2の処理水を、第2水槽4ではなく、第1水槽3に送給し、脱炭酸処理後、更にRO膜装置6及び電気脱イオン装置7で2段階の脱塩処理を行うようにしても良い。
【0040】
即ち、図1の装置において、バルブVを閉、バルブVを開として電気脱イオン装置7の濃縮水の全量を脱炭酸手段に送給すると、電気脱イオン装置7で濃縮水中に濃縮されたイオンを系外へ排出することができなくなるため、この場合には、脱炭酸手段2の処理水は第1水槽3に送給し、RO膜装置6の濃縮水としてこの濃縮イオンを系外へ排出するようにすることが好ましい。
【0041】
また、この装置において、凝縮水量の多少は、図1に示す如く、凝縮水の流入配管に設けた流量計8の計測結果に基いて判断する他、温度や凝縮水が流入する第2水槽4に水位計などの水位検出手段を設けたり、或いは、RO膜装置6の稼動状況等に基いて判断することができ、前記電気脱イオン装置7の濃縮水の流路切替はこのような判断結果に基いて自働又は手動で行うことができる。
【0042】
一般に、固体高分子型燃料電池では、燃料電池から回収される水は凝縮水が殆どで、冷却水のブローダウン水は僅かであるため、本発明ではこの凝縮水の処理を主目的とするが、冷却水のブローダウン水がある場合には、これを第1水槽3又は第2水槽4に供給して凝縮水及び/又は補給水と混合して処理するのが好ましい。
【0043】
なお、凝縮水量が相当に多い場合でも、凝縮水中の溶存物質が濃縮された電気脱イオン装置の濃縮水の一部が排出されるなどにより、系内の水量は減少するので、外部補給水の導入は必要とされる。
【0044】
図2の水処理装置は、脱炭酸手段を用いることなく凝縮水と外部補給水を処理する装置であり、複雑な設備を省いて安価で小型な装置により、補給水量及び装置負荷を低減して高純度水を効率的に製造するものである。
【0045】
図2において、11は第1水槽、12は第2水槽、13は脱塩素手段、14はRO膜装置、15は電気脱イオン装置、20は制御部、V,Vはバルブ、Pはポンプである。
【0046】
この水処理装置では、凝縮水の炭酸濃度に応じて次のような処理を行う。
【0047】
〔凝縮水の炭酸濃度が低い場合〕
制御部20にて電気脱イオン装置15への供給水の炭酸濃度が低く、電気脱イオン装置で除去できる程度であると判断した場合には、バルブVの開度を絞り、またバルブVは第1水槽11へ流路選択し、凝縮水と外部補給水の混合水を、第1水槽11を経て脱塩素手段13で脱塩素処理した後、RO膜装置14で脱塩処理し、更に電気脱イオン装置15で脱塩及び脱炭酸処理する。これにより、イオン負荷が低く炭酸濃度の高い凝縮水中の炭酸成分は電気脱イオン装置15で除去され、また、イオン負荷が高く炭酸濃度の低い補給水中のイオン成分はRO膜装置14及び電気脱イオン装置15で高度に除去される。この電気脱イオン装置15の処理水(脱イオン水)は第2水槽12を経て燃料電池へ送給される。RO膜装置14及び電気脱イオン装置15の濃縮水は系外へ排出される。
【0048】
このように、凝縮水を回収して再利用することで、補給水量を低減することができる。また、この場合において、凝縮水の炭酸濃度が比較的低いため、装置負荷を過度に増大させることはない。
【0049】
〔凝縮水の炭酸濃度が高い場合〕
制御部20にて凝縮水の炭酸濃度が高く、電気脱イオン装置15で除去し得ないと判断した場合には、バルブVの開度を大きくして補給水量を増やすと共に、バルブVは凝縮水の全量又は一部を系外へ排出するように流路選択し、補給水のみ或いは補給水と少量の凝縮水の混合水を、第1水槽11を経て脱塩素手段13で脱塩素処理した後、RO膜装置14で脱塩処理し、更に電気脱イオン装置15で脱塩及び脱炭酸処理する。RO膜装置14及び電気脱イオン装置15の濃縮水は系外へ排出する。このように凝縮水の炭酸濃度が比較的高い場合には、これを再利用することなく、少なくとも一部を系外へ排出するようにすることで、装置負荷の増大、処理水水質の低下を防止して、高純度水を製造することができる。
【0050】
この装置においても、RO膜装置14のRO膜の劣化を防止するために、外部補給水としての水道水を脱塩素処理する脱塩素手段13が設けられているが、この脱塩素手段13はRO膜装置14の上流側で補給水を処理することができれば良く、第1水槽11の導入側に設けても良い。この脱塩素手段としては、前述の第1図におけるものと同様のものを用いることができる。
【0051】
また、この図2の装置においても、第2水槽12は必ずしも必要とされないが、燃料電池への純水の供給水量の安定化の面からは第2水槽12を設けるのが好ましい。
【0052】
また、この装置で燃料電池の冷却水のブローダウン水をも処理する場合には、ブローダウン水を第1水槽11に供給して凝縮水及び/又は補給水と混合して処理するのが好ましい。
【0053】
図2の装置において、凝縮水を再利用するか系外へ排出するかの判断は、凝縮水の炭酸濃度に基いて行われるが、この凝縮水の炭酸濃度は、電気脱イオン装置の電圧、電流又は処理水質を計測し、これらの結果に基いて求めることができる。
【0054】
即ち、電気脱イオン装置では、供給水に溶解しているイオン成分の濃度と炭酸ガスの濃度が高くなると処理水の比抵抗が低下する、運転電圧に対して運転電流が増加する等の変化が現れる。電気脱イオン装置に供給される水をRO膜装置の透過水に限定すると、イオン成分はRO膜装置によって殆ど除去されているが、炭酸ガスは除去されることなく透過水に含まれるため、定常状態にある電気脱イオン装置の処理水比抵抗及び運転電圧、電流に影響を与えるものは、炭酸ガス濃度が支配的になる。そこで、電気脱イオン装置の処理水比抵抗、運転電圧及び電流を測定し、炭酸ガス濃度を推測することができる。
【0055】
また、このように電気脱イオン装置の運転条件から凝縮水の炭酸濃度を間接的に求める他、炭酸ガス濃度は、第1水槽11内部から、RO膜装置の透過水までの間で変化がないと考えられるので、いずれかの箇所で直接的に炭酸ガス濃度を測定しても良い。
【0056】
凝縮水の炭酸濃度に基いて流路を切り替える方法としては、下記▲1▼と▲3▼を採用する方法と、下記▲1▼〜▲3▼を採用する方法、更には、下記▲2▼の方法において、系外排出量を凝縮水の炭酸濃度に基いて調整する方法が考えられるが、いずれの場合においても、前述の如く、系内の水量は減少するので補給水は必須である。
▲1▼ 凝縮水の炭酸濃度が低い場合、凝縮水の全量を第1水槽11に送給して循環再利用する。
