JP2009076216A - Fuel cell power generation system, and water circulating system thereof - Google Patents

Fuel cell power generation system, and water circulating system thereof Download PDF

Info

Publication number
JP2009076216A
JP2009076216A JP2007241669A JP2007241669A JP2009076216A JP 2009076216 A JP2009076216 A JP 2009076216A JP 2007241669 A JP2007241669 A JP 2007241669A JP 2007241669 A JP2007241669 A JP 2007241669A JP 2009076216 A JP2009076216 A JP 2009076216A
Authority
JP
Japan
Prior art keywords
water
fuel cell
battery cooling
chamber
condensed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007241669A
Other languages
Japanese (ja)
Inventor
Takayuki Shinohara
隆之 篠原
Katsuya Wada
克也 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Corp
Priority to JP2007241669A priority Critical patent/JP2009076216A/en
Publication of JP2009076216A publication Critical patent/JP2009076216A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water circulating system which can help achieve a mass-production, a reduced cost production and a performance improvement, and to provide a fuel cell power generation system provided with the same. <P>SOLUTION: A condensed heat exchanger 30 composed of a nonflammable material generates condensed water by cooling down a burner exhaust exhausted from a fuel treatment unit 2 and a cathode electrode exhaust exhausted from a fuel cell main body 1. In a water tank 50 composed of a resin material, there are provided a condensed water chamber 51, a battery cooling water chamber 52, and a pure water chamber 53 which store separately condensed water exhausted from the condensed heat exchanger 30, battery cooling water exhausted from a decarboxylation tower 40 after a decarboxylation treatment, and pure water exhausted from a water treatment unit 70, and each of the stored water is supplied outside the water tank 50 by a condensed water supply passage 205, a battery cooling water supply passage 201 and a pure water supply passage 207 respectively. The outflow port at the lower end of the condenser exhaust passage 31 of the condensed heat exchanger 30 for supplying condensed water into the condensed water chamber 51 is arranged at a lower position than the liquid level in the condensed water chamber 51. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、燃料電池発電システムに関するものであり、特に、燃料処理装置から排出されるバーナ排気中の水分と燃料電池本体から排出されるカソード極排気中の水分を凝縮して、得られた凝縮水と燃料電池を冷却する電池冷却水を貯留し、貯留した水の水質を浄化する水循環システムに関するものである。   The present invention relates to a fuel cell power generation system, and in particular, condenses obtained by condensing moisture in the burner exhaust discharged from the fuel processing device and moisture in the cathode electrode exhaust discharged from the fuel cell main body. The present invention relates to a water circulation system for storing water and battery cooling water for cooling a fuel cell and purifying the quality of the stored water.

燃料電池発電システムは、燃料である水素と酸化剤である酸素とを反応させて電気を直接取り出すものであり、高い効率で電気エネルギーを取り出すことができると共に、有害な排気ガスを出さず、しかも低騒音であるという環境性に優れた特徴を有するシステムである。   The fuel cell power generation system directly takes out electricity by reacting hydrogen, which is fuel, and oxygen, which is oxidant, and can take out electric energy with high efficiency, and does not emit harmful exhaust gas. It is a system that has a feature that is excellent in environmental characteristics such as low noise.

この燃料電池発電システムのうち、家庭用あるいは小規模事業用向けの比較的小型の燃料電池発電システムは、発電電力と発電に伴う排熱を供給する実用性の高いコージェネレーションシステムとして注目されている。   Among these fuel cell power generation systems, a relatively small fuel cell power generation system for home use or small-scale business is attracting attention as a highly practical cogeneration system that supplies generated power and exhaust heat generated by power generation. .

また、燃料電池発電システムの具体的な発電方式としては、各種の方式が提案されているが、現時点では、燃料供給基盤が既に整っている都市ガス、LPガス、および灯油などの炭化水素系燃料から水蒸気との改質反応により得られる水素で発電を行う方式の燃料電池発電システムを中心に開発が進められている。   In addition, various types of power generation methods for fuel cell power generation systems have been proposed, but at present, hydrocarbon fuels such as city gas, LP gas, and kerosene, which already have a fuel supply base. Development of fuel cell power generation systems that generate electricity using hydrogen obtained by reforming reaction with water vapor has been underway.

このような改質反応を用いた方式の燃料電池発電システムにおいて、システム内の水を循環させる水循環システムは、化学反応で発熱した燃料電池を通常動作温度に維持するための電池冷却水の供給や炭化水素系燃料を水蒸気改質するための改質水の供給、また、システムから大気へ排出するガスを冷却することにより得られる凝縮水を回収することでシステム系外からの補給水を不要として燃料電池発電システムの効率を向上させるなどの役割を担っており、燃料電池発電システムの重要な構成要素の1つとなっている。   In such a fuel cell power generation system using a reforming reaction, a water circulation system that circulates water in the system supplies battery cooling water to maintain a fuel cell that generates heat due to a chemical reaction at a normal operating temperature. Supply of reforming water for steam reforming of hydrocarbon fuel and recovery of condensed water obtained by cooling the gas discharged from the system to the atmosphere eliminates the need for makeup water from outside the system It plays a role of improving the efficiency of the fuel cell power generation system, and is one of the important components of the fuel cell power generation system.

図3は、従来の燃料電池発電システムの水循環システムの一例を示す構成図である。この図3に示すように、燃料電池発電システムは、基本的な構成要素として、燃料電池本体1と燃料処理装置2を備えている。   FIG. 3 is a configuration diagram illustrating an example of a water circulation system of a conventional fuel cell power generation system. As shown in FIG. 3, the fuel cell power generation system includes a fuel cell main body 1 and a fuel processing device 2 as basic components.

ここで、燃料電池本体1は、アノード極1aとカソード極1bおよび電解質膜(図示せず)を備え、アノード極1aには水素リッチなガスをカソード極1bには空気を供給することで電気エネルギーを得るものである。また、燃料処理装置2は、燃焼熱を発生させるバーナ部2aと、このバーナ部2aで発生させた燃焼熱を利用した吸熱反応による改質反応により原燃料を水素リッチなガスに改質する改質部2bを備えている。   Here, the fuel cell body 1 includes an anode 1a, a cathode 1b, and an electrolyte membrane (not shown). Electric energy is supplied by supplying a hydrogen-rich gas to the anode 1a and air to the cathode 1b. Is what you get. In addition, the fuel processor 2 reforms the raw fuel into a hydrogen-rich gas by a reforming reaction by an endothermic reaction using the combustion heat generated by the burner unit 2a and the combustion heat generated by the burner unit 2a. The mass part 2b is provided.

このような燃料電池本体1と燃料処理装置2を備えた燃料電池発電システムにおいて、水循環システムは、凝縮熱交換部3、脱炭酸塔4、水タンク部5を一体化してなる複合熱交換器6と、水処理装置7a,7b、および複数の流路101〜108等の構成要素を備えている。   In the fuel cell power generation system including the fuel cell main body 1 and the fuel processing device 2, the water circulation system includes a combined heat exchanger 6 in which the condensation heat exchange unit 3, the decarbonation tower 4, and the water tank unit 5 are integrated. And water treatment devices 7a and 7b, and a plurality of flow paths 101 to 108 and other components.

ここで、複合熱交換器6の凝縮熱交換部3は、カソード極1bからの排気および燃料処理装置2のバーナ部2aからの排気中に保有される水分を、貯湯タンク8に蓄えられる水と熱交換させて冷却し、凝縮させる部分である。複合熱交換器6の脱炭酸塔4は、燃料電池本体1から排出される電池冷却水に対して、カソード極1bより排出されるカソード極排ガスで脱炭酸処理を行い、電池冷却水中に含まれる炭酸ガスを低減させる部分である。複合熱交換器6の水タンク部5は、凝縮熱交換部3で得られた凝縮水と、システム内の他の各部(例えば、水素リッチガスの配管内やアノード極排ガスの配管内など)で得られた凝縮水、および脱炭酸塔4で脱炭酸処理された電池冷却水を貯水する部分である。   Here, the condensation heat exchanging unit 3 of the composite heat exchanger 6 is configured so that the water held in the exhaust gas from the cathode electrode 1b and the exhaust gas from the burner unit 2a of the fuel processor 2 is stored in the hot water storage tank 8 with water. It is the part that is cooled and condensed by heat exchange. The decarbonation tower 4 of the composite heat exchanger 6 performs decarbonation treatment on the battery cooling water discharged from the fuel cell main body 1 with the cathode electrode exhaust gas discharged from the cathode electrode 1b, and is contained in the battery cooling water. This is the part that reduces carbon dioxide. The water tank part 5 of the composite heat exchanger 6 is obtained from the condensed water obtained in the condensation heat exchange part 3 and other parts in the system (for example, in a hydrogen rich gas pipe or an anode exhaust gas pipe). This is a portion for storing the condensed water and the battery cooling water decarboxylated in the decarboxylation tower 4.

水処理装置7a,7bは、イオン交換樹脂などを用いて水を浄化する装置であり、水タンク部5内に貯水された水の一部は、一方の水処理装置7aにより燃料電池本体1に適した水質となるように処理された後、電池冷却水として燃料電池本体1に供給されるようになっている。また、水タンク部5内に貯水された水の一部は、他方の水処理装置7bにより燃料処理装置2の改質部2bに適した水質となるように処理された後、改質水として改質部2bに供給されるようになっている。   The water treatment devices 7a and 7b are devices that purify water using an ion exchange resin or the like, and a part of the water stored in the water tank 5 is transferred to the fuel cell main body 1 by one water treatment device 7a. After being treated so as to have a suitable water quality, it is supplied to the fuel cell body 1 as battery cooling water. In addition, a part of the water stored in the water tank unit 5 is treated by the other water treatment device 7b so as to have a water quality suitable for the reforming unit 2b of the fuel processing device 2, and is then used as reformed water. It is supplied to the reforming unit 2b.

複数の流路101〜108のうち、流路101は、燃料電池本体1から排出される電池冷却水を複合熱交換器6の脱炭酸塔4に供給する電池排水流路であり、流路102〜104は、複合熱交換器6の水タンク部5に貯水された水の一部を、水処理装置7aを介してあるいはバイパスして、燃料電池本体1に電池冷却水として供給する電池冷却水供給流路である。これらの流路101〜104は、脱炭酸塔4および水タンク部5と共に電池冷却水を循環させる電池冷却水循環ラインを構成している。   Among the plurality of flow paths 101 to 108, the flow path 101 is a battery drain flow path that supplies battery cooling water discharged from the fuel cell main body 1 to the decarbonation tower 4 of the composite heat exchanger 6. ˜104 are battery cooling water supplied as battery cooling water to the fuel cell body 1 by partially bypassing the water stored in the water tank section 5 of the composite heat exchanger 6 via the water treatment device 7a. It is a supply flow path. These flow paths 101 to 104 constitute a battery cooling water circulation line for circulating the battery cooling water together with the decarbonation tower 4 and the water tank section 5.