▲2▼ 凝縮水の炭酸濃度が比較的高い場合、凝縮水の一部を第1水槽11に送給して循環再利用し、残部は系外へ排出する。
▲3▼ 凝縮水の炭酸濃度が高い場合、凝縮水の全量を系外へ排出する。
【0057】
上記流路切り替えは手動で行っても自働で行っても良い。
【0058】
この図2の装置によれば、水処理装置が過負荷にならないように凝縮水の回収を最大限に行い、水道水の使用量を減少させると共に、複雑な設備を使用することなく電気脱イオン装置を安定して運転でき、結果として、高純度の水を連続して製造することができる。
【0059】
【発明の効果】
以上詳述した通り、本発明の燃料電池の水処理装置によれば、連続採水が可能な電気脱イオン装置を用いて、外部補給水量の低減、装置負荷の軽減を図った上で高純度水を効率的に製造することができる。
【0060】
特に、請求項1の燃料電池の水処理装置であれば、回収凝縮水量に応じて装置負荷の増大を抑えた上で外部補給水量を極力低減することができる。
【0061】
また、請求項3の燃料電池の水処理装置であれば、複雑な設備を使用することなく、安価で小型な装置による高純度水の製造が可能となる。
【図面の簡単な説明】
【図1】本発明の燃料電池の水処理装置の実施の形態を示す系統図である。
【図2】本発明の燃料電池の水処理装置の他の実施の形態を示す系統図である。
【図3】都市ガス等から水素を製造する燃料処理系を有する固体高分子型燃料電池の一般的な構成を示す系統図である。
【符号の説明】
1,13 脱塩素手段
2 脱炭酸手段
3,11 第1水槽
4,12 第2水槽
5 第3水槽
6,14 RO膜装置
7,15 電気脱イオン装置
10,20 制御部
31 燃料極
32 空気極
33 燃料電池本体
34 冷却水タンク
35 燃料処理系
36 水処理装置
40 放熱器
41 気液分離器
42 気液分離器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water treatment apparatus for a fuel cell, and in particular, a fuel treatment system comprising a reformer, a carbon monoxide converter, and a carbon monoxide remover in a solid polymer fuel cell, and moisture of fuel gas and air. The present invention relates to a device for treating humidification and water supplied to a circulating cooling water system of a fuel cell body.
[0002]
[Prior art]
FIG. 3 is a system diagram showing a general configuration of a polymer electrolyte fuel cell having a fuel processing system for producing hydrogen from city gas or the like, and includes a fuel electrode 31 and an air electrode via an electrolyte (not shown). The cooling water is circulated from the cooling water tank 34 by the pump P 1 to the fuel cell main body 33 provided with 32 for cooling.
[0003]
A fuel such as city gas is introduced into the fuel processing system 35, reformed into a gas mainly composed of hydrogen by the reformer 35A, the carbon monoxide component is transformed by the carbon monoxide transformer 35B, and further the carbon monoxide. After carbon monoxide is removed to a very low concentration by the remover 35C, the carbon monoxide is supplied to the fuel electrode 31 in a state of containing moisture for humidification of the fuel cell body.
[0004]
The exhaust gas from the fuel electrode 31 is recovered by the heat recovery system including the pump P 2 , the heat exchangers 37, 38, 37 ′, and the hot water tank 39, and then further cooled by the radiator 40 to the gas-liquid separator 42. be introduced. Separated water of the gas-liquid separator 42 (condensed water) is supplied to the water treatment device 36, the separation gas containing hydrogen component is utilized as fuel in the reformer, discharged from the system as post-combustion steam Is done. Pure water for water vapor generation is introduced into the fuel treatment system 35 from the water treatment device 36 for fuel treatment and fuel gas humidification.
[0005]
On the other hand, air is introduced into the air electrode 32, and the reformed gas introduced into the fuel electrode 31 by the oxygen in the air is oxidized by an electrochemical reaction to generate power. Pure water may be introduced from the water treatment device 36 in order to humidify the air introduced into the air electrode 32. The exhaust gas from the air electrode 32 is recovered by the heat recovery system including the pump P 2 , the heat exchangers 37, 38, 37 ′ and the hot water storage tank 39, and then further cooled by the radiator 40 and supplied to the gas-liquid separator 41. be introduced. The separated water (condensed water) of the gas-liquid separator 41 is supplied to the water treatment device 36, and the separated gas is discharged out of the system as exhaust gas.
[0006]
Part of the pure water obtained by the treatment by the water treatment device 36 is fed to the fuel treatment system 35 and the remainder is fed to the cooling water tank 34. Cooling water of the cooling water tank 34 by the pump P 1, the cooling unit of the fuel cell body 33, the heat recovery system is circulated through the radiator 40. In addition, tap water is introduced into the water treatment device 36 as makeup water, and is treated together with the circulating cooling water.
[0007]
That is, in such a polymer electrolyte fuel cell, an electrochemical reaction is carried out via a solid ion exchange membrane, and therefore high-purity water is indispensable for the movement of hydrogen as a fuel. High purity water is also required for a reformer that generates hydrogen from fuel gas. Furthermore, high-purity water is required for the cooling water system of the fuel cell body.
[0008]
In a fuel cell, heat and water vapor are generated when electric power is extracted by an electrochemical reaction. Therefore, in order to reduce the amount of water used, the water vapor generated inside the fuel cell is condensed and recovered, and this is recovered. Although it is used, carbon dioxide, Fe, Al, Cu, etc. are dissolved in this condensed water, so it is necessary to remove it by water treatment. Further, since the amount of condensed water varies depending on the outside air temperature, a shortage occurs with respect to the amount of high-purity water required inside the apparatus. Therefore, it is necessary to replenish the amount of water continuously with tap water or the like. And about this tap water, it is necessary to remove dissolved ions, carbon dioxide gas, and the like.
[0009]
For this reason, the condensed water is treated and reused by the water treatment device 36, and the tap water is treated by the water treatment device 36 to replenish the insufficient water amount.
[0010]
Conventionally, an apparatus for producing pure water by an ion exchange method using an ion exchange resin is used as the water treatment apparatus.
[0011]
[Problems to be solved by the invention]
The ion exchange method can easily produce high-purity water with an inexpensive and small device, but the ion exchange resin used in the ion exchange method adsorbs ionic substances dissolved in water, instead Since the water is purified by releasing H + ions or OH ions, the ion exchange capacity of the resin is limited. For this reason, if a certain amount of ions are adsorbed, the ability to produce pure water is lost, and the ion exchange resin needs to be replaced or regenerated by chemicals.
[0012]
On the other hand, the fuel cell operates as a power supply source. For this reason, a fuel cell is desired to operate at a high operating rate. However, when a pure water production technology using the ion exchange method is adopted, in order to operate without replacing the ion exchange resin for one year, a large amount of ion exchange is required. It required a resin and was not realistic.
[0013]
Further, as described above, the exhaust gas from the fuel cell contains water vapor and carbon dioxide gas generated electrochemically. Therefore, the condensed water obtained by cooling the exhaust gas and separating it into gas and liquid is also carbonated. Contains ingredients. In the conventional method, in order to reduce the amount of make-up water (tap water), this condensed water is recovered as it is and supplied to the water treatment device. When the condensed water containing a large amount of carbon dioxide gas is treated in this way, This carbon dioxide gas also becomes a load of the ion exchange resin, which causes an increase in the exchange frequency of the ion exchange resin.
[0014]
The present invention solves the above-mentioned conventional problems, and without using an ion exchange resin that needs to be frequently exchanged, an electrodeionization apparatus that can perform long-term continuous processing without maintenance, and that can be used for a polymer electrolyte fuel cell. It aims at providing the water treatment apparatus of the fuel cell which processes the tap water as condensed water and makeup water, and manufactures high purity water.
[0015]
[Means for Solving the Problems]
A water treatment device for a fuel cell according to the present invention includes a decarboxylation means for decarboxylating the condensed water recovered from the fuel cell,
A reverse osmosis membrane device for treating external makeup water;
An electrodeionization device for desalting the treated water of the decarboxylation means and / or the permeated water of the reverse osmosis membrane device;
It is characterized by comprising switching means for switching between a flow path for discharging at least a part of the concentrated water of the electrodeionization apparatus out of the system and a flow path for supplying to the decarbonation means.