また、流路105は、燃料電池本体1のカソード極1bから排出されるカソード極排気を複合熱交換器6の脱炭酸塔4に供給するカソード極排気流路であり、脱炭酸塔4と共に、カソード極排気を水循環システム内に取り込むカソード極排気ラインを構成している。流路106は、燃料処理装置2のバーナ部2aから排出されるバーナ排気を複合熱交換器6の凝縮熱交換部3に供給するバーナ排気流路であり、バーナ排気を水循環システム内に取り込むバーナ排気ラインを構成している。   The channel 105 is a cathode electrode exhaust channel for supplying the cathode electrode exhaust discharged from the cathode electrode 1 b of the fuel cell body 1 to the decarbonation tower 4 of the composite heat exchanger 6. The cathode electrode exhaust line is configured to take the cathode electrode exhaust into the water circulation system. The flow path 106 is a burner exhaust flow path for supplying the burner exhaust discharged from the burner section 2a of the fuel processing device 2 to the condensation heat exchange section 3 of the composite heat exchanger 6, and takes the burner exhaust into the water circulation system. It constitutes the exhaust line.

また、流路107,108は、複合熱交換器6の水タンク部5に貯水された水の一部を、水処理装置7bを介して燃料処理装置2の改質部2bに改質水として供給する改質水供給流路であり、水循環システム内に取り込んだガス中の水分を改質水として燃料処理装置に供給する改質水供給ラインを構成している。   In addition, the flow paths 107 and 108 use a part of the water stored in the water tank 5 of the composite heat exchanger 6 as reforming water to the reforming unit 2b of the fuel processing device 2 via the water treatment device 7b. A reforming water supply flow path for supplying a reforming water supply line for supplying moisture in the gas taken into the water circulation system to the fuel processing apparatus as reforming water.

また、図3に示すような水循環システムのうち、凝縮水や冷却水を貯める水タンクに関しては、水タンク内に堰を形成する隔壁を設ける、または、複数の水タンクを設けるなどの構成により、機能別に分けて貯水を行いそれぞれに適した方法で水質の管理を行うシステムが、特許文献1〜3等に開示されている。   In addition, in the water circulation system as shown in FIG. 3, with respect to the water tank that stores condensed water and cooling water, a partition that forms a weir in the water tank is provided, or a plurality of water tanks are provided. A system that stores water by function and manages water quality by a method suitable for each is disclosed in Patent Documents 1 to 3, and the like.

また、燃料電池発電システムの水タンク内における液面の位置を検出する手段としては、特許文献4等に記載されているように、従来からレベルスイッチが使用されている。   As a means for detecting the position of the liquid level in the water tank of the fuel cell power generation system, a level switch has been conventionally used as described in Patent Document 4 and the like.

特開2002−231285JP2002-231285 特開2005−38637JP-A-2005-38637 特開2006−40553JP 2006-40553 特開平11−40180JP-A-11-40180

しかしながら、上記のような従来の燃料電池発電システムの水循環システムにおいては、量産化、低コスト化、および性能向上の実現に当たって、いくつかの課題が存在している。   However, in the water circulation system of the conventional fuel cell power generation system as described above, there are some problems in realizing mass production, cost reduction, and performance improvement.

まず、図3に示すように、凝縮熱交換部3、脱炭酸塔4、水タンク部5を一体化してなる複合熱交換器6を使用した場合、この複合熱交換器6は、その内部にバーナ部2aからバーナ排気が供給されることから、「家庭用ガス燃焼機器の構造通則(JIS S 2092)」内で規定されるガスを内包する部分に該当するため、不燃性材料を用いる必要があり、かつ、水分による腐食を回避するためにステンレス材を用いる必要があった。その一方で、複合熱交換器6は熱交換容量および保有水量ともに少なくコンパクト化されているため、ステンレス構成での水循環システムの量産化および低コスト化の実現は困難であった。   First, as shown in FIG. 3, when a composite heat exchanger 6 in which a condensation heat exchange unit 3, a decarbonation tower 4 and a water tank unit 5 are integrated is used, the composite heat exchanger 6 Since the burner exhaust is supplied from the burner part 2a, it corresponds to the part containing the gas specified in the "General Rules for Household Gas Combustion Equipment (JIS S 2092)", so it is necessary to use a non-combustible material. In order to avoid corrosion due to moisture, it was necessary to use a stainless steel material. On the other hand, since the composite heat exchanger 6 has a small heat exchange capacity and a small amount of retained water, it has been difficult to achieve mass production and cost reduction of a water circulation system with a stainless steel structure.

また、図3に示す複合熱交換器6において、カソード極排気流路105を通じて脱炭酸塔4に供給される脱炭酸用のカソード極排気は、電池排水流路101を通じて脱炭酸塔4に供給される電池冷却水と並行流となるように、脱炭酸塔4の上端に設けられた流入口から脱炭酸塔4に供給され、下方に向かって流れる。   Further, in the composite heat exchanger 6 shown in FIG. 3, the cathode electrode exhaust for decarboxylation supplied to the decarboxylation tower 4 through the cathode electrode exhaust passage 105 is supplied to the decarboxylation tower 4 through the battery drain passage 101. It is supplied to the decarbonation tower 4 from an inlet provided at the upper end of the decarbonation tower 4 so as to be in parallel with the battery cooling water, and flows downward.

ここで、脱炭酸塔4における脱炭酸性能を向上する観点からは、電池冷却水とカソード極排気をこのように並行流として脱炭酸塔4に供給するよりは、電池冷却水とカソード極排気を対向流として脱炭酸塔4に供給する方が望ましい。   Here, from the viewpoint of improving the decarboxylation performance in the decarboxylation tower 4, the battery cooling water and the cathode electrode exhaust are supplied rather than the battery cooling water and the cathode electrode exhaust being supplied to the decarbonation tower 4 as a parallel flow. It is desirable to supply the decarbonation tower 4 as a counter flow.

しかしながら、図3において、電池冷却水とカソード極排気を単純に対向流として脱炭酸塔4に供給する構成とした場合には、新たな課題を生じることになる。すなわち、図3において、カソード極排気を脱炭酸塔4の電池冷却水流入端(図3では上端)から供給して電池冷却水流出端(図3では下端)から排出するように構成した場合には、脱炭酸塔4の電池冷却水流出部でのフラッディングによる脱炭酸塔4内部での水の滞留、および、カソード極排気ラインでの圧力変動、という新たな課題が生じてしまう。   However, in FIG. 3, when the battery cooling water and the cathode electrode exhaust are simply supplied as counterflows to the decarbonation tower 4, a new problem arises. That is, in FIG. 3, the cathode electrode exhaust is supplied from the battery cooling water inflow end (upper end in FIG. 3) of the decarbonation tower 4 and discharged from the battery cooling water outflow end (lower end in FIG. 3). Causes new problems such as stagnation of water inside the decarbonation tower 4 due to flooding at the battery cooling water outflow portion of the decarbonation tower 4 and pressure fluctuation in the cathode electrode exhaust line.

また、図3に示すように、複合熱交換器6の脱炭酸塔4で脱炭酸処理された電池冷却水を水タンク部5内に単純に落下させる構成とした場合には、電池冷却水の落水により水タンク部5内の貯留水の水面が暴れてしまうため、水タンク部5の内部を堰などの隔壁で複数の区画に区分けした場合に良好な液面制御が困難となる課題があった。   In addition, as shown in FIG. 3, when the battery cooling water decarboxylated in the decarbonation tower 4 of the composite heat exchanger 6 is simply dropped into the water tank unit 5, Since the water level of the stored water in the water tank unit 5 becomes unclear due to falling water, there is a problem that it is difficult to control the liquid level well when the inside of the water tank unit 5 is divided into a plurality of sections by partition walls such as weirs. It was.

また、水タンク部5の内部を堰などの隔壁で複数の区画に区分けした場合には、水タンク部の各区画の液面制御を行うために、レベルスイッチを設けることが考えられるが、レベルスイッチはそれ自体が一般的に高価であると共に、水タンク部にレベルスイッチ取付座を設置しなければならないなど、低コスト化の支障となる。   In addition, when the inside of the water tank unit 5 is divided into a plurality of sections by partition walls such as weirs, it may be possible to provide a level switch in order to control the liquid level in each section of the water tank unit. The switch itself is generally expensive, and it becomes an obstacle to cost reduction because a level switch mounting seat must be installed in the water tank.

本発明は、上述したような従来技術の課題を解決するために提案されたものであり、その目的は、量産化、低コスト化、および性能向上の実現に寄与しうる水循環システムとそれを備えた燃料電池発電システムを提供することである。   The present invention has been proposed in order to solve the above-described problems of the prior art, and its purpose is to provide a water circulation system that can contribute to the realization of mass production, cost reduction, and performance improvement, and the water circulation system. A fuel cell power generation system is provided.

本発明の水循環システムは、バーナ部で発生させた燃焼熱を改質部で利用して炭化水素系燃料を水素リッチなガスに改質させる燃料処理装置と、アノード極に供給した水素リッチなガスとカソード極に供給した酸素とを反応させて直流電力を生成する燃料電池本体とを備えた燃料電池発電システム内に設けられる水循環システムである。この水循環システムは、基本的に、燃料処理装置のバーナ部から排出されるバーナ排気中の水分と燃料電池本体のカソード極から排出されるカソード極排気中の水分を凝縮して、得られた凝縮水と燃料電池を冷却する電池冷却水を貯留する凝縮・貯水手段と、この凝縮・貯水手段に貯留した水の水質を浄化する水処理装置を備えた水循環システムであり、次のような技術的特徴を有する。   The water circulation system of the present invention includes a fuel processing device that reforms a hydrocarbon-based fuel into a hydrogen-rich gas by using combustion heat generated in a burner section in a reforming section, and a hydrogen-rich gas supplied to an anode electrode. Is a water circulation system provided in a fuel cell power generation system including a fuel cell main body that reacts with oxygen supplied to a cathode electrode to generate DC power. This water circulation system basically condenses the moisture in the burner exhaust exhausted from the burner portion of the fuel processor and the moisture in the cathode exhaust exhausted from the cathode electrode of the fuel cell body, resulting in the condensation This is a water circulation system equipped with condensation / storage means for storing water and battery cooling water for cooling the fuel cell, and a water treatment device for purifying the water quality stored in this condensation / storage means. Has characteristics.

すなわち、凝縮・貯水手段は、不燃性材料で構成された凝縮器と樹脂系材料で構成された水タンクを備える。ここで、凝縮器は、燃料処理装置のバーナ部から排出されるバーナ排気と燃料電池本体のカソード極から排出されるカソード極排気を冷却して凝縮水を生成するように構成される。水タンクには、凝縮器から排出される凝縮水と燃料電池本体から排出される電池冷却水とを分離して貯留する凝縮水室と電池冷却水室が設けられると共に、凝縮水室内の凝縮水と電池冷却水室内の電池冷却水を水タンク外にそれぞれ供給する凝縮水供給流路と電池冷却水供給流路が設けられ、凝縮水供給流路は、凝縮水室内の凝縮水を水処理装置に供給する供給流路を含む。凝縮器には、不燃性材料で構成されて凝縮水を前記水タンクの凝縮水室に供給する凝縮器排水流路が設けられ、この凝縮器排水流路の凝縮水室内への流出口は、凝縮水室内に保有する凝縮水の液面より低い位置に配置される。   That is, the condensing / water storage means includes a condenser made of a nonflammable material and a water tank made of a resin material. Here, the condenser is configured to cool the burner exhaust discharged from the burner portion of the fuel processor and the cathode exhaust discharged from the cathode electrode of the fuel cell main body to generate condensed water. The water tank is provided with a condensed water chamber and a battery cooling water chamber for separating and storing the condensed water discharged from the condenser and the battery cooling water discharged from the fuel cell main body, and the condensed water in the condensed water chamber. A condensate water supply channel and a battery cooling water supply channel for supplying the battery cooling water in the battery cooling water chamber to the outside of the water tank, respectively. A supply flow path for supplying to the liquid crystal. The condenser is provided with a condenser drain passage made of a non-combustible material and supplying condensed water to the condensed water chamber of the water tank. The outlet of the condenser drain passage into the condensed water chamber is: It arrange | positions in the position lower than the liquid level of the condensed water stored in a condensed water chamber.

本発明の燃料電池発電システムは、上記の水循環システムを備えた燃料電池発電システムである。   The fuel cell power generation system of the present invention is a fuel cell power generation system including the water circulation system described above.

上記の特徴を有する本発明によれば、水タンクを凝縮器から独立させ、樹脂系材料で構成することにより、ステンレス材で構成した場合に比べて、水循環システムの量産化および低コスト化に寄与できる。このように樹脂系材料で構成した水タンクは、ステンレス材で構成した場合に比べて、水タンク内部の細分化も極めて容易となり、柔軟な設計が可能となるため、水タンクおよび周辺機器の多機能化を低コストで実現できる。   According to the present invention having the above features, the water tank is made independent of the condenser and is made of a resin material, which contributes to mass production and cost reduction of the water circulation system compared to the case where the water tank is made of stainless steel. it can. In this way, water tanks made of resin-based materials can be subdivided inside the water tank very easily compared to the case of being made of stainless steel, and flexible design is possible. Functionalization can be realized at low cost.

そして、水タンク内部に、凝縮水室と電池冷却水室を設けたことにより、電池冷却水を凝縮水から分離・独立して循環させることができるため、電池冷却水を凝縮水と分離せずに貯水した場合に比べて、電池冷却水の水処理が不要となり、水処理装置の削減による一層の低コスト化が可能となる。また、バーナ排気やカソード極排気から得られる凝縮水については、水処理装置で水処理して燃料処理装置の改質水として効率よく利用可能である。   And by providing the condensate water chamber and the battery cooling water chamber inside the water tank, the battery cooling water can be separated from the condensed water and circulated independently, so that the battery cooling water is not separated from the condensed water. Compared with the case where the water is stored in the battery, the water treatment of the battery cooling water becomes unnecessary, and the cost can be further reduced by reducing the number of water treatment devices. Further, the condensed water obtained from the burner exhaust or the cathode electrode exhaust can be efficiently used as reformed water for the fuel processing apparatus after being treated with a water treatment apparatus.

さらに、凝縮器から水タンクの凝縮水室に凝縮水を供給する凝縮器排水流路の凝縮水室内への流出口を、凝縮水室内の液面より低い位置に配置したことにより、凝縮器排水流路の流出口部分には凝縮水室の水により水封部が形成されるため、バーナ排気を含む凝縮器の内部ガスが水タンク内に流入することを防止できる。   Furthermore, the outlet of the condenser drainage channel for supplying condensed water from the condenser to the condensate water chamber of the water tank is disposed at a position lower than the liquid level in the condensate water chamber. Since the water seal portion is formed by the water in the condensed water chamber at the outlet portion of the flow path, the internal gas of the condenser including the burner exhaust can be prevented from flowing into the water tank.

本発明によれば、バーナ排気とカソード排気の凝縮水を得る凝縮器から水タンクを独立させて樹脂系材料で構成し、水タンク内部に凝縮水室と電池冷却水室を設けると共に、凝縮器から水タンクに凝縮水を供給する凝縮器排水流路の流出口を凝縮水室内の液面より低い位置に配置することにより、量産化、低コスト化、および性能向上の実現に寄与しうる水循環システムとそれを備えた燃料電池発電システムを提供することができる。   According to the present invention, the water tank is made of a resin material independently from the condenser for obtaining the condensed water of the burner exhaust and the cathode exhaust, and the condenser water chamber and the battery cooling water chamber are provided inside the water tank. Water circulation that can contribute to mass production, cost reduction, and performance improvement by arranging the outlet of the condenser drainage channel that supplies condensed water from the water tank to a position lower than the liquid level in the condensed water chamber A system and a fuel cell power generation system including the system can be provided.

以下には、本発明を適用した燃料電池発電システムの水循環システムの実施形態について、図面を参照して具体的に説明する。なお、前述した図3と同一部分には同一符号を付し、説明を省略する。   Hereinafter, an embodiment of a water circulation system of a fuel cell power generation system to which the present invention is applied will be specifically described with reference to the drawings. The same parts as those in FIG. 3 described above are denoted by the same reference numerals, and description thereof is omitted.

[第1の実施形態]
[構成]
図1は、本発明を適用した第1の実施形態に係る燃料電池発電システムの水循環システムを示す構成図である。この図1に示すように、燃料電池本体1と燃料処理装置2の構成は、図3に示した従来システムと同様である。
[First Embodiment]
[Constitution]
FIG. 1 is a configuration diagram showing a water circulation system of a fuel cell power generation system according to a first embodiment to which the present invention is applied. As shown in FIG. 1, the configurations of the fuel cell main body 1 and the fuel processing device 2 are the same as those of the conventional system shown in FIG.

本実施形態において、図3の従来システムと異なる点は、凝縮熱交換部3、脱炭酸塔4、水タンク部5を一体化してなる複合熱交換器6を、それぞれ単体機器として独立させた凝縮熱交換器30、脱炭酸塔40、および水タンク50に変更し、水タンク50を樹脂系材料で構成して凝縮水室51、電池冷却水室52、純水室53という3つの貯水室を設けた点、および、それに伴い、単体の水処理装置70のみを使用した点である。   In the present embodiment, the difference from the conventional system of FIG. 3 is that the combined heat exchanger 6 in which the condensation heat exchange unit 3, the decarbonation tower 4 and the water tank unit 5 are integrated is made independent as a single device. It changes to the heat exchanger 30, the decarboxylation tower 40, and the water tank 50, the water tank 50 is comprised with a resin material, and three water storage chambers, the condensed water chamber 51, the battery cooling water chamber 52, and the pure water chamber 53, are comprised. The point which provided and the point which used only the single water treatment apparatus 70 in connection with it.

また、これらの構成要素の変更に伴い、図3に示した流路101〜108のうち、流路102〜105,107,108に代えて、異なるラインを構成する複数の流路201〜207を使用している点も、従来システムと異なっている。以下には、このような本実施形態における水循環システムの各部の詳細について説明する。   Further, in accordance with the change of these constituent elements, a plurality of flow paths 201 to 207 constituting different lines are replaced with the flow paths 102 to 105, 107 and 108 among the flow paths 101 to 108 shown in FIG. The point of use is also different from the conventional system. Below, the detail of each part of such a water circulation system in this embodiment is demonstrated.

凝縮熱交換器30は、図3の複合熱交換器6に組み込まれていた凝縮熱交換部3を単体機器として独立させたものであり、燃料処理装置2のバーナ部2aから排出されるバーナ排気と燃料電池本体1のカソード極1bから排出されるカソード極排気中に保有される水分を、貯湯タンク8に蓄えられる水と熱交換させて冷却し、凝縮させて凝縮水を生成する。   The condensing heat exchanger 30 is obtained by making the condensing heat exchanging unit 3 incorporated in the composite heat exchanger 6 of FIG. 3 independent as a single device, and burner exhaust discharged from the burner unit 2a of the fuel processing device 2. Then, the water held in the cathode electrode exhaust discharged from the cathode electrode 1b of the fuel cell main body 1 is cooled by exchanging heat with the water stored in the hot water storage tank 8, and condensed to produce condensed water.

ここで、燃料処理装置2のバーナ部2aから排出されるバーナ排気を水循環システム内に取り込むバーナ排気ラインは、図3と同様のバーナ排気流路106から構成されている。   Here, the burner exhaust line for taking in the burner exhaust discharged from the burner portion 2a of the fuel processing device 2 into the water circulation system is composed of a burner exhaust flow path 106 similar to that in FIG.

凝縮熱交換器30には、生成した凝縮水を水タンク50の凝縮水室51に供給する凝縮器排水流路31が設けられている。この凝縮熱交換器30は、その内部にバーナ部2aからバーナ排気が供給されることから、凝縮器排水流路31を含めた凝縮熱交換器30全体が、ステンレス材などの不燃性材料で構成されている。   The condensation heat exchanger 30 is provided with a condenser drain passage 31 that supplies the generated condensed water to the condensed water chamber 51 of the water tank 50. Since this condensing heat exchanger 30 is supplied with burner exhaust from the burner section 2a, the entire condensing heat exchanger 30 including the condenser drainage channel 31 is made of a non-combustible material such as a stainless steel material. Has been.

脱炭酸塔40は、図3の複合熱交換器6に組み込まれていた脱炭酸塔4を単体機器として独立させたものであり、燃料電池本体1から排出される電池冷却水に対して、カソード極1bより排出されるカソード極排ガスで脱炭酸処理を行い、電池冷却水中に含まれる炭酸ガスを低減させる。脱炭酸塔40の下端には、脱炭酸処理後の電池冷却水を水タンク50の電池冷却水室52に供給する脱炭酸塔排水流路41が下方に向かって垂直に伸びるように設けられている。   The decarbonation tower 40 is obtained by making the decarbonation tower 4 incorporated in the composite heat exchanger 6 of FIG. 3 independent as a single device, and with respect to the battery cooling water discharged from the fuel cell main body 1, the cathode The carbon dioxide gas contained in the battery cooling water is reduced by decarboxylation with the cathode electrode exhaust gas discharged from the electrode 1b. At the lower end of the decarbonation tower 40, a decarbonation tower drain passage 41 for supplying the battery cooling water after the decarbonation treatment to the battery cooling water chamber 52 of the water tank 50 is provided so as to extend vertically downward. Yes.

そして、電池冷却水を循環させる電池冷却水循環ラインは、電池排水流路101、脱炭酸塔40、脱炭酸塔排水流路41、水タンク50の電池冷却水室52、および電池冷却水供給流路201から構成されている。   The battery cooling water circulation line for circulating the battery cooling water includes a battery drain passage 101, a decarboxylation tower 40, a decarbonate tower drain passage 41, a battery cooling water chamber 52 of the water tank 50, and a battery cooling water supply passage. 201.