[0016]
More specifically, the fuel cell water treatment device comprises a decarboxylation means for decarboxylating the condensed water recovered from the fuel cell;
A first reservoir for receiving external makeup water;
A reverse osmosis membrane device for treating the effluent of the first water tank;
A second water tank for receiving condensed water decarboxylated by the decarbonation means and / or permeated water of the reverse osmosis membrane device;
An electrodeionization device for desalting the effluent of the second water tank;
It comprises switching means for switching between a flow path for discharging at least a part of the concentrated water of the electrodeionization apparatus to the outside of the system and a flow path for supplying to the decarbonation means.
[0017]
In this water treatment apparatus for a fuel cell, it is preferable to dechlorinate the external makeup water prior to the treatment with the reverse osmosis membrane apparatus. In this case, the dechlorination means is provided before or after the first water tank. Is preferably provided.
[0018]
In this fuel cell water treatment device, decondensation of condensed water having a low ion load and a high carbonic acid concentration is followed by demineralization treatment with an electrodeionization device, and conversely, the ion load is high and the carbonic acid concentration is high. By demineralizing low external makeup water using a reverse osmosis membrane device and an electrodeionization device, high-purity water can be produced. Therefore, when the amount of condensed water is small based on the amount of condensed water, the amount of external makeup water can be reduced by treating and reusing the concentrated water of the electrodeionization apparatus. In addition, in this case, since the amount of condensed water to be treated by the decarbonation means is small, there is no problem of an increase in the load on the decarbonation means due to the decarbonation treatment of this concentrated water.
[0019]
A water treatment device for a fuel cell according to claim 3 is a reverse osmosis membrane device for treating condensed water and / or external makeup water recovered from the fuel cell;
An electrodeionization device for desalting the permeated water of the reverse osmosis membrane device;
It is characterized by comprising switching means for switching between a flow path for discharging at least a part of the condensed water to the outside of the system and a flow path for supplying the reverse osmosis membrane device.
[0020]
More specifically, the water treatment device of the fuel cell includes a water tank that receives condensed water and / or external makeup water recovered from the fuel cell;
A reverse osmosis membrane device for treating the effluent of the water tank;
An electrodeionization device for desalting the permeated water of the reverse osmosis membrane device;
It comprises switching means for switching between channel selection for discharging at least a part of the condensed water to the outside of the system and channel selection for supplying to the water storage tank.
[0021]
Also in this fuel cell water treatment device, it is preferable to dechlorinate the external makeup water prior to treatment with the reverse osmosis membrane device, and in this case, a dechlorination means may be provided at the front stage or the rear stage of the water storage tank. preferable.
[0022]
With this fuel cell water treatment device, high-purity water can be efficiently produced by reducing the amount of makeup water and the load on the device without using a decarboxylation means.
[0023]
That is, in this device, the reverse osmosis membrane device cannot be decarboxylated, but the electrodeionization device can be removed by electrodialysis desalination after ionizing carbonic acid in water. Condensed water is desalted, decarbonated and reused up to the load limit. If the carbonate concentration of the condensed water exceeds the load limit of the electrodeionization device, it is discharged out of the system.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0025]
FIG. 1 is a system diagram showing an embodiment of a water treatment apparatus for a fuel cell according to the first invention of the present invention, and FIG. 2 is an implementation of the water treatment apparatus for a fuel cell according to the second invention of the present invention. It is a systematic diagram which shows a form.
[0026]
The water treatment apparatus of FIG. 1 has a relatively low ion load, a high carbonic acid concentration, a treatment system that decarboxylates the condensed water of the fuel cell and then demineralizes with an electric deionizer, and a carbonic acid concentration compared to the condensed water. By treating the external makeup water (usually tap water) with low but high ion load in two systems, a reverse osmosis (RO) membrane device and a treatment system for desalination with an electrodeionization device, It is intended to efficiently produce high-purity water by reducing the equipment load after reducing the makeup water through reuse.
[0027]
In FIG. 1, 1 is a dechlorination means, 2 is a decarbonation means, 3, 4 and 5 are a 1st water tank, a 2nd water tank, and a 3rd water tank, 6 is RO membrane apparatus, 7 is an electrodeionization apparatus, 8 is flow meter, 10 the control unit, V 1 ~V 3 valve, P 1, P 2 is a pump.
[0028]
In the polymer electrolyte fuel cell, the amount of condensed water increases or decreases. For example, when the outside air temperature rises, the amount of condensed water decreases, and the amount of external makeup water needs to be increased. In this water treatment apparatus of FIG. 1, the amount of condensed water measured by the flow meter 8 is compared with a set value by the control unit 10, and the following processing is performed depending on whether the amount of condensed water is smaller or larger than the set value. Do.
[0029]
[When the amount of condensed water is small]
When it is determined that the amount of water condensation in the control unit 10 is small, after increasing the introduction opening of the valve V 1 of the tap water, the external supply water reuse circulate concentrated water of the electrodeionization apparatus 7 In order to reduce, the valve V 2 is closed and the valve V 3 is opened, and the condensed water having a low ion load and a high carbonic acid concentration is decarboxylated by the decarbonation means 2 and then fed to the second water tank 4, while the ion The external makeup water having a high load and a low carbonic acid concentration is desalted by the RO membrane device 6 via the first water tank 3, and further desalted by the electrodeionization device 7 together with the decarbonated water of the condensed water via the second water tank 4. To process. As a result, about 90% of dissolved ion components in the makeup water are removed by the RO membrane device 6, but a small amount of ion components in the permeated water and condensed water of the RO membrane device 6 are highly removed by the electrodeionization device 7. Is done. Since the makeup water supplied to the electrodeionization device 7 is demineralized in advance by the RO membrane device 6 and the condensed water is decarboxylated in advance by the decarboxylation means 2, the electrodeionization device 7 The load of is reduced. The treated water (deionized water) of the electrodeionization device 7 is supplied to the fuel cell through the third water tank 5.