ここで、電池排水流路101は、燃料電池本体1から排出される電池冷却水を脱炭酸塔40に供給する流路であり、電池冷却水供給流路201は、水タンク50の電池冷却水室52に貯水された電池冷却水を燃料電池本体1に供給する流路である。   Here, the battery drainage channel 101 is a channel for supplying the battery cooling water discharged from the fuel cell main body 1 to the decarboxylation tower 40, and the battery cooling water supply channel 201 is the battery cooling water for the water tank 50. This is a flow path for supplying the battery cooling water stored in the chamber 52 to the fuel cell main body 1.

また、電池排水流路101の脱炭酸塔40内部部分は、図3と同様に、脱炭酸塔40の上端に設けられた流入口から電池冷却水を供給し、下方に向かって流すようになっており、電池排水流路101におけるこの脱炭酸塔40内部部分は、下方の脱炭酸塔排水流路41と接続されて下方に垂直に伸びる直線状の排水流路を形成している。   Further, as in FIG. 3, the internal portion of the battery drainage channel 101 in the decarbonation tower 40 is supplied with battery cooling water from an inlet provided at the upper end of the decarbonation tower 40 and flows downward. In the battery drainage channel 101, the inner part of the decarboxylation tower 40 is connected to the lower decarboxylation tower drainage channel 41 to form a linear drainage channel extending vertically downward.

一方、燃料電池本体1のカソード極1bから排出されるカソード極排気を水循環システム内に取り込むカソード極排気ラインは、カソード極排気流路202、水タンク50、カソード極排気流路203、脱炭酸塔40、およびカソード極排気流路204から構成されている。   On the other hand, the cathode electrode exhaust line for taking the cathode electrode exhaust discharged from the cathode electrode 1b of the fuel cell body 1 into the water circulation system includes a cathode electrode exhaust channel 202, a water tank 50, a cathode electrode exhaust channel 203, and a decarboxylation tower. 40 and the cathode electrode exhaust passage 204.

ここで、カソード極排気流路202は、燃料電池本体1のカソード極1bから排出されるカソード極排気を水タンク50内上部の空きスペースに流入させる流路であり、カソード極排気流路203は、水タンク50内に流入させたカソード極排気を脱炭酸塔40の下端に設けられた流入口から脱炭酸塔40の内部に供給し、上方に向かって流す流路である。   Here, the cathode electrode exhaust channel 202 is a channel for allowing cathode electrode exhaust discharged from the cathode electrode 1b of the fuel cell main body 1 to flow into an empty space in the upper part of the water tank 50, and the cathode electrode exhaust channel 203 is The cathode electrode exhaust gas flowing into the water tank 50 is supplied from the inlet provided at the lower end of the decarbonation tower 40 into the decarbonation tower 40 and flows upward.

すなわち、カソード極排気流路203と電池排水流路101は、カソード極排気と電池冷却水を脱炭酸塔40の下端および上端の異なる流入口から分離して供給し、脱炭酸塔40内部で対向流として流すように構成されている。さらに、カソード極排気流路204は、カソード極排気流路203により脱炭酸塔40内部を通過させたカソード極排気を、脱炭酸塔40の上端に設けられた流出口から凝縮熱交換器30に流入させる流路である。   That is, the cathode electrode exhaust channel 203 and the battery drain channel 101 separately supply the cathode electrode exhaust and the battery cooling water from the lower and upper inlets of the decarboxylation tower 40 and face each other inside the decarboxylation tower 40. It is configured to flow as a flow. Further, the cathode electrode exhaust flow path 204 passes the cathode electrode exhaust gas that has passed through the inside of the decarbonation tower 40 by the cathode electrode exhaust flow path 203 from the outlet provided at the upper end of the decarbonation tower 40 to the condensation heat exchanger 30. This is a flow path to be introduced.

水タンク50の内部には、凝縮熱交換器30から排出される凝縮水と、脱炭酸塔40から排出される脱炭酸処理後の電池冷却水と、水処理装置70から排出される純水とを分離して貯留する凝縮水室51、電池冷却水室52、および純水室53という3つの貯水室が、この順で並べて設けられている。そして、隣接する各2つの貯水室の間、すなわち、凝縮水室51と電池冷却水室52の間、および電池冷却水室52と純水室53の間は、隔壁54,55によってそれぞれ分離されている。   Inside the water tank 50, condensed water discharged from the condensation heat exchanger 30, battery cooling water after decarbonation treatment discharged from the decarboxylation tower 40, pure water discharged from the water treatment device 70, and The three water storage chambers of the condensate water chamber 51, the battery cooling water chamber 52, and the pure water chamber 53 are separated and stored in this order. The two adjacent water storage chambers, that is, the condensate water chamber 51 and the battery cooling water chamber 52, and the battery cooling water chamber 52 and the pure water chamber 53 are separated by partition walls 54 and 55, respectively. ing.

この水タンク50は、凝縮熱交換器30から分離されており、その内部にバーナ部2aからのバーナ排気が供給されることはないので、隔壁54,55を含めた水タンク50全体が樹脂系材料で構成されている。具体的な樹脂系材料としては、例えば、ポリプロピレン、ポリカーボネート、ポリエチレン、ポリフェニレンサルファイド、の中から選択された樹脂系材料が使用可能である。   This water tank 50 is separated from the condensation heat exchanger 30, and the burner exhaust from the burner portion 2a is not supplied into the water tank 50. Therefore, the entire water tank 50 including the partition walls 54 and 55 is made of resin. Consists of materials. As a specific resin material, for example, a resin material selected from polypropylene, polycarbonate, polyethylene, and polyphenylene sulfide can be used.

また、水タンク50の隔壁54,55の高さは、水タンク50の天井面より低くされており、隔壁54,55の上方には、凝縮水室51、電池冷却水室52、および純水室53を連通させる連通空間が形成されている。すなわち、水タンク50の隔壁54,55は、隣接する各2つの貯水室間に一定の高さの固定的な堰を形成する単純形状の隔壁とされている。そして、凝縮水室51と電池冷却水室52の間の隔壁54の高さは、電池冷却水室52と純水室53の間の隔壁55の高さより低くされている。   Moreover, the height of the partition walls 54 and 55 of the water tank 50 is set lower than the ceiling surface of the water tank 50, and the condensate water chamber 51, the battery cooling water chamber 52, and pure water are located above the partition walls 54 and 55. A communication space for communicating the chamber 53 is formed. That is, the partition walls 54 and 55 of the water tank 50 are simple partition walls that form a fixed weir with a fixed height between two adjacent water storage chambers. The height of the partition wall 54 between the condensed water chamber 51 and the battery cooling water chamber 52 is set lower than the height of the partition wall 55 between the battery cooling water chamber 52 and the pure water chamber 53.

また、水タンク50の凝縮水室51内に凝縮水を供給する凝縮熱交換器30の凝縮器排水流路31の下端の流出口は、凝縮水室51内に保有する凝縮水の液面より低い位置に配置されている。同様に、水タンク50の電池冷却水室52内に脱炭酸処理後の電池冷却水を供給する脱炭酸塔40の脱炭酸塔排水流路41の流出口は、電池冷却水室52内に保有する電池冷却水の液面より低い位置に配置されている。   In addition, the outlet at the lower end of the condenser drainage channel 31 of the condensation heat exchanger 30 that supplies condensed water into the condensed water chamber 51 of the water tank 50 is from the level of condensed water held in the condensed water chamber 51. Located in a low position. Similarly, the outlet of the decarbonation tower drain passage 41 of the decarbonation tower 40 for supplying the battery cooling water after decarboxylation treatment into the battery cooling water chamber 52 of the water tank 50 is held in the battery cooling water chamber 52. The battery cooling water is disposed at a position lower than the liquid level.

さらに、水循環システム内に取り込んだガス中の水分を改質水として燃料処理装置2に供給する改質水供給ラインは、凝縮熱交換器30、凝縮器排水流路31、水タンク50の凝縮水室51、凝縮水供給流路205、水処理装置70、純水供給流路206、水タンク50の純水室53、および純水供給流路207から構成されている。   Furthermore, the reformed water supply line for supplying the moisture in the gas taken into the water circulation system to the fuel processing device 2 as reformed water is the condensed heat exchanger 30, the condenser drainage channel 31, and the condensed water in the water tank 50. The chamber 51, the condensed water supply channel 205, the water treatment device 70, the pure water supply channel 206, the pure water chamber 53 of the water tank 50, and the pure water supply channel 207 are configured.

ここで、凝縮水供給流路205は、水タンク50の凝縮水室51内の凝縮水を水処理装置70に供給する流路である。また、純水供給流路206は、水処理装置70により凝縮水を処理して得られた純水を水タンク50の純水室53内に供給する流路であり、純水供給流路207は、純水室53内の純水を改質水として燃料処理装置2の改質部2bに供給する流路である。   Here, the condensed water supply channel 205 is a channel for supplying condensed water in the condensed water chamber 51 of the water tank 50 to the water treatment device 70. The pure water supply flow path 206 is a flow path for supplying pure water obtained by processing the condensed water by the water treatment device 70 into the pure water chamber 53 of the water tank 50, and the pure water supply flow path 207. Is a flow path for supplying pure water in the pure water chamber 53 to the reforming unit 2b of the fuel processing apparatus 2 as reformed water.

なお、水処理装置70は、図3の水処理装置70a,70bと同様に、イオン交換樹脂などを用いて水を浄化する装置である。   In addition, the water treatment apparatus 70 is an apparatus which purifies water using ion exchange resin etc. similarly to the water treatment apparatuses 70a and 70b of FIG.

[作用・効果]
以上のような構成を有する第1の実施形態に係る燃料電池発電システムの水循環システムによれば、次のような作用・効果が得られる。
[Action / Effect]
According to the water circulation system of the fuel cell power generation system according to the first embodiment having the above-described configuration, the following operations and effects can be obtained.

まず、本実施形態においては、水タンク50を凝縮熱交換器30から独立させ、樹脂系材料で構成することにより、ステンレス材で構成した場合に比べて、水循環システムの量産化および低コスト化に寄与できる。このように樹脂系材料で構成した水タンク50は、ステンレス材で構成した場合に比べて、水タンク50内部の細分化も極めて容易となり、柔軟な設計が可能となるため、水タンク50および周辺機器の多機能化を低コストで実現できる。   First, in the present embodiment, the water tank 50 is made independent of the condensation heat exchanger 30 and is made of a resin material, so that the water circulation system can be mass-produced and the cost can be reduced as compared with the case where the water tank 50 is made of stainless steel. Can contribute. In this way, the water tank 50 made of a resin material can be subdivided inside the water tank 50 much more easily and more flexibly than the case of being made of stainless steel. Multifunctionalization of equipment can be realized at low cost.