[0030]
Further, the concentrated water of the RO membrane device 6 is discharged out of the system, and the concentrated water of the electrodeionization device 7 is circulated to the inlet side of the decarboxylation means 2 and decarboxylated together with the condensed water, and then the electrodeionization device 7. Deionize with. That is, the concentrated water of the electrodeionization device 7 includes condensed water having a low ion load and permeated water of the RO membrane device 6 having a high ion load but a large portion of ions being removed by the RO membrane device 6 to reduce the ion load. Concentrated water of the electrodeionization device 7 using water as a raw water, the ion load is relatively low, and the carbonic acid concentration which is not removed by the decarboxylation means is concentrated by the electrodeionization device 7 to increase the carbonic acid concentration. Therefore, after decarboxylation with the decarboxylation means 2, deionization with the electrodeionization device 7 makes it possible to obtain high-purity water.
[0031]
Thus, when the amount of condensed water is small, the amount of external replenishing water can be reduced by circulating the concentrated water of the electrodeionization apparatus 7 and reusing it. In addition, in this case, since the amount of condensed water is small, a sufficient treatment capacity remains in the decarbonation means 2, so that there is no inconvenience caused by treating the concentrated water of the electrodeionization device 7.
[0032]
The decarbonation means is not particularly limited, and may be either an air contact type or a gas permeable membrane type, but is preferably a small gas permeable membrane type having a high carbon dioxide gas removal rate.
[0033]
In this case, if all of the concentrated water in the electrodeionization device 7 is circulated and reused, ions concentrated on the concentrated water side by the electrodeionization device 7 cannot be discharged out of the system. Part of the concentrated water is preferably discharged out of the system. As a means for discharging a part of the concentrated water of the electrodeionization apparatus 7 out of the system, the valve V 3 is intermittently closed and the valve V 2 is opened, or the valve V 3 is opened and the valve V 2 is opened slightly. The concentrated water of the electrodeionization device 7 decarboxylated by the decarboxylation means 2 is supplied to the first water tank 3 and mixed with the external makeup water and processed by the RO membrane device 6 as described later. And discharging as concentrated water of the RO membrane device 6.
[0034]
[When there is a lot of condensed water]
When it is determined that the amount of water condensation in the control unit 10 is large, the introduction opening of the valve V 1 of the tap water was reduced to reduce the replenishing amount of water, electrodeionization apparatus 7 retentate of discharged out of the system order, the valve V 2 opens, the valve V 3 is closed. Also in this case, the condensed water having a low ion load and a high carbonic acid concentration is decarboxylated by the decarbonation means 2 and then supplied to the second water tank 4, while the external makeup water having a high ion load and a low carbonic acid concentration is supplied. The RO membrane device 6 passes through the first water tank 3, and the salt water is further desalted by the electric deionizer 7 together with the decarbonated water of condensed water through the second water tank 4. The treated water of the electrodeionization device 7 is supplied to the fuel cell through the third water tank 5. Further, the concentrated water of the electrodeionization device 7 is discharged out of the system together with the concentrated water of the RO membrane device 6.
[0035]
Thus, when there is much amount of condensed water, the concentrated water of the electrodeionization apparatus 7 is discharged | emitted out of the system. That is, since the carbon dioxide that could not be removed by the decarbonation means 2 is concentrated in the concentrated water of the electrodeionization apparatus 7, the concentrated water is discharged out of the system. By discharging the concentrated water from the electrodeionization apparatus 7 in this way, an increase in load can be prevented.
[0036]
In addition, since tap water is normally used as external makeup water, and chlorine in tap water deteriorates the RO membrane, the apparatus of FIG. 1 is provided with a dechlorination means 1 in front of the first water tank 3, Chlorine is removed. The dechlorination means 1 may be provided upstream of the RO membrane device 6, and may be provided between the first water tank 3 and the RO membrane device 6.
[0037]
As this dechlorination means, activated carbon and / or a catalyst carrier (cobalt or the like can be used as a catalyst, and resin or activated carbon can be used as a carrier) or injection of a reducing agent is used. Although an apparatus etc. can be used, the activated carbon packed tower which does not cause the increase in an ion load, activated carbon, and a catalyst packed tower are suitable.
[0038]
In the apparatus of FIG. 1, the third water tank 5 is not necessarily required, and the treated water of the electrodeionization apparatus 7 may be directly supplied to the fuel cell, but the pure water of the fuel cell is supplied to the cooling water system. Since there are three reforming reaction sections and shift sections of the reformer, and each has different pure water supply conditions, it is preferable to provide the third water tank 5 in terms of stable supply.
[0039]
Moreover, while providing the flow path which sends water from the decarbonation means 2 to the 1st water tank 3, the means which switches this flow path and the flow path which sends water to the 2nd water tank 4 is provided, there is little condensed water amount, and the electrodeionization apparatus 7 is provided. When the concentrated water is reused, the treated water of the decarbonation means 2 is supplied to the first water tank 3 instead of the second water tank 4, and after the decarbonation treatment, the RO membrane device 6 and the electric deionization are further performed. The apparatus 7 may perform a two-stage desalting process.
[0040]
That is, in the apparatus of FIG. 1, when the valve V 2 is closed and the valve V 3 is opened and the total amount of concentrated water of the electrodeionization device 7 is fed to the decarbonation means, the electrodeionizer 7 concentrates the concentrated water. In this case, the treated water of the decarbonation means 2 is supplied to the first water tank 3 and is used as the concentrated water of the RO membrane device 6 in this case. It is preferable to discharge the water.
[0041]
Further, in this apparatus, the amount of the condensed water is determined based on the measurement result of the flow meter 8 provided in the condensed water inflow pipe as shown in FIG. Can be provided with a water level detection means such as a water level gauge, or based on the operating status of the RO membrane device 6, and the flow of concentrated water in the electrodeionization device 7 can be switched. Can be done automatically or manually based on
[0042]
In general, in a polymer electrolyte fuel cell, most of the water recovered from the fuel cell is condensed water, and only a small amount of cooling water is blown down. In the case where there is blowdown water for cooling water, it is preferable to supply the cooling water to the first water tank 3 or the second water tank 4 and mix it with condensed water and / or makeup water.
[0043]
Even if the amount of condensed water is considerably large, the amount of water in the system decreases due to discharge of a part of the concentrated water of the electrodeionization device in which dissolved substances in the condensed water are concentrated. Introduction is required.
[0044]
The water treatment apparatus of FIG. 2 is an apparatus that treats condensed water and external makeup water without using decarbonation means, and reduces the amount of makeup water and the load on the equipment by using an inexpensive and compact device that eliminates complicated facilities. High-purity water is efficiently produced.
[0045]
In FIG. 2, 11 is a first water tank, 12 is a second water tank, 13 is a dechlorination means, 14 is a RO membrane device, 15 is an electrodeionization device, 20 is a control unit, V 4 and V 5 are valves, P 3 Is a pump.
[0046]
In this water treatment apparatus, the following treatment is performed according to the carbon dioxide concentration of the condensed water.
[0047]
[When the concentration of carbonated water is low]
When carbonate concentration of the feed water by the control unit 20 to the electrodeionization apparatus 15 it is determined that the lower is the degree to which can be removed by electrodeionization device, squeezing the opening of the valve V 4, also the valve V 5 Selects the flow path to the first water tank 11, dechlorinates the mixed water of the condensed water and the external makeup water through the first water tank 11 with the dechlorination means 13, and then desalinates with the RO membrane device 14. Desalination and decarboxylation are performed in the electrodeionization apparatus 15. As a result, the carbonic acid component in the condensed water having a low ion load and a high carbonic acid concentration is removed by the electrodeionization device 15, and the ion component in the makeup water having a high ion load and a low carbonic acid concentration is removed from the RO membrane device 14 and the electric deionization. Highly removed by device 15. The treated water (deionized water) of the electrodeionization device 15 is supplied to the fuel cell through the second water tank 12. The concentrated water of the RO membrane device 14 and the electrodeionization device 15 is discharged out of the system.
[0048]
Thus, the amount of makeup water can be reduced by collecting and reusing the condensed water. In this case, the carbon dioxide concentration of the condensed water is relatively low, so that the apparatus load is not excessively increased.
[0049]
[When the concentration of carbonated water is high]
High carbonate concentration of condensed water by the control unit 20, when it is determined that not be removed by electrodeionization device 15, together with the increase replenishing water by increasing the opening of the valve V 4, valve V 5 is The flow path is selected so that all or part of the condensed water is discharged out of the system, and only the makeup water or the mixed water of the makeup water and a small amount of the condensed water is dechlorinated by the dechlorination means 13 through the first water tank 11. After that, the RO membrane device 14 is desalted, and the electrodeionization device 15 is further desalted and decarboxylated. The concentrated water of the RO membrane device 14 and the electrodeionization device 15 is discharged out of the system. In this way, when the concentration of carbon dioxide in the condensed water is relatively high, it is possible to discharge at least a part of the system without reusing it, thereby increasing the load on the apparatus and lowering the quality of the treated water. And high purity water can be produced.
[0050]
In this apparatus as well, in order to prevent deterioration of the RO membrane of the RO membrane device 14, dechlorination means 13 for dechlorinating tap water as external makeup water is provided. It is only necessary that the makeup water can be treated on the upstream side of the membrane device 14, and it may be provided on the introduction side of the first water tank 11. As this dechlorination means, the same one as in FIG. 1 can be used.
[0051]
Also in the apparatus of FIG. 2, the second water tank 12 is not necessarily required, but it is preferable to provide the second water tank 12 from the viewpoint of stabilizing the amount of pure water supplied to the fuel cell.
[0052]
Further, when the blowdown water of the cooling water of the fuel cell is also processed by this device, it is preferable to supply the blowdown water to the first water tank 11 and mix it with the condensed water and / or makeup water. .