そして、水タンク50内部に、凝縮水室51と電池冷却水室52を設けたことにより、電池冷却水を凝縮水から分離・独立して循環させることができるため、図3の従来システムのように、電池冷却水を凝縮水と分離せずに貯水した場合に比べて、電池冷却水の水処理が不要となり、水処理装置の削減による一層の低コスト化が可能となる。また、バーナ排気やカソード極排気から得られる凝縮水については、水処理装置70で水処理して燃料処理装置2の改質水として効率よく利用可能である。   Since the condensate water chamber 51 and the battery cooling water chamber 52 are provided in the water tank 50, the battery cooling water can be separated from the condensed water and circulated independently. In addition, compared with the case where the battery cooling water is stored without being separated from the condensed water, the water treatment of the battery cooling water becomes unnecessary, and the cost can be further reduced by reducing the number of water treatment devices. Further, the condensed water obtained from the burner exhaust or the cathode electrode exhaust can be efficiently used as the reformed water of the fuel processing device 2 by water treatment by the water treatment device 70.

特に、本実施形態においては、水タンク50内部に、凝縮水室51と電池冷却水室52に加えて純水室53を設けたことにより、水処理装置から排出される純水を純水室53に貯水して、この純水室53から燃料処理装置2に純水を安定的に供給できるという利点もある。   In particular, in the present embodiment, the pure water chamber 53 is provided in the water tank 50 in addition to the condensed water chamber 51 and the battery cooling water chamber 52, so that the pure water discharged from the water treatment apparatus is purified. There is also an advantage that the deionized water can be stably supplied from the deionized water chamber 53 to the fuel processing apparatus 2 by storing in the deionized water chamber 53.

また、本実施形態においては、水タンク50の隔壁54,55の上方に、凝縮水室51と電池冷却水室52、および純水室53を連通させる連通空間を形成し、かつ、凝縮水室51と電池冷却水室52の間の隔壁54の高さを、電池冷却水室52と純水室53の間の隔壁55の高さより低くしている。   Further, in the present embodiment, a communication space that connects the condensed water chamber 51, the battery cooling water chamber 52, and the pure water chamber 53 is formed above the partition walls 54, 55 of the water tank 50, and the condensed water chamber. The height of the partition wall 54 between the battery cooling water chamber 52 and the battery cooling water chamber 52 is set lower than the height of the partition wall 55 between the battery cooling water chamber 52 and the pure water chamber 53.

水タンク50のこの構成によれば、凝縮水室51内の凝縮水の液面を隔壁54より低くする液面制御を行うだけで、凝縮水室51内の凝縮水が電池冷却水室52内に流入したり、また、電池冷却水室52内の電池冷却水が純水室53に流入するなどの不都合を防止できる。すなわち、凝縮水室51内の凝縮水の液面を隔壁54より低くする液面制御を行うことにより、電池冷却水室52内の電池冷却水が冷却水室52の貯水容量を超えた場合には、その電池冷却水の余剰分は、低い側の隔壁54を超えて凝縮水室51内にのみ流入し、純水室53側に流入することはない。   According to this configuration of the water tank 50, the condensed water in the condensed water chamber 51 is converted into the battery cooling water chamber 52 only by performing the liquid level control so that the condensed water level in the condensed water chamber 51 is lower than the partition wall 54. Inconvenience such as flowing into the pure water chamber 53 or battery cooling water in the battery cooling water chamber 52 can be prevented. That is, when the battery level in the battery cooling water chamber 52 exceeds the water storage capacity of the cooling water chamber 52 by controlling the liquid level so that the level of the condensed water in the condensed water chamber 51 is lower than the partition wall 54. The surplus battery cooling water flows only into the condensed water chamber 51 beyond the lower partition wall 54 and does not flow into the pure water chamber 53 side.

したがって、凝縮水室51内の凝縮水の液面制御を行うだけで、凝縮水室51内の凝縮水が電池冷却水室52に流入することによる電池冷却水の水質の低下を防止でき、電池冷却水室52内の電池冷却水が純水室53に流入することによる純水の水質の低下を防止できる。   Therefore, it is possible to prevent the water quality of the battery cooling water from deteriorating due to the condensed water in the condensed water chamber 51 flowing into the battery cooling water chamber 52 simply by controlling the liquid level of the condensed water in the condensed water chamber 51. It is possible to prevent deterioration of the quality of pure water due to battery cooling water in the cooling water chamber 52 flowing into the pure water chamber 53.

さらに、本実施形態においては、凝縮熱交換器30から水タンク50の凝縮水室51に凝縮水を供給する凝縮器排水流路31の凝縮水室51内への流出口を、凝縮水室51内の液面より低い位置に配置したことにより、凝縮器排水流路31の流出口部分には凝縮水室51の水により水封部31aが形成されるため、バーナ排気を含む凝縮熱交換器30の内部ガスが水タンク50内に流入することを防止できる。   Further, in the present embodiment, the outlet from the condenser heat exchanger 30 to the condensed water chamber 51 of the condenser drainage channel 31 that supplies condensed water to the condensed water chamber 51 of the water tank 50 is used as the condensed water chamber 51. Since the water sealing portion 31a is formed by the water in the condensate water chamber 51 at the outlet portion of the condenser drainage flow path 31 due to the arrangement at a position lower than the liquid level inside the condenser heat exchanger including the burner exhaust. 30 internal gases can be prevented from flowing into the water tank 50.

また、本実施形態においては、カソード極排気流路203と電池排水流路101により、カソード極排気と電池冷却水を脱炭酸塔40の下端および上端の異なる流入口から分離して供給し、脱炭酸塔40内部で対向流として流すようにしている。   Further, in the present embodiment, the cathode electrode exhaust passage 203 and the battery drain passage 101 supply the cathode electrode exhaust and the battery cooling water separately from the lower and upper inlets of the decarboxylation tower 40 and remove them. It is made to flow as a counter flow inside the carbonic acid tower 40.

脱炭酸塔40におけるこのような流路構成によれば、脱炭酸塔40における脱炭酸処理を、カソード極排気と電池冷却水の対向流で行わせることができるため、脱炭酸性能の向上が可能となる。脱炭酸塔40における上記の流路構成によれば、脱炭酸塔40の脱炭酸塔排水流路41からフラッディングを発生させずに良好に電池冷却水を排出できるため、フラッディングに起因する脱炭酸塔4内部での水の滞留やカソード極排気ラインでの圧力変動などの問題を生じることなく、燃料電池発電システムの安定運転が可能となる。   According to such a flow path configuration in the decarbonation tower 40, the decarbonation treatment in the decarbonation tower 40 can be performed in a counter flow of the cathode electrode exhaust and the battery cooling water, so that the decarboxylation performance can be improved. It becomes. According to the flow path configuration in the decarbonation tower 40, the battery cooling water can be discharged well without generating flooding from the decarbonation tower drain flow path 41 of the decarbonation tower 40, so the decarbonation tower caused by flooding. 4 Stable operation of the fuel cell power generation system is possible without causing problems such as stagnation of water inside and pressure fluctuations in the cathode electrode exhaust line.

さらに、本実施形態においては、脱炭酸塔40から水タンク50の電池冷却水室52に電池冷却水を供給する脱炭酸塔排水流路41の電池冷却水室52内への流出口を、電池冷却水室52内の液面より低い位置に配置したことにより、脱炭酸塔40で脱炭酸処理された電池冷却水を液面上から落下させることなく、液面より低い位置で排水できるため、電池冷却水の安定した液面制御が可能となる。   Furthermore, in the present embodiment, the outlet from the decarbonation tower 40 to the battery cooling water chamber 52 of the decarbonation tower drain passage 41 that supplies the battery cooling water from the decarbonation tower 40 to the battery cooling water chamber 52 of the water tank 50 is connected to the battery. By disposing at a position lower than the liquid level in the cooling water chamber 52, the battery cooling water decarboxylated in the decarboxylation tower 40 can be drained at a position lower than the liquid level without dropping from above the liquid level. Stable liquid level control of battery cooling water is possible.

したがって、本実施形態によれば、量産化、低コスト化、および性能向上の実現に寄与しうる水循環システムとそれを備えた燃料電池発電システムを提供することができる。   Therefore, according to this embodiment, it is possible to provide a water circulation system that can contribute to mass production, cost reduction, and performance improvement, and a fuel cell power generation system including the water circulation system.

[変形例]
なお、第1の実施形態においては、水タンク内の隣接する各2つの貯水室間を区分する各隔壁を、固定的な堰を形成する単純形状の隔壁としてその上方に連通空間を形成したが、水タンクの底面から天井面までを覆う隔壁を設け、この隔壁の一部に連通孔を設けることで、その両側の貯水室間を連通させる構成も可能である。しかし、量産化、低コスト化の観点からは、一般的に、できるだけ単純形状の隔壁とすることが望ましい。
[Modification]
In the first embodiment, each partition wall separating each two adjacent water storage chambers in the water tank is formed as a simple partition wall forming a fixed weir, and a communication space is formed above the partition wall. Also, it is possible to provide a structure in which the water storage chambers on both sides thereof are communicated by providing a partition wall covering the bottom surface of the water tank to the ceiling surface and providing a communication hole in a part of the partition wall. However, from the viewpoints of mass production and cost reduction, it is generally desirable to make the partition as simple as possible.

また、第1の実施形態においては、水タンク内を、凝縮水室、電池冷却水室、および純水室という3つの貯水室に区分した場合について説明したが、水の排出元や供給先、あるいは用途などに応じて4室以上に区分することも可能である。逆に、水タンク内を凝縮水室と電池冷却水室の2室のみに区分することも可能である。   In the first embodiment, the case where the water tank is divided into three water storage chambers, a condensate water chamber, a battery cooling water chamber, and a pure water chamber, has been described. Or it is also possible to classify | categorize into four or more rooms according to a use etc. Conversely, it is also possible to divide the inside of the water tank into only two chambers, a condensed water chamber and a battery cooling water chamber.

[第2の実施形態]
[構成]
図2は、本発明を適用した第2の実施形態に係る燃料電池発電システムの水循環システムの水タンク周辺部分を示す構成図である。この図2に示すように、本実施形態に係る燃料電池発電システムの水循環システムは、第1の実施形態の構成において、水タンク内に貯水した凝縮水と電池冷却水を水タンク外に供給する供給流路の配置を限定したものであり、他の構成は、図1に示した第1の実施形態と同様である。
[Second Embodiment]
[Constitution]
FIG. 2 is a configuration diagram showing a water tank peripheral portion of a water circulation system of a fuel cell power generation system according to a second embodiment to which the present invention is applied. As shown in FIG. 2, the water circulation system of the fuel cell power generation system according to the present embodiment supplies the condensed water stored in the water tank and the battery cooling water to the outside of the water tank in the configuration of the first embodiment. The arrangement of the supply channel is limited, and the other configuration is the same as that of the first embodiment shown in FIG.

すなわち、本実施形態においては、図2に示すように、凝縮水室51の凝縮水を水タンク50外に供給する凝縮水供給流路211のうち、凝縮水室51からの凝縮水の流入口とその近傍部分は、凝縮器排水流路31の流出口より高い位置に配置されており、ポンプ221により凝縮水室51内の凝縮水を汲み上げるように構成されている。   That is, in this embodiment, as shown in FIG. 2, in the condensed water supply channel 211 that supplies the condensed water in the condensed water chamber 51 to the outside of the water tank 50, the inlet of condensed water from the condensed water chamber 51. And the vicinity thereof are arranged at a position higher than the outlet of the condenser drainage flow path 31, and are configured to pump the condensed water in the condensed water chamber 51 by the pump 221.

さらに、この凝縮水供給流路211には、流路中の圧力または温度の変化を検知する圧力または温度センサ231が設けられており、この圧力または温度センサ231により検知される圧力または温度の変化に基づいて水タンク50の凝縮水室51内の液面低下を検知するように構成されている。   Further, the condensed water supply channel 211 is provided with a pressure or temperature sensor 231 that detects a change in pressure or temperature in the channel, and a pressure or temperature change detected by the pressure or temperature sensor 231. The liquid level in the condensed water chamber 51 of the water tank 50 is detected based on the above.

同様に、電池冷却水室52の電池冷却水を水タンク50外に供給する電池冷却水供給流路212のうち、電池冷却水室52からの電池冷却水の流入口とその近傍部分は、脱炭酸塔排水流路41の流出口より高い位置に配置されており、ポンプ222により電池冷却水室52内の電池冷却水を汲み上げるように構成されている。   Similarly, in the battery cooling water supply channel 212 for supplying the battery cooling water in the battery cooling water chamber 52 to the outside of the water tank 50, the inlet and the vicinity of the battery cooling water from the battery cooling water chamber 52 are removed. It is arranged at a position higher than the outlet of the carbonate tower drain passage 41 and is configured to pump up the battery cooling water in the battery cooling water chamber 52 by the pump 222.

そして、この電池冷却水供給流路212にも、流路中の圧力または温度の変化を検知する圧力または温度センサ232が設けられており、この圧力または温度センサ232により検知される圧力または温度の変化に基づいて水タンク50の電池冷却水室52内の液面低下を検知するように構成されている。   The battery cooling water supply channel 212 is also provided with a pressure or temperature sensor 232 for detecting a change in pressure or temperature in the channel, and the pressure or temperature detected by the pressure or temperature sensor 232 is provided. Based on the change, the liquid level drop in the battery cooling water chamber 52 of the water tank 50 is detected.

[作用・効果]
以上のような構成を有する第2の実施形態に係る燃料電池発電システムの水循環システムによれば、前述した第1の実施形態の作用・効果に加えて、さらに次のような作用・効果が得られる。
[Action / Effect]
According to the water circulation system of the fuel cell power generation system according to the second embodiment having the above-described configuration, the following actions / effects can be obtained in addition to the actions / effects of the first embodiment described above. It is done.

まず、凝縮水室51の液面が低下した場合には、凝縮水供給流路211は水切れを起こすが、この場合には、凝縮水供給流路211による凝縮水室51からの凝縮水の供給が自動的に停止されることになるため、凝縮器排水流路31の水封部31aは凝縮水室51内に残っている水により適切に維持される。   First, when the liquid level of the condensed water chamber 51 is lowered, the condensed water supply channel 211 runs out of water. In this case, the condensed water supply from the condensed water chamber 51 by the condensed water supply channel 211 is performed. Is automatically stopped, so that the water seal 31 a of the condenser drainage channel 31 is appropriately maintained by the water remaining in the condensed water chamber 51.

また、このように凝縮水供給流路211による凝縮水の供給が停止した場合には、凝縮水の供給時に比べて、凝縮水供給流路211中の圧力または温度が変化する。本実施形態では、凝縮水供給流路211中の圧力または温度を、圧力または温度センサ231によって監視することにより、凝縮水供給流路211の水切れ、すなわち、凝縮水室51内の凝縮水の液面低下を容易かつ確実に検知することができる。   Moreover, when supply of the condensed water by the condensed water supply flow path 211 stops in this way, the pressure or temperature in the condensed water supply flow path 211 changes compared with the time of supply of condensed water. In the present embodiment, the pressure or temperature in the condensed water supply channel 211 is monitored by the pressure or temperature sensor 231, so that the condensed water supply channel 211 runs out of water, that is, the condensed water in the condensed water chamber 51. Surface degradation can be detected easily and reliably.

一方、電池冷却水室52の液面が低下した場合には、電池冷却水供給流路212は水切れを起こすが、この場合には、電池冷却水供給流路212による電池冷却水室52からの電池冷却水の供給が自動的に停止されることになるため、脱炭酸塔排水流路41の水封部41aは電池冷却水室52内に残っている水により適切に維持される。   On the other hand, when the liquid level of the battery cooling water chamber 52 decreases, the battery cooling water supply channel 212 runs out of water, but in this case, the battery cooling water supply channel 212 removes water from the battery cooling water chamber 52. Since the supply of the battery cooling water is automatically stopped, the water sealing portion 41 a of the decarbonation tower drain passage 41 is appropriately maintained by the water remaining in the battery cooling water chamber 52.

また、このように電池冷却水供給流路212による電池冷却水の供給が停止した場合には、電池冷却水の供給時に比べて、電池冷却水供給流路212中の圧力または温度が変化する。本実施形態では、電池冷却水供給流路212中の圧力または温度を、圧力または温度センサ232によって監視することにより、電池冷却水供給流路212の水切れ、すなわち、電池冷却水室52内の電池冷却水の液面低下を容易かつ確実に検知することができる。   In addition, when the supply of the battery cooling water through the battery cooling water supply channel 212 is stopped in this way, the pressure or temperature in the battery cooling water supply channel 212 changes compared to when the battery cooling water is supplied. In the present embodiment, by monitoring the pressure or temperature in the battery cooling water supply channel 212 by the pressure or temperature sensor 232, the battery cooling water supply channel 212 runs out of water, that is, the battery in the battery cooling water chamber 52. A drop in the level of the cooling water can be detected easily and reliably.

以上のように、本実施形態によれば、レベルスイッチを設けることなく、凝縮水供給流路および電池冷却水供給流路の配置により凝縮器排水流路の水封部および脱炭酸塔排水流路の水封部を適切に維持可能であるため、燃料電池発電システムの安全性を維持できる。また、供給流路に通常設けられている圧力または温度センサを利用して液面低下を容易かつ確実に検知できるため、レベルスイッチを設けた場合に比べて安価な構成で水タンク内の凝縮水および電池冷却水の安定した液面制御が可能となる。   As described above, according to the present embodiment, the water seal portion of the condenser drainage channel and the decarboxylation tower drainage channel can be obtained by arranging the condensed water supply channel and the battery cooling water supply channel without providing a level switch. Therefore, the safety of the fuel cell power generation system can be maintained. In addition, since the drop in liquid level can be detected easily and reliably using a pressure or temperature sensor normally provided in the supply flow path, the condensed water in the water tank can be constructed at a lower cost than when a level switch is provided. In addition, stable liquid level control of battery cooling water becomes possible.

[他の実施形態]
なお、本発明は、前述した実施形態に限定されるものではなく、本発明の範囲内で他にも多種多様な変形例が実施可能である。
[Other Embodiments]
It should be noted that the present invention is not limited to the above-described embodiments, and various other variations can be implemented within the scope of the present invention.

まず、前述した実施形態においては、燃料処理装置のバーナ排気から得られる凝縮水、および燃料電池本体のカソード極排気から得られる凝縮水を水タンク内に貯水する場合について説明したが、水タンク内には、燃料電池発電システム内の他の各部で得られた凝縮水を同様に貯水可能である。   First, in the embodiment described above, the case where the condensed water obtained from the burner exhaust of the fuel processing device and the condensed water obtained from the cathode exhaust of the fuel cell main body are stored in the water tank has been described. In the same manner, the condensed water obtained in other parts of the fuel cell power generation system can be similarly stored.

例えば、燃料電池本体に供給される水素リッチガスから得られる凝縮水、燃料電池本体のアノード極排気から得られる凝縮水などを同様に水タンク内に貯水することが考えられる。この場合、水素リッチガスやアノード極排気は、バーナ排気やカソード極排気と混合できないため、異なる凝縮器および異なる流路を用いて凝縮水を水タンク内に供給することになる。   For example, condensate obtained from a hydrogen-rich gas supplied to the fuel cell main body, condensate obtained from the anode electrode exhaust of the fuel cell main body, and the like can be stored in the water tank in the same manner. In this case, since the hydrogen rich gas and the anode electrode exhaust gas cannot be mixed with the burner exhaust gas and the cathode electrode exhaust gas, the condensed water is supplied into the water tank using a different condenser and a different flow path.

また、前述した実施形態においては、説明の簡略化の観点から、水タンク内の凝縮水室に貯水した凝縮水の全てを、水処理装置により水処理して燃料処理装置の改質水として利用する場合について説明したが、凝縮水の用途は、これに限定されず、燃料電池発電システム内の他の各部に適宜供給可能である。例えば、水素リッチガスやアノード極排気中の水分を凝縮するための各凝縮器に熱交換用の冷却水として供給するなどの用途が考えられる。   In the embodiment described above, from the viewpoint of simplifying the explanation, all of the condensed water stored in the condensed water chamber in the water tank is treated with water by the water treatment device and used as reforming water for the fuel treatment device. Although the case where it does is demonstrated, the use of condensed water is not limited to this, It can supply suitably to each other part in a fuel cell power generation system. For example, it is conceivable to use it as cooling water for heat exchange to each condenser for condensing water in the hydrogen rich gas or anode electrode exhaust.

さらに、水循環システム内に水分や水を取り込むための取り込み先や、水循環システム内の水を供給する供給先は、燃料電池発電システム内のみに限らず、燃料電池発電システムの外部と水分や水の一部をやり取りするように構成してもよい。例えば、燃料電池発電システム外部から水分を含む各種のガスあるいは各種の水質の水を補給したり、水循環システム内の各種の水質の水を、燃料電池発電システム外部に供給する構成が考えられる。あるいはまた、水循環システム内の水分や水の一部を、燃料電池発電システムの外部との間で循環させるように構成してもよい。   Furthermore, the supply destination for taking water and water into the water circulation system and the supply destination for supplying water in the water circulation system are not limited to the inside of the fuel cell power generation system. You may comprise so that a part may be exchanged. For example, a configuration is conceivable in which various types of gas containing water or various types of water are supplied from the outside of the fuel cell power generation system, or various types of water in the water circulation system are supplied to the outside of the fuel cell power generation system. Or you may comprise so that the water | moisture content and some water in a water circulation system may be circulated between the exteriors of a fuel cell power generation system.