[0053]
In the apparatus of FIG. 2, the determination of whether to recycle condensed water or to discharge it outside the system is made based on the carbonate concentration of the condensed water. Current or treated water quality can be measured and determined based on these results.
[0054]
That is, in the electrodeionization apparatus, when the concentration of the ionic component dissolved in the supply water and the concentration of carbon dioxide gas increase, the specific resistance of the treated water decreases, and the operation current increases with respect to the operation voltage. appear. When the water supplied to the electrodeionization device is limited to the permeated water of the RO membrane device, the ionic component is almost removed by the RO membrane device, but carbon dioxide gas is contained in the permeated water without being removed. What influences the specific resistance of the treated water, the operating voltage, and the current of the electrodeionization apparatus in the state is dominated by the carbon dioxide gas concentration. Therefore, the treated water specific resistance, operating voltage and current of the electrodeionization apparatus can be measured to estimate the carbon dioxide concentration.
[0055]
Further, in addition to indirectly determining the carbon dioxide concentration of the condensed water from the operating conditions of the electrodeionization apparatus, the carbon dioxide gas concentration does not change from the inside of the first water tank 11 to the permeated water of the RO membrane device. Therefore, the carbon dioxide concentration may be measured directly at any location.
[0056]
As a method of switching the flow path based on the carbonic acid concentration of the condensed water, the following methods (1) and (3) are adopted, the following methods (1) to (3) are adopted, and further, the following (2) is adopted. In this method, a method of adjusting the discharge amount outside the system based on the carbon dioxide concentration of the condensed water can be considered, but in any case, as described above, the amount of water in the system decreases, so make-up water is essential.
(1) When the carbon dioxide concentration of the condensed water is low, the entire amount of the condensed water is sent to the first water tank 11 and recycled.
{Circle around (2)} When the carbon dioxide concentration of the condensed water is relatively high, a part of the condensed water is sent to the first water tank 11 and recycled, and the remainder is discharged out of the system.
(3) When the carbon dioxide concentration of the condensed water is high, all the condensed water is discharged out of the system.
[0057]
The flow path switching may be performed manually or automatically.
[0058]
The apparatus of FIG. 2 maximizes the recovery of condensed water so that the water treatment apparatus does not become overloaded, reduces the amount of tap water used, and performs electrodeionization without using complex equipment. The apparatus can be operated stably, and as a result, high-purity water can be continuously produced.
[0059]
【The invention's effect】
As described above in detail, according to the water treatment device for a fuel cell of the present invention, using an electrodeionization device capable of continuous sampling, the amount of external makeup water is reduced and the load on the device is reduced. Water can be produced efficiently.
[0060]
In particular, with the fuel cell water treatment device according to the first aspect, the amount of external makeup water can be reduced as much as possible while suppressing an increase in device load in accordance with the amount of recovered condensed water.
[0061]
In addition, the fuel cell water treatment device according to claim 3 enables the production of high-purity water by an inexpensive and small device without using complicated equipment.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a water treatment apparatus for a fuel cell according to the present invention.
FIG. 2 is a system diagram showing another embodiment of a water treatment apparatus for a fuel cell according to the present invention.
FIG. 3 is a system diagram showing a general configuration of a polymer electrolyte fuel cell having a fuel processing system for producing hydrogen from city gas or the like.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,13 Dechlorination means 2 Decarbonation means 3,11 1st water tank 4,12 2nd water tank 5 3rd water tank 6,14 RO membrane apparatus 7,15 Electrodeionization apparatus 10,20 Control part 31 Fuel electrode 32 Air electrode 33 Fuel Cell Body 34 Cooling Water Tank 35 Fuel Treatment System 36 Water Treatment Device 40 Radiator 41 Gas-Liquid Separator 42 Gas-Liquid Separator

Claims (4)

燃料電池から回収された凝縮水を脱炭酸処理する脱炭酸手段と、
外部補給水を処理する逆浸透膜装置と、
前記脱炭酸手段の処理水及び/又は該逆浸透膜装置の透過水を脱塩処理する電気脱イオン装置と、
該電気脱イオン装置の濃縮水の少なくとも一部を、系外に排出する流路と前記脱炭酸手段に供給する流路とを切り替える切替手段と
を備えてなる燃料電池の水処理装置。
A decarboxylation means for decarboxylating the condensed water recovered from the fuel cell;
A reverse osmosis membrane device for treating external makeup water;
An electrodeionization device for desalting the treated water of the decarboxylation means and / or the permeated water of the reverse osmosis membrane device;
A water treatment apparatus for a fuel cell, comprising: a switching means for switching between a flow path for discharging at least a part of the concentrated water of the electrodeionization apparatus to the outside of the system and a flow path for supplying to the decarbonation means.
請求項1において、前記外部補給水を脱塩素処理する脱塩素手段が前記逆浸透膜装置の前段に設けられている燃料電池の水処理装置。2. The water treatment apparatus for a fuel cell according to claim 1, wherein a dechlorination means for dechlorinating the external makeup water is provided in the front stage of the reverse osmosis membrane apparatus. 燃料電池から回収された凝縮水及び/又は外部補給水を処理する逆浸透膜装置と、
該逆浸透膜装置の透過水を脱塩処理する電気脱イオン装置と、
前記凝縮水の少なくとも一部を、系外に排出する流路と前記逆浸透膜装置に供給する流路とを切り替える切替手段と
を備えてなる燃料電池の水処理装置。
A reverse osmosis membrane device for treating condensed water and / or external makeup water recovered from the fuel cell;
An electrodeionization device for desalting the permeated water of the reverse osmosis membrane device;
A water treatment apparatus for a fuel cell, comprising: a switching means for switching between a flow path for discharging at least a part of the condensed water to the outside of the system and a flow path for supplying the reverse osmosis membrane apparatus.