すなわち、本発明は、バーナ排気とカソード排気の凝縮水を得る凝縮器から水タンクを独立させて樹脂系材料で構成し、水タンク内部に凝縮水室と電池冷却水室を設けると共に、凝縮器から水タンクに凝縮水を供給する凝縮器排水流路の流出口を凝縮水室内の液面より低い位置に配置する限り、水循環システムやそれを含む燃料電池発電システムの具体的なシステム構成、あるいは、凝縮器、脱炭酸塔、水タンク、各種流路などの要素の具体的な構成は適宜変更可能であり、同様に優れた効果が得られるものである。   That is, the present invention provides a water tank that is made of a resin-based material independently from a condenser that obtains condensed water of burner exhaust and cathode exhaust, and includes a condenser water chamber and a battery cooling water chamber inside the water tank. As long as the outlet of the condenser drainage channel for supplying condensed water to the water tank is located at a position lower than the liquid level in the condensed water chamber, the specific system configuration of the water circulation system and the fuel cell power generation system including it, or Specific configurations of elements such as a condenser, a decarboxylation tower, a water tank, and various flow paths can be changed as appropriate, and excellent effects can be obtained similarly.

さらに、本発明は、燃料電池発電システム中の水循環システムに特徴を有するものであるため、水循環システム以外の燃料電池本体や燃料処理装置などの構成要素の具体的な構成も、何ら限定されない。   Furthermore, since this invention has the characteristics in the water circulation system in a fuel cell power generation system, the specific structure of components, such as a fuel cell main body and a fuel processing apparatus other than a water circulation system, is not limited at all.

本発明を適用した第1の実施形態に係る燃料電池発電システムの水循環システムを示す構成図。The block diagram which shows the water circulation system of the fuel cell power generation system which concerns on 1st Embodiment to which this invention is applied. 本発明を適用した第2の実施形態に係る燃料電池発電システムの水循環システムの水タンク周辺部分を示す構成図。The block diagram which shows the water tank periphery part of the water circulation system of the fuel cell power generation system which concerns on 2nd Embodiment to which this invention is applied. 従来の燃料電池発電システムの水循環システムの一例を示す構成図。The block diagram which shows an example of the water circulation system of the conventional fuel cell power generation system.

符号の説明Explanation of symbols

1…燃料電池本体
1a…アノード極
1b…カソード極
2…燃料処理装置
2a…バーナ部
2b…改質部
30…凝縮熱交換器
31…凝縮器排水流路
31a,41a…水封部
40…脱炭酸塔
41…脱炭酸塔排水流路
50…水タンク
51…凝縮水室
52…電池冷却水室
53…純水室
54,55…隔壁
70…水処理装置
101…電池排水流路
106…バーナ排気流路
201…電池冷却水供給流路
202〜204…カソード極排気流路
205…凝縮水供給流路
206,207…純水供給流路
211…凝縮水供給流路
212…電池冷却水供給流路
221,222…ポンプ
231,232…圧力または温度センサ
DESCRIPTION OF SYMBOLS 1 ... Fuel cell main body 1a ... Anode pole 1b ... Cathode pole 2 ... Fuel processing apparatus 2a ... Burner part 2b ... Reformer part 30 ... Condensation heat exchanger 31 ... Condenser drain flow path 31a, 41a ... Water seal part 40 ... Desorption Carbonate tower 41 ... Decarbonation tower drainage channel 50 ... Water tank 51 ... Condensed water chamber 52 ... Battery cooling water chamber 53 ... Pure water chambers 54 and 55 ... Partition wall 70 ... Water treatment device 101 ... Battery drainage channel 106 ... Burner exhaust Channel 201 ... Battery cooling water supply channel 202 to 204 ... Cathode electrode exhaust channel 205 ... Condensed water supply channel 206, 207 ... Pure water supply channel 211 ... Condensed water supply channel 212 ... Battery cooling water supply channel 221, 222 ... Pumps 231, 232 ... Pressure or temperature sensors

Claims (12)

バーナ部で発生させた燃焼熱を改質部で利用して炭化水素系燃料を水素リッチなガスに改質させる燃料処理装置と、アノード極に供給した水素リッチなガスとカソード極に供給した酸素とを反応させて直流電力を生成する燃料電池本体とを備えた燃料電池発電システム内に設けられる水循環システムであって、前記燃料処理装置のバーナ部から排出されるバーナ排気中の水分と前記燃料電池本体のカソード極から排出されるカソード極排気中の水分を凝縮して、得られた凝縮水と燃料電池を冷却する電池冷却水を貯留する凝縮・貯水手段と、この凝縮・貯水手段に貯留した水の水質を浄化する水処理装置を備えた水循環システムにおいて、
前記凝縮・貯水手段は、不燃性材料で構成された凝縮器と樹脂系材料で構成された水タンクを備え、
前記凝縮器は、前記燃料処理装置のバーナ部から排出されるバーナ排気と前記燃料電池本体のカソード極から排出されるカソード極排気を冷却して凝縮水を生成するように構成され、
前記水タンクには、前記凝縮器から排出される凝縮水と前記燃料電池本体から排出される電池冷却水とを分離して貯留する凝縮水室と電池冷却水室を含む複数の貯水室が設けられると共に、各貯水室内の水を水タンク外にそれぞれ供給する複数の供給流路が設けられ、前記凝縮水室の凝縮水を水タンク外に供給する凝縮水供給流路は、前記水処理装置に凝縮水を供給する供給流路を含み、
前記凝縮器には、不燃性材料で構成されて凝縮水を前記水タンクの凝縮水室に供給する凝縮器排水流路が設けられ、この凝縮器排水流路の凝縮水室内への流出口は、凝縮水室内に保有する凝縮水の液面より低い位置に配置された
ことを特徴とする燃料電池発電システムの水循環システム。
Fuel treatment device that reforms hydrocarbon fuel into hydrogen rich gas using combustion heat generated in burner part, hydrogen rich gas supplied to anode electrode and oxygen supplied to cathode electrode A water circulation system provided in a fuel cell power generation system including a fuel cell main body that generates direct-current power by reacting with water in the burner exhaust discharged from the burner portion of the fuel processing device and the fuel Condensation / water storage means for condensing moisture in the cathode electrode exhaust discharged from the cathode electrode of the battery body and storing the obtained condensed water and battery cooling water for cooling the fuel cell, and storage in the condensation / water storage means In a water circulation system equipped with a water treatment device that purifies the water quality
The condensation / water storage means includes a condenser composed of a noncombustible material and a water tank composed of a resin-based material,
The condenser is configured to cool the burner exhaust discharged from the burner portion of the fuel processing apparatus and the cathode exhaust discharged from the cathode electrode of the fuel cell main body to generate condensed water,
The water tank is provided with a plurality of water storage chambers including a condensed water chamber and a battery cooling water chamber for separating and storing the condensed water discharged from the condenser and the battery cooling water discharged from the fuel cell main body. And a plurality of supply passages for supplying the water in each reservoir chamber to the outside of the water tank are provided, and the condensed water supply passage for supplying the condensed water in the condensed water chamber to the outside of the water tank is provided in the water treatment device. Including a supply channel for supplying condensed water to
The condenser is provided with a condenser drain passage made of a non-combustible material and supplying condensed water to the condensed water chamber of the water tank, and the outlet of the condenser drain passage into the condensed water chamber is A water circulation system for a fuel cell power generation system, wherein the water circulation system is disposed at a position lower than the level of the condensed water held in the condensed water chamber.
前記複数の貯水室は、前記水処理装置から排出される純水を凝縮水および電池冷却水と分離して貯留する純水室を含み、この純水室に貯留した純水を水タンク外に供給する純水供給流路は、前記燃料処理装置に純水を供給する供給流路を含む
ことを特徴とする請求項1に記載の燃料電池発電システムの水循環システム。
The plurality of water storage chambers include a pure water chamber for storing pure water discharged from the water treatment device separately from condensed water and battery cooling water, and the pure water stored in the pure water chamber is outside the water tank. 2. The water circulation system for a fuel cell power generation system according to claim 1, wherein the supplied pure water supply flow path includes a supply flow path for supplying pure water to the fuel processing apparatus.
前記水タンク内において、凝縮水室、電池冷却水室、純水室という3つの貯水室は、この順で並べて配置され、隣接する各2つの貯水室の間は、その上部に両側の貯水室間を連通させる連通部を有する隔壁によりそれぞれ分離され、凝縮水室と電池冷却水室の間の隔壁の連通部の高さが、電池冷却水室と純水室の間の隔壁の連通部より低くなるように構成された
ことを特徴とする請求項2に記載の燃料電池発電システムの水循環システム。
In the water tank, three water storage chambers such as a condensate water chamber, a battery cooling water chamber, and a pure water chamber are arranged in this order, and between the two adjacent water storage chambers, the water storage chambers on both sides are arranged at the upper part. Separated by partition walls having communication portions that communicate with each other, the height of the communication portion of the partition walls between the condensate water chamber and the battery cooling water chamber is greater than the communication portion of the partition walls between the battery cooling water chamber and the pure water chamber. The water circulation system of the fuel cell power generation system according to claim 2, wherein the water circulation system is configured to be low.
前記水タンク内の隔壁の連通部は、隔壁の高さに応じてその上方に形成される連通空間である
ことを特徴とする請求項3に記載の燃料電池発電システムの水循環システム。
The water circulation system of the fuel cell power generation system according to claim 3, wherein the communication portion of the partition wall in the water tank is a communication space formed above the partition wall according to the height of the partition wall.
前記水タンクは、ポリプロピレン、ポリカーボネート、ポリエチレン、ポリフェニレンサルファイド、の中から選択された樹脂系材料で構成された
ことを特徴とする請求項1に記載の燃料電池発電システムの水循環システム。
2. The water circulation system for a fuel cell power generation system according to claim 1, wherein the water tank is made of a resin material selected from polypropylene, polycarbonate, polyethylene, and polyphenylene sulfide.
前記凝縮・貯水手段は、前記燃料電池本体のカソード極から排出されるカソード極排気により、前記燃料電池本体から排出される電池冷却水の脱炭酸処理を行わせる脱炭酸塔を備え、
この脱炭酸塔には、前記燃料電池本体のカソード極から排出されるカソード極排気を脱炭酸塔に供給するカソード極排気流路と、燃料電池本体から排出される電池冷却水を脱炭酸塔に供給する電池排水流路とが設けられ、
前記カソード極排気流路は、カソード極排気を前記水タンク内の空間を経由して前記脱炭酸塔に供給するように構成され、かつ、このカソード極排気流路と前記電池排水流路は、カソード極排気と電池冷却水を脱炭酸塔に対して異なる流入口から分離して供給し、脱炭酸塔内部で対向流として流すように構成された
ことを特徴とする請求項1に記載の燃料電池発電システムの水循環システム。
The condensing / water storage means includes a decarboxylation tower for performing decarboxylation treatment of battery cooling water discharged from the fuel cell main body by cathode electrode exhaust discharged from the cathode electrode of the fuel cell main body,
The decarbonation tower includes a cathode electrode exhaust passage for supplying cathode electrode exhaust discharged from the cathode electrode of the fuel cell body to the decarbonation tower, and battery cooling water discharged from the fuel cell body to the decarbonation tower. A battery drainage channel to be supplied,
The cathode electrode exhaust channel is configured to supply cathode electrode exhaust to the decarbonation tower via a space in the water tank, and the cathode electrode exhaust channel and the battery drain channel are 2. The fuel according to claim 1, wherein the cathode electrode exhaust and the battery cooling water are supplied separately from different inlets to the decarbonation tower and flow as a counterflow inside the decarbonation tower. Water circulation system for battery power generation system.
前記脱炭酸塔には、脱炭酸処理された電池冷却水を前記水タンクの電池冷却水室に供給する脱炭酸塔排水流路が設けられ、この脱炭酸塔排水流路の電池冷却水室内への流出口は、電池冷却水室内に保有する電池冷却水の液面より低い位置に配置された
ことを特徴とする請求項6に記載の燃料電池発電システムの水循環システム。
The decarbonation tower is provided with a decarbonation tower drain passage for supplying the decarbonated battery cooling water to the battery cooling water chamber of the water tank, and into the battery cooling water chamber of the decarbonation tower drain passage. The water circulation system of the fuel cell power generation system according to claim 6, wherein the outlet of the fuel cell is disposed at a position lower than a level of the battery cooling water held in the battery cooling water chamber.
前記凝縮水室の凝縮水を水タンク外に供給する凝縮水供給流路のうち、凝縮水室からの凝縮水の流入口は、前記凝縮器排水流路の流出口より高い位置に配置された
ことを特徴とする請求項1に記載の燃料電池発電システムの水循環システム。
Among the condensed water supply channels that supply condensed water in the condensed water chamber to the outside of the water tank, the inlet of condensed water from the condensed water chamber is disposed at a position higher than the outlet of the condenser drainage channel. The water circulation system of the fuel cell power generation system according to claim 1.
前記凝縮水供給流路の圧力または温度の変化を検知する検知手段が設けられ、この検知手段により検知される圧力または温度の変化に基づいて前記水タンクの凝縮水室内の液面低下を検知するように構成された
ことを特徴とする請求項8に記載の燃料電池発電システムの水循環システム。
Detection means for detecting a change in pressure or temperature of the condensed water supply flow path is provided, and a drop in the liquid level in the condensed water chamber of the water tank is detected based on a change in pressure or temperature detected by the detection means. The water circulation system of the fuel cell power generation system according to claim 8, wherein the water circulation system is configured as described above.
前記電池冷却水室の電池冷却水を水タンク外に供給する電池冷却水供給流路のうち、電池冷却水室からの電池冷却水の流入口は、前記脱炭酸塔排水流路の流出口より高い位置に配置された
ことを特徴とする請求項7に記載の燃料電池発電システムの水循環システム。
Of the battery cooling water supply passages for supplying the battery cooling water in the battery cooling water chamber to the outside of the water tank, the inlet for the battery cooling water from the battery cooling water chamber is from the outlet of the decarbonation tower drain passage. The water circulation system for a fuel cell power generation system according to claim 7, wherein the water circulation system is disposed at a high position.
前記電池冷却水供給流路の圧力または温度の変化を検知する検知手段が設けられ、この検知手段により検知される圧力または温度の変化に基づいて前記水タンクの電池冷却水室内の液面低下を検知するように構成された
ことを特徴とする請求項10に記載の燃料電池発電システムの水循環システム。
Detection means for detecting a change in the pressure or temperature of the battery cooling water supply flow path is provided, and the liquid level in the battery cooling water chamber of the water tank is reduced based on the change in pressure or temperature detected by the detection means. The water circulation system of the fuel cell power generation system according to claim 10, wherein the water circulation system is configured to detect.
バーナ部で発生させた燃焼熱を改質部で利用して炭化水素系燃料を水素リッチなガスに改質させる燃料処理装置と、アノード極に供給した水素リッチなガスとカソード極に供給した酸素とを反応させて直流電力を生成する燃料電池本体と、前記燃料処理装置のバーナ部から排出されるバーナ排気中の水分と前記燃料電池本体のカソード極から排出されるカソード極排気中の水分を凝縮して、得られた凝縮水と燃料電池を冷却する電池冷却水を貯留し、貯留した水の水質を浄化する水循環システムとを備えた燃料電池発電システムにおいて、
前記水循環システムとして、請求項1乃至請求項11のいずれか1項に記載の水循環システムを備えたことを特徴とする燃料電池発電システム。
Fuel treatment device that reforms hydrocarbon fuel into hydrogen rich gas using combustion heat generated in burner part, hydrogen rich gas supplied to anode electrode and oxygen supplied to cathode electrode A fuel cell main body that generates direct-current power, moisture in the burner exhaust discharged from the burner portion of the fuel processing device, and moisture in the cathode electrode exhaust discharged from the cathode electrode of the fuel cell main body. In a fuel cell power generation system comprising a condensed water obtained by condensing and battery cooling water for cooling the fuel cell, and a water circulation system for purifying the quality of the stored water,
A fuel cell power generation system comprising the water circulation system according to any one of claims 1 to 11 as the water circulation system.
JP2007241669A 2007-09-19 2007-09-19 Fuel cell power generation system, and water circulating system thereof Pending JP2009076216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007241669A JP2009076216A (en) 2007-09-19 2007-09-19 Fuel cell power generation system, and water circulating system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007241669A JP2009076216A (en) 2007-09-19 2007-09-19 Fuel cell power generation system, and water circulating system thereof

Publications (1)

Publication Number Publication Date
JP2009076216A true JP2009076216A (en) 2009-04-09

Family

ID=40611011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007241669A Pending JP2009076216A (en) 2007-09-19 2007-09-19 Fuel cell power generation system, and water circulating system thereof

Country Status (1)

Country Link
JP (1) JP2009076216A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014222318A1 (en) 2014-10-31 2016-05-04 Volkswagen Ag Fuel cell system and vehicle with such
DE102014227014A1 (en) 2014-12-29 2016-06-30 Volkswagen Ag Fuel cell system and vehicle with such
JP2018160372A (en) * 2017-03-23 2018-10-11 アイシン精機株式会社 Fuel cell system
KR102279413B1 (en) * 2020-12-11 2021-07-20 주식회사 미코파워 Water tank for fuel cell capable of recycling water and fuel cell system having the water tank

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001232394A (en) * 2000-02-25 2001-08-28 Tokyo Gas Co Ltd Water treatment equipment for fuel cell
JP2002542592A (en) * 1999-04-20 2002-12-10 インターナショナル フュエル セルズ,エルエルシー Water treatment equipment for fuel cell devices
JP2003308859A (en) * 2002-04-17 2003-10-31 Mitsubishi Heavy Ind Ltd Water feeder in fuel cell power generation system and fuel cell power generation system using it
JP2004060729A (en) * 2002-07-26 2004-02-26 Osaka Gas Co Ltd Draining device
JP2004281075A (en) * 2003-03-12 2004-10-07 Seibu Gas Co Ltd Water treatment device for solid polymer type fuel cell
JP2004288505A (en) * 2003-03-24 2004-10-14 Osaka Gas Co Ltd Reforming device for fuel cell
JP2005310615A (en) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Fuel cell system
JP2006127842A (en) * 2004-10-27 2006-05-18 Matsushita Electric Ind Co Ltd Fuel cell power generating system
WO2006088053A1 (en) * 2005-02-18 2006-08-24 Matsushita Electric Industrial Co., Ltd. Fuel cell system and method of operating the same
JP2007184144A (en) * 2006-01-06 2007-07-19 Toyota Motor Corp Gas/liquid separator for fuel cell

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542592A (en) * 1999-04-20 2002-12-10 インターナショナル フュエル セルズ,エルエルシー Water treatment equipment for fuel cell devices
JP2001232394A (en) * 2000-02-25 2001-08-28 Tokyo Gas Co Ltd Water treatment equipment for fuel cell
JP2003308859A (en) * 2002-04-17 2003-10-31 Mitsubishi Heavy Ind Ltd Water feeder in fuel cell power generation system and fuel cell power generation system using it
JP2004060729A (en) * 2002-07-26 2004-02-26 Osaka Gas Co Ltd Draining device
JP2004281075A (en) * 2003-03-12 2004-10-07 Seibu Gas Co Ltd Water treatment device for solid polymer type fuel cell
JP2004288505A (en) * 2003-03-24 2004-10-14 Osaka Gas Co Ltd Reforming device for fuel cell
JP2005310615A (en) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Fuel cell system
JP2006127842A (en) * 2004-10-27 2006-05-18 Matsushita Electric Ind Co Ltd Fuel cell power generating system
WO2006088053A1 (en) * 2005-02-18 2006-08-24 Matsushita Electric Industrial Co., Ltd. Fuel cell system and method of operating the same
JP2007184144A (en) * 2006-01-06 2007-07-19 Toyota Motor Corp Gas/liquid separator for fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014222318A1 (en) 2014-10-31 2016-05-04 Volkswagen Ag Fuel cell system and vehicle with such
DE102014227014A1 (en) 2014-12-29 2016-06-30 Volkswagen Ag Fuel cell system and vehicle with such
US10207597B2 (en) 2014-12-29 2019-02-19 Audi Ag Fuel cell system as well as vehicle having such a fuel cell system
JP2018160372A (en) * 2017-03-23 2018-10-11 アイシン精機株式会社 Fuel cell system
KR102279413B1 (en) * 2020-12-11 2021-07-20 주식회사 미코파워 Water tank for fuel cell capable of recycling water and fuel cell system having the water tank

Similar Documents

Publication Publication Date Title
JP2008027587A (en) Fuel cell power generator
JP5383112B2 (en) Fuel cell system
US20120135322A1 (en) Fuel cell system
JP4624670B2 (en) Integration of the functions of many components of a fuel cell power plant
JP2008269807A (en) Fuel cell power generation system
JP4959112B2 (en) Fuel cell system
JP2005276757A (en) Fuel cell cogeneration system
JP2009076216A (en) Fuel cell power generation system, and water circulating system thereof
JP2010504613A (en) Impurity separator and separation loop for fuel reaction flow in fuel cells
JP5381238B2 (en) Fuel cell system
JP5229329B2 (en) Fuel cell system
JP2009104814A (en) Fuel cell power generation system
JP6765085B2 (en) Hydrogen generator and fuel cell system
JP2009032556A (en) Fuel cell device
JP2002260708A (en) Stackes structure of fuel cell
JP2009259756A (en) Fuel supply device for fuel cell, and fuel cell system using the same
JP2008198400A (en) Fuel cell power generation system
JP2009016151A (en) Drain recovery apparatus of fuel cell power generating device
JP2008121910A (en) Humidity exchange type humidifier and fuel cell power generation system using the same
JP4625585B2 (en) Polymer electrolyte fuel cell system
KR100664086B1 (en) Water separator and fuel cell with this
JP5092959B2 (en) Fuel cell cogeneration system
KR20070037204A (en) Rotatable water recycle apparatus and fuel cell using the same
JP2012115784A (en) Water treatment system, and fuel cell electric power system using the same
JP5178095B2 (en) Fuel cell device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002