請求項3において、外部補給水を脱塩素処理する脱塩素手段が前記逆浸透膜装置の前段に設けられている燃料電池の水処理装置。4. The water treatment device for a fuel cell according to claim 3, wherein a dechlorination means for dechlorinating the external makeup water is provided in the front stage of the reverse osmosis membrane device.
JP2000049792A 2000-02-25 2000-02-25 Water treatment device for fuel cell Expired - Fee Related JP4461553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000049792A JP4461553B2 (en) 2000-02-25 2000-02-25 Water treatment device for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000049792A JP4461553B2 (en) 2000-02-25 2000-02-25 Water treatment device for fuel cell

Publications (2)

Publication Number Publication Date
JP2001232394A JP2001232394A (en) 2001-08-28
JP4461553B2 true JP4461553B2 (en) 2010-05-12

Family

ID=18571675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000049792A Expired - Fee Related JP4461553B2 (en) 2000-02-25 2000-02-25 Water treatment device for fuel cell

Country Status (1)

Country Link
JP (1) JP4461553B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655451B2 (en) * 2003-03-12 2011-03-23 西部瓦斯株式会社 Polymer electrolyte fuel cell system
JP5082188B2 (en) * 2003-10-01 2012-11-28 栗田工業株式会社 Water treatment device for fuel cell
JP4595315B2 (en) * 2003-11-17 2010-12-08 栗田工業株式会社 Water treatment device for fuel cell
JP4713079B2 (en) * 2003-12-18 2011-06-29 東芝燃料電池システム株式会社 Fuel cell power generation system and operation method thereof
JP2009076216A (en) * 2007-09-19 2009-04-09 Toshiba Corp Fuel cell power generation system, and water circulating system thereof
JP5163204B2 (en) * 2008-03-19 2013-03-13 富士電機株式会社 Fuel cell power generator
JP2009245702A (en) * 2008-03-31 2009-10-22 Fuji Electric Holdings Co Ltd Water processing unit for fuel cell power generation system
JP5021608B2 (en) * 2008-12-15 2012-09-12 オルガノ株式会社 Water treatment apparatus and water treatment method
CN102040260B (en) * 2009-10-16 2014-02-19 奥加诺株式会社 Water treatment device of fuel cell and water treatment method of fuel cell
JP5562670B2 (en) * 2010-02-01 2014-07-30 旭化成ケミカルズ株式会社 Water recovery system
JP5836783B2 (en) * 2011-12-12 2015-12-24 東京瓦斯株式会社 Hydrodesulfurization method and system using by-product hydrogen in electrodeionization water treatment system
CN103224307B (en) * 2013-04-28 2015-05-06 浙江晶泉水处理设备有限公司 Continuous electro-adsorption process-based sea water desalination apparatus
CN114046187A (en) * 2021-10-11 2022-02-15 北京市煤气热力工程设计院有限公司 Efficient recovery device and method for pressure energy and chemical energy of pipeline natural gas

Also Published As

Publication number Publication date
JP2001232394A (en) 2001-08-28

Similar Documents

Publication Publication Date Title
CA2470633C (en) Fractional deionization process
JP3518112B2 (en) Fuel cell water treatment equipment
JP2568617B2 (en) Method for decomposing organic substances and bacteria in water supply
JP4461553B2 (en) Water treatment device for fuel cell
WO2004108606A1 (en) Electric type deionized water production apparatus operating method, electric type deionized water production system, and electric type deionized water production apparatus
JP3969221B2 (en) Method and apparatus for producing deionized water
JP2011131210A (en) Device and method for treating nitrogen compound-containing acidic solutions
JP4562103B2 (en) Water recovery device for fuel cell
JP2004167291A (en) Electric deionization apparatus
JP5145305B2 (en) Electric deionized water production equipment
JP3952127B2 (en) Electrodeionization treatment method
JP5353034B2 (en) Fuel cell power generator
JP3707333B2 (en) Water treatment system for fuel cell power generator
JP3773178B2 (en) Electric deionized water production apparatus and production method
JP2007268331A (en) Apparatus for manufacturing electrically deionized water
JP4662277B2 (en) Electrodeionization equipment
JP2008161760A (en) Pure water making method and pure water making apparatus
JP2007258026A (en) Water treatment system of fuel cell device
JP3700244B2 (en) Pure water production equipment
JP2008161761A (en) Pure water making method and pure water making apparatus
JP5286851B2 (en) Fuel cell power generator
JP5292865B2 (en) Water recovery method for fuel cell power generator and fuel cell power generator
JP5021608B2 (en) Water treatment apparatus and water treatment method
JPH08173978A (en) Method for removing organic substance
JP2009140726A (en) Fuel cell power generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